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Abstract

In this paper we discuss the issue of learning Bayesian networks whose conditional proba-
bility tables (CPTs) are either noisy-or models or general CPTs. We refer to these models
as Mixed Noisy-Or Bayesian Networks. In order to learn the structure of such Bayesian
networks we modify the Bayesian Information Criteria (BIC) used for general Bayesian
networks so that it reflects the number of parameters of a noisy-or model. We prove the log-
likelihood function of a noisy-or model has a unique maximum and adapt the EM-learning
method for leaky noisy-or models. We evaluate the proposed approach on synthetic data
where it performs substantially better than general BNs. We apply this approach also to
a problem from the domain of linguistics. We use Mixed Noisy-Or Bayesian Networks to
model spread of loanwords in the South-East Asia Archipelago. We perform numerical ex-
periments in which we compare prediction ability of general Bayesian Networks with Mixed
Noisy-Or Bayesian Networks.

Keywords: Bayesian networks; Learning Bayesian networks; Noisy-or model; Applica-
tions of Bayesian networks; Linguistics; Loanwords.

1. Introduction

Bayesian networks (Pearl, 1988; Jensen, 2001) is a popular class of models for problems with
uncertainty. The problem of learning the structure of Bayesian networks from data is well
studied problem with many interesting results (Spirtes and Glymour, 1991; Chickering, 2002;
Cussens et al., 2017). Since the general structure learning problem is known to be NP-hard
optimal learning can be performed for smaller models only, although the tractability border
for optimal learning keeps being shifted by sophisticated learning methods as (Cussens et al.,
2017). Bayesian network models with certain local structure of its conditional probability
tables (CPTs) (Dı́ez and Druzdzel, 2006) represent a special subclass of Bayesian networks
well applicable in many real problems. Much less attention was given to learning the
structure of Bayesian network models with a local structure of its CPTs (Friedman and
Goldszmidt, 1996). A commonly used model is the noisy-or model (Pearl, 1988; Dı́ez and
Galán, 2003; Vomlel, 2006). This model has found its way to several applications of Bayesian
networks due to its natural interpretation and low number of its parameters, which is linear
with respect to the number of variables in the corresponding conditional probability table.
In this paper we study the problem of learning the structure of Bayesian network where the
CPTs can be represented by general CPTs or noisy-or models depending on which lead to a
better final Bayesian network model. We refer to these models as mixed noisy-or Bayesian
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networks. We compare this approach with the standard BN structure learning and apply
the method to the problem of modeling the spread of loanwords in the South-East Asia
Archipelago.

Our work is closely related to Sharma et al. (2020) where the authors also consider
structural learning of Mixed Noisy-Or Bayesian Networks. Our work differs in that we
work with leaky noisy-or models (i.e., noisy-or models extended by a leaky probability), we
use the EM learning method of Vomlel (2006) to learn parameters of noisy-or models, we
prove the log-likelihood function of a noisy-or model has a unique maximum, and, finally,
we use different datasets for experimental evaluations.

2. Bayesian Information Criteria for Noisy-Or Bayesian networks

Let V = {1, . . . , n} be the set of indexes of random variables Xv, v ∈ V , each taking states
xv from a finite set Xv. In this paper all variables will be assumed to be Boolean, taking
states true and false represented by numerical values 1 and 0, respectively. It means that
Xv = {0, 1}. Assume a Bayesian network model representing a joint probability distribution
P that assigns a probability value P (x) to each possible realization x = (x1, . . . , xn) of
multidimensional variable X = (X1, . . . , Xn), i.e. P : {0, 1}n → [0, 1] and

∑
x∈{0,1}n P (x) =

1. The structure of the Bayesian network is defined by an acyclic directed graph G which
defines a set-valued function pa(v) giving parent nodes of node v in graph G – a node u is
a parent node of node v if an edge u → v exists in graph G.

Let D be a set of data vectors x = (x1, . . . , xn), i.e., the set of realizations of variables
X = (X1, . . . , Xn). In the text we will use boldface small letters xA to denote a configuration
of a multidimensional variable XA where A is a subset of indexes V . In case A = {v} ∪ U
for U ⊂ V we will abbreviate X{v}∪U as Xv,U . Then the probability of observing i.i.d. data
D given a Bayesian network model P is:

L(P |D) =
∏
x∈D

P (x) (1)

=
∏
x∈D

∏
v∈V

P (xv|xpa(v)) . (2)

It is referred to as likelihood of a model with respect to data D. Assume A ⊆ V , then
the function N : XA → N provides the number of occurrences of xA ∈ XA = ×a∈AXa in
data D and fa(v) = {v} ∪ pa(v) denotes the family of v. The logarithm of the likelihood,
abbreviated as log-likelihood, can be decomposed:

LL(P |D) = log
∏
x∈D

P (x) =
∑
x∈D

∑
v∈V

logP (xv|xpa(v)) (3)

=
∑
v∈V

∑
x∈{0,1}n

N(x) · logP (xv|xpa(v)) (4)

=
∑
v∈V

LLv(P |D) , where (5)

LLv(P |D) =
∑

xfa(v)∈{0,1}|fa(v)|
N(xfa(v)) · logP (xv|xpa(v)) . (6)
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This means that the log-likelihood of a Bayesian network can be computed locally, i.e. for
each node v and its parents pa(v) which together form family fa(v).

For a CPT of a noisy-or model of a variable Xv, v ∈ V it holds that for xv,pa(v):

P (xv|xpa(v)) =

pv,0 ·
∏

j∈pa(v)

p
xj

v,j

(1−xv)

·

1− pv,0 ·
∏

j∈pa(v)

p
xj

v,j

(xv)

, (7)

where pv,j represents the probability that the positive influence of parent Xj on its child
Xv is inhibited. The parameter pv,0 is called leaky probability and specifies the probability
that node Xv takes value 1 despite all its parents have value 0. In case of noisy-or the local
log-likelihood score1 for node v can be written as

LL⋄
v(P |D)

=
∑

xfa(v)∈{0,1}|fa(v)|
N(xfa(v)) ·

 (1− xv) ·
(
log pv,0 +

∑
j∈pa(v) xj log pv,j

)
+

xv · log
(
1− pv,0 ·

∏
j∈pa(v) p

xj

v,j

)  . (8)

It is well known that for a Bayesian network with a given graph structure the conditional
probability distributions P ∗ that maximize the log-likelihood LL(P |D) can be computed
as relative frequencies from data D, i.e. for (xv,xpa(v)) it holds

P ∗(xv|pa(v)) =
N(xfa(v))

N(xpa(v))
. (9)

In case of noisy-or no closed form solution for the conditional probability distributions P ∗

that maximize the log-likelihood is known. However, due to the decomposability of the
log-likelihood the estimates can still be computed locally for each node v ∈ V . In the next
lemma we show that the local log-likelihood score of noisy-or is strictly concave.

Lemma 1 The local log-likelihood score of noisy-or LL⋄
v(P |D) is a strictly concave function

of its parameters pv,0 and pv,j , j ∈ pa(v).

Proof We will check the terms of (8). Function log pv,j is a strictly concave function of pv,j

for v ∈ V and j ∈ {0} ∪ pa(v). Function log
(
1− pv,0 ·

∏
j∈pa(v) p

xj

v,j

)
is a strictly concave

function of pv,j for v ∈ V and j ∈ {0} ∪ pa(v). The sum of strictly concave functions is
itself strictly concave.

A strictly concave function has a unique maximum. See Figure 1 for a contour plot of
likelihood function2 p40 · (p0p1)1 · (1 − p0)

2 · (1 − p0p1)
5 as a function of p0 and p1. The

horizontal axis corresponds to p0 and the vertical axis to p1. We plot the likelihood instead
of the log-likelihood3 since the contours are better spaced. The lighter the color the higher
the value of the likelihood.

1. We will use the diamond symbol ⋄ to denote the local scores of a noisy-or.
2. Note the exponents correspond to frequencies of corresponding configurations in data D.
3. The log-likelihood is just the logarithm of the presented likelihood, which is of course, strictly concave

as well.
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Figure 1: The contour plot of a likelihood function of a noisy-or.
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Since the local log-likelihood score of noisy-or LL⋄
v(P |D) is a strictly concave function

it has a unique global maximum. Now, we can state an important lemma about the log-
likelihood function LL⋄(P |D) of a Bayesian network with noisy-or models.

Lemma 2 The log-likelihood LL⋄(P |D) of a Bayesian network with noisy-or models has a
unique maximum.

Proof Since LL⋄(P |D) =
∑

v∈V LL⋄
v(P |D) and by Lemma 1 functions LL⋄

v(P |D) are
strictly concave, also, LL⋄(P |D) is concave and has a unique maximum.

So far we have addressed the problem of learning parameters when the Bayesian network
has its structure represented by a directed acyclic graph G. It is well-known that the mere
maximization of log-likelihood leads to models that are dense and are typical examples
of overfitting the training data. Actually, the Bayesian network model with the structure
represented by a complete graph has always the highest value of log-likelihood. Therefore,
Bayesian network scoring functions that penalize networks with complex graphs are used.
In this work we will use the Bayesian Information Criterion (BIC) (Schwarz, 1978), although
the presented approach can be adapted for other scoring functions as well.

The BIC score is defined as the log-likelihood LL(P |D) penalized by a penalty propor-
tional to the number of parameters C(P ) of the Bayesian network P :

BIC(P |D) = LL(P |D) − log |D|
2

· C(P ) . (10)

The penalty C(P ) is the total sum of the number of parameters of the individual conditional
probability tables of the Bayesian network:

C(P ) =
∑
v∈V

Cv(P (Xv|Xpa(v)) . (11)
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In case of binary variables the penalty of a general conditional probability table is

Cv(P (Xv|Xpa(v)) = (|Xv| − 1)
∏

j∈pa(v)

|Xj | = 2|pa(v)| . (12)

In case of a noisy-or model the penalty is

C⋄
v (P (Xv|Xpa(v)) = |pa(v)|+ 1 . (13)

Note the significant difference between the penalty of a general conditional probability table
and the penalty of a noisy-or. The former one is exponential with respect to the number of
parents while the latter one is only linear with respect to their number. This implies that
if a general table can be replaced by a noisy-or more parents can be included in the model.

3. Learning Noisy-Or Bayesian Networks

It follows from the discussion presented in the previous section that learning a Noisy-Or
Bayesian Network using methods based on standard penalty would typically lead to models
that have a substantially lower number of parents than it is appropriate for the noisy-or
models. Therefore structural learning of a Noisy-Or Bayesian Networks should be based on
a modified score function. In practical applications of Bayesian networks some conditional
probability tables have local structure, e.g. noisy-or, while other conditional probability
tables are better represented by general conditional probability tables.

Motivated by this observation we propose a structure learning algorithm which can
decide which type of conditional probability table (CPT) will be used for each node. Since
the BIC scoring function is decomposable this decision can be made locally for each node.
The proposed algorithm decides between general conditional probability table and noisy-
or. We call such Bayesian networks Mixed Noisy-Or Bayesian Networks. This approach
could be easily extended to other local structure models of conditional probability tables
for which the parameters maximizing the log-likelihood can be found. We present the
algorithm for Mixed Noisy-Or Bayesian Networks in Algorithm 1. In its first phase the
algorithm computes maximal likelihood estimates for all nodes v and their parent sets U .
This is computed for both general CPTs and noisy-or models. To learn maximum likelihood
(MLL) estimates of noisy-or parameters we use the computationally efficient version of the
EM algorithm proposed by Vomlel (2006), which we adjusted for leaky noisy-or models4.
The EM algorithm is presented in Algorithm 2 and discussed later in this section. The BIC
values of general CPTs and noisy-or models are compared and the values of v, U , and the
higher BIC value are stored in the list of all parent set evaluation.

Before adding a triplet (v, U,BIC) into list L a pruning strategy should be applied so
that configurations of (v, U) that cannot be part of an optimal Bayesian network are not
included in the list L. This can be safely done for a triple (v, U,BIC) such that there
is a (v, U ′, BIC ′) ∈ L satisfying U ′ ⊂ U and BIC ′ > BIC. In de Campos et al. (2018)
several other pruning rules for general CPTs are presented. In Sharma et al. (2020) two

4. We performed experiments also with other methods as Nedler-Mead, a box constrained BFGS, and
gradient projection methods. The EM algorithm was by far the most efficient one, especially for large
parent sets.
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input : D – training dataset consisting of n complete data vectors
output: G – the structure of Bayesian network with CPTs being either standard

CPTs or noisy-or models maximizing BIC score

L = {};
w = log |D|

2 ; /* the penalty weight for the BIC score */

for v ∈ V do
for U ⊆ V \ {v} do

P (v|U) =
N(xv,U )
N(xU ) ; /* the MLL estimate for the general CPT */

s1 = LLv(P (v|U)) ; /* the MLL score of the general CPT */

c1 = w · 2|U | ; /* the penalty of the general CPT */

BIC1 = s1 − c1 ; /* the BIC score of the general CPT */

p = EM.Algorithm(v, U,D) ; /* the MLL parameters of noisy-or */

s2 = LL⋄
v(p, v, U) ; /* the MLL score for noisy-or */

c2 = w · (|U |+ 1) ; /* the penalty of noisy-or */

BIC2 = s2 − c2 ; /* the BIC score of noisy-or */

if BIC1 > BIC2 then
L = L ∪ (v, U,BIC1) ; /* the general CPT is added to L */

else
L = L ∪ (v, U,BIC2) ; /* noisy-or is added to L */

end

end

end
G = GOBNILP(L) ; /* apply Gobnilp with the list L */

Algorithm 1: Learning the structure of a Mixed Noisy-Or Bayesian Network.

pruning rules for noisy-or models were proposed. The first pruning rule from Sharma et al.
(2020)[Lemma 4] suggests to eliminate from the search of candidate parent sets U of a node
v all sets containing node u such that Xv = 1 implies Xu = 0 in the training data D.
The second pruning rule from Sharma et al. (2020)[Theorem 5] can be easily generalized
as: Given a triplet (v, U ′, BIC ′

2) all triplets (v, U,BICi), i = 1, 2 with BICi = si + ci such
that BIC ′

2 > −ci can be eliminated from the search. Note that if it holds for a triplet
(v, U,BICi) then it holds also for all triplets (v, U ′′, BIC ′′

i ) with U ′′ ⊃ U since the penalty
can only increase with larger parent sets. The discussion on an application of these pruning
rules can be found in Section 5.

The final step of the algorithm is the application of the GOBNILP method (Cussens
and Bartlett, 2018). It is a program which can learn optimal Bayesian networks from
local scores. It uses the SCIP framework for Constraint Integer Programming as its core
routine(Cussens et al., 2017).

In Algorithm 2 we present the EM algorithm for learning maximum likelihood estimates
of parameters of a noisy-or model. The algorithm is derived from the EM learning method
presented in (Vomlel, 2006) and adpated for leaky noisy-or model. The algorithm alter-
nates between E − step and M − step until the convergence criterion is met or a given
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maximum number of iteration is performed. We will use pv as an abbreviation for vector(
pv,0, (pv,j)j∈pa(v)

)
. The symbols ⊕, ⊖, ⊗, and ⊘ will denote pointwise addition, subtrac-

tion, multiplication, and division of two vectors, respectively. The symbol pa will denote a

vector
(
p
aj

j

)|pa(v)|+1

j=1
, i.e. the pointwise exponentiation.

input : v – the child node
U – parents of node v
D = {xn}Nn=1 – dataset of N complete data vectors xn

output: pv – estimated MLL parameters of noisy-or

ℓ = |U |+ 1 ; /* the length of considered vectors */

δ = ℓ ; /* the initial sum of squared differences */

∆ = 10−6 ; /* the maximal sum of squared differences */

m = 0 ; /* the initial number of iterations */

M = 100 ; /* the maximal number of iterations */

pv = (0.5, . . . , 0.5) ; /* vector of initial parameter values of length ℓ */

while (m < M) ∧ (δ > ∆) do
m = m+ 1 ; /* increase iteration counter */

p′
v = pv ;

n0 = 0ℓ ; n1 = 0ℓ ; /* initialize with vectors of 0 of length ℓ */

for n = 1, . . . , N ; /* E-step: for all data vectors from D do */

do
c = xn,v ; /* the child value in vector xn */

a = (1,xn,pa(v)) ; /* vector of 1 and parents’ values */

if (c==0) then
r0 = 1ℓ ; /* a vector of 1 of length ℓ */

r1 = 0ℓ ; /* a vector of 0 of length ℓ */

end
else

q =
∏ℓ

j=1 p
aj

j ; /* the product of values in pa */

r0 = pa ⊖ qℓ ; /* qℓ is the vector of length ℓ padded by q */

r1 = 1ℓ ⊖ pa ;
r = r0 ⊕ r1 ; /* the normalization vector */

r0 = r0 ⊘ r ; /* pointwise normalization of r0, define 0/0 = 0 */

r1 = r1 ⊘ r ; /* pointwise normalization of r1, define 0/0 = 0 */

end
n0 = n0⊕ (a⊙ r0) ; /* pointwise addition of a pointwise product */

n1 = n1⊕ (a⊙ r1) ; /* pointwise addition of a pointwise product */

end
pv = n0 ⊘ (n0 ⊕ n1) ; /* M-step of the algorithm */

δ = ∥pv − p′
v∥2 ;

end

Algorithm 2: The EM-algorithm for the leaky noisy-or model.
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4. Experiments with a Synthetic Data

In this section we will describe an experiment we have used to verify that the proposed
algorithm can identify noisy-or models correctly. We will also compare the predictive per-
formance of the learned model with the model learned by maximizing BIC score without
considering noisy-or models. We created a BN2O network5, which is a Bayesian network
consisting of two layers of nodes. All edges are directed from the top layer to the bottom
layer. No edges connecting nodes from the same layer exist. The nodes from the second
layer share some parents but not all of them. The structure used in the experiments is
presented in Figure 2. All conditional probability tables are noisy-or models.

Figure 2: BN2O network structure.

The experiments confirmed our expectation that the mixed BIC optimization, which
considers both the standard CPTs and noisy-or models in its search and penalizes likelihood
accordingly, is able to identify the correct Bayesian network structure for much smaller
training datasets. See left hand side of Figure 3 for results on training datasets of different
size6 (please, note the log scale of axis x).

One of the tasks for which Bayesian networks are used is the prediction of states of
certain variables given observations of some other variables in the model. It can be expected
that models having the structure similar to the structure of the original model can perform
better, however, sometimes simple model perform comparably well. To see if Mixed Noisy-
OR Bayesian Networks have better performance than Standard Bayesian Networks learned
from the same data we performed experiments in which we studied the prediction ability
of the models as a function of training data size. Since variables of our BN2O models are
typically imbalanced (a state is significantly more probable than another) we decided to use
balanced accuracy7 as our evaluation criteria. On the right hand side of Figure 3 we present
average results for the task when evidence was inserted into the model for five randomly
selected variables and states of other five variables were predicted for the BIC optimal and
the BIC mixed optimal methods as a function of the training data size (please, note the
log scale). The experiments confirm that especially for smaller training datasets Mixed
Noisy-OR Bayesian Networks have better prediction ability.

5. These networks are common in practical applications of BNs, e.g., in medical and educational domains.
6. First, we generated a dataset consisting of 10000 data records. Then we split this dataset to smaller

datasets so that each vector from the original dataset was used only once in the datasets of the same
size. The datasizes are chosen so that they cover well the interesting cases, namely, they correspond to
the rounded geometric sequence 10(2+i/2), i = 0, 1, . . . , 4.

7. Balanced accuracy is defined as the arithmetic mean of sensitivity and specificity.
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Figure 3: The number of wrong edges in learned models (missing, reversed, or additional)
(on the left) and the balanced accuracy (on the right).
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5. Application to Modeling the Spread of Loanwords

The main idea of this paper – learning Mixed Noisy-Or Bayesian Networks – was motivated
by our collaboration on a research project from the area of linguistics on modeling the spread
of loanwords in the area of the South-East Asia Archipelago. This is a region specific for
a large number of languages, which is caused by its character of thousands of islands. A
loanword is a word permanently adopted from one language and incorporated into another
language without translation. Since written records and archaeological evidence are missing
in this region, the distribution of loanwords offers an insight into past human migrations,
contacts, and trade. Our primary resource is a large database of loanwords collected from
several sources. The database is available at http://gogo.utia.cas.cz/loanwords/. In
our experiments reported in this paper we have used a dataset providing information about
presence/absence of 461 loanwords in 23 languages. All studied loanwords originated from
one of eleven donor languages that differ from the studied 23 recipient languages. A detailed
description of the studied problem together with other results of our experimental analysis
was presented recently in (Kratochv́ıl et al., 2022).

The task is to learn a Bayesian network having languages from the studied region as its
variables. We studied the problem with 23 languages. All variables are binary with states
0 and 1 representing absence and presence of a loanword in the corresponding language,
respectively. Noisy-or models seems to be a natural model for this problem. Particularly, it
means that the presence of a loanword in related languages represented by parent variables
increases probability of that loanword being present in the language of the child variable.
However, preliminary results revealed that the assumption of all conditional probability
tables being represented by noisy-or models worsened the performance. This lead to the
idea to let the learning algorithm decide for each CPT whether the noisy-or or general CPT
represents a better fit. Unfortunately, we faced the problem of very large number of parent

9
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Figure 4: Mixed Noisy-Or Bayesian Networks modeling the spread of loanwords.
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sets since the pruning rules from (Sharma et al., 2020) were not efficient in this application.
For example, the first pruning rule from Sharma et al. (2020)[Lemma 4] suggests to eliminate
from the search of candidate parent sets U of a node v all sets containing node u such that
Xv = 1 implies Xu = 0 in the training data D. This is very rare in our data. The average
number8 of such node-parent pairs was only three (out of possible 506). A natural next
step seems to be the design of new pruning rules for noisy-or models.

We decided to proceed using a heuristic pruning method that discarded all supersets
of a parent set that had a lower BIC score than its subset, i.e. we pruned out all triplets
(v, U ′′, BIC ′′) if ∃(v, U,BIC) ∈ L, U ⊂ U ′′ which was pruned since there is a (v, U ′, BIC ′) ∈
L satisfying U ′ ⊂ U and BIC ′ > BIC. This approach does not guarantee optimality but
helped us to reduce significantly the list of triplets L. In the learned BNs 8 57% of CPTs
were represented by noisy-or models.

In Figure 4 we present the structure of one of the learned Mixed Noisy-Or Bayesian
Networks. The positions of the nodes correspond to the geographical coordinates of the
studied languages. It is interesting to see that the edges most often connect neighbor
languages but there are also few edges between remote places. This could be potentially
explained by historical trade routes but this is a hypothesis to be further studied by linguist
and historians of this region.

In Figure 5 we present results of our experiments with the database of loanwords. The
ten-fold cross-validation was used to evaluate the models. The balanced accuracy is dis-

8. The average is taken over ten training datasets.
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Figure 5: Balanced accuracy for the BIC optimal and the BIC mixed optimal methods as
a function of the number of nodes with evidence.
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played as a function of the number of variables with evidence9. The more variables are
observed the better is the prediction quality. Both methods perform comparably and none
of them is a clean winner. We conjecture that the Mixed Noisy-Or Bayesian Networks better
describes the studied problem but this requires further verification. Also, optimal Mixed
Noisy-Or Bayesian Networks may posses better prediction quality than the suboptimal ones.

6. Conclusions and Open Problems

We studied learning of Mixed Noisy-Or Bayesian Networks. The discussed learning method
can be extended to other models of the local structure of CPTs if their maximum likelihood
estimates can be found efficiently. We proved the log-likelihood function of a noisy-or model
has a unique maximum and adapted the EM-learning method of Vomlel (2006) for learning
leaky noisy-or models. We evaluated the proposed approach on synthetic data where it
performed substantially better than general BNs. We applied the method to the problem
of modeling of the spread of loanwords in the area of the South-East Asia Archipelago. The
learned Bayesian network models represent a valuable source of information for linguists
and historians studying the considered region. From the theoretical point of view we have
left open the problem of efficient pruning rules for noisy-or models.

Acknowledgments

This work was supported by the Czech Science Foundation Project Nr. 20-18407S.

9. For each vector from the testing dataset the evidence nodes were chosen randomly.

11



Kratochv́ıl et al.

References

D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554, 2002.

J. Cussens and M. Bartlett. GOBNILP, 2018. Version 1.6.3, https://www.cs.york.ac.
uk/aig/sw/gobnilp/.

J. Cussens, M. Järvisalo, J. H. Korhonen, and M. Bartlett. Bayesian network structure
learning with integer programming: Polytopes, facets and complexity. Journal of Artifi-
cial Intelligence Research, 58:185–229, 2017.

C. P. de Campos, M. Scanagatta, G. Corani, and M. Zaffalon. Entropy-based pruning for
learning Bayesian networks using BIC. Artificial Intelligence, 260:42–50, 2018.

F. J. Dı́ez and M. J. Druzdzel. Canonical probabilistic models for knowledge engineering.
Technical Report CISIAD-06-01, UNED, Madrid, Spain, 2006.

F. J. Dı́ez and S. F. Galán. An efficient factorization for the noisy MAX. International
Journal of Intelligent Systems, 18:165–177, 2003.

N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages
252–262, 1996.

F. V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag, New York, 2001.

F. Kratochv́ıl, V. Kratochv́ıl, G. Saad, and J. Vomlel. Modeling the spread of loanwords in
South-East Asia using sailing navigation software and Bayesian networks. In Proceedings
of the 12th Workshop on Uncertainty Processing (WUPES’22), pages 135–146. Matfyz-
Press, 2022. URL http://wupes.utia.cas.cz/2022/Proceedings.pdf#page=144.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978.

C. Sharma, Z. A. Liao, J. Cussens, and P. van Beek. A score-and-search approach to learn-
ing Bayesian networks with noisy-or relations. In Proceedings of the 10th International
Conference on Probabilistic Graphical Models (PGM 2020), volume 138 of Proceedings
of Machine Learning Research, pages 413–424, 2020. URL https://proceedings.mlr.

press/v138/sharma20a.html.

P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9:62–72, 1991.

J. Vomlel. Noisy-or classifier. International Journal of Intelligent Systems, 21:381–398,
2006. URL https://doi.org/10.1002/int.20141.

12

https://www.cs.york.ac.uk/aig/sw/gobnilp/
https://www.cs.york.ac.uk/aig/sw/gobnilp/
http://wupes.utia.cas.cz/2022/Proceedings.pdf#page=144
https://proceedings.mlr.press/v138/sharma20a.html
https://proceedings.mlr.press/v138/sharma20a.html
https://doi.org/10.1002/int.20141

	Introduction
	Bayesian Information Criteria for Noisy-Or Bayesian networks
	Learning Noisy-Or Bayesian Networks
	Experiments with a Synthetic Data
	Application to Modeling the Spread of Loanwords
	Conclusions and Open Problems

