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Abstract. We formulate a large-strain model of single-slip crystal elastoplasticity
in the framework of energetic solutions. The numerical performance of the model
is compared with laboratory experiments on the compression of a stack of papers.

1. Introduction

Elastoplasticity at large strains is an area of ongoing research that brings together
contributions from modeling, mathematical, analysis, numerical simulations, and
mechanical experiments. For the mathematical analysis of elastoplastic models, it is
often convenient to use powerful tools from the calculus of variations, which are now
able to treat quasistatic evolutionary rate-independent problems as well, see, e.g.
[7,39], or [33]. The existence of solutions could be ensured by assuming generalized
convexity of the strain energy, such as polyconvexity [1] but more general material
behavior may contradict this assumption. For example, this is manifested in shape-
memory alloys (SMA) [3,29], some magnetostrictive [16] or ferroelectric materials
[44]. See also [4,25,30].

As a remedy, one can then recourse to higher-gradient regularizations, where
the stored energy density W also depends, e.g., on the second gradient of the defor-
mation. From a mathematical point of view, this adds compactness to the model,
which is instrumental in proving the existence of solutions by the direct method
[2]. Materials with such constitutive equations are referred to as non-simple and
have been introduced by Toupin [45,46]. Since then, many authors have elaborated
on the concept so that its thermodynamical aspects are also better understood, cf.
[6,15,17,18,22,35,41]. However, we will restrict ourselves to material models where
polyconvexity is sufficient for the existence of a solution. Extension to more general
material models can be found in many works, here we mention [34]. In what follows,
we will deal with a model that, in addition to elasticity, also includes the plastic
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behavior of the material. Plastic strain acts as an internal variable that influences
the elastic behavior of the material. In the large strain setting, we assume that the
deformation gradient F is decomposed by means of the Kröner-Lee decomposition
as

F = F eF p, (1.1)

where F p : Ω → R
d×d and det F p = 1. We will set P = (F p)−1. Here Ω ⊂ R

d

is a bounded Lipschitz domain that represents the specimen. Plastic strain, F p,
represents disarrangements of atoms, and F e describes stretching and a rotation of
the lattice. Unlike F , F e or F p do not correspond to deformations, that is, they do
not necessarily have to be curl-free, in general. However, we refer to a dislocation-
free setting of the problem treated in [28]. Here we assume that F p corresponds to
the single-slip plastic strain [23], which is defined as

F p = I + γs ⊗ m,

where I ∈ R
d×d is the identity matrix, s, m ∈ R

d are mutually perpendicular unit
vectors defining the glide direction s and the slip plane normal m. Finally, γ : Ω → R

denotes the slip or microshear-strain and it measures the amount of plastic strain.
Note that if γ = 0 then F p = I, that is, F = F e and the deformation is purely
elastic. It is also easy to see that det(I+γs⊗m) = 1+γs·m = 1 and P = I−γs⊗m.
We refer, for example, to [7,14,20,21,27] for recent work on elastoplasticity.

The elastic behavior of the material is described by a stored energy density

W : Ω × R
d×d → R ∪ {+∞},

such that the first Piola-Kirchhoff stress tensor S is defined for almost every x ∈ Ω
as

S(x) =
∂W (x, F e(x))

∂F
. (1.2)

We assume that W is polyconvex [1,8,13], that is, there exists a convex and lower
semicontinuous Carathéodory function h(x, ·) : Rd×d ×R

d×d ×R → R∪{+∞} such
that for almost every x ∈ Ω

W (x, F ) = h(x, F, cofF, det F ) for every F ∈ R
d×d. (1.3)

Moreover, we require that W is frame-indifferent, coercive, and penalizes extreme
compression and a change of orientation, i.e., it holds

W (x, F ) = W (x,RF ) for every R ∈ SO(d), (1.4a)

W (x, F ) ≥ C|F |p − c0 for some C, c0 > 0, p > 1, (1.4b)

W (x, F ) → +∞ if det F → 0 and W (x, F ) = +∞ if det F ≤ 0 (1.4c)

and for all F ∈ R
d×d and all x ∈ Ω. Furthermore, we assume that the energy stored

in the dislocations is described by a Carathéodory function w : Ω × R → R such
that

w(x, γ) ≥ C|γ|r − c0 for some C, c0 > 0, r > 1,

and all x ∈ Ω and all γ ∈ R. (1.5)
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The functional

I(t, y, γ) :=
∫

Ω

W (x,∇y(x)(I − γ(x)s ⊗ m)) dx +
∫

Ω

w(x, γ(x)) dx

+ ε

∫
Ω

|s ⊗ m ⊗ ∇γ(x)|α dx − L(t, y), (1.6)

expresses the potential energy in our system. The third term with ε > 0 depending
on ∇γ is the plastic-strain-gradient energy penalizing spatial variations of γ, see,
e.g. [23]. The last term expresses the work done by external force densities f and
g:

L(t, y) :=
∫

Ω

f(t) · y dx +
∫

Γ1

g(t) · y dS. (1.7)

Here Γ1 ⊂ ∂Ω is a part of the boundary where we prescribe some traction. The
appearance of plastic deformation is related to energy dissipation depending on the
rate of change of γ, that is, on γ̇. Here, we follow [23, Formula (54)] where the
specific dissipation is given by

δ(γ̇) = σ|γ̇| , (1.8)

where σ : Ω → [σ0, +∞) is the so-called slip resistance with σ0 > 0. Consequently,
the global dissipation between two states γ1 and γ2 is defined as

D(γ1, γ2) =
∫

Ω

σ(x)|γ1(x) − γ2(x)| dx. (1.9)

1.1. Energetic Solution

In order to find a quasistatic evolution of the system, Mielke, Theil, and Levitas [36]
came up with the following definition of the energetic solution, which conveniently
overcomes the non-smoothness of dissipation and is generally very flexible. More-
over, it fully exploits the possible variational structure of the problem and allows for
a very wide class of energy and dissipation functionals. This concept has versatile
applications to many problems in the continuum mechanics of solids. Furthermore,
working with I and D directly allows us to include higher-order gradients of y in
the model or to require the integrability of some functions of ∇y if needed.

Let Y and Z be the sets of admissible deformations and slips (usually subsets
of a Sobolev space) and suppose that the evolution of y(t) ∈ Y and γ(t) ∈ Z is
studied during a time interval [0, T ] for the time horizon T > 0. The following two
properties characterize the energetic solution:
(i) Stability inequality - ∀t ∈ [0, T ], z̃ ∈ Z, ỹ ∈ Y:

I(t, y(t), z(t)) ≤ I(t, ỹ, z̃) + D(z(t), z̃) (1.10)

(ii) Energy balance - ∀ 0 ≤ t ≤ T :

I(t, y(t), γ(t)) + Var(D, γ; [0, t]) = I(0, y(0), γ(0)) +
∫ t

0

L̇(ξ, y(ξ)) dξ, (1.11)

where Var(D, γ; [s, t]) := sup

{
N∑

i=1

D(γ(ti), γ(ti−1)); {ti} partition of [s, t]

}
.
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Definition 1.1. The mapping t �→ (y(t), γ(t)) ∈ Y×Z is an energetic solution to the
problem (I,D, L) if the stability inequality and the energy balance are satisfied for
all t ∈ [0, T ].

To prove the existence of an energetic solution, we follow the standard strategy
described in, for example, [31,34], where this program is specialized in elastoplas-
ticity.

Let Γ0 ⊂ ∂Ω\Γ1 be of positive d−1 dimensional Lebesgue measure. Let py > d
and let be such that

∫
Ω

W (x,∇y0(x)) dx < +∞. Define

Y := {y ∈ W 1,py(Ω;Rd) : y = y0 on Γ0}, Z := {γ ∈ Lr(Ω) ∩ W 1,α(Ω)}.

Proposition 1.2. Assume that I and D are as above, (1.4) and (1.5) hold, L ∈
C1([0, T ];W 1,py(Ω;Rd)∗), 1/p + 1/r = 1/py < 1/d, and α > 1. Let the initial
condition (y0, γ0) ∈ Y × Z be stable. Then an energetic solution exists.

Sketch of proof. The proof can be obtained following the one in [31] or [19], where
a more general setting is considered. Here, we only sketch it in a few steps for the
reader’s convenience and for the case of a time-independent boundary condition y0.
Step 1: Consider a partition

0 = t0τ < t1τ < · · · < tKτ = T,

set τ = maxi(ti−ti−1) and suppose that the partition for N +1 is a refinement of the
partition with N time steps. Take the initial condition (y0

τ , γ0
τ ) = (y0, γ0) ∈ Y × Z.

Define the following sequence of minimization problems: For k = 1, . . . ,K solve

min
(y,γ)∈Y×Z

I(tkτ , y, γ) + D(γk−1
τ , γ) (1.12)

and denote a solution by (yk
τ , γk

τ ). The existence of a solution is a standard appli-
cation of the direct method of calculus of variations.
Step 2: The solutions to (1.12) are stable. Moreover, we have the following:

∫ tk
τ

tk−1
τ

∂tI(s, yk
τ , γk

τ ) ds ≤ I(tkτ , yk
τ , γk

τ ) + D(γk−1
τ , γk

τ ) − I(tk−1
τ , yk−1

τ , γk−1
τ )

≤
∫ tk

τ

tk−1
τ

∂tI(s, yk−1
τ , γk−1

τ ) ds. (1.13)

Take (ỹ, γ̃) ∈ Y×Z. We have I(tkτ , yk
τ , γk

τ ) + D(γk−1
τ , γk

τ ) ≤ I(tkτ , ỹ, γ̃) + D(γ̃, γk−1
τ ).

We further estimate D(γ̃, γk−1
τ )−D(γk−1

τ , γk
τ ) ≤ D(γ̃, γk

τ ), which proves the stability.
The upper estimate in (1.13) follows by checking the minimality of (yk

τ , γk
τ ) against

(yk−1
τ , γk−1

τ ), that is,

I(tkτ , yk
τ , γk

τ ) + D(γk
τ , γk−1

τ ) ≤ I(tkτ , yk−1
τ , γk−1

τ )

= I(tk−1
τ , yk−1

τ , γk−1
τ ) +

∫ tk
τ

tk−1
τ

∂tI(s, yk−1
τ , γk−1

τ ) ds.

The lower estimate in (1.13) is implied by the stability of (yk−1
τ , γk−1

τ ), that is,

I(tk−1
τ , yk−1

τ , γk−1
τ ) ≤ I(tk−1

τ , yk
τ , γk

τ ) + D(γk−1
τ , γk

τ )
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= I(tkτ , yk
τ , γk

τ ) + D(γk−1
τ , γk

τ ) −
∫ tk

τ

tk−1
τ

∂tI(s, yk
τ , γk

τ ) ds.

Then define the piecewise constant interpolants constructed from {(yk, γk)}k

and denote them by (yK
τ , γK

τ ). In particular, we define

(yK
τ (t), γK

τ (t)) := (yk−1
τ , γk−1

τ ) if t ∈ [tk−1
τ , tkτ ) , (yτ (T ), γτ (T )) := (yK

τ , γK
τ ).

Using (1.4) and (1.5) we get the following apriori bounds which are independent of
τ :

‖yK
τ ‖L∞((0,T );W 1,py (Ω;Rd)) ≤ C ,

‖γK
τ ‖L∞((0,T );Lr(Ω)) ≤ C ,

and
Var(D, γK

τ ; [0, T ]) ≤ C.

Step 3: The existence of an energetic solution is now obtained by passing to the
limit as K → ∞ (as the time discretization is refined) in the energy inequality
proved in Step 2 and checking the stability of the limit. Note that the dissipation
functional D : Z × Z → R is sequentially continuous with respect to the weak
W 1,α(Ω) topology. �

Remark 1.3. It is shown in [31] that time-dependent Dirichlet boundary condi-
tions can be considered in the above proposition if y0 enjoys suitable extension
and smoothness properties.

2. Compression Experiment

Following the idea of [47] we perform a compression experiment on a stack of papers.
Compression tests were performed using a custom-made experimental setup, where
blocks of paper sheets were used as testing material; see Fig. 1. The dimensions
of the block were 75 × 75 × ∼42 mm3 (height × width × thickness) and placed
between two thick aluminum plates so that the sheets were parallel to the plates
and placed on the steel platen. The aluminum plates were bolted together using four
steel screws (near each corner). Thus, the block was confined from the sides and
from the bottom, and loading was applied from the top by means of a brass panel
slightly longer and narrower than the top face of the block. Three compression tests
were carried out using the Instron 5582 universal testing machine with a constant
cross-head speed of 0.075 mm·s−1 giving an initial strain rate of 10−3·s−1.

The video recording was performed using the Panasonic HC-V180EP-K camera
with full HD resolution (1920 × 1080 px2). The front side of the paper block (i.e.,
perpendicular to the normal of the sheets) facing the camera was sprayed with black
acrylic paint in order to create a speckle pattern for the digital image correlation
(DIC) analysis. Ncorr scripts implemented in MATLAB were used for the calcula-
tion of DIC with the following parameters: subset size of 15 px and spacing of 5 px.
A detailed description of the ncorr DIC algorithms is available in Refs. [5,38].

The compression curves obtained are shown in Fig. 5 (left) and exhibit an
intermittent plasticity character manifested by means of several pronounced stress
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Figure 1 Experimental setup of the compression test.

drops during loading. These results, supplemented by the DIC data, show that
serration corresponds to the gradual formation and propagation of localized “zig-
zag” deformation bands referred to as kinking, as can be seen in Figs. 3 and 4 . It
can be observed in the Supplementary video [26] that all load drops correlate with
the formation of kink bands. Kinking is a deformation mechanism often observed
in layered systems of different scales when compressively loaded parallel to their
basal planes [24,40]. During loading, the layers first undergo elastic buckling, which
is then followed by nucleation of the so-called ripplocation boundaries driven by
strain redistribution from high-energy in-plane bonds to low-energy out-of-plane
bonds [40].

3. Numerical Verification

We implement a numerical method for the mathematical model to verify that the
model is capable of reproducing the main features of the results obtained in the
physical experiment. The model was suggested in [12]. Since we wish to relate the
outputs also to the fully rigid analysis of [11] and since the precise elastic constants
of the material used in experiments are unknown, we abandon the quest for quan-
titative comparison and adopt the 2D setting in our computations, that is, d = 2.
Imitating the setup of the experiment, we take a rectangular region Ω of material
and subject it to loading through a prescribed displacement of the upper edge in the
vertical direction. The lower edge is fixed, and the lateral edges are allowed to move
only in the vertical direction (see Fig. 2). It is assumed that the elasticity of the
material follows the neo-Hookean model with a single slip system that has a glide
direction s = (0, 1)T and slip-plane normal m = (1, 0)T . External forces are not
considered, i.e., L = 0, except for the prescribed time-dependent Dirichlet bound-
ary condition at the upper edge of the domain, from which the energy functional
(1.6) takes a specific form

I(t, y, γ) =
∫

Ω

{
C

(
|F e|p − dp/2 − 2 log(detF e)

)
+ D(detF e − 1)2

+α tr
(
(F e)T F eM

)
+ β|F p|r + ε|∇F p|α

}
dx (3.1)
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Figure 2 Setup of the numerical test and example of a finite element
mesh.

if det F e > 0 and +∞ otherwise. We consider p > 2, α = r = 2 which implies that
γ ∈ Lr̃(Ω) for every 1 ≤ r̃ < +∞, so then we can assume that, in fact, 2 ≤ r < +∞
is arbitrary. Here, q = (y, γ) is the state described by deformation y ∈ W 1,py(Ω;R2)
and slip γ ∈ W 1,2(Ω), coefficients C,D,α, β, ε are positive material constants, and
the elastic and plastic parts of the deformation gradient read

F e(y, γ) = ∇y(x)(I − γ(x)s ⊗ m), F p(γ) = I + γ(x)s ⊗ m.

Furthermore, the term containing M in (3.1) is taken from [42] and describes the
transverse isotropy inherent to the stack of paper sheets; here the matrix M =
m ⊗ m characterizes the material symmetry along the direction m = (1, 0)T . The
integrand of (3.1) is polyconvex and thus microstructure formation will not occur.
In conjunction with the coercivity of the functional, the existence of a minimizer in
Y for a fixed γ ∈ Z is guaranteed.

In order to calculate the rate-independent evolution of the system, we employ
the dissipation distance between two states with slip magnitudes γ1 and γ2 defined
by

D(γ1, γ2) = σ

∫
Ω

|γ1(x) − γ2(x)| dx.

In the numerical simulations, we discretize the given time interval [0, T ] into K
subintervals of equal length τ = T/K separated by the time points tk = kτ , k =
0, 1, . . . , K. The time-discretization of the rate-independent evolution model then
leads to the minimization problem

qk+1 ∈ Arg min
q̃=(ỹ,γ̃)

(D(γk, γ̃) + I(tk+1, ỹ, γ̃)
)
, (3.2)

where the superscript k + 1 denotes the time instances tk+1 at which the quantity
is evaluated, while the dependence of the energy I on tk+1 emphasizes the presence
of a time-dependent Dirichlet boundary condition. As mentioned above, it can be
shown that the time interpolants of its solutions converge to the corresponding
energetic solution.
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For spatial discretization, the rectangular region is partitioned into a regular
triangular mesh and the functionals I,D are approximated using the finite element
method (FEM) [9]. In particular, we use linear P1-elements for both the position vec-
tor variable y(x) and the scalar-valued slip variable γ(x), obtaining their piece-wise
affine approximations ŷ(x), γ̂(x). Therefore, the trial functions for the discretized
state q(x) have the form

q̂(x) = (ŷ1(x), ŷ2(x), γ̂(x)) ∈ Vh × Vh × Vh,

where Vh stands for the subspace of piece-wise affine functions on the triangular
partition. We denote the standard FEM basis functions of Vh by {ϕi}N

i=1, where N
is the number of nodes in the mesh, that is, ϕi is a hat-shaped function with value
1 in the i node and with value 0 at all other nodes. Then we can write

ŷj(x) =
N∑

i=1

ai
jϕi(x), j = 1, 2, γ̂(x) =

N∑
i=1

biϕi(x) (3.3)

for some set of coefficients {ai
1, a

i
2, bi}N

i=1 ⊂ R. All coefficients {bi}N
i=1 are free,

while some of the values of ai
j follow the imposed boundary conditions. Namely,

for the nodes i on the lower edge of the domain ai
1, a

i
2 are kept constant (equal to

initial values) throughout the computation to realize a fixed boundary, for the nodes
on the upper edge ai

1, a
i
2 are chosen so that the time-evolving Dirichlet boundary

condition is satisfied, and finally, for the nodes on the lateral edges, we keep ai
1

equal to their initial values to express the restriction on horizontal displacements.
Therefore, denoting the set of indices of free coefficients ai

1, a
i
2 by I1, I2, respectively,

and inserting the expansions (3.3) into the functional in (3.2), we obtain a nonlinear
functional

Hk
({ai

1}i∈I1 , {ai
2}i∈I2 , {bi}N

i=1

)

= Dδ

(
N∑

i=1

bk
i ϕi,

N∑
i=1

biϕi

)
+ Ik+1

(
N∑

i=1

ai
1ϕi,

N∑
i=1

ai
2ϕi,

N∑
i=1

biϕi

)
(3.4)

to be minimized over the free variables {ai
1}i∈I1 , {ai

2}i∈I2 , {bi}N
i=1 at each time level.

We remark that the functional D has been replaced in the numerical implementation
by its smoothed version

Dδ(γ1, γ2) = σ

∫
Ω

√
δ2 + |γ1(x) − γ2(x)|2 dx , (3.5)

where δ is a small positive parameter.
After initialization of the coefficient ai

j , bi to represent the undeformed config-
uration, i.e., setting (ai

1, a
i
2) equal to the (x, y)-coordinates of i-th mesh node and

bi = 0 for all nodes, the numerical calculation in the following time steps proceeds as
follows. At the beginning of each time step, the coefficients ai

j in (3.3) corresponding
to the mesh nodes located on the upper edge of the domain are updated to represent
the prescribed displacement at the current time tk. Subsequently, the resulting func-
tion Hk of (3.4) is minimized over the free variables {ai

1}i∈I1 , {ai
2}i∈I2 , {bi}N

i=1, and
the result is used as input in the next time step. Minimization is carried out using
the function fminunc from MATLAB’s Optimization toolbox [32]. This function is
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Figure 3 Comparison of displacements in the x1- and x2-directions
obtained in the experiment and numerical simulation. The images in
the left column show experimental observations at the time when the
vertical displacement of the upper boundary is around 12 mm and
when the kink-bands reach the lower boundary. The right images
show numerical results at the same vertical displacement of upper
boundary by 12 mm, a little after the kink-band structure appears
in the simulation.

based on a trust-region optimization algorithm [10], which requires as input the
function Hk, its gradient, initial guess for solution, and optionally also the sparsity
pattern of the Hessian of Hk. The function Hk and the finite-difference approxi-
mation of its gradient are evaluated using the vectorized algorithm of [37], which
produces a significant speed-up of the computation. The initial guess is taken as
the solution in the previous time step for the elastic part ai

j , and as zero for the
plastic part bi. In the minimization procedure, it might be physically meaningful to
distinguish between two approaches: to minimize over both elastic and plastic vari-
ables at once or to alternately minimize over the elastic or plastic part while keeping
the other part temporarily fixed. However, in this case, only a slight difference was
observed in the impact of the order of minimization on the numerical results.
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Figure 4 Comparison of strains obtained in the experiment (left
column) and in the numerical simulation (right column). Images were
taken under the same load conditions as in Fig. 3.

In the specific simulation, we consider the deformation in the time interval t ∈
[0, 100] (in seconds) of the rectangular region Ω = (0, 42) × (0, 75) (in millimeters),
whose upper edge is compressed with constant speed according to y(t, x1, x2) =
(x1, 75− 0.18t). Time is discretized into K = 76 steps of length τ = 1.3125, and the
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Figure 5 Comparison of the stress-strain curves obtained in the
experiment and in numerical simulation. The curves of three inde-
pendent experiments are shown, where the lowest curve (experiment
#1) corresponds to images displayed in Figs. 3 and 4. In the experi-
ment, kinks form gradually one by one, while in simulation they form
all at once, which leads to a later appearance of kinks, and hence to
a slightly later drop in the load.

undeformed region Ω is divided into a triangular mesh with 4184 elements and 2182
nodes (see Fig. 2). The values of the remaining parameters are selected as follows:
material constants in the energy functional (3.1) are C = 0.6 GPa, D = 0.2 GPa,
α = 0.1 GPa, β = 20 kPa, ε = 500 N, σ = 1 kPa, the regularization parameter
in (3.5) is δ = 10−5, the perturbation to calculate a finite difference approximation
of the gradient of Hk is 10−8, the infinite value for detF e ≤ 0 in (3.1) is realized
by penalty 106 on individual triangles, integration over triangles uses the second-
order quadrature rule, and finally stopping criteria in the trust-region minimization
algorithm are TolX = 10−10 for step and TolFun = 10−4 for function values. The
elastic constants are chosen so that their order of magnitude corresponds to the
experimentally measured values reported in [43,48].

The results obtained by implementing the above described model are summa-
rized in Figs. 3 (for displacements), 4 (for strains), and 5 (for displacement-load
curves), together with the results of the experimental analysis. Despite a simple
mathematical model, surprisingly good qualitative and even quantitative agreement
is reached. In particular, the simulation succeeds in reproducing the formation of
wedge-like kink-bands of the same type as in experiment, and the displacements and
strains show identical deformation patterns. The lack of an accurate quantitative
match is mainly due to the fact that only a two-dimensional model is used and the
detailed elastic properties of the paper sheets used in the experiment are unknown.

We remark that the color-bar range for the displacement in the x2-direction in
Fig. 3 is different for experiment and simulation mainly due to the fact that only a
part of the material region is analyzed due to limitations of the experimental setup.
Even if the region is adjusted, a complete match is not gained, as can be predicted
from the difference in x2-strain in Fig. 4 – notice the different range of color-bars for
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experiment and simulation. This discrepancy is thought to be caused mainly by the
fact that in experiment the stack of papers is not compressed in a thin region at the
left and right boundaries (this is visible in the upper left and upper right corners of
the figure), which allows for relaxation of stresses near the lateral boundaries.

Regarding dynamics, in the real phenomenon, kink-bands are formed one by
one in sequence, as can be confirmed in the repository [26]. On the other hand, the
mathematical model is quasi-stationary, and thus all the kinks appear at once as
soon as sufficient energy is stored to allow for the plastic deformation. Nevertheless,
these issues can be addressed by a straightforward refinement of the basic model,
and therefore, the results show that the proposed mathematical model is capable
of capturing the important features of the deformation mechanism. Moreover, the
results indicate that the rate-independent evolution provides an “elastically regu-
larized” approximation for the completely rigid problem of single-slip elastoplastic
microstructures [11].

The movies of the experiments and the numerical simulation are available at
Figshare [26].
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Faculty of Mathematics and Physics
Charles University
Ke Karlovu 5
121 16 Prague 2
Czech Republic
e-mail: Daria.Drozdenko@mff.cuni.cz

Michal Knapek
e-mail: knapek@karlov.mff.cuni.cz

Kristián Máthis
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