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b Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, Czechia
c University of Kansas, School of Business, Lawrence, KS 66045, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 January 2022
Received in revised form 6 September 2022
Accepted 16 September 2022
Available online 21 September 2022

Keywords:
Entropy
Belief functions
Compositional models

Applications of Dempster-Shafer (D-S) belief functions to practical problems involve 
difficulties arising from their high computational complexity. One can use space-saving 
factored approximations such as graphical belief function models to solve them. Using 
an analogy with probability distributions, we represent these approximations in the 
form of compositional models. Since no theoretical apparatus similar to probabilistic 
information theory exists for D-S belief functions (e.g., dissimilarity measure analogous 
to the Kullback-Liebler divergence measure), the problems arise not only in connection 
with the design of algorithms seeking optimal approximations but also in connection with 
a criterion comparing two different approximations. In this respect, the application of the 
analogy with probability theory fails. Therefore, in this paper, we conduct some synthetic 
experiments and describe the results designed to reveal whether some belief function 
entropy definitions described in the literature can detect optimal approximations, i.e., that 
achieve their minimum for an optimal approximation.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Applications of Dempster-Shafer (D-S) belief functions to practical problems involve difficulties arising from their high 
computational complexity. One can use space-saving factored approximations such as graphical belief function models to 
solve them. Using an analogy with probability distributions, we represent these approximations in the form of compositional 
models. However, no theoretical apparatus similar to probabilistic information theory exists for D-S belief functions. There 
is no dissimilarity measure possessing the properties of the Kullback-Liebler divergence measure. Thus, the problems arise 
in connection with the design of algorithms seeking optimal approximations because we do not have a criterion comparing 
two different approximations. In this respect, the application of the analogy with probability theory fails. Therefore, in this 
paper, we conduct some synthetic experiments and describe the results designed to reveal whether some belief function 
entropy definitions described in the literature can detect optimal approximations.

Like in probability theory, several entropy measures have been defined in the framework of belief functions. This paper 
aims to test to what extent these measures serve our needs. The tests are organized as follows. We randomly generate 
a set of belief functions, ensuring that one (say the first one) is superior to all others. It happens when this first belief 
function contains all the information from all the remaining belief functions in the set. Thus, we expect that a measure 
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of uncertainty/conflict suitable to rate the optimality of the model should be lower for the first model compared to the 
remaining ones from the set. In the study, we consider their theoretical properties and computational complexity to address 
their applicability to real-life problems.

A theoretical foundation for the task is offered by compositional models. As superior belief functions, one can consider the 
models called perfect decomposable models [18]. For such models, the data-based machine learning process consists of two 
steps. The first problem is estimating a system of low-dimensional basic probability assignments (BPAs). Since we consider 
only low-dimensional BPAs, one can use one of the “statistical approaches” designed in the literature, e.g., [7,9]. In the 
second step, one must order the low-dimensional BPAs to get a joint model describing the reality. And this is the problem 
for which we need a suitable entropy. This step is solved using information-theoretic characteristics based on Shannon 
entropy when working with probabilistic compositional models. In the case of Dempster-Shafer belief functions, we have 
numerous definitions of entropy similar to Shannon entropy for probability distributions [19]. In Section 8, we present 
results of computational experiments that should answer the question of whether one can find a belief function entropy 
(described in the literature) that could be used to detect an optimal solution or the extent to which a definition meets 
this goal. To help the reader understand what compositional models are and how they are used to construct real-life joint 
models, Section 2 describes the original ideas suggested in the framework of probability theory.

The remaining parts of the paper are organized as follows. Section 3 introduces the basics of D-S belief function theory. 
Next, Sections 4 and 5 introduce the main definitions of compositional models and their properties, respectively. A survey of 
entropies for belief functions is briefly presented in Section 6. In Section 7, we explain by an example how the computational 
experiments were conducted. Finally, Section 8 describes the experimental results.

2. Motivation

Space-complexity problems analogous to those discussed in Section 1 had to be solved in the 1970s by applying prob-
abilistic models to support a decision. Perez suggested using a class of space-saving approximations of joint probability 
distributions that he called approximations simplifying the dependence structure [39].

Consider a large set of discrete random variables W with a joint probability distribution π . For an arbitrary partition 
{U1, U2, . . . , Uk} of W , one can decompose the joint distribution π using the chain rule as follow:

π(W) = π(U1)π(U2|U1) . . . π(Uk|(U1 ∪ ... ∪ Uk−1)) =
k∏

i=1

π(Ui |(U1 ∪ . . . ∪ Ui−1)). (1)

In Eq. (1), for i = 1, π(Ui |(U1 ∪ . . . ∪ Ui−1)) is just the marginal π(U1). For i = 2, π(U2|U1) is the conditional probability 
table for U2 given U1, etc. In large models (|W| is large), it is rarely the case that the conditional marginal of Ui depends 
on all variables in U1 ∪ . . . ∪Ui−1. This fact was exploited by Perez [39], who suggested using an ε-admissible approximation 
by simplification of the dependence structure1 to overcome the computational complexity problem. His basic idea is as follows. 
Substitute each set (U1 ∪ . . . ∪ Ui−1) in Eq. (1) by its smaller subset Ti such that the conditional probability distribution 
π(Ui |Ti) is almost the same as π(Ui |(U1 ∪ . . . ∪ Ui−1)). The non-similarity of probability distributions π and κ defined on 
� can be measured using the Kullback-Leibler (KL) divergence [33] defined as follows2

K L(π‖κ) =
∑

x∈�:κ(x)>0

π(x) log

(
π(x)

κ(x)

)
. (2)

Thus, consider a joint distribution as follows:

κ(W) =
k∏

i=1

π(Ui|Ti) = (. . . ((π(U1) � π(U2 ∪ T2)) � π(U3 ∪ T3)) � . . . � π(Uk−1 ∪ Tk−1)) � π(Uk ∪ Tk), (3)

where the binary operator, called a composition operator, is as follows:

ν1(V1) � ν2(V2) = ν1(V1) · ν2(V2 \ V1|V1 ∩ V2).

A probability distribution that can be expressed in the form of a multiple application of the composition operator (as that 
in Eq. (3)) is called a compositional model. If K L(π‖κ) � ε, then κ is an ε-admissible approximation of π .

Now, consider a different problem. Let {V1, V2, . . . , Vk} be a set of subsets of W (generally not disjoint) such that ⋃k
i=1 Vi = W . Given a set of low-dimensional distributions {κi(Vi)}i=1,...,k , a question is whether there exists a joint distri-

bution for W such that all κi ’s are its marginals. If such a distribution π exists, then a natural question is how to find it, or, 

1 The notion reflects the fact that the considered approximation extends the set of conditional independence relations holding for the probability distri-
bution in question [49].

2 Eq. (2) defines the KL divergence if κ dominates π , i.e., if for all x ∈ �, for which κ(x) = 0, π(x) is also 0. Otherwise, the KL divergence is defined to 
be +∞.
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Table 1
Two-dimensional probability distributions.

κ1(U , X) κ2(X, Y ) κ3(Y , Z)

(u, x) 0.2 (x, y) 0.4 (y, z) 0.25
(u, x̄) 0.3 (x, ȳ) 0.1 (y, z̄) 0.25
(ū, x) 0.3 (x̄, y) 0.1 ( ȳ, z) 0.25
(ū, x̄) 0.2 (x̄, ȳ) 0.4 ( ȳ, z̄) 0.25

if its computation is intractable,3 how to approximate it. Perez [39] looked for an approximation within the class of approx-
imations simplifying the dependence structure that could be assembled from the given system of marginals {κi(Vi)}i=1,...,k . 
Thus, he considered all the permutation of indices (i.e., bijections) j : {1, 2, . . . , k} → {1, 2, . . . , k}, each defining a probability 
distribution

κ[ j] =
k∏

i=1

κ j(i)((V j(i) \ T j(i))|T j(i)),

where T j(i) = V j(i) ∩ (V j(1) ∪ . . . ∪ V j(i−1)). He was looking for the approximation (permutation j) minimizing K L (π‖κ[ j]). 
For this, he showed [39] that4

K L (π‖κ[ j]) = −H(π) +
k∑

i=1

(
H(κ j(i)(V j(i))) − H(κ j(i)(T j(i)))

)
; (4)

recall that Eq. (4) holds under the assumption that all κi ’s are marginals of π . If for some permutation j, all κi ’s are also 
marginals of κ[ j], then Eq. (4) can be further simplified getting K L (π‖κ[ j]) = H(κ[ j]) − H(π). Thus, regardless of whether 
distribution π is known or not, he proved that its best approximation (that simplifies the dependence structure), which can 
be set up from {κi(Vi)}i=1,...,k , is that which minimizes 

∑k
i=1

(
H(κ j(i)(V j(i))) − H(κ j(i)(T j(i)))

)
. Suppose one considers only 

so-called perfect approximations, i.e., the approximations κ[ j] having all κi ’s for its marginals (and still assuming that all κi

are marginals of π ). In that case, the best approximation minimizes its Shannon entropy H(κ[ j]). As showed in [14], such 
an approximation is unique in the sense that for two different permutations j and j′ , such that all κi ’s are marginals of 
both κ[ j] and κ[ j′], κ[ j] = κ[ j′]. The minimization of the Shannon entropy also corresponds with the intuition that the best 
approximation maximizes an information content, which can be expressed for the considered compositional model κ[ j]

IC(κ[ j]) =
∑

X∈W
H(π↓X ) − H(κ[ j]). (5)

Example. Consider four binary variables W = {U , X, Y , Z}, their subsets V1 = {U , X}, V2 = {X, Y }, V3 = {Y , Z}, and the 
corresponding two-dimensional probability distributions κi(Vi), which are pairwise consistent, i.e., κ↓{X}

1 = κ
↓{X}
2 , κ↓{Y }

2 =
κ

↓{Y }
3 . In this simple example, all possible permutations j : {1, 2, 3} → {1, 2, 3} (we will depict them in a form of a vector 

( j(1), j(2), j(3)) in this example) define only two different approximations. If j(3) �= 2, then κ[ j] = κ[(1, 2, 3)] is a perfect 
approximation. For the remaining two permutations κ[(1, 3, 2)] = κ[(3, 1, 2)] = κ1κ3. For this distribution, variables X and 
Y are independent, which means that κ2 (see Table 1) cannot be a marginal of κ[(1, 3, 2)].

We have not defined the joint distribution π in this example, so we cannot compute the Kullback-Leibler divergence of 

the approximations from π . However, computing the value �[ j] =
k∑

i=1

(
H(κ j(i)(V j(i))) − H(κ j(i)(T j(i)))

)
for the two permu-

tations j = (1, 2, 3) and j = (1, 3, 2), we get �[(1, 2, 3)] = 3.69 and �[(1, 3, 2)] = 3.97, which shows that κ[(1, 2, 3)] is a 
better approximation of any distribution π having κ1, κ2, κ3 for its marginals than the approximation κ[(1, 3, 2)].

3. Belief functions

There are several theories that use belief functions (and their equivalent representations such as basic probability assign-
ments, plausibility functions, commonality functions, credal sets, etc.) to represent evidence. The theories differ mainly in 

3 As proved by Csiszár [3], the iterative procedure described in [5] converges to the required probability distribution. Nevertheless, the computational 
complexity of this procedure is exponential with the number of variables, and therefore its practical application to multidimensional probability distribu-
tions may easily become intractable.

4 In the whole paper, H without any index denotes Shannon entropy [41] of a probability distribution. Entropies and entropy-like functions for belief 
functions will be denoted by H with different indices.
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the combination rules used to aggregate evidence. In this paper, we are interested in the Dempster-Shafer (D-S) theory of 
belief functions, which uses Dempster’s combination rule [6].

As in Section 2, let W denote a set of variables with finite number of states. For X ∈W , let �X denote the set of states 
of variable X . Let �W denote ×X∈W �X , the set of states for W .

A basic probability assignment (BPA) for variables U ⊆ W is a mapping mU : 2�U → [0, 1], such that 
∑

a⊆�U mU (a) = 1
and mU (∅) = 0.

Consider a BPA mU for U . If the set of the corresponding variables is clear from the context, we omit the subscript U . 
Thus, we say that a is a focal element of m if m(a) > 0. A BPA with only one focal element is called deterministic; ιU denote 
the deterministic BPA, for which ιU (�U ) = 1. Since ιU represents a total ignorance, it is called vacuous.

A BPA m for �U can also be defined by the corresponding belief function (BEL), or by plausibility function (PL), or by 
commonality function (CF) [40] as follows:

Belm(a) =
∑

b⊆�U :b⊆a

m(b),

Plm(a) =
∑

b⊆�U :b∩a�=∅
m(b),

Q m(a) =
∑

b⊆�U :b⊇a

m(b).

These representations are equivalent; when one of these functions is given, we can compute the others uniquely. For exam-
ple:

Plm(a) = 1 − Belm(�U \ a),

m(a) =
∑
b⊆a

(−1)|a\b|Belm(b),

m(a) =
∑

b⊆�U :b⊇a

(−1)|b\a| Q m(b). (6)

A BPA m on �U (or, equivalently, BEL Belm for U ) defines a set Pm of probability mass functions on �U

Pm =
{
π defined on �U | ∀a ⊆ �U :

∑
c∈a

π(c) � Belm(a)

}

that is called a credal set of m. The credal set of m uniquely defines m, and vice versa.

Marginalization. For BPA mV , we often consider its marginal BPA m↓U
V for U ⊆ V . A similar notation is used also for 

projections: for a ∈ �V , a↓U denotes the element of �U that is obtained from a by omitting the values of variables in V \U . 
Formally, if a ⊆ �V , then

a↓U = {a↓U : a ∈ a}.
The marginal m↓U

V of BPA mV for U is defined as follows:

m↓U
V (b) =

∑
a⊆�V :a↓U=b

mV (a),

for all b ⊆ �U .
The projection of sets enables us to define a join of two sets. Consider two arbitrary sets U and V of variables (they 

may be disjoint or overlapping, or one may be a subset of the other). Consider two sets a ⊆ �U and b ⊆ �V . Their join is 
defined as:

a �� b = {c ∈ �U∪V : c↓U ∈ a & c↓V ∈ b}.
Notice that if U and V are disjoint, then a �� b = a × b, if U = V , then a �� b = a ∩ b, and, in general, for c ⊆ �U∪V , c is a 
subset of c↓U �� c↓V , which may be a proper subset.

Dempster’s Combination Rule. In the D-S theory, Dempster’s combination rule is used to combine distinct belief functions. 
Consider two distinct BPAs mU and mV for U and V , respectively. Dempster’s combination rule is defined for each c ⊆ �U∪V
as follows:
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(mU ⊕ mV )(c) = 1

K

∑
a⊆�U ,b⊆�V :a��b=c

mU (a) · mV (b), (7)

where the normalization constant

K =
∑

a⊆�U ,b⊆�V :a��b�=∅
mU (a) · mV (b). (8)

(1 − K ) can be interpreted as the amount of conflict between mU and mV . If (1 − K ) = 1, then we say that BPAs mU and 
mV are in total conflict and their Dempster’s combination is undefined.

For this combination rule, the assumption of distinct belief functions is essential. In general m ⊕m �= m. Double-counting 
of evidence by combining non-distinct basic assignments leads to erroneous results. In directed graphical belief function 
models consisting of priors and conditionals, all BPAs are distinct and we combine these using Dempster’s rule. If we get 
some evidence represented as a BPA, and such a BPA is distinct from the BPAs in a graphical model, then we can get a 
posterior joint BPA by combining all BPAs using Dempster’s rule.

Dempster’s combination rule may also be described using the corresponding commonality functions. Consider two dis-
tinct BPAs mU , mV and the corresponding commonality functions Q mU and Q mV . Then, as shown in [40],

Q mU⊕mV (c) =
(

1

K

)
Q mU (c↓U ) Q mV (c↓V ), (9)

where K is the same as that defined in Equation (8).
There is an important property of Dempster’s combination rule and marginalization called local computation [44]. If 

T ⊆ U and (U \ T ) ∩ V = ∅, then

(mU ⊕ mV )↓T = (mU )↓T ⊕ mV

Thus, when we want to find the marginal of mU ⊕ mV for T , by removing variables in U \ T that does not include any 
variables in V , then we can avoid combination on the state space of U ∪V and do it instead on the smaller space of T ∪U .

Suppose m is a BPA for X , and we observe X = x, where x ∈ �X . Let mX=x denote the deterministic BPA for X such 
that mX=x({x}) = 1. Then, in the D-S theory, our posterior BPA for X is m ⊕ mX=x . An alternative way of dealing with 
the observation X = x is to condition each π ∈ Pm using the observation X = x. This results in a new credal set that 
corresponds to m combined with mX=x using the so-called Fagin-Halpern combination rule [11], m ⊕F H mX=x , which, in 
general, is different from m ⊕ mX=x . In this sense, the credal set semantics of m is incompatible with Dempster’s rule.

Removal. The inverse of Dempster’s combination rule is called removal. Since Dempster’s combination is defined as point-
wise combination of CFs followed by normalization, removal is defined as pointwise division of CFs followed by normaliza-
tion. Suppose U � V and QU is a marginal CF of QV , i.e., Q ↓U

V = QU . Then, QV � QU , is defined as follows:

(QV � QU )(a) = K −1 QV (a)/QU (a↓U ), (10)

for all a ∈ 2�V , where K is a normalization constant given by

K =
∑

∅�=a⊆�V

(−1)|a|+1 QV (a)/QU (a↓U ). (11)

We have defined the removal only for the case where we are removing the marginal QU from QV . Thus, if QU (a↓U ) = 0, 
then QV (a) = 0. In this case, we define 0/0 = 1. For more details of the properties of the removal operator �, see [42]. In 
[47], the removal operator is referred to as the decombination operator.

The CF QV � QU defined in Eq. (10) and (11) may fail to be a CF because the corresponding BPA m may have negative 
probabilities that sum to 1. Such BPAs are called pseudo-BPAs. So, an important question is: Under what conditions will 
removal result in a CF whose corresponding BPA is not a pseudo-BPA? The following proposition answers this question.

Proposition 1. Suppose mX,Y is a BPA for {X, Y } with corresponding CF Q mX,Y . Let mX denote the marginal of mX,Y for X, i.e., 
mX = (mX,Y )↓X . Then, Q mX,Y � Q mX is a CF if and only if there exists a BPA m for {X, Y } such that mX,Y = mX ⊕ m, and m↓X is the 
vacuous BPA for X.

Proof. Let ιX denote the vacuous BPA for X . If mX,Y = mX ⊕ m, Q mX,Y = Q mX ⊕ Q m , i.e., for each a ∈ 2�{X,Y } , we have

Q mX,Y (a) = K −1 Q mX (a↓X ) Q m(a) (12)

If we marginalize both sides of Eq. (12) using the above-mentioned local computation property, we get Q mX (a↓X ) =
K −1 Q mX (a↓X ) Q ιX (a↓X ). As Q ιX (a↓X ) = 1, K −1 = 1.
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(Q mX,Y � Q mX )(a) = K −1
1 Q mX,Y (a)/Q mX (a↓X )

= K −1
1 Q mX (a↓X ) Q m(a)/Q mX (a↓X )

= K −1
1 Q m(a). (13)

On the right side of Eq. (13), we have CF values for (X, Y ). So, the left side of Eq. (13) must also be CF values and 
K −1

1 = 1. �
The intuition behind Proposition 1 is as follows. Since pointwise multiplication of CFs represents a combination of 

knowledge, pointwise division of CFs represents the removal of knowledge in the denominator from the knowledge in the 
numerator. In the belief function literature, BPA m in Proposition 1 is called a conditional for Y given X [23]. Proposition 1
posits that if we remove knowledge mX that is included in mX,Y , and mX,Y is Dempster’s combination of the marginal mX

for X and a conditional m for Y given X , then such removal never results in a pseudo-BPA.

Plausibility and Pignistic Transforms. We discuss two probability transforms of a BPA m. After normalizing the plausibility 
function for singleton subsets, one gets for each a ⊆ �

λm(a) =
∑

b∈a Plm({b})∑
b∈� Plm({b}) (14)

a probability distribution on �. λm is called a plausibility transform of BPA m [2].
Several other probabilistic transforms of a BPA m are described in the literature (e.g., [4]). Here, we are only concerned 

with the pignistic transform [46,48] defined as follows:

πm(a) =
∑
a∈a

∑
b⊆�:a∈b

m(b)

|b| . (15)

The plausibility transform of m1 ⊕ m2 is the same as the probabilistic combination of the plausibility transforms of m1
and m2. This is not true for any other probabilistic transforms. Thus, it has been argued that only the plausibility transform 
makes sense for the D-S theory [2].

4. Composition operator

In Section 2, we recalled that probabilistic compositional models are joint probability distributions composed from a 
system of low-dimensional marginal probability distributions using the probabilistic composition operator. In contrast with 
Dempster’s rule, the low-dimensional marginal distributions are not assumed to be distinct, especially if the domains of 
marginals are not disjoint. The composition operator aggregates low-dimensional marginals and considers common infor-
mation in two non-distinct marginals.

The following axiomatic definition introduces a composition operator for (non-distinct) marginal BPA functions. We say 
that two BPAs mT and mU are consistent if m↓T ∩U

T = m↓T ∩U
U .

Definition 1. By a composition operator �, we mean a binary operator satisfying the following four axioms:
Consider three (possibly non-distinct) marginal BPAs mT , mU , and mV for T , U , and V , respectively.

A1 (Domain): mT � mU is a BPA for variables T ∪U .
A2 (Composition preserves first marginal): (mT � mU )↓T = mT .
A3 (Commutativity under consistency): If mT and mU are consistent, then mT � mU = mU � mT .
A4 (Associativity under special condition): If T ⊃ (U ∩ V), or, U ⊃ (T ∩ V), then (mT � mU ) � mV = mT � (mU � mV ).

Notice that axioms A1, A3, A4 guarantee that the composition operator uniquely reconstructs BPA mT ∪V from its 
marginals, if there exists a lossless5 decomposition of mT ∪V into mT and mV . Axiom A3 refers to situations, when mT
and mU are consistent, which happens when there exists their joint extension. In such a case we can construct their exten-
sion regardless we start with mT or mU . Surprisingly, it is axiom A4, which guarantees that no necessary information from 
mV is lost. Axiom A2 solves the problem arising when inconsistent BPAs are composed. Generally, there could be two ways 
of coping with this problem. Either find a compromise (a mixture of inconsistent pieces of knowledge) or give preference 
to one of the sources. The solution expressed by axiom A2 decreases the space complexity of computational algorithms 
necessary for handling joint models.

5 By this term we understand that, roughly speaking, there is a possibility to reconstruct mT ∪V from its marginals mT and mV without adding an 
additional information about mT ∪V . It can be done if groups of variables T \V and V \ T are conditionally independent given T ∩ V . For a more formal 
introduction of this concept, see [15].
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In the next section, we will study compositional models, i.e., a joint BPA composed from a set of low-dimensional 
marginal BPAs. Storing a system of low-dimensional marginal BPAs requires much less space than storing the joint BPA 
(assuming that the latter can be done). More importantly, one can design efficient computational procedures for making 
inferences from such joint BPAs without explicitly computing the joint. The properties that are a consequence of Axioms 
A1–A4 are summarized in the following assertion (for proofs, see [18]).

Proposition 2. For BPAs mT , mU , mV the following statements hold.

1. (Reduction:) If U ⊆ T , then mT � mU = mT .
2. (Stepwise composition): If (T ∩U) ⊆ V ⊆ U , then (mT � m↓V

U ) � mU = mT � mU .
3. (Exchangeability): If T ⊃ (U ∩ V), then (mT � mU ) � mV = (mT � mV ) � mU .
4. (Local computation): If (T ∩U) ⊆ V ⊆ (T ∪U), then (mT � mU )↓V = m↓T ∩V

T � m↓U∩V
U .

Before we discuss the composition operator, notice that Dempster’s combination rule is not a composition operator. 
Dempster’s rule should be applied only to distinct belief functions representing independent pieces of evidence. On the other 
hand, the composition operator is typically used to combine two not distinct marginals with a non-empty intersection. The 
composition operator is defined to avoid double counting of evidence from the two composed pieces of evidence. Thus, the 
two operators have different properties. Whereas Dempster’s rule is always commutative and associative, the composition 
operator has these properties only in particular situations. On the other hand, Dempster’s rule does not preserve the first 
marginal. Nevertheless, as shown below, Dempster’s rule may be used to define a composition operator.

As we saw in Eq. (9), Dempster’s rule can be described as pointwise multiplication of CFs followed by normalization. 
When composing uncertain knowledge, which may not be distinct, we must ensure that no information is double-counted. 
One way to ensure that knowledge is not double-counted is to remove the common knowledge using the removal operator 
described in Eq. (10). We have to ensure that the composition preserves the first BPA. This means we must ignore the 
information in the second BPA, which repeats or conflicts with the information in the first BPA. The following composition 
operator does this.

Definition 2. Consider two BPAs mU , mV , and their commonality functions Q mU and Q mV . Their d-composition is a BPA 
mU �d mV , the corresponding commonality function of which is given by the d-composition of their commonality functions 
defined for each c ⊆ �U∪V by the following expression:

(Q mU �d Q mV )(c) =

⎧⎪⎨
⎪⎩

1

L

Q mU (c↓U ) · Q mV (c↓V )

Q
m↓U∩V
V

(c↓U∩V )
if Q

m↓U∩V
V

(c↓U∩V ) > 0,

0 otherwise,

(16)

where the normalization constant

L =
∑

c⊆�U∪V :Q
m

↓U∩V
V

(c↓U∩V )>0

(−1)|c|+1 Q mU (c↓U ) · Q mV (c↓V )

Q
m↓U∩V
V

(c↓U∩V )
.

If L = 0 then mU and mV are in total conflict and the composition is undefined.

Remark. Definition 2 is taken from [18], where the reader can find the proof that �d meets all the axioms required from 
a composition operator, as well as the instructions on how to introduce analogous operators of composition in some other 
theories of uncertainty meeting the axioms of Shenoy’s valuation-based systems. It can be easily shown that the computa-
tion of mU �d mV may be simplified by transforming the second argument mV into Q mV , and computing the corresponding 
conditional commonality function Q mV\U |V∩U = Q mV � Q

m↓U∩V
V

. This may be done using Eq. (6), transformed into the corre-

sponding conditional BPA mV\U |V∩U . Then, since

(Q mU �d Q mV ) = 1

L
Q mU ⊕ Q mV � Q

m↓U∩V
V

we know ([40]) that

mU �d mV = mU ⊕ mV\U |V∩U .

Thus, the computations of d-composition are limited by the dimensionality of the second BPA because we do not know how 
to avoid transforming the second BPA into the corresponding commonality function. Notice that, as a rule, the representation 
of the corresponding commonality function requires the space for close to 2|�V | � 2(2|V|) values regardless of the number 
of focal elements of mV .
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Table 2
m1 and m2.

a m1(a)

{(x)} 0.2
{(x), (x̄)} 0.8

a m2(a)

{(x, y)} 0.9
{(x, y), (x, ȳ), (x̄, ȳ)} 0.1

Table 3
Computation of (m1 �d m2)(a) using Eq. (2).

a m1(a↓X ) Q m1 (a↓X ) m2(a) Q m2 (a) m↓X
2 (a↓X ) Q ↓X

m2 (a↓X )
Q m1 (a↓X )·Q m2 (a)

Q ↓X
m2

(a↓X )
(m1 �d m2)(a)

{(x, y)} 0.2 1 0.9 1 0.9 1 1 0.9
{(x, ȳ)} 0.2 1 0.1 0.9 1 0.1
{(x̄, ȳ)} 0.8 0.1 0.1 0.8
{(x, y), (x, ȳ)} 0.2 1 0.1 0.9 1 0.1 -0.7
{(x, y), (x̄, ȳ)} 0.8 0.8 0.1 0.1 0.1 0.8
{(x, ȳ), (x̄, ȳ)} 0.8 0.8 0.1 0.1 0.1 0.8
�X,Y \ {(x̄, y)} 0.8 0.8 0.1 0.1 0.1 0.1 0.8 0.8

Table 4
An alternative way of the computation of (m1 �d m2)(a).

a m2(a) Q m2 (a) m↓X
2 (a↓X ) Q ↓X

m2 (a↓X ) Q m2;(Y |X)
(a) = Q m2 (a)

Q ↓X
m2

(a↓X )
m2;(Y |X)(a) (m1 ⊕ m(Y |X)

2 )(a)

{(x, y)} 0.9 1 0.9 1 1 0.9 0.9
{(x, ȳ)} 0.1 0.9 1 0.1
{(x̄, ȳ)} 0.1 0.1 1
{(x, y), (x, ȳ)} 0.1 0.9 1 0.1 -0.9 -0.7
{(x, y), (x̄, ȳ)} 0.1 0.1 0.1 1
{(x, ȳ), (x̄, ȳ)} 0.1 0.1 0.1 1
�X,Y \ {(x̄, y)} 0.1 0.1 0.1 0.1 1 1 0.8

A disadvantage of the removal operator is that, as illustrated in the following example, the result of the d-composition 
of two basic assignments may be a pseudo-BPA (some focal elements may be assigned negative values), which may cause 
problems with the interpretation as well as when computing some entropies introduced in Section 6 [31,35,42].

Example of a pseudo-BPA. Consider the case of composing two BPAs: m1 defined for variable X , and m2 defined for two 
variables X, Y . Consider �X = {x, ̄x}, �Y = {y, ȳ}, which means that |2�X | = 4, and |2�X,Y | = 16. Therefore, m1 and m2 may 
be defined by up to 3 and 15 values assigned to focal elements, respectively. In this example, each of the two considered 
basic assignments have only two focal elements – see Table 2. In tables, we depict only focal elements, or more precisely, if 
a ⊆ � is not included in the table, then all its respective values equal 0.

The process of computing m1 �d m2 through Q m1 �d Q m2 using Eq. (16) is shown in Table 3, and the idea described in 
the Remark is shown in Table 4.

In the framework of belief functions, another binary operator meeting the definition of the composition operator was 
defined in [21].

Definition 3. Consider two BPAs mU , mV . Their f-composition is a BPA mU � f mV defined for each nonempty c ⊆ �U∪V by 
one of the following expressions:

(i) if m↓U∩V
V (c↓U∩V ) > 0 and c = c↓U �� c↓V , then (mU � f mV )(c) = mU (c↓U ) · mV (c↓V )

m↓U∩V
V (c↓U∩V )

;

(ii) if m↓U∩V
V (c↓U∩V ) = 0 and c = c↓U × �V\U , then (mU � f mV )(c) = mU (c↓U );

(iii) in all other cases, (mU � f mV )(c) = 0.

We have specified two composition operators. Which of these should be used to construct a joint? The two composition 
operators differ in their theoretical properties and computational complexity. However, they yield the same results for a 
class of belief function models.

Since mU � f mV is always a BPA (i.e., all the focal elements of this composition are assigned positive masses), we are 
interested only in situations when also mU �d mV is a BPA. Formally, using the corresponding basic assignments, Eq. (16)
can be expressed as

mU �d mV = mU ⊕ mV � m↓U∩V
,
V
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where � is an inverse operator to ⊕. To be sure that this composition is a BPA, we deal only with situations when (mV �
m↓U∩V

V ) is nonnegative. To characterize it, we prove the following simple assertion (a similar result is stated in [42] in the 
context of valuation-based systems).

Proposition 3. Consider nonempty sets of variables U � V and BPA mV . If (mV �m↓U∩V
V ) is a BPA, then the following two properties 

hold:

• mV = m↓U
V ⊕ (mV � m↓U∩V

V );

•
(

mV � m↓U∩V
V

)↓U
is vacuous.

Proof. The first property is a direct implication of the associativity and commutativity of Dempster’s rule of combination, 
and the latter follows immediately from the local computation property. �

To simplify the notation, and to make it a bit more lucid, let mV |U = mV � m↓U∩V
V . Moreover, in connection with 

Definition 2, we will identify situations when BPA mV |U∩V exists and is, in a way, “adapted” to mU . We will say that 
mV |U∩V is tight with respect to mU if for all couples of focal elements a and b (a is a focal element of mU , and b is a focal 
element of mV |U∩V ) the following condition holds:

for ∀ b ∈ b, ∃ a ∈ a, such that {a} �� {b} �= ∅. (17)

Proposition 4. Let two basic assignments mU , mV be such that mV |V∩U is nonnegative BPA. mV |V∩U is tight with respect to mU if 
and only if

mU � f mV = mU �d mV .

Proof. First, let us prove that both the operators coincide in situations when mV |V∩U is tight with respect to mU . For this, 
recall that for BPA mV |V∩U , the existence of which is assumed,

mV = m↓V∩U
V ⊕ mV|V∩U , (18)

and that the d-composition is defined

mU �d mV = mU ⊕ mV|V∩U .

What are the focal elements of mU ⊕ mV |V∩U ? Let a and b be arbitrary focal elements of mU and mV |V∩U , respectively. 
Due to Proposition 3, 

(
mV |V∩U

)↓V∩U
is vacuous, b↓V∩U = �V∩U , and c = a �� b �= ∅ is a focal element of mU ⊕ mV |V∩U . 

Therefore, when computing the Dempster’s rule of combination mU ⊕mV |V∩U , the corresponding coefficient of conflict (see 
Eq. (8))

(1 − K ) =
∑

a⊆�U ,b⊆�V :a��b=∅
mU (a) · mV\U |V∩U (b) = 0, (19)

which will also be used in the second part of the proof.
The question is whether for a focal element c of mU ⊕ mV |V∩U it may happen that c = a �� b, and either a �= c↓U , 

or b �= c↓V . Since b↓V∩U = �V∩U , for ∀ a ∈ a, ∃ b ∈ b, {a} �� {b} is a singleton from c↓U �� c↓V and therefore a ⊆ c↓U . 
Similarly, the assumption that mV |V∩U is tight with respect to mU guarantees that b ⊆ c↓V . For all c ∈ a �� b, c↓U ∈ a from 
the definition of a join, and therefore a ⊇ c↓U . Analogously, c↓V ∈ b yields b ⊇ c↓V . So, we have proven that each focal 
element c of mU ⊕ mV |V∩U is created by a single pair of focal elements c↓U of mU and c↓V of mV |V∩U . Therefore (using 
definition from Eq. (7) and Eq. (19)),

(mU ⊕ mV|V∩U )(c) =
∑

a⊆�U ,b⊆�V :a��b=c

mU (a) · mV|V∩U (b) = mU (c↓U ) · mV|V∩U (c↓V ). (20)

In the same way, we get from Eq. (18) also

mV (c↓V ) = (m↓V∩U
V ⊕ mV|V∩U )(c↓V ) = m↓V∩U

V (c↓V∩U ) · mV|V∩U (c↓V ), (21)

which gives that, under the given assumptions,

mV|V∩U (c↓V ) = mV (c↓V )

m↓V∩U
(c↓V∩U )

. (22)

V

172



R. Jiroušek, V. Kratochvíl and P.P. Shenoy International Journal of Approximate Reasoning 151 (2022) 164–181
Substituting Eq. (22) into Eq. (20), we get exactly the formula from case (i) of Definition 3. The fact that case (ii) of this 
definition never creates a focal element of mU ⊕ mV |V∩U follows from the fact that each couple of focal elements a and b
(a is a focal element of mU , and b is a focal element of mV |U∩V ) gives rise of a focal element a �� b of mU ⊕mV |V∩U . Thus, 
whenever case (ii) of Definition 3 is used (under the assumptions of this assertion), then it assigns zero.

Now, let us prove the other side of the equivalence by contradiction. Assume that mU � f mV = mU �d mV , and simultane-
ously mV |V∩U is not tight with respect to mU . It means that for some focal elements a and b (such that a is a focal element 
of mU , and b is a focal element of mV |U∩V ), and some b ∈ b, {a} �� {b} = ∅ for all a ∈ a. It means that b /∈ (a �� b)↓V . Thus, 
we have showed that there is at least one c ⊆ �U∪V (namely, c = a �� b), for which:

(i) c is a focal element of mU �d mV ,
(ii) c = a �� b for focal elements a and b such that b � c↓V ,

(iii) c = a �� c↓V .

Since we assume that mU � f mV = mU �d mV , c is also a focal element of mU � f mV , and (mU � f mV )(c) = (mU �d mV )(c). 
Recall, that in the first part of the proof we showed that the corresponding coefficient of conflict (Eq. (19)) equals zero, and 
therefore (mU �d mV )(c) � mU (c↓U ) · mV (c↓V ) + mU (c↓U ) · mV (b). Since m↓U∩V

V is vacuous, m↓U∩V
V (c↓U∩V ) = 1, and one 

can see from Definition 3 that (mU � f mV )(c) > mU (c↓U ) · mV (c↓V ) only when m↓U∩V
V (c↓U∩V ) = 0, and c↓V\U = �V\U , 

which contradicts Property (ii) showed above. �
Corollary. Let two basic assignments mU , mV are such that mV |V∩U exists. If m↓V∩U

V is vacuous, or, if V ∩U = ∅, then

mU � f mV = mU �d mV .

5. Compositional models

By a belief function compositional model we understand a BPA m1 � · · · � mn obtained by a multiple application of the 
composition operator. Thus, we can speak about d-compositional or f-compositional models in correspondence, which of 
the two introduced operators of compositions are used.6 Let us emphasize that if not specified otherwise by parentheses, 
the operators are always performed from left to right, i.e.,

m1 � m2 � m3 � . . . � mn = (. . . ((m1 � m2) � m3) � . . . � mn−1) � mn.

Consider a (finite) system W of small subsets of the considered variables W . The vague assumption that U ∈W is small 
is accepted to avoid the computational problems connected with computations with the corresponding basic assignments. 
Thus, we assume that for each U ∈ W we have (or we can easily get) a BPA mU . Moreover, we assume that these basic 
assignments, as well as the corresponding commonality functions Q mU , can effectively be represented in computer memory. 
Thus, in context with the operator of d-composition, the cardinality of U ∈W is always less than 5.

Having a system of low-dimensional basic assignments {mU }U∈W we follow the idea of Perez described in Section 2. 
We assume that there exists a BPA m having all these mU for its marginals, and we want to find the best approximation 
of m assembled from the given marginals. In other words, we are looking for a sequence of sets (Ui)i=1,...,n from W such 
that the compositional model mU1 �mU2 � · · · �mUn approximates the unknown BPA m best. To simplify notation, we denote 
mi = mUi . Therefore we will speak about a model m1 � m2 � . . . � mn , in which BPA mi is defined for variables Ui , and the 
corresponding commonality function is Q i .

The considered compositional model is a |U1 ∪ . . . ∪ Un|-dimensional BPA. It is said to be perfect if all mi are marginals 
of m1 � m2 � . . . � mn . Thus, perfect models reflect all the information represented by the low-dimensional basic assignments 
from which they are composed. So, it is not surprising that the optimal approximation will be, as a rule, a perfect model.

If a model is not perfect, it can always be perfectized using the following assertion (proved in [18]).

Proposition 5 (Perfectization procedure). For any compositional model m1 � m2 � . . . � mn, the model m̄1 � m̄2 � . . . � m̄n defined

m̄1 = m1,

m̄2 = m̄↓U2∩U1
1 � m2,

...

m̄n = m̄↓Un∩(U1∪...∪Un−1)
n � mn,

is perfect, and m1 � m2 � . . . � mn = m̄1 � m̄2 � . . . � m̄n.

6 We never consider a possibility that both operators are simultaneously used in one model.
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Table 5
A list of entropies of belief functions.

Höhle [13] Ho(mV ) = ∑
a⊆�V

mV (a) log( 1
BelmV (a)

)

Smets [45] Ht (mV ) = ∑
a⊆�V

log( 1
Q mV (a)

)

Yager [50] H y(mV ) = ∑
a⊆�V

mV (a) log( 1
PlmV (a)

)

Nguyen [37] Hn(mV ) = ∑
a⊆�V

mV (a) log( 1
mV (a)

)

Dubois & Prade [10] Hd(mV ) = ∑
a⊆�V

mV (a) log(|a)|
Lamata & Moral [34] Hl(mV ) = H y(mV ) + Hd(mV )

Klir & Ramer [30] Hk(mV ) = Hd(mV ) − ∑
a⊆�V

mV (a) log
(

1 − ∑
b⊆�V

mV (b)
|b\a|
|b|

)
Klir & Parviz [29] Hk(mV ) = Hd(mV ) − ∑

a⊆�V
mV (a) log

(
1 − ∑

b⊆�V
mV (b)

|a\b|
|a|

)
Pal et al. [38] Hb(mV ) = ∑

a⊆�V
mV (a) log(

|a|
mV (a)

)

Harmanec & Klir [12] Hh(mV ) = max{H(π) | π ∈P (mV )}
Maeda & Ichihashi [36] Hi(mV ) = Hh(mV ) + Hd(mV )

Abellán & Moral [1] Ha(mV ) = Hi(mV ) + K L(π‖κ) for specific π,κ ∈P (mV )

Jousselme et al. [26] H j(mV ) = H(πmV )

Deng [8] H g (mV ) = Hn(mV ) + ∑
a⊆�V

mV (a) log(2|a| − 1)

Jiroušek & Shenoy [19] Hλ(mV ) = H(λmV ) + Hd(mV )

Jiroušek et al. [17] Hπ (mV ) = H(πmV ) + Hd(mV )

Decomposable [20] H S (mV ) = ∑
a⊆�V

(−1)|a| Q mV (a) log(Q mV (a))

Let us highlight that the assertion holds for both the operators introduced in the previous section. The procedure applies 
to any compositional model; nevertheless, its computational efficiency depends not only on the considered composition 
operator but also on a structure of the model, which is determined by the sequence of sets U1, U2, . . . , Un . In this context, 
the most advantageous models are decomposable models, for which the sequence U1, U2, . . . , Un meets the so-called running 
intersection property (RIP): ∀i = 2, . . . , n ∃ j (1 � j < i) : Ui ∩ (U1 ∪ . . . ∪Ui−1) ⊆ U j .

When computing with perfect models, we can take advantage that several permutations of low-dimensional basic as-
signments can equivalently represent a perfect model. In [18], the following assertions are proved.

Proposition 6 (Testing perfectness of models). Model m1 � . . . � mn is perfect if and only if for all i = 2, 3, . . . , n, basic assignments 
(m1 � . . . � mi−1) and mi are consistent, i.e., (m1 � . . . � mi−1)

↓Ui∩(U1∪...∪Ui−1) = m
↓Ui∩(U1∪...∪Ui−1)

i .

Proposition 7 (On consistent decomposable models). Consider a decomposable model m1 � m2 � . . . � mn. The model is perfect if and 
only if basic assignments m1, m2, . . . , mn are pairwise consistent, i.e., ∀{i, j} ⊂ {1, 2, . . . , n}, m↓Ui∩U j

i = m
↓Ui∩U j

j .

The verification of the perfectness of a compositional model using Proposition 6 may be computationally expensive, and 
therefore Proposition 7 is often used. Checking the pairwise consistency of low-dimensional basic assignments from a given 
sequence is computationally simple, and therefore we will rely on Proposition 7 in Section 8.

6. Entropy of belief functions

As explained in Section 2, to save the space necessary to represent multidimensional probability distributions, one can 
approximate them by probabilistic compositional models. The same idea also holds for belief functions. The economic rep-
resentation of a joint BPA also often reduces the extremely high computational complexity of the necessary procedures. 
However, the problem arises with determining the quality of such approximations. No generally accepted similarity mea-
sure analogous to the probabilistic Kullback-Leibler divergence exists. We do not know how to recognize which of the two 
approximations is better than the other. We do not know how to identify an optimal approximation if the perfect one does 
not exist. Therefore, we set a goal to test whether some of the entropies designed in the literature can be used to detect 
the optimal approximations. If such entropy is found, it will be subject to a detailed future analysis.

Though we are aware of other recently introduced entropies, for the described pilot study, we considered the battery of 
entropy functions listed in Table 5 (primarily those described in [19]). Realize that not all of them were called entropy by 
their authors. Some authors suggest their functions to measure other characteristics of belief functions, such as a measure 
of conflict [28,27]. Therefore, we should not be surprised that some entropy functions failed. However, having developed a 
software system for this purpose, we were not limited by the number of the considered entropies. The only criterion for 
including an entropy-like function in the experiments was its computational complexity.

In the experiments, we computed entropies for 20-dimensional models. For this, we had to keep the number of focal 
elements of the considered models limited (see Fig. 1). Nevertheless, theoretically, the maximum number of focal elements is 
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Fig. 1. Number of focal elements for compositional models and their prefix sub-models.

super-exponential with the number of variables. It is why we are not able to calculate entropies based on the conversion of 
BPA to Belief function (Höhle), based on the conversion to Commonality function (Smets), or the conversion to Plausibility 
function (Yager, Lamata & Moral). All these alternative representations are positive for a substantial part of all possible 
states of variables, and their space complexity is, therefore, super-exponential to the number of variables. Similarly, we had 
to exclude also entropies requiring maximization of Shannon entropy over the credal set, i.e., Harmanec & Klir, Maeda & 
Ishibashi and Abellán & Moral definitions.

Except for special situations, the number of focal elements of compositional models exponentially increases with the 
length of models. It holds even when the number of focal elements of BPAs, from which the models are composed is 
limited. It is visible from Fig. 1 depicting the situation of 10 representative compositional models (5 f-compositional, and 
5 d-compositional). Each of these models is composed of 13–16 low-dimensional basic assignments, and each graph de-
scribes how the number of the focal elements grows with the length i of the considered prefix model m1 � m2 � . . . � mi
(for the definition of various model types, see Section 8). Therefore, in the experiments described in Section 8, we con-
sidered only the entropies, the computational complexity of which is a linear function of the number of focal elements. 
This condition is also violated by Klir & Ramer, and Klir & Parviz’s definitions. Therefore, we eventually computed only 
Hn, Hd, Hb, H j, H g, Hλ, Hπ , and H S .

The last decomposable entropy H S is some kind of an exception. It is defined using the commonality function:

H S(mV ) =
∑

a⊆�V

(−1)|a| Q mV (a) log(Q mV (a)). (23)

Even though H S (mV ) is not always nonnegative, its merit is that it is the only definition of belief function entropy that 
satisfies an additivity property in the sense that H S (mX ⊕ mY |X ) = H S (mX ) + H S(mY |X ) (here, mX is a BPA for X , and 
mY |X is a conditional BPA for Y given X such that its marginal for X is vacuous). This additivity, which is one of the 
fundamental properties of probabilistic information theory, makes the computation of the entropy for high-dimensional 
perfect d-compositional models possible. It is the only entropy that can be computed for general d-compositional models 
for more than ten variables.

As mentioned above, we restricted the number of focal elements for our experiments so that the joint BPA has a “reason-
able” number of focal elements. It makes the computation of other entropies possible directly for the joint BPAs. To make 
the computation of the decomposable entropy possible, another restriction is given for the size of low-dimensional BPAs 
from which the models are assembled. They should not be defined for more than four variables because, when computing 
the entropy for the d-composition of two consistent BPAs mU and mV ,

H S(mU �d mV ) = H S(mU ) + H S(mV\U |V∩U ), (24)

one has to compute the conditional entropy according to the following formula

H S(mV\U |V∩U ) =
∑

a⊆�V

(−1)|a| Q mV (a) log(Q mV\U |V∩U (a)), (25)

which requires the transformation of mV into the commonality function. Having this commonality function, one can com-
pute Q mV\U |V∩U (a) = Q mV (a)/Q ↓V∩U (a↓V∩U ) for all a ⊆ �V . Note that for V ∩U = ∅, H S(mV\U |V∩U ) = H S (mV ).
mV
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Table 6
Entropies of models M1, M2, and M3.

Entropy f-compositional models d-compositional models

M1 M2 M3 M1 M2 M3

Hs – – – 3.442 3.835 3.642

Hn 12.351 12.405 11.771 – – –
Hd 15.297 16.105 15.792 15.612 15.954 14.894
Hb 27.648 28.511 27.563 – – –
H j 18.542 19.017 18.840 18.223 18.247 19.323
H g 69475 101676 90577 – – –
Hλ 34.613 35.620 35.287 34.466 34.789 34.790
Hπ 33.840 35.123 34.633 33.835 34.201 34.217

7. An example

Consider 20 binary variables A, B, C, . . . , T , and a (randomly generated) perfect decomposable model assembled from 15 
low-dimensional BPAs:

M1 : m{AG K } � m{AK S} � m{B D K } � m{A Q T } � m{A P } � m{O P } � m{G H} � m{NT } � m{I S}
� m{AL Q } � m{I F R} � m{AGM} � m{AE M} � m{C Q T } � m{B J }.

It is an easy task to verify that the model is decomposable. The random generator was set to generate pairwise consistent 
BPAs. Therefore, due to Proposition 7, the perfectness of M1 is guaranteed.

Using other permutations of the generated BPAs, we can set up a lot of other models, mostly non-decomposable. Consider 
just (randomly selected) two of them:

M2 : m{C Q T } � m{B J } � m{AL Q } � m{B D K } � m{AE M} � m{A Q T } � m{I S} � m{AG K } � m{G H}
� m{I F R} � m{O P } � m{AK S} � m{AGM} � m{NT } � m{A P },

M3 : m{A Q T } � m{AGM} � m{G H} � m{B D K } � m{AK S} � m{AE M} � m{I F R} � m{NT } � m{AG K }
� m{B J } � m{AL Q } � m{O P } � m{A P } � m{C Q T } � m{I S}.

Though assembled from the same system of low-dimensional BPA, these three models differ from each other. For exam-
ple, due to Proposition 7, we know that all the considered low-dimensional basic assignments are marginals of model M1 , 
which does not hold for M2 and M3.

Since the condition of Proposition 4 is rarely satisfied for randomly generated BPAs, these models also differ depending 
on whether we consider f- or d-compositional models. Thus, we consider six compositional models. In the left-hand side 
of Table 6, we see all the values of entropies that can be (using our software system) computed for the considered three 
f-compositional models. As explained above, it is impossible to calculate the decomposable entropy H S for f-compositional 
models; therefore, the left side of the respective row is empty. On the other hand, the computation of Hn, Hb , and H g
for d-compositional models failed in this particular example. The reason is that there is at least one focal element with 
negative mass in d-compositional models M1, M2, and M3 and the respective logarithm is thus undefined. As illustrated 
by results in Section 8, similar failures may appear for H j , Hλ , and Hπ because even the respective probabilistic transforms 
may have some negative masses. It does not happen for the three considered models M1 , M2, M3. Both the pignistic 
and plausibility transforms for these models are nonnegative BPAs, and we could compute H j, Hλ, Hπ . Realize that the 
Dubois-Prade entropy is calculable regardless of whether the considered BPA is nonnegative.

Let us illustrate how the results recorded in Table 6 are interpreted in the process of the entropies assessment described 
in the next section. Consider, say, f-compositional models. Based on the values of entropies from the left-hand side of 
Table 6, we see that the Nguyen’s entropy

Hn(M3) < Hn(M1) < Hn(M2),

which is not what we expect from the entropy used to detect the optimal approximations. On the other side, the values of 
Dubois-Prade entropy minimizes the optimal compositional model

Hd(M1) < Hd(M3) < Hd(M2).

Thus, f-compositional model M1 is in the next section counted among those models that are successfully detected by Hd
(and also by H j, H g, Hλ , Hπ and H S ). Similarly, one can see from Table 6 that d-compositional model M1 is counted among 
those models that are successfully detected by H j, Hλ , and Hπ .

Even though it does not happen for the models considered in this example, it is not rare that an entropy achieves the 
same value for the optimal and some non-optimal models. Then, if no non-optimal model has lower entropy than the 
optimal one, we count the model among those weakly detected by the considered entropy.
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8. Experimental results

Using software developed in R-studio, we randomly generated 357 perfect decomposable compositional models for 20 
variables. To generate a decomposable model, we generated a sequence of sets of variables satisfying the running intersec-
tion property. Then, we generated random BPAs for these sets of variables and ran the perfectization procedure described 
in Proposition 5. Inspired by [32], we designed our random generator of BPAs to be able to produce assignments with a 
specific structure and a predefined number of focal elements. Specifically, we generated five types of models where all BPAs 
were as follows:

1. consonant (81 models) – all focal elements are nested;
2. consonant with � (68 models) – all focal elements are nested, and the whole space of discernment � is among them;
3. quasi-Bayesian (90 models) – � is one focal element, all others are singletons;
4. random (68 models) – no restriction was imposed on the structure randomly generated focal elements;
5. random with � (50 models) – the only restriction of the structure is that � is among the focal elements.

Notice that the given type determines the low-dimensional basic assignments from which the joint is defined. It does 
not mean that the joint is of the given type. After composition, the type is generally not preserved. It is easy to see that 
the f-composition of two quasi-Bayesian BPAs is not quasi-Bayesian, whenever case (ii) of Definition 3 finds its use. On the 
other hand, it is not difficult to show that the d-composition of two quasi-Bayesian BPAs is quasi-Bayesian.

In addition to the type of generated BPAs, the random generator was controlled by two parameters. The first is an upper 
bound for the number of variables for which BPAs are defined (we used 3, 4, and 5), and the second parameter is the 
maximum number of focal elements (we used 3, 4, 5 and 6).

These parameters were mainly used to control the computational complexity of d-compositional models. Note that we 
are able to calculate (mU �d mV ) if |V| � 4 (in case of |V| = 5 the corresponding conditional CF is determined by 232

parameters and its conversion to BPA requires 264 comparisons).
For each perfect decomposable model, we created several non-decomposable models assembled from the same system 

of low-dimensional BPAs. We destroyed the running intersection property by randomly permuting the sequence in which 
the generated BPAs were composed. In this way, similar to the example described in the previous section, we obtained for 
each randomly generated decomposable model several non-decomposable models (on average, about six). Altogether, we 
had 2077 different models. Then each model was converted into a joint BPA by applying the composition operator. Note 
that this was possible because we significantly limited the number of focal elements of generated low-dimensional BPAs. As 
a result, the number of focal elements of the joint BPA remained reasonable, and it was possible to calculate them. If the 
number of focal elements of the joint BPA began to grow (which happened a few times), it was impossible to calculate the 
joint BPA within a reasonable time. Therefore we did not include these models in the results.

To test the behavior of each entropy function, we first considered f-compositional models. For each model we calculated 
7 different entropies Hλ , Hd , Hπ , Hn , Hb , H j , and H g of the joint. Then we calculated the relative difference of the model 
entropy from the entropy of the corresponding decomposable model.

Recall that an ideal entropy function should always have a smaller value for a decomposable model than for a non-
decomposable one assembled from the same marginals. Therefore, the entropy of each non-decomposable model, minus the 
entropy of the corresponding decomposable model, should be nonnegative, ideally positive. We created histograms of these 
differences in Fig. 2 for each entropy definition. In the case of an ideal entropy, the region corresponding to the negative 
difference should be empty. Unfortunately, this does not happen for any considered entropy. Nevertheless, if accepting a 
reasonable error, one can use entropies Hd , Hπ , and H j for detecting the decomposable models as the best ones.

In another way, these results for f-compositional models are also presented in Table 7. The first row repeats the numbers 
of decomposable models generated for the respective type of low-dimensional BPA. The remaining numbers express the 
ability of the individual entropy to detect the optimal approximation. The first number (of each couple) reads the percentage 
of decomposable models (strongly) detected by the respective entropy (entropy value for RIP model is lower than values 
for all non-RIP models). The second number (in the parentheses) reads the percentage of decomposable models weakly 
detected by the respective entropy (entropy value for the RIP model is lower or equal than those for all non-RIP models).

From Table 7, one can identify some differences in the behavior of different entropies when applied to different types 
of models (though, as mentioned above, it is not a type of a model but the type of low-dimensional BPAs from which the 
model is composed). For example, while Hλ is not so bad in the case of consonant models, it fails for quasi-Bayesian models. 
Also, the significant differences between the numbers of strongly and weakly detected decomposable models deserve further 
analysis – see, for example, Hd in the case of quasi-Bayesian models.

We do not have enough data to perform an earnest statistical analysis. Nevertheless, the best entropies may seem to 
be for this purpose H j and Hπ . Notice that both are based on the Shannon entropy of the pignistic transform. Despite its 
simplicity, Hd detects the best model relatively successfully in all cases except quasi-Bayesian models. Note that Hλ , which 
is grounded in Shannon entropy of the plausibility transform, was not so bad generally; however, it fails for quasi-Bayesian 
models. On the other hand, the Nguyen entropy, which is the Shannon entropy of the BPA values, does not seem to be the 
proper tool for this purpose.
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Fig. 2. Frequencies of differences of entropies of non-decomposable models and the corresponding decomposable models. F-compositional models.

The results achieved for d-compositional models are summarized in Table 8, which is organized similarly as Table 7. 
Nevertheless, the issue is that the computations with d-compositional models are much more time- and space-demanding 
than with f-compositional models. To get the selected entropies, one must find all focal elements and compute assigned 
probability masses. Usually, there are too many of them (much more than those for f-compositional models). Our software 
could do it only in (about) one-fifth of all generated decomposable models.

Moreover, since some focal elements of d-compositional models are assigned negative values, not all the entropies could 
be computed. From the first row of the table, one can see the number of models for which we succeeded in computing 
all three entropies Hλ, Hd, H S . These entropies could be computed even when some focal elements are assigned negative 
values. Since the numbers of analyzed models are too low, we do not dare to make any conclusions from the contents of 
Table 8. We take it mainly as a clue for future research.

However, the high number of d-compositional models for which we could not compute their entropy deserves our atten-
tion. It refutes our original conception that d-compositional models, based on the idea of Dempster’s rule of combination, 
may be exploited regardless of the negative masses assigned to some focal elements. It convinced us that d-compositional 
models should only be used when defining a regular (i.e., nonnegative) BPA. Due to Proposition 1, it is guaranteed, for 
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Table 7
Detection rate (%) for f-compositional models. (In parentheses, percentage of weakly detected decomposable models.)

Consonant Consonant with � Quasi Bayesian Random Random with � All types

# of models 81 68 90 68 50 357

Hλ 68 (94) 49 (74) 17 (31) 54 (82) 50 (98) 46 (73)
Hd 69 (98) 50 (99) 24 (96) 60 (91) 50 (100) 50 (96)
Hπ 69 (95) 56 (99) 63 (99) 56 (84) 48 (96) 60 (95)
Hn 17 (49) 22 (59) 63 (100) 13 (32) 4 (16) 27 (56)
Hb 51 (72) 34 (72) 63 (99) 31 (51) 6 (18) 41 (67)
H j 68 (94) 54 (94) 63 (99) 49 (76) 44 (86) 57 (91)
H g 65 (93) 40 (56) 0 ( 4) 57 (84) 50 (94) 40 (62)

Table 8
Detection rate (%) for d-compositional models. (In parentheses, percentage of weakly detected decomposable models.)

Consonant Consonant with � Quasi Bayesian Random Random with � All types

# of models 20 12 16 12 9 69

Hλ 35 (75) 25 (42) 44 (44) 42 (50) 56 (100) 39 (61)
Hd 35 (75) 25 (75) 6 (56) 42 (58) 56 (100) 30 (71)
H S 5 (75) 8 (83) 19 (88) 8 (75) 11 (78) 10(80)

example, when the resulting models are equivalent to graphical belief function models. Then, as shown in [24], it happens 
surprisingly often that the d- and f-compositional models coincide.

The experiments were designed to detect possible differences among the considered entropies. As the reader can see 
from the respective tables and graphs, none of the tested entropy definitions appeared to be a universal tool recommendable 
for model learning. On the contrary, the experiments suggest that a further study of narrower classes of models (e.g., those 
where Proposition 4 applies) will be necessary. For them, finding a suitable definition of entropy may still be possible 
(regardless of their computational complexity).

9. Summary & conclusions

The paper contributes to an effort to find a criterion to assess the quality of belief function models. It is based on the 
following idea: If a criterion is sound for machine learning procedures, it should detect a model containing all given infor-
mation from models containing only a part of this information. This idea, translated into the terminology of compositional 
models, means that a sound criterion should distinguish a perfect compositional model from non-perfect models set up 
from the same system of building blocks, regardless of whether it is a measure of information or inner conflict.

Shannon entropy, being the first entropy introduced in probability theory, has many properties that predetermine its role 
in machine-learning procedures. In the theory of belief functions, the situation is much more complicated. In this theoretical 
framework, most authors distinguish characteristics indistinguishable in probability theory. In this paper, we consider mainly 
a measure of entropy and a measure of inner conflict. This fact manifests in connection with the design of machine learning 
procedures.

To realize computational experiments verifying which of the entropies described in literature meets the paradigm men-
tioned above best, one has to cope with the problem of which of two composition operators is to be used for the purpose. 
The d-composition operator is designed for the Dempster-Shafer theory of belief functions, the semantics of which are 
clearly understood. Although the f-composition operator has some nice mathematical properties, we do not know which 
theory of belief function it corresponds to and the semantics of such a theory. The solution to this problem is a topic for 
future work.

In this paper, oriented towards computational experiments, we had to consider the computational complexity of the 
necessary procedures. It was the primary criterion for selecting different definitions of entropy of belief functions. Thus, the 
results are partially devalued because we did not care that some of these definitions are designed specifically for specific 
theories of belief functions. For example, the decomposable entropy [25,20] is explicitly designed for the Dempster-Shafer 
theory, where belief functions constitute a graphical model. Some definitions, such as Maeda & Ichihashi, Jousselme et al., 
Jirousek et al., make sense for the Fagin-Halpern theory of belief functions and its corresponding semantics of credal sets. 
The d-composition operator is not appropriate for these definitions of entropy. A composition operator corresponding to the 
Fagin-Halpern combination rule is yet to be defined. It is a topic for future work.

It is well known that the Dempster-Shafer theory can be used for large graphical models with many variables [43,44]. It 
is suggested in [20,22] that the decomposable entropy can be tractably computed for large belief function graphical models 
even though the decomposable entropy is defined in terms of the commonality functions. How to use it to assess the 
models’ quality is also a topic for future work.
179



R. Jiroušek, V. Kratochvíl and P.P. Shenoy International Journal of Approximate Reasoning 151 (2022) 164–181
CRediT authorship contribution statement

Radim Jiroušek: Conceptualization, Methodology, Composition operators, experiments; Václav Kratochvíl: Methodology, 
experiments, software; Prakash P. Shenoy: Conceptualization, Methodology, Composition operators.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

The Czech Science Foundation financially supported this study under Grant No. 19-06569S, and the Ronald G. Harper 
Professorship at the University of Kansas supported the third author. A part of this paper previously appeared as [16].

References

[1] J. Abellán, S. Moral, Completing a total uncertainty measure in Dempster-Shafer theory, Int. J. Gen. Syst. 28 (4–5) (1999) 299–314.
[2] B.R. Cobb, P.P. Shenoy, On the plausibility transformation method for translating belief function models to probability models, Int. J. Approx. Reason. 

41 (3) (2006) 314–340.
[3] I. Csiszár, I-divergence geometry of probability distributions and minimization problems, Ann. Probab. (1975) 146–158.
[4] F. Cuzzolin, On the relative belief transform, Int. J. Approx. Reason. 53 (5) (2012) 786–804.
[5] W.E. Deming, F.F. Stephan, On a least squares adjustment of a sampled frequency table when the expected marginal totals are known, Ann. Math. Stat. 

11 (4) (1940) 427–444.
[6] A.P. Dempster, A generalization of Bayesian inference, J. R. Stat. Soc., Ser. B 30 (2) (1968) 205–247.
[7] A.P. Dempster, The Dempster-Shafer calculus for statisticians, Int. J. Approx. Reason. 48 (2) (2008) 365–377.
[8] Y. Deng, Deng entropy, Chaos Solitons Fractals 91 (2016) 549–553.
[9] T. Denoeux, Likelihood-based belief function: justification and some extensions to low-quality data, Int. J. Approx. Reason. 55 (7) (2014) 1535–1547.

[10] D. Dubois, H. Prade, Properties of measures of information in evidence and possibility theories, Fuzzy Sets Syst. 24 (2) (1987) 161–182.
[11] R. Fagin, J.Y. Halpern, A new approach to updating beliefs, in: P. Bonissone, M. Henrion, L. Kanal, J. Lemmer (Eds.), Uncertainty in Artificial Intelligence 

6, vol. 6, North-Holland, 1991, pp. 347–374.
[12] D. Harmanec, G.J. Klir, Measuring total uncertainty in Dempster-Shafer theory: a novel approach, Int. J. Gen. Syst. 22 (4) (1994) 405–419.
[13] U. Höhle, Entropy with respect to plausibility measures, in: Proceedings of the 12th IEEE Symposium on Multiple-Valued Logic, 1982, pp. 167–169.
[14] R. Jiroušek, Foundations of compositional model theory, Int. J. Gen. Syst. 40 (6) (2011) 623–678.
[15] R. Jiroušek, A short note on decomposition and composition of knowledge, Int. J. Approx. Reason. 120 (2020) 24–32.
[16] R. Jiroušek, V. Kratochvíl, Approximations of belief functions using compositional models, in: European Conference on Symbolic and Quantitative 

Approaches with Uncertainty, Springer, 2021, pp. 354–366.
[17] R. Jiroušek, V. Kratochvíl, P.P. Shenoy, Entropy-based learning of compositional models from data, in: T. Denœux, E. Lefèvre, Z. Liu, F. Pichon (Eds.), 

Belief Functions: Theory and Applications, Proceedings of the 6th International Conference, BELIEF 2021, in: Lecture Notes in Artificial Intelligence, 
vol. 12915, Springer Nature, Switzerland, 2021, pp. 117–126.

[18] R. Jiroušek, P.P. Shenoy, Compositional models in valuation-based systems, Int. J. Approx. Reason. 55 (1) (2014) 277–293.
[19] R. Jiroušek, P.P. Shenoy, A new definition of entropy of belief functions in the Dempster-Shafer theory, Int. J. Approx. Reason. 92 (1) (2018) 49–65.
[20] R. Jiroušek, P.P. Shenoy, On properties of a new decomposable entropy of Dempster-Shafer belief functions, Int. J. Approx. Reason. 119 (4) (2020) 

260–279.
[21] R. Jiroušek, J. Vejnarová, M. Daniel, Compositional models for belief functions, in: G. de Cooman, J. Vejnarová, M. Zaffalon (Eds.), Proceedings of the 

Fifth International Symposium on Imprecise Probability: Theories and Applications, ISIPTA ’07, 2007, pp. 243–252.
[22] R. Jiroušek, V. Kratochvíl, P.P. Shenoy, Computing the decomposable entropy of graphical belief function models, in: M. Studený, N. Ay, G. Coletti, G.D. 

Kleiter, P.P. Shenoy (Eds.), Proceedings of the 12th Workshop on Uncertainty Processing, MatfyzPress, 2022, pp. 111–122.
[23] R. Jiroušek, V. Kratochvíl, P.P. Shenoy, On conditional belief functions in the Dempster-Shafer theory, in: S.L. Hégarat-Mascle, I. Bloch, E. Aldea (Eds.), 

Belief Functions: Theory and Applications, 7th International Conference, BELIEF 2022, in: Lecture Notes in Artificial Intelligence, Springer Nature, 
Switzerland, 2022.

[24] R. Jiroušek, V. Kratochvíl, P.P. Shenoy, Two composition operators for belief functions revisited, in: M. Studený, N. Ay, G. Coletti, G.D. Kleiter, P.P. Shenoy 
(Eds.), Proceedings of the 12th Workshop on Uncertainty Processing, MatfyzPress, 2022, pp. 123–134.

[25] R. Jiroušek, P.P. Shenoy, A decomposable entropy for belief functions in the Dempster-Shafer theory, in: S. Destercke, T. Denoeux, F. Cuzzolin, A. Martin 
(Eds.), Belief Functions: Theory and Applications, in: Lecture Notes in Artificial Intelligence, vol. 11069, Springer Nature, Switzerland, 2018, pp. 146–154.

[26] A.-L. Jousselme, C. Liu, D. Grenier, E. Bossé, Measuring ambiguity in the evidence theory, IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 36 (5) (2006) 
890–903.

[27] A.-L. Jousselme, F. Pichon, N. Ben Abdallah, S. Destercke, A note about entropy and inconsistency in evidence theory, in: International Conference on 
Belief Functions, Springer, 2021, pp. 215–223.

[28] G.J. Klir, Uncertainty and information: foundations of generalized information theory, Kybernetes (2006).
[29] G.J. Klir, B. Parviz, A note on the measure of discord, in: D. Dubois, M.P. Wellman, B. D’Ambrosio, P. Smets (Eds.), Uncertainty in Artificial Intelligence: 

Proceedings of the Eighth Conference, Morgan Kaufmann, 1992, pp. 138–141.
[30] G.J. Klir, A. Ramer, Uncertainty in the Dempster-Shafer theory: a critical re-examination, Int. J. Gen. Syst. 18 (2) (1990) 155–166.
[31] C.T.A. Kong, Multivariate belief functions and graphical models, PhD thesis, Harvard University, Department of Statistics, Cambridge, Massachusetts, 

1986.
[32] Z. Kuang, M. Arnaud, ibelief: belief function implementation, 2021, R package version 1.3.1.
180

http://refhub.elsevier.com/S0888-613X(22)00146-3/bib7FA0E0E3509A0C3CFA930AD2A77DA49As1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib997AAB6FAAA407470B59A610468532CBs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib997AAB6FAAA407470B59A610468532CBs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibCE5E8406F0CB299C673383E8494EEFE7s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib37CC6E764BB66F1B7791A85D386F38DAs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibABCDA035ACE6E1689A7E68F23D1B9321s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibABCDA035ACE6E1689A7E68F23D1B9321s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib83702672112D021BDF12FC12E6C95B30s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib5D1C65D23CDB3A4DFCD8A01A1166E6EBs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib52FF7020A5E7B09CCDBC33953916CD17s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib161F098CFECBCC550E97C06108BACE02s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibD4DA86B8EFF295F78B0D1D4837D286C0s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibC6DD25305ECFFD0004C3FEEB2985BCD4s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibC6DD25305ECFFD0004C3FEEB2985BCD4s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib4CDC6C9794F47BA59111E390117DA388s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib783EEB983A8DBF4629C400FB39D6FBB6s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibB0A52B1840B1BC3C71C07D6AD9F1FC83s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib50067EAAD89FD439CDF7D8FF40600E99s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib66739C5DBACF32A166B2427D94831E0Ds1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib66739C5DBACF32A166B2427D94831E0Ds1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibC00E54BA550A9BC1CCCEA4282A1EDD6Es1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibC00E54BA550A9BC1CCCEA4282A1EDD6Es1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibC00E54BA550A9BC1CCCEA4282A1EDD6Es1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibB8F6047EA96D932A944FCEC84A67262Cs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib719267092342AB1DFBE82561E975E445s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibEFF7CB90CFA434A496FF1CE72D6E6AA6s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibEFF7CB90CFA434A496FF1CE72D6E6AA6s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib4C810E6E94352D1E0D18312983DC4B69s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib4C810E6E94352D1E0D18312983DC4B69s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib44C224828176FDB4E4D0AF1EAD978522s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib44C224828176FDB4E4D0AF1EAD978522s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib6D31BADDDAF2CFD71C19D7ACFB896C01s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib6D31BADDDAF2CFD71C19D7ACFB896C01s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib6D31BADDDAF2CFD71C19D7ACFB896C01s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib3F5194B2A12BEF7744D5F08F0043726Cs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib3F5194B2A12BEF7744D5F08F0043726Cs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibC3CC665FE5F1AFE7F48651D91A6BD946s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibC3CC665FE5F1AFE7F48651D91A6BD946s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibC785E7155D206289F16B51FED5B66C2As1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibC785E7155D206289F16B51FED5B66C2As1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibA3E5B872805F00F48F2A776F0FD3B774s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibA3E5B872805F00F48F2A776F0FD3B774s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib9983660A1D29FB5C8E01D44240852CF5s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib82DBF527B21E88DCA194786E0D072544s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib82DBF527B21E88DCA194786E0D072544s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibBB5BF1E956FCA5EA0A4893C3D1475D25s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibAAA801E88F91417206A0786D33DAAB92s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibAAA801E88F91417206A0786D33DAAB92s1


R. Jiroušek, V. Kratochvíl and P.P. Shenoy International Journal of Approximate Reasoning 151 (2022) 164–181
[33] S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22 (1951) 76–86.
[34] M.T. Lamata, S. Moral, Measures of entropy in the theory of evidence, Int. J. Gen. Syst. 14 (4) (1988) 297–305.
[35] S.L. Lauritzen, F.V. Jensen, Local computation with valuations from a commutative semigroup, Ann. Math. Artif. Intell. 21 (1) (1997) 51–69.
[36] Y. Maeda, H. Ichihashi, An uncertainty measure under the random set inclusion, Int. J. Gen. Syst. 21 (4) (1993) 379–392.
[37] H.T. Nguyen, On entropy of random sets and possibility distributions, in: J.C. Bezdek (Ed.), The Analysis of Fuzzy Information, CRC Press, 1985, 

pp. 145–156.
[38] N.R. Pal, J.C. Bezdek, R. Hemasinha, Uncertainty measures for evidential reasoning II: a new measure of total uncertainty, Int. J. Approx. Reason. 8 (1) 

(1993) 1–16.
[39] A. Perez, ε-admissible simplifications of the dependence structure of a set of random variables, Kybernetika 13 (6) (1977) 439–449.
[40] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, 1976.
[41] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (379–423) (1948) 623–656.
[42] P.P. Shenoy, Conditional independence in valuation-based systems, Int. J. Approx. Reason. 10 (3) (1994) 203–234.
[43] P.P. Shenoy, G. Shafer, Propagating belief functions with local computations, IEEE Expert 1 (3) (1986) 43–52.
[44] P.P. Shenoy, G. Shafer, Axioms for probability and belief-function propagation, in: R.D. Shachter, T. Levitt, J.F. Lemmer, L.N. Kanal (Eds.), Uncertainty in 

Artificial Intelligence 4, North-Holland, 1990, pp. 169–198.
[45] P. Smets, Information content of an evidence, Int. J. Man-Mach. Stud. 19 (1983) 33–43.
[46] P. Smets, Constructing the pignistic probability function in a context of uncertainty, in: M. Henrion, R. Shachter, L.N. Kanal, J.F. Lemmer (Eds.), Uncer-

tainty in Artificial Intelligence 5, Elsevier, 1990, pp. 29–40.
[47] P. Smets, The canonical decomposition of a weighted belief, in: Proceedings of the 1995 IJCAI Conference, vol. 95, 1995, pp. 1896–1901.
[48] P. Smets, R. Kennes, The transferable belief model, Artif. Intell. 66 (2) (1994) 191–234.
[49] M. Studený, Formal properties of conditional independence in different calculi of AI, in: European Conference on Symbolic and Quantitative Approaches 

to Reasoning and Uncertainty, Springer, 1993, pp. 341–348.
[50] R. Yager, Entropy and specificity in a mathematical theory of evidence, Int. J. Gen. Syst. 9 (4) (1983) 249–260.
181

http://refhub.elsevier.com/S0888-613X(22)00146-3/bibF0ABE4FD9EBCA9BF128768CA3611C61Fs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib8512EDBAA2AFC409E13C4AC710AF7A95s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibEA55787FD4D865D855A786E0E47CA9E0s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibBD9853B960167518EE25DD871C444CC3s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib80487338BD627809726059EC7409A629s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib80487338BD627809726059EC7409A629s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibE4D06835D0215907586562138E86641As1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibE4D06835D0215907586562138E86641As1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibE05E12E2C3D99027B553A10C1A00F374s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibF6DC6AD3C61E14D5BF714C681BF85FDCs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib5D0715CA8D590D1D7A09DA52CDBBAB5Fs1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib4946938C45D143EA1959A5739F78678Ds1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib18A6C635D21DBA50A3BA064485AC7FE6s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib17FA3694723625A4C7F74D2EDFF5EFC7s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib17FA3694723625A4C7F74D2EDFF5EFC7s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib85D83304DED40A7E510F68153111D265s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib96AA2E7F573EAF1B0236C39F5CD51F67s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib96AA2E7F573EAF1B0236C39F5CD51F67s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibFC740221BABD0AF6FB2423C2B4C914D9s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib440B19BE83D747B424C7D135B4974C0As1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib7E825C2FEB6B89655713AFE0A1D367E0s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bib7E825C2FEB6B89655713AFE0A1D367E0s1
http://refhub.elsevier.com/S0888-613X(22)00146-3/bibBE23AF452864405E87B8C6D719C97E90s1

	Entropy for evaluation of Dempster-Shafer belief function models
	1 Introduction
	2 Motivation
	3 Belief functions
	4 Composition operator
	5 Compositional models
	6 Entropy of belief functions
	7 An example
	8 Experimental results
	9 Summary & conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


