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Abstract

Theoretic, descriptive and experimental analysis and description of classes of
conflictness, non-conflictness and of conflict hiddeness of belief functions. Theoretic
extension of theory of hidden conflicts. Idea of catalogue of belief structures.

1 Introduction
As discussed in [2], the weight of conflict according to the classic Shafer’s definition [13]
using m ∩⃝(∅) is frequently higher than the expected value of conflict even for the partially
conflicting belief functions (BFs). On the other hand, a positive value of a conflict (here
we have in mind the conflict between BFs based on their non-conflicting parts [3, 4]) was
observed even in a situation when m ∩⃝(∅) equals zero.

This observation led to the definition of several degrees (up to cardinality of frame of
discernment) of hidden conflicts [6, 8], later compared with alternative shades of conflict
[12] in [7]. In one-to-one relation to different degrees of conflict hiddenness, there are cor-
responding classes of non-conflictness [5]. And it is precisely the content of this paper —
to explore and analyze different classes of belief functions concerning the hidden conflict.

This study covers a theoretical, descriptive, and a experimental approaches. The
first one analyses the definitions and conditions of particular degrees of non-conflictness,
resulting in a theoretic characterization of specific classes of non-conflicting BFs in various
degrees. The other approaches characterize types of BFs, intending to describe and catalog
different structures of BFs concerning hidden conflict or non-conflictness. Due to the
complexity of BFs and sets/structures of their focal elements, this approach brings detailed
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results on small frames of discernment (two and three-element frames Ω2, Ω3) and rougher
results for larger frames and a general n-element frame Ωn.

The idea of going through all possible structures of belief functions on different frames
of discernment and arranging them in a catalogue was inspired by a similar work [15] on
a system of min-balanced systems known from game theory. Indeed, both the system of
coalitions and the structure of a belief function is a set of sets. However, unlike game
theory, the structure of belief functions is much richer — any restrictive rule does not
limit it. For this reason, the resulting catalogue is quite extensive. Therefore it may
be appropriate to limit it to some structurally limited subclass of belief functions, such
as consonant belief functions in the future. An example of a catalogue for a particular
class of min-balanced systems can be found at http://gogo.utia.cas.cz/indecomposable-
min-semi-balanced-catalogue. We plan to create a similar catalogue, however, it is not
finished at the time of writing this paper.

2 Basic Notions
This section will recall some basic notations needed in this paper.

Assume a finite frame of discernment Ω with elements denoted by lower-case letters
from Latin alphabet a, b, c, . . . and their sets by capital letters. A = {a, b}. To simplify
the notation, we abbreviate {a, b} with ab. In the case of |Ω| = n, we will highlight this
fact using a subscript as Ωn. P(Ω) = {X|X ⊆ Ω} is a power-set of Ω. P(Ω) is often
denoted also by 2Ω, e.g., in [12].

A basic belief assignment (bba) is a mappingm : P(Ω) −→ [0, 1] such that
∑

A⊆Ω m(A) =
1. The values of the bba are called basic belief masses (bbm). m(∅) = 0 is usually assumed.
We sometimes speak about m as of a mass function.

There are other equivalent representations of m: A belief function (BF) is a mapping
Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅̸=X⊆A m(X). Because there is a unique correspon-

dence between m and corresponding Bel we often speak about m as of a belief function.
Let m be a belief function defined on Ω and A ⊆ Ω. If m(A) > 0 we say A is a focal

element of m. The set of focal elements is denoted by Fm (or simply F for short) and we
call it a structure of m. We say that a focal element X ∈ F is proper if X ̸= Ω. In the
case of mvac(Ω) = 1 we speak about the vacuous BF (VBF) and about a non-vacuous
BF otherwise. We speak about consistent BF if all focal elements have a non-empty
intersection. If focal elements are nested, we speak about consonant BF.

The (non-normalized) conjunctive rule of combination ∩⃝, see e.g. [14], is defined by:

(m1 ∩⃝m2)(A) =
∑

X∩Y=A;X,Y⊆Ω

m1(X)m2(Y )

for any A ⊆ Ω. κ =
∑

X∩Y=∅;X,Y⊆Ω m1(X)m2(Y ) is usually considered to represent a
conflict of respective belief functions when κ > 0. By normalization of m12 = m1 ∩⃝m2 we
obtain Dempster’s rule, see [13]. To simplify formulas, we often use ∩⃝3

1m = m ∩⃝m ∩⃝m,
and also ∩⃝k

1(m1 ∩⃝m2) = (m1 ∩⃝m2) ∩⃝ . . . ∩⃝(m1 ∩⃝m2), where (m1 ∩⃝m2) is repeated k-times.

Classes of Conflictness / Non-Conflictness of Belief Functions

98



3 Hidden Conflicts and Internal Hidden Conflicts
After several preliminary studies, two types of hidden conflict were introduced in [8]. We
speak either about internal hidden conflict of given BF or about a mutual hidden conflict
between two BFs. Let us recall the hidden conflict definitions and their most important
properties here. For introductory examples and more details see [5, 7, 8].

We shall note that hidden conflict and its degrees are just extensions of classic Shafer’s
definition of conflict. It is not a new alternative definition or approach.

Definition 1 Assume two BFs mi and mii such that for some k>0 ( ∩⃝k
1(m

i ∩⃝mii))(∅) = 0.
If there further holds ( ∩⃝k+1

1 (mi ∩⃝mii))(∅) > 0 we say that there is a conflict of BFs mi

and mii hidden in the k-th degree (hidden conflict of k-th degree, abbreviated as HCk).
If there is already ( ∩⃝k+1

1 (mi ∩⃝mii))(∅) = (mi ∩⃝mii))(∅) > 0 for k = 0 then there is a
conflict of respective BFs which is not hidden or we can say that it is conflict hidden in
degree zero (HC0).

Theorem 1 Hidden conflict of non-vacuous BFs on Ωn, n > 1 is always of a degree less
or equal to n− 2; i.e., the condition

( ∩⃝n−1
1 (mi ∩⃝mii))(∅) = 0 (1)

always means full non-conflictness of respective BFs and there is no hidden conflict.

Definition 2 Let us assume a BF is given by m such that ( ∩⃝2
1m)(∅) = 0 and ( ∩⃝s

1m)(∅) >
0 for an s > 2. Then we say that there is an internal hidden conflict in m. More
specifically, if ∃k ≥ 0 such that ( ∩⃝k+1

1 m)(∅) = 0 and ( ∩⃝k+2
1 m)(∅) > 0, then we say that

there is an internal conflict of BF m hidden in k-th degree1 – hidden internal conflict of
k-th degree (HICk).

Theorem 2 Internal hidden conflict of any BF on Ωn, n > 1 is always of a degree less
or equal to n− 2; i.e., the condition

( ∩⃝n
1m)(∅) = 0 (2)

always means the full internal non-conflictness of any BF given by any bba m on any Ωn.

Theorem 3 (i) Let us assume two BFs mi, mii with hidden conflict of k-th degree for
k ≥ 2 and their conjunctive combination m = mi ∩⃝mii. Then there is an internal conflict
of m hidden in k−1-th degree.
(ii) Any hidden conflict of any BF m of any degree k > 1 can be expressed as a hidden
conflict of two BFs of degree k + 1: m = m ∩⃝mvac.

Proof. For proofs of both the theorems see [8].
1Note that for k = 0 there is just m(∅) = 0 and (m ∩⃝m)(∅) > 0; hence m is consistent and the internal

conflict is not hidden or we can say hidden in degree zero; for k = 1 there is just (m ∩⃝m)(∅) = 0 and
(m ∩⃝m ∩⃝m)(∅) > 0 hence the conflict is hidden in the 1st degree.
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Note that the definition of k-th degree of hidden conflict differs in powers of ∩⃝k (see
Definitions 1 and 2). The reason is straightforward: Note that while (m1 ∩⃝m2)(∅) =

( ∩⃝1
(m1 ∩⃝m2))(∅) > 0 represents conflict which is not hidden, (i.e., hidden in degree 0),

it is already ( ∩⃝2
(m1 ∩⃝m2))(∅) > 0 which represents hidden conflict in the degree 1. On

the other hand, (m ∩⃝m)(∅) = ( ∩⃝2
m)(∅) > 0 represents internal conflict (of one BF)

(i.e., hidden in degree 0). Thus the first degree of internal hidden conflict appears for
( ∩⃝3

m)(∅) > 0 and k-th degree for ( ∩⃝k+1
m)(∅) = 0 while ( ∩⃝k+2

m)(∅) > 0.

Definition 3 (i) Assume two BFs mi and mii. We say that the BFs are non-conflicting
in k-th degree if ( ∩⃝k

1(m
i ∩⃝mii)(∅) = 0.

(ii) BFs mi and mii are fully non-conflicting if they are non-conflicting in any degree.

Theorem 4 Any two BFs on n-element frame of discernment Ωn non-conflicting in the
n-th degree are fully non-conflicting.

Proof. For the idea of the proof see [5].

In this study, we are not interested in a numeric size of any conflict. What we are
interested in are conflictness and non-conflictness. As all the degrees of hidden con-
flicts are only extensions of classic conjunctive conflict (m1 ∩⃝m2)(∅), all conflictness/non-
conflictness depend only on the sets of focal elements F1,F2 — on the structures of
respective BFs — not on their bbms. More specifically, it depends on the number and
cardinalities of focal elements, their intersections, nestedness, etc. We put the masses
corresponding to particular focal elements aside in our examples and focus only on the
structures of sets of focal elements.

4 Extension and Correction of Hidden Conflict Theory
4.1 Hidden Conflict on Ω2 and Hidden Conflict of (n−1)-th Degree
When preparing this study we have observed hidden conflict also on Ω2 = {a, b} and
analogously we can find a hidden conflict of (n− 1)-th degree on any n-element frame of
discernment. How it is possible? According to the previous section and namely to [6, 8]
the maximal degree of hidden conflict is n−2 on Ωn. Since 2−2 = 0, only a conflict which
is not hidden is possible on Ω2. There is (mvac ∩⃝m)(∅) = m(∅) = 0 for any normalised
BF m. Nevertheless, ( ∩⃝2

(mvac ∩⃝m))(∅) = (m ∩⃝m)(∅) > 0 whenever m(a) > 0,m(b) > 0,
thus for any general BF m with both the singletons. How this is possible?

The reason is the following. We were looking for a hidden mutual conflict between
two BFs in [6, 8]. mvac is considered to be non-conflicting with any BF. Therefore, it is
non-conflicting also with any m with both singletons among its focal elements. Hence the
hidden conflict of mvac and m is just an internal conflict of m, see also (m ∩⃝m)(∅) > 0
above. I.e., it is an internal conflict of m which is not hidden. In the case of combination,
it is hidden by mvac.

The analogous situations appear on any finite frame of discernment; hence we obtain:
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Lemma 1 Let m1 and m2 be two belief functions on Ωn such that they have hidden
conflict of (n− 1)-th degree. Then F1 contains n subsets of Ωn of cardinality n− 1 only,
and possibly also entire Ωn, F2 = {Ωn} or vice versa. Hence one the BFs is vacuous and
the corresponding hidden conflict is in fact an internal hidden conflict the other one.

Proof. Assertion follows Theorem 6 and the above text of this section.

Our current observation and Lemma 1 show the importance of distinguishing internal
conflict and of entire/global conflict of two BFs from mutual conflict between them [2]
also in a hidden case!

4.2 Belief Structures in Hidden Conflict on Ω3

Let us present a correction of Lemma 5 from [8] about structures of non-vacuous BFs
which have hidden conflict of the (n−2)-th degree. The original statement of the Lemma
holds for all frames for n > 3. There are more belief structures for smaller frames Ω2 and
Ω3. The corrected version is the following:

Lemma 2 (i) The only non-vacuous BFs on Ωn with hidden conflict of degree (n − 2)
are BFs with focal elements of cardinality ≥ n − 1 for any n > 3, such that one has at
least (n − 1) focal elements of cardinality (n − 1) and the other one has just one focal
element of cardinality (n − 1). Moreover, every (n−1)-element subset of Ωn must be a
focal element of either one or both BFs.
(ii) The only non-vacuous BFs on Ωn with hidden conflict of degree (n − 2) are BFs
with focal elements of cardinality ≥ n− 1 for n = 2, 3, such that each of them has at least
one focal elements of cardinality (n− 1) and moreover, every (n−1)-element subset of Ωn

must be a focal element of either one or both BFs.

Proof. For proof and explanation see Appendix I.

5 Theoretic Approach
Let suppose a pair of BFs m1,m2 with focal elements F1,F2. If (m1 ∩⃝m2)(∅) > 0, there
is a non-hidden conflict, i.e., if there exists A ∈ F1, B ∈ F2 with non-empty intersection
A ∩ B = ∅. On the other hand the simplest case of non-conflictness of the 1-st degree is
characterized by (m1 ∩⃝m2)(∅) = 0, i.e., by A ∩B ̸= ∅ for any A ∈ F1, B ∈ F2.

What does it mean conflict hidden in degree 1? According to main definition of hidden
conflict, Definition 1, a hidden conflict of the first degree arises whenever

(m1 ∩⃝m2)(∅) = 0 and ((m1 ∩⃝m2) ∩⃝(m1 ∩⃝m2))(∅) > 0.
Hence we can characterise the class of pairs of BFs non-conflicting in the second de-
gree by ( ∩⃝2

(m1 ∩⃝m2))(∅) = 0. Let us turn our attention to the motivation of HC,
conflict observation, and the original working definition of hidden conflict: There is the
principal assumption that the combination (m1 ∩⃝m2) of two mutually non-conflicting
BFs m1, m2 should be non-conflicting with any of the original m1 and m2, hence both
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(m1 ∩⃝(m1 ∩⃝m2))(∅) = 0 and ((m1 ∩⃝m2) ∩⃝m2)(∅) = 0. Using associativity and commu-
tativity of conjunctive combination ∩⃝ we have ((m1 ∩⃝m2) ∩⃝(m1 ∩⃝m2))(∅) = ((m1 ∩⃝m1)
∩⃝(m2 ∩⃝m2))(∅) and it is zero whenever any focal element of (m1 ∩⃝m1) has non-empty
intersection with any focal element of (m2 ∩⃝m2) and vice versa.

Thus the class of non-conflictness of the 2-nd degree is specified by ( ∩⃝2
(m1 ∩⃝m2))(∅) =

0 and alternatively by (Xi ∩ Xj) ∩ (Yr ∩ Ys) ̸= ∅ for any focal elements Xi, Xj ∈ F1,
Yr, Ys ∈ F2 of m1,m2. Note that the first condition corresponds to Yager’s pair-wise
consistency of m12 = (m1 ∩⃝m2), which appears if

∑
X∩Y ̸=∅,X,Y ∈F12

m12(X)m12(Y ) = 1,
see [16].

Analogously, we can continue to hidden conflicts and classes of non-conflictness of
higher degrees: hidden conflict of the 2-nd degree and non-conflictness of the 3-rd degree,
up to hidden conflict of the (k−1)-th degree and related non-conflictness of the k-th degree.
Analogously to the classes of the 1-st and 2-nd degrees, we have also two characterizations
of the class: (i) one based on the original bbas m1 and m2:

∩k
1 Xi ∩

∩k
1 Yj ̸= ∅ for any

k-tuples of focal elements Xi ∈ F1 and Yj ∈ F2, and (ii) the other characterization
based on combination m12 = m1 ∩⃝m2: ( ∩⃝k

(m1 ∩⃝m2))(∅) = 0.
Ad (i): If either m1 or m2 has less focal elements than k, the focal elements are repeating
in the computation of hidden conflict; see, e.g., one of the mi’s in the Introductory
and the Little Angel Examples, see [8], thus analogously also in the verification of non-
conflictness. Hence intersecting Xi, Yi need not be different. Hence intersection of any
k-tuple of elements of F1 (possibly with repeating) must be non-empty and must have a
non-empty intersection with the intersection of any k-tuple of elements of F2 (possibly
with repeating).
Ad (ii): this correspond to Pichon et al.’s k-consistency of m12, see [12]; for k = n to
logical consistency [9].

Theorem 5 For any pair of BFs Bel1, Bel2 given by m1, m2 the following is equivalent:
(i) Bel1 and Bel2 are non-conflicting in degree k.
(ii)

∩k
1 Xi ∩

∩k
1 Yj ̸= ∅ for any k-tuples of focal elements Xi ∈ F1, Yj ∈ F2 of m1, m2.

(iii) ( ∩⃝k
(m1 ∩⃝m2))(∅) = 0 for m12 = m1 ∩⃝m2.

6 Descriptive Approach
Let us start with Ω2. There are 23 − 1 = 7 different belief function structures. We can
create a 7× 7 table of all pairs of these structures as in Table 1. The black dot represents
a singleton, and the black oval is the focal element of cardinality 2, which corresponds
to Ω2 in this case. Table cells correspond to ∩⃝ combination of respective structures.
Since the ∩⃝ operator is commutative, only the right upper part is filled in. White cells
correspond to non-conflicting structures, red and cyan to conflicting ones (red represents
total conflict). The 4 green cells correspond to hidden conflict, as described in Lemma 1.

This case of Ω2 has an excellent interpretation. We can easily see that non-conflicting
pairs are just the consonant ones (including mvac). Note that either one of them is mvac

or both contain the same singleton — the white cells of the table. Conflicting pairs (HC0)
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b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b m(∅) = 1 b b b b b b b b

b b m(∅) = 1 b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b

b b b b b b

b b b b

Table 1: All possible combinations of belief function structures on Ω2

are of two types: (i) one structure contains both singletons and the other is non-vacuous.
(ii) both structures have just one singleton, each different. And finally, 4 green HC1 fields
correspond to Lemma 1

Let us continue on Ω3. This case is significantly more complex. There are 27−1 = 127
belief structures here, (note that we have 22n−1−1 possible structures in general), To give
the reader a similar impression as from Table 1, we created a 127×127 bitmap— see Figure
1. Similarly to Ω2 rows and columns correspond to structures. The structures are ordered
by the number of focal elements as the first criterion and their size as the second one.
I.e. the ordering is the following: {a}; {b}; {c}; {ab}; {ac}; {bc}; {abc}; {a, b}, {a, c}, . . ..
Therefore, e.g. the 7th row and column correspond to vacuous BF. White cells correspond
to non-conflict situations, red to HC0, orange to HC1, and black to HC2. Striped cells
in Figure 1(a) correspond to pure type of respective conflict as defined later. Note that
black cells corresponding to HC2 appears in row and column corresponding to vacuous
BF only.

We can easily see white, i.e., non-conflicting area at (23–28)x(23–28) and other areas
(23–28)x(60-63), (60-63)x(23-28), and (60-63)x(60-63). Where 22–26 are two couples, 27–
28 couple and triple, 60–63 structures with 3 focal elements all 22–28, 60–63 contains c.
Thus this is not theoretically very interesting; this area comes from the selected ordering
of belief structures. The complete analysis of the bitmap is still under preparation.

Nevertheless, the bitmaps are already part of the experimental results, thus related
to the next section.

7 Experimental Approach
Conflictness/non-conflictness according to the classical definition of (conjunctive) conflict
depends only on the structure of the focal elements given by the bbas. In this section, we
will show some results of experiments with these structures.

A conflict based on a mass assigned to an empty set by the conjunctive rule has two

Milan Daniel, Václav Kratochvíl

103



(a) Zoom of left upper part (32× 32) (b) Full 127× 127 bitmap

Figure 1: Bitmap of combination of structures on Ω3

levels. The first relates to the very existence of the conflict, i.e., whether there are two
focal elements with an empty intersection. The second level deals with the magnitude of
the conflict. The size corresponds to the number of pairs of focal elements with empty
intersections and the probability masses they carry.

This paper focuses on the first part of the problem - the theoretical possibility of
conflict which is connected with the structure of focal elements only. We are not interested
in the probability mass assigned to individual focal elements here.

We know that the number of different structures on a given frame of discernment
is super-exponential with respect to frame size. See the first column in Table 2. Sup-
pose we disregard the frame of discernment labelling. Then we can group structures into
permutation-equivalent classes and calculate individual properties for only one representa-
tive of each class. We can say that we are creating a certain catalogue of structures of belief
functions. The number of classes of permutation-equivalent structures for Ω2,Ω3,Ω4, and
Ω5 is in Table 2. Note that we were not able to create this catalogue for frame of discern-
ment having more than five elements. Please, be aware that the exact number of classes
of permutation equivalent structures for Ω5 is unknown. By the submission deadline, we
were not able to go through all the structures with 15 and 16 focal elements. Therefore,
the number from Table 2 is an estimate based on the number of classes for structures
with other numbers of focal elements.

How do you recognize that two structures are permutation equivalent? It turns out
that the problem corresponds to graph isomorphism – bipartite graphs isomorphism
specifically. In this case, focal elements are vertices on one side, and the frame of discern-
ment is represented by vertices on the other side of the graph. To solve graph isomorphism
problem, we used the BLISS algorithm by Junttila and Kaski [10, 11] as implemented in
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number of structures classes of permutation equivalent structures
Ω2 7 5
Ω3 127 39
Ω4 32.767 1.990
Ω5 2.147.483.648 8.820*

Table 2: Richness of structures

the igraph [1] R package. Note that the algorithm is based on a special heuristic of finding
the canonical form of a graph unique for isomorphism.

7.1 Equivalence Classes of Belief Functions Structures
Let us present some interesting statistics on the structures of belief functions and respec-
tive equivalence classes. Note that we plan to create an online catalogue of all classes but
at the time of writing this paper it is still an ongoing process.
Ω3: Equivalence classes have three cardinalities (1, 3, and 6). There are 7 classes with
only one structure. 24 classes contain 3 structures, and 8 classes contain 6 structures.

cardinality 1: e.g., {abc}, {a, b, c}2 or m1 and m2 from Example 1
cardinality 3: e.g., {a}, {a, ab, ac}, {a, bc, abc}
cardinality 6: e.g., {a, ab}, {a, ab, abc}, {b, ab, ac}

Ω4: In the case of Ω4, equivalence classes have seven cardinalities (1, 3, 4, 6, 12, 24, and
48). There are 15 classes with only one structure. 16 classes contain 3 structures, and
894 classes contain 24 structures. Interestingly, there is only one class with 48 structures.
One of these 48 structures is {a, ab, bc, bcd}. Note that this structure has internal conflict.

There are more greater classes with increasing n, even for analogous structures, look
at the above structures from Ω3 on greater frame Ω5:

cardinality 1: e.g., {abcde}, {a, b, c, d, e}
cardinality 20: e.g., {a, ab}
cardinality 60: e.g., {a, ab, abc}

cardinality 5: e.g., {a},
cardinality 50: e.g., {a, ab, ac}
cardinality 100: e.g., {b, ab, ac}

7.2 Internal Conflict
A proper survey of all structures aims to provide a detailed insight into the internal
structure of individual conflicts and their types. In the case of one belief function, we
recognize a hidden internal conflict of the structure of various degrees.

By internal conflict we mean the conflict which is inside a single bba, caused by
conflicting masses of the bba, it may appear when we combine the bba with itself or it
may remain hidden in some degree, see [8]. For each bba of the permutation-equivalent
classes, we calculated whether it is internally non-conflicting or whether it has a hidden
internal conflict and of which degree. Recall that the maximum degree of hidden conflict
is n− 1. The degree of conflict hiddeness is k if ∩⃝k+1

m(∅) = 0 while ∩⃝k+2
m(∅) > 0.

2We use abbreviations {abc} for {{abc}}, {a, b, c} for {{a}, {b}, {c}} and analogous, in this section.
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In the following table we use the following notation: NC — non-conflicting, IC — in-
ternal conflict, HICk - hidden internal conflict of k-th degree. The numbers in parentheses
refer to all structure. Other numbers to classes of equivalence.

NC IC HIC1 HIC2

Ω2 3(5) 2(2) – –
Ω3 11(37) 26(88) 2(2) –
Ω4 79(941) 1.867(31.392) 42(432) 2(2)

Table 3: Number of classes with different internal conflictness/non-conflicness

Example 1 The only two classes of belief function structures allowing maximal hidden
internal conflict for each frame of discernment are represented by the following structures
F1,F2 for various frames of discernment:

• Ω2 = {a, b}: F1 = {a, b}; F2 = {a, b, ab}

• Ω3 = {a, b, c}: F1 = {ab, ac, bc}; F2 = {ab, ac, bc, abc}

• Ω4 = {a, b, c, d}: F1 = {abc, abd, acd, bcd}; F2 = {abc, abd, acd, bcd, abcd}

Generally for Ωn, the focal elements have to be all subsets of cardinality |n − 1| with
possible focal element covering the whole Ωn. F1 = {A ⊂ Ωn : |A| = n − 1};F2 = {A :
A ∈ F1 or A = Ωn}. Then, the respective BFs have internal conflict hidden in (n− 1)-th
degree. This corresponds to Theorem 15 in [8].

7.3 Mutual Conflict
In case of two different bbas, their mutual conflict can be also hidden. Assume m1 and
m2. The definition of hidden conflict of k degree is that ( ∩⃝k

(m1 ∩⃝m2))(∅) = 0 while
( ∩⃝k+1

(m1 ∩⃝m2))(∅) > 0. In this experiment we tried to distinguish mutual conflict from
false mutual conflict caused by possible (hidden) internal conflict of one of the involved
bbas. To enumerate all pairs we employ the fact that we already have a catalogue of
permutation equivalent structures. Technically, instead of going through all possible pairs
of structures, we used only representatives from each permutation equivalent class on the
one hand. On the other hand, we had to go through all the structures. This explains why
we do not have results for Ω5. The total number of pairs with a given property is then
obtained by multiplying the sizes of a given permutation-equivalent class of structures.
The symmetry of the whole operation guarantees the correct result.

Assume m = m1 ∩⃝m2. In the following table we use also this notation:
P — pure mutual hidden conflict: ( ∩⃝k

m)(∅) > 0 and ( ∩⃝n
m1)(∅) = 0, ( ∩⃝n

m2)(∅) = 0,
C — clear degree of mutual hidden conflict: i.e., ( ∩⃝k

m)(∅) > 0 and ( ∩⃝k
m1)(∅) = 0,

( ∩⃝k
m2)(∅) = 0 (degree comes from mutual, not from internal conflict(s)),

F — hidden conflict which may to be caused by internal conflict of either m1 or m2.
( ∩⃝k

m)(∅) > 0 and simultaneously ( ∩⃝k
m1)(∅) > 0 or ( ∩⃝k

m2)(∅) > 0;
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unfortunately we cannon distinguish whether it is false mutual hidden conflict or
a mixture of mutual and internal conflicts in general.

NC HC0 HC1 HC2 HC3

P=C F P C F P C F P C F
Ω2 17 8 20 0 0 4
Ω3 649 672 14.048 48 100 656 0 0 4
Ω4 258.785 582.016 1.071.094.400 46.696 283.708 1.454.784 32 64 2.528 0 0 4

We have to note that, surprisingly less numbers of HC2 (both P and C; 32 and 64)
on Ω4 than HC1 (both P and C; 48 and 100) on Ω3 (both the cases are conflict hidden
on (n− 1)-th degree on corresponding Ωn) comes from the situation described in Lemma
1. There are more corresponding structures on Ω3 than on Ω4.
Example 2 (i) Note that the 4 pairs of maximum hidden degree corresponds to both
m1,m2 from Example 1; they are all combinations of m1,m2 with vacuous bba mvac:
m1 ∩⃝mvac, m2 ∩⃝mvac, mvac ∩⃝m1, and mvac ∩⃝m2 on any frame. It is generally assumed,
that mvac is mutually non-conflicting with any other bba, hence conflicts with the maxi-
mum degree of hiddeness n− 2, are always false, they are always internal hidden conflicts
of one of the bbas.
(ii) Analogously, two numerically identical bbas mi ≡ mj with an internal hidden con-
flict are mutually non-conflicting, hence internal hidden conflict of mi ∩⃝mj is also false.
Specially, also mi ∩⃝mi for bbas from Example 1, nevertheless this time of less degree of
hiddeness (degree ⌈n− 2/2⌉).

8 Conclusion
Several theoretic extensions and corrections related to maximal degree of hidden conflict
have been presented. Theoretic chracterization of classes of non-conflictness of belief
functions has been formulated.

Descriptive and experimental approaches to analysis of combination of belief function
structures have been presented. A catalogue of structures of belief functions and of
combination of these structures is under preparation.
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Appendix I. Theoretical Corrections — Extensions
Let us present the original version of the theorem on maximal degree of hidden conflict
(Theorem 2 in [8]) and a generalisation of the theorem and its corollary.

Theorem 6 (maximum degree of hidden conflict; original version) For any non-
vacuous BFs Beli, Belii defined by mi and mii on Ωn it holds that

( ∩⃝n−1
1 (mi ∩⃝mii))(∅) = 0 iff ( ∩⃝k

1(m
i ∩⃝mii))(∅) = 0

for any k ≥ n− 1.

Corollary 1 (original) A hidden conflict of any non-vacuous BFs on any Ωn always
has has degree less than or equal to n− 2; i.e., the condition

( ∩⃝n−1
1 (mi ∩⃝mii))(∅) = 0 (3)

always means the full non-conflictness of any BFs mi and mii on any Ωn. Moreover,
there is no hidden conflict on any two-element frame Ω2

The original version of the theorem is O.K. in [8] because non-vacuous BFs are expec-
tected there. Nevertheless, we can generalized its assertion as it follow:

Theorem 7 (maximum degree of hidden conflict; gneralized) (i) For any BFs Beli,
Belii defined by mi and mii on Ωn it holds that

( ∩⃝n
1 (m

i ∩⃝mii))(∅) = 0 iff ( ∩⃝k
1(m

i ∩⃝mii))(∅) = 0

for any k ≥ n.
(ii) For any non-vacouous BFs Beli, Belii the stronger assertion holds true for any
k ≥ n− 1

( ∩⃝n−1
1 (mi ∩⃝mii))(∅) = 0 iff ( ∩⃝k

1(m
i ∩⃝mii))(∅) = 0.

Proof. The assertion follow the proof in [8] and the text in Section 4.1.
The original version of the corollary need a small correction — specfication of mutual

conflict between BFs — see the second assertion of the generalised version:

Corollary 2 (generalised) (i) A hidden conflict of any two BFs on any Ωn always has
a degree less than or equal to n− 1; i.e., the condition

( ∩⃝n
1 (m

i ∩⃝mii))(∅) = 0 (4)
always means the full non-conflictness of any two BFs mi and mii on any Ωn.
(ii) A hidden conflict of any non-vacuous BFs on any Ωn always has a degree less than
or equal to n− 2; i.e., the condition

( ∩⃝n−1
1 (mi ∩⃝mii))(∅) = 0 (5)

always means the full mutual non-conflictness between any two BFs mi and mii on any
Ωn. Specially, there is neither a hidden mutual conflict nor a hidden internal conflict3

between any two BFs on two-element frame Ω2.
3There may to be only mutual conflicts of degree 2 − 2 = 0; meaning there are only mutual conflicts

(mi ∩⃝mii)(∅) > 0 and internal conflicts (m ∩⃝m)(∅) > 0 which are not hidden.
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Let us present a compariosn of the original and updated versions of Lemma 5 in [8]
now.

Lemma 3 (original version of Lemma 5) The only non-vacuous BFs on Ωn with hid-
den conflict of degree (n − 2) are BFs with focal elements of cardinality ≥ n − 1, such
that one has at least (n − 1) focal elements of cardinality (n − 1) and the other one has
just one focal element of cardinality (n − 1). Moreover, every (n−1)-element subset of
Ωn must be a focal element of either one or both BFs.

Lemma 4 (updated version of Lemma 5) (i) The only non-vacuous BFs on Ωn

with hidden conflict of degree (n− 2) are BFs with focal elements of cardinality ≥ n− 1
for any n > 3, such that one has at least (n − 1) focal elements of cardinality (n − 1)
and the other one has just one focal element of cardinality (n − 1). Moreover, every
(n−1)-element subset of Ωn must be a focal element of either one or both BFs.
(ii) The only non-vacuous BFs on Ωn with hidden conflict of degree (n − 2) are BFs
with focal elements of cardinality ≥ n− 1 for n = 2, 3, such that each of them has at least
one focal elements of cardinality (n− 1) and moreover, every (n−1)-element subset of Ωn

must be a focal element of either one or both BFs.

Proof. The characterisation of the ’other’ BF is based on the fact that addition of any
other focal element of cardinality n−1 decreases focal elements by ∩⃝, hence also decreases
a degree of conflict hiddeness.

This is true in general. Nevertheless this is not a matter on Ω3: as (m1 ∩⃝m1) ∩⃝(m2 ∩⃝m2)
cannot to decrease focal element twice; yes, there are three operations ∩⃝, each of them
theoretically may to decrease the size of focal elements, but n−1 = 2 is decreased to zero
already by two operations ∩⃝, hence other combination cannot further decrease the size of
focal elements (decrease of cardinality of empty set). Hence both mi may contaning two
or three focal elements of cardinality 2 and highest degree 1 of hidden conflict is kept.
Similarly, n−1 = 1, thus size of focal elements and (zero) degree of hidden conflict cannot
be decreased twice, even if both singletons are in both bbas m1 and m2.
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