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Abstract. The primary goal is to define conditional belief functions in
the Dempster-Shafer theory. We do so similar to the notion of condi-
tional probability tables in probability theory. Conditional belief func-
tions are necessary for constructing directed graphical belief function
models in the same sense as conditional probability tables for construct-
ing Bayesian networks. Besides defining conditional belief functions, we
state and prove a few basic properties of conditionals. We provide sev-
eral examples of conditional belief functions, including those obtained by
Smets’ conditional embedding.

Keywords: Dempster-Shafer belief function theory · Conditional
belief functions · Smets’ conditional embedding

1 Introduction

The main goal of this article is to review the concept of conditional belief func-
tions in the Dempster-Shafer (D-S) theory of belief functions [4,13], provide a
formal definition, state some basic properties, and provide some examples.

Several theories of belief functions use the representation of belief functions
but differ in the combination rules and corresponding semantics. The D-S the-
ory uses Dempster’s combination rule. [5] proposes an alternative combination
rule interpreting belief functions as credal sets [7]. These two theories of belief
functions are different. A comparison of these two theories is outside the scope
of this paper. Here, we are concerned exclusively with the D-S theory.

One of the earliest to define conditional belief functions for the D-S theory
is Smets [18]. Other contributions on conditional belief functions are (in chrono-
logical order) Shafer [14,15], Cano et al. [3], Shenoy [16], Almond [1], and Xu
and Smets [19].

Shafer [14] is concerned about parametric models. There is a discrete param-
eter variable Θ and a data variable X. We have a prior basic probability assign-
ment (BPA) mΘ for Θ. We have a conditional model for the data, BPA mX|θ
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for X given θ ∈ ΩΘ. Based on a dataset of n independent observations of X, the
task is to compute the posterior belief function for Θ. The BPAs mX|θ for X
given θ ∈ Θ are converted to a conditional BPA mθ,X for (Θ,X) using Smets’
conditional embedding. The marginal of mθ,X for Θ is vacuous. For all θ ∈ ΩΘ,
the conditionals BPA mθ,X are then combined using Dempster’s rule resulting
in the conditional mX|Θ. This assumes that the BPAs mθ,X are distinct, which
may be reasonable if the number of elements of ΩΘ is small. Shafer also looks at
the case where BPAs mθ,X are not independent, and some known distributions
describe the dependency.

Shafer [15] discusses conditionals abstractly as potentials that extend the
domain of a potential. He calls conditionals ‘continuers.’ Thus, ψ is a continuer
of σ from a to a ∪ b if and only if σ↓a⊕ψ = σ↓a∪b. Here, σ↓a denotes the marginal
of σ for a, ⊕ denotes Dempster’s combination operator, and a and b are disjoint
subsets of variables. The paper’s focus is on the computation of marginals, but
there are some interesting properties of continuers stated.

Cano et al. [3] define conditionals abstractly in the framework of valuation-
based systems, but they do require that the marginal m(b|a)↓a of conditional
m(b|a) is a vacuous valuation for a. The focus is on finding marginals by prop-
agating conditional valuations in a directed acyclic graph.

Shenoy [16] describes conditional valuations using the removal operator,
which is an inverse of the combination operator. For the D-S theory, the removal
operator corresponds to pointwise division of commonality functions followed by
normalization. If σ is a BPA for subset s of variables, and a and b are disjoint
subsets of s, then conditional belief function σ(b|a) is defined as σ↓a∪b � σ↓a. A
consequence of this definition is that the marginal of σ(b|a) for a is vacuous for
a. One disadvantage of this definition is that conditionals are defined starting
from the joint. This is not helpful in constructing joint belief functions. We say
σ↓a is included in σ↓a∪b if σ↓a∪b = σ↓a ⊕ σ(b|a). Another disadvantage is that if
σ↓a is not included in σ↓a∪b, σ(b|a) may result in a BPA with negative masses.
Such BPAs are called quasi-BPAs1.

Almond [1] defines conditional belief functions as those obtained from a joint
BPA by Dempster’s conditioning and marginalization. Suppose mX,Y is a BPA
for (X,Y ). He defines the corresponding conditional BPA mY |x, where x ∈ ΩX as
follows. Suppose mX=x is a deterministic BPA for X such that mX=x({x}) = 1.
Then mY |x is defined as (mX,Y ⊕ mX=x)↓X . He then discusses the problem
of going from conditionals to joint and argues that there isn’t a unique joint
associated with a group of conditionals, e.g., {mY |x}x∈ΩX

. Smets’ conditional
embedding is discussed whereby a conditional BPA mY |x for Y is embedded into
a BPA mx,Y for (X,Y ) (details of Smets’ conditional embedding are discussed in
Sect. 3). Next, BPA mY |X for (X,Y ) is constructed from conditional embeddings
mx,Y for x ∈ ΩX as follows:

mY |X = ⊕{mx,Y : x ∈ ΩX}. (1)

1 This phenomenon has been observed, e.g., in [11,16], and [12]. An example is given
in [10].
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Equation (1) implicitly assumes that the conditionally embedded BPAs mx,Y

are distinct. Almond claims this assumption is unrealistic except for the case
where we start from conditional BPAs mY |x that are Bayesian.

Xu and Smets [19] discuss conditionals mY |a for Y when proposition a is
observed, where ∅ �= a ∈ 2ΩX . Let ma,Y denote the BPA for (X,Y ) after con-
ditional embedding of mY |a. [1] and [19] discuss Dempster’s combination of all
such conditionals:

⊕ {ma,Y : ∅ �= a ∈ 2ΩX }. (2)

While it may be reasonable to assume that mx,Y for x ∈ ΩX are distinct as
in Eq. (1), assuming that all BPAs ma,Y for ∅ �= a ∈ 2ΩX are distinct may be
unreasonable. The focus of [19] is on computing marginals.

We do not start with a joint BPA when constructing a directed graphical
belief function model. Instead, we construct a joint BPA using priors and condi-
tionals. In this context, the current definitions in the literature are not helpful.
What exactly is a conditional BPA? What are their properties? This is the pri-
mary goal of this article.

An outline of the remainder of the paper is as follows. In Sect. 2, we review
the basics of D-S theory. In Sect. 3, we define conditional belief functions, and
state some properties. Also, we describe where conditionals come from, including
Smets’ conditional embedding. We describe Almond’s captain’s problem [1], a
directed graphical belief function model with several examples of conditionals.
In Sect. 4, we conclude with a summary.

2 Basics of D-S Theory of Belief Functions

This section sketches the basics of the D-S theory of belief functions [4,13].
Knowledge is represented by basic probability assignments, belief functions,

plausibility functions, commonality functions, credal sets, etc. Here we focus only
on basic probability assignments and commonality functions.

Consider a set s of variables. For each X ∈ s, let ΩX denote its finite state
space, and let Ωs denote ×X∈sΩX . Let 2Ωs denote the set of all subsets of Ωs.
A basic probability assignment (BPA) m for s is a function m : 2Ωs → [0, 1] such
that

m(∅) = 0, and
∑

∅�=a∈2Ωs

m(a) = 1. (3)

m represents some knowledge about variables in s, and we say the domain of
m is s. m(a) is the probability assigned to the proposition represented by the
subset a of Ωs. Subsets a such that m(a) > 0 are called focal elements of m. If
m has only one focal element (with probability 1), we say m is deterministic. If
the focal element of a deterministic BPA is Ωs, we say m is vacuous.

The knowledge encoded in a BPA m can be represented by a corresponding
commonality function. The commonality function (CF) Qm corresponding to
BPA m for s is such that for all a ∈ 2Ωs ,

Qm(a) =
∑

b⊇a

m(b). (4)
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Qm(a) represents the probability mass that could move to every state in a. Qm

has exactly the same information as m. Given a CF Q for s, we can recover the
corresponding BPA mQ for s as follows [13]: For all a ∈ 2Ωs ,

mQ(a) =
∑

b∈2Ωs :b⊇a

(−1)|b\a|Q(b). (5)

Thus, Q : 2Ωs → [0, 1] is a CF for s if and only if

Q(∅) = 1 (6)
∑

b∈2Ωs :b⊇a

(−1)|b\a|Q(b) ≥ 0 for all ∅ �= a ∈ 2Ωs , and (7)

∑

∅�=a∈2Ωs

(−1)|a|+1 Q(a) = 1. (8)

Equation (6) follows from Eq. (4), Eq. (7) corresponds to non-negativity of BPA
values, and Eq. (8) corresponds to the second equation in Eq. (3).

There are two basic inference operators in the D-S theory, marginalization
and combination.

Suppose m is a BPA for a set of variables r with state space Ωr = ×X∈rΩX

and suppose s ⊆ r. The marginalization operator transforms a BPA m for r to
a BPA m↓s for s by eliminating variables in r \ s. Projection of states means
dropping some coordinates. If (x, y) ∈ ΩX,Y , then (x, y)↓X = x. Projection of
subset of states is achieved by projecting every state in the subset. Suppose
a ∈ 2ΩX,Y . Then, a↓X = {x ∈ 2ΩX : (x, y) ∈ a}. Suppose m is a BPA for r.
Then, the marginal of m for s ⊆ r, denoted by m↓s, is a BPA for s such that for
each a ∈ 2Ωs ,

m↓s(a) =
∑

b∈2Ωr :b↓s=a

m(b). (9)

Dempster’s combination rule is described using commonality functions. Con-
sider two distinct BPAs m1 for r and m2 for s, and let Q1 and Q2 denote the cor-
responding commonality functions. Then, as showed in [13], for all ∅ �= a ∈ 2Ωr∪s

(Q1 ⊕ Q2)(a) = K−1Q1(a↓r)Q2(a↓s), (10)

where K is a normalization constant defined as follows:

K =
∑

∅�=a∈Ωr∪s

(−1)|a|+1Q1(a↓r)Q2(a↓s). (11)

(1 − K) can be regarded as a measure of conflict between m1 and m2. If K =
1, there is no conflict, and if K = 0, there is total conflict and Dempster’s
combination Q1 ⊕ Q2 is undefined.

It is easy to show that Dempster’s combination is commutative and associa-
tive: m1 ⊕ m2 = m2 ⊕ m1, and (m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3).

There is an important property satisfied by marginalization and Dempster’s
combination rule called the local computation property [17]. Suppose m1 is a
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BPA for r and m2 is a BPA for s (subsets r and s may not be disjoint) and
suppose X ∈ r and X /∈ s. Then,

(m1 ⊕ m2)↓(r∪s)\{X} = (m1)↓r\{X} ⊕ m2 (12)

This property is the basis of computing marginals of joint belief functions. [6]
describes an implementation of a local computation algorithm for computing
marginals of graphical belief function models.

Next, we define the removal operator, which is motivated by the following
situation in probability theory. Suppose PX,Y is a joint probability mass function
(PMF) for (X,Y ), and we need to compute the conditional probability table
(CPT) PY |X . We know that PX,Y = PX ⊗ PY |X , where PX = (PX,Y )↓X is the
marginal PMF for X, and ⊗ is the probabilistic combination operator pointwise
multiplication followed by normalization. This suggests that PY |X = PX,Y �PX ,
where � is the inverse combination operator, pointwise division followed by
normalization. If PX(x) = 0, then PX,Y (x, y) must also be zero, and we can
consider 0/0 as undefined (using the symbol 0/0 = ?) or define it as 1. Thus, if
we regard combination ⊗ as aggregation of knowledge, then � can be regarded as
removal of knowledge, and computing a CPT PY |X is removing PX from PX,Y .

As we saw in Eq. (10), Dempster’s combination is pointwise multiplication of
CFs followed by normalization. Thus, removal in the D-S theory can be defined
as pointwise division of CFs followed by normalization. Formally, suppose QX,Y

is a joint CF for (X,Y ), and let QX = (QX,Y )↓X denote the marginal CF for
X. Then, we define removal of QX from QX,Y as follows: For all ∅ �= a ∈ 2ΩX,Y ,

(QX,Y � QX)(a) = K−1 QX,Y (a)/QX(a↓X), (13)

where K is a normalization constant given by:

K =
∑

∅�=a∈2ΩX,Y

(−1)|a|+1 QX,Y (a)/QX(a↓X) (14)

As in the probabilistic case, if QX(a↓X) = 0, then QX,Y (a) must also be 0, and
we can define 0/0 as 1.

Unlike probability theory, if we start with an arbitrary joint CF QX,Y , then
QX,Y � QX may fail to be a CF because the corresponding BPA has negative
masses adding to 12. In the next section, we state a proposition that characterizes
when removal results in a well-defined CF.

3 Conditional Belief Functions

This section defines a conditional belief function similar to a conditional proba-
bility table in probability theory without starting from a joint distribution. Our
task is constructing a joint using conditional belief functions as in a graphical
model. We begin with the probabilistic case.
2 An example is given in [10].
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Suppose PX denotes a PMF of X, and we wish to construct a joint PMF
PX,Y of (X,Y ) such that PX is the marginal of PX,Y for X (as is typically done
in a probabilistic graphical model). One way to do this is to define a PMF of
Y for each x ∈ ΩX such that3 PX(x) > 0. Let PY |x : ΩY → [0, 1] denote a
PMF of Y when X is known to be x, i.e., for all y ∈ ΩY , PY |x(y) ≥ 0 and∑

y∈ΩY
PY |x(y) = 1. We can embed all PMFs PY |x of Y for each x ∈ ΩX

into a function PY |X : ΩX,Y → [0, 1] such that PY |X(x, y) = PY |x(y). In the
Bayesian network literature, the function PY |X is called a CPT. The joint PMF
PX,Y of (X,Y ) can now be defined as PX,Y (x, y) = PX(x) · PY |X(x, y). Some
observations:

1. Notice that if we marginalize the CPT PY |X to X, then we get a potential
that is identically 1 for all values of x ∈ ΩX , which is the vacuous potential
in probability theory.

2. If we consider probabilistic combination operator ⊗ as pointwise multiplica-
tion followed by normalization, then we can write PX,Y = PX ⊗ PY |X . The
normalization constant is 1 for this combination.

3. It follows from the first observation that the marginal of PX,Y for X is PX .
So, the CPT PY |X is used to extend PX to PX,Y such that the marginal
(PX,Y )↓X = PX .

A formal definition of a conditional belief function for Y given X in the D-S
theory follows.

Definition 1. Suppose mY |X is a BPA for (X,Y ), where X and Y are distinct
variables. We say mY |X is a conditional BPA for Y given X if and only if

1. (mY |X)↓X is a vacuous BPA for X, and
2. for any BPA mX for X, mX and mY |X are distinct. Thus, mX ⊕ mY |X is a

BPA for (X,Y ).

The first condition says that mY |X tells us nothing about X. We will refer to
the BPA mX ⊕ mY |X as the joint BPA for (X,Y ) and denote it by mX,Y .
It follows from the local computation property (Eq. (12)) that (mX,Y )↓X =
(mX ⊕ mY |X)↓X = mX ⊕ (mY |X)↓X = mX . Thus, the second condition says
the conditional mY |X allows us to extend any BPA mX for X to a joint BPA
mX,Y for (X,Y ) without changing its marginal for X. Notice that mX and
mY |X are non-conflicting, i.e., the normalization constant K in mX ⊕ mY |X is
1 (Eq. (11)).

Given a conditional BPA mY |X for Y given X, we will refer to Y as the head
of the conditional, and X as the tail. A conditional describes the dependency
between the head and tail variables. Although we have defined a conditional BPA
with the head and tail being single variables, the definition generalizes when the
head and tail are disjoint subsets of variables.

3 If PX(x) = 0, then the conditional has no effect on the joint, and 0/0 can be left
undefined, or defined as 1.
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Definition 2. Suppose r and s are disjoint subsets of variables, and ms|r is a
BPA for r ∪ s. We say ms|r is a conditional BPA for s given r if and only if

1. (ms|r)↓r is a vacuous BPA for r, and
2. for any BPA mr for r, mr and ms|r are distinct. Thus, mr ⊕ ms|r is a BPA

for r ∪ s.

In a directed graphical belief function model, we have a conditional associated
with each variable X in the model. The head of the associated condition is X,
and the tail consists of the parents of X. For variables with no parents, we have
priors associated with such variables. For convenience, we can consider priors as
conditionals with empty tails. For such BPAs, the first condition in the definition
is trivially true as the sum of the probability masses in a BPA is 1.

Properties of Conditionals. The following lemma was stated in [16] where condi-
tionals were defined using an inverse of the combination operator called removal.
Here we prove the same results using the definition of conditionals above that
include only combination and marginalization.

Lemma 1. Suppose r, s, and t are disjoint subsets of variables. Let mr denote
a BPA for r, ms|r denote a conditional BPA with head s and tail r, etc. Then,
the following statements are true.

1. mr ⊕ ms|r ⊕ mt|r∪s = mr∪s∪t.
2. ms|r ⊕ mt|r∪s = ms∪t|r.
3. Suppose s′ ⊆ s. Then, (ms|r)↓r∪s′

= ms′|r.
4. (ms|r ⊕ mt|r∪s)↓r∪t = mt|r.

Proof. 1. mr, ms|r, and mt|r∪s are all distinct by definition of conditionals.
Thus,
mr ⊕ ms|r ⊕ mt|r∪s = (mr ⊕ ms|r) ⊕ mt|r∪s = mr∪s ⊕ mt|r∪s = mr∪s∪t.

2. Let ιr denote the vacuous BPA for r. Using the local computation property,

(ms|r ⊕ mt|r∪s)↓r = ((ms|r ⊕ mt|r∪s)↓r∪s)↓r = (ms|r ⊕ (mt|r∪s)↓r∪s)↓r

= (ms|r ⊕ ιr∪s)↓r = (ms|r)↓r = ιr.

Suppose mr is a BPA for r. Then, it follows from Statement 1 that mr ⊕
(ms|r ⊕ mt|r∪s) = mr∪s∪t.

3. First, notice that ((ms|r)↓r∪s′
)↓r = (ms|r)↓r = ιr. Suppose mr is a BPA

for r. As mr and ms|r are distinct, mr and ms′|r are distinct. Thus, mr ⊕
(ms|r)↓r∪s′

= mr∪s′ .
4. Using the local computation property,

((ms|r ⊕ mt|r∪s)↓r∪t)↓r = ((ms|r ⊕ mt|r∪s)↓r∪s)↓r = (ms|r ⊕ (mt|r∪s)↓r∪s)↓r

= ((ms|r ⊕ ιr∪s)↓r = (ms|r)↓r = ιr.

Suppose mr is a BPA for r. As mr, ms|r, and mt|r∪s are all distinct,

mr ⊕ (ms|r ⊕mt|r∪s)↓r∪t = (mr ⊕ms|r ⊕mt|r∪s)↓r∪t = (mr∪s∪t)↓r∪t = mr∪t.


�
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Where do Conditionals Come From? A conditional BPA mr|s describes the
relationship between the variables in r and s. One source of conditionals is
Smets’ conditional embedding [18]. To describe conditional embedding, consider
the case of two variables X and Y . To describe the dependency between X and
Y , suppose that when X = x, our belief in Y is described by a BPA mY |x for
Y . Thus, mY |x : 2ΩY → [0, 1] such that

∑
a∈2ΩY mY |x(a) = 1. The BPA mY |x

for Y needs to be embedded into a BPA mx,Y for (X,Y ) such that

1. mx,Y is a conditional BPA for (X,Y ), i.e., (mx,Y )↓X is vacuous BPA for X,
and

2. when we add the belief that X = x and marginalize the result to Y , we obtain
mY |x.

One way to do this is to take each focal element b ∈ 2ΩY of mY |x, and convert
it to the corresponding focal element

({x} × b) ∪ ((ΩX \ {x}) × ΩY ) ∈ 2ΩX,Y (15)

of BPA mx,Y for (X,Y ) with the same mass. It is easy to confirm that this
method of embedding satisfies both conditions mentioned above. If we have sev-
eral distinct conditionals, e.g., mY |x1 , mY |x2 , etc., where x1, and x2 are distinct
values of X, then we do conditional embedding of each of these BPAs and then
combine the embeddings by Dempster’s combination rule to obtain mY |X . An
example of conditional embedding follows.

Example 1 (Conditional embedding). Consider binary variables X and Y , with
ΩX = {x, x̄} and ΩY = {y, ȳ}. Suppose we have a BPA mY |x for Y given X = x
as follows:

mY |x(y) = 0.8, mY |x(ΩY ) = 0.2,

then its conditional embedding into the conditional BPA mx,Y for (X,Y ) is as
follows:

mx,Y ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8, mx,Y (ΩX,Y ) = 0.2.

Similarly, if we have a BPA mY |x̄ for Y given X = x̄ as follows:

mY |x̄(ȳ) = 0.3, mY |x̄(ΩY ) = 0.7,

then its conditional embedding into the conditional BPA mx̄,Y for (X,Y ) is as
follows:

mx̄,Y ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.3, mx̄,Y (ΩX,Y ) = 0.7.

Assuming we have these two BPAs, and their corresponding embeddings, it
is clear that the two BPA mx,Y and mx̄,Y are distinct, and can be combined
with Dempster’s rule of combination, resulting in the conditional BPA mY |X =
mx,Y ⊕ mx̄,Y for (X,Y ). mY |X has the following properties. First, (mY |X)↓X =
ιX , where ιX denotes the vacuous BPA for X. Second, if we combine mY |X with
deterministic BPA mX=x({x}) = 1 for X, and marginalize the combination to Y ,
then we get mY |x, i.e., (mY |X ⊕mX=x)↓Y = mY |x. Third, (mY |X ⊕mX=x̄)↓Y =
mY |x̄. mY |X is the belief function equivalent of CPT PY |X in probability theory.


�
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In probability theory, a joint distribution PX,Y can always be factored into
marginal PX = (PX,Y )↓X and a conditional PY |X such that PX,Y = PX ⊗PY |X .
This is not true in the D-S theory. The following proposition describes when a
joint belief function can be factored into a marginal and a conditional.

Proposition 1. Suppose mX,Y is a BPA for {X,Y } with corresponding CF
QmX,Y

. Let mX denote the marginal of mX,Y for X, i.e., mX = (mX,Y )↓X .
Then, QmX,Y

� QmX
is a CF if and only if there exists a BPA m for {X,Y }

such that mX,Y = mX ⊕ m, and m is a conditional for Y given X.

A proof of this proposition can be found in [8]. The proposition states that if we
remove BPA mX from mX,Y such that mX is included in mX,Y in the sense that
mX,Y is Dempster’s combination of the marginal mX for X and a conditional
m for Y given X, then such removal always results in a well-defined CF.

Smets’ conditional embedding is only one way to obtain conditionals. Black
and Laskey [2] propose other methods to get conditionals. The following example
from [1], called the captain’s problem, has many examples of conditionals. The
description of Almond’s captain’s problem is taken from [9].

Example 2 (Captain’s problem). A ship’s captain is concerned about how many
days his ship may be delayed before arrival at a destination. The arrival delay is
the sum of departure delay and sailing delay. Departure delay may be a result of
maintenance (at most one day), loading delay (at most one day), or a forecast
of bad weather (at most one day). Sailing delays may result from bad weather
(at most one day) and whether repairs are needed at sea (at most one day).
If maintenance is done before sailing, chances of repairs at sea are less likely.
The forecast is 80% reliable. The captain knows the loading delay and whether
maintenance is done before departure.

Fig. 1. The directed acyclic graph for the captain’s problem. The Greek alphabets
adjacent to a variable denote the prior or conditional or evidence associated with the
variable.
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Table 1. The variables, their state spaces, and associated conditionals in the captain’s
problem.

Variable Name State space, Ω Associated conditional

W Actual weather {gw, bw} vacuous for W

F Forecasted weather {gf , bf} φ1 for F |W
L Loading delay? {tl, fl} λ for L

M Maintenance done? {tm, fm} μ for M

R Repair at sea needed? {tr, fr} ρ1, ρ2 for R given M = tm, tf , resp.

D Departure delay (in days) {0, 1, 2, 3} δ for D|{F, L, M}
S Sailing delay (in days) {0, 1, 2, 3} σ for S|{W, R}
A Arrival delay (in days) {0, 1, 2, 3, 4, 5, 6} α for A|{D, S}

Table 1 describes the variables, their state spaces, and associated condition-
als, and Fig. 1 shows the directed acyclic graph associated with this problem.
The details of some of the conditional BPAs are as follows.

1. Weather forecast is 80% accurate. φ1 is a conditional BPA for F given W .

φ1({(gw, gf ), (bw, bf )}) = 0.8, φ1(ΩW,F ) = 0.2.

2. Bad weather and repair at sea each adds a day to sailing delay. This propo-
sition is true 90% of the time. σ is a conditional for S given (W,R).

σ({(gw, fr, 0), (bw, fr, 1), (gw, tr, 1), (bw, tr, 2)}) = 0.9, σ(ΩW,R,S) = 0.1.

3. Departure delay may be a result of maintenance (at most 1 day), loading
delay (at most 1 day), or a forecast of bad weather (at most 1 day). δ is a
deterministic conditional BPA for D given {F,L,M}.

δ({(gf , fl, fm, 0), (bf , fl, fm, 1), (gf , tl, fm, 1), (gf , fl, tm, 1),
(bf , tl, fm, 2), (bf , fl, tm, 2), (gf , tl, tm, 2), (bf , tl, tm, 3)}) = 1.

4. The arrival delay is the sum of departure delay and sailing delay. α is a
deterministic conditional BPA for A given {D,S}.

α({(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3), (1, 0, 1), (1, 1, 2), (1, 2, 3), (1, 3, 4),

(2, 0, 2), (2, 1, 3), (2, 2, 4), (2, 3, 5), (3, 0, 3), (3, 1, 4), (3, 2, 5), (3, 3, 6)}) = 1.

4 Summary and Conclusions

We have explicitly defined conditionals in the D-S theory using only the
marginalization and Dempster’s combination operators. The main goal of the
definition is to enable the construction of directed graphical belief function
models. Conditional belief functions are also defined in [16] using an inverse of
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Dempster’s combination operator called removal. Since Dempster’s combination
is pointwise multiplication of commonality functions followed by normalization,
removal consists of division of commonality functions followed by normalization.
Thus, mY |X = mX,Y � mX . One issue with this definition is that a conditional
BPA is defined starting from a joint BPA, which is not useful in constructing
a joint BPA. Another issue is that if mX is not already included in mX,Y , the
removal operation may result in a BPA with negative masses. We have stated
some properties of conditionals given in [16] and these properties remain valid
using our definition. Smets’ conditional embedding [18] is one way to obtain
conditionals. There are other ways to obtain conditionals, and some examples of
conditionals are described using Almond’s captain’s problem [1].
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