
1063-6706 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2021.3131200, IEEE
Transactions on Fuzzy Systems

1

A 0-1 Law in Mathematical Fuzzy Logic
Guillermo Badia and Carles Noguera

Abstract—This paper continues the theoretical study of
weighted structures in mathematical fuzzy logic focusing on the
finite model theory of fuzzy logics valued on arbitrary finite
MTL-chains. We show that for any first-order (or infinitary with
finitely many variables) formula ϕ, there is a truth-value that ϕ
takes almost surely in every finite many-valued model and such
that every other truth-value is almost surely not taken. This
generalizes a theorem in the fuzzy setting due to Robert Kosik
and Christian G. Fermüller [29].

Index Terms—mathematical fuzzy logic, first-order fuzzy log-
ics, monoidal t-norms, finite weighted structures

I. INTRODUCTION

THE model theory of predicate fuzzy logics has received
an increased amount of attention in the last decade [1]–

[3], [11]–[17]. In this area, first-order predicate languages are
studied in the framework of mathematical fuzzy logic, which
deals with graded logics as particular kinds of many-valued
inference systems [9].

In this paper, we will be focusing on many-valued predicate
logics that arise when we restrict our attention to weighted
structures with a finite domain of objects and a finite algebra
of linearly ordered truth-values, which provide a generalization
of the structures studied by (classical) finite model theory (see
e.g. [30]). In particular, we are interested in understanding the
relationship between first-order logical languages with many-
valued semantics and finite weighted structures. For a concrete
example, suppose that we have a domain of three objects
{d1, d2, d3} and a binary weighted relation “x is preferred
to y” (denoted by the symbol >) where the weights come
from the four-element Gödel algebra G4, i.e. we work on a
four-valued logic. Let the weighted relation > be defined by
the following table:

> d1 d2 d3

d1 0 0 0
d2

1
3 0 0

d3 1 2
3 0

Given this structure, we can learn, for example, that the
formula with parameters (∃y)(y > d1 ∧ y > d2) has the
truth-value 2

3 , so one could say it is mostly true but not
quite. This can be seen as a kind of Valued Constraint
Satisfaction Problem [18], [28], where the object that satisfies
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the constraints to their maximum possible degree (in this case
2
3 ) is d3.

In this setting one can easily define the proportion of
models, of a given finite cardinal for their domain, in which
a sentence takes a certain value. Indeed, given n > 1 and a
signature τ , for any τ -sentence ϕ and any value a ∈ A, let
lan(ϕ) be the cardinality of the (finite) set Ka

τ consisting of all
models M for the signature τ with domain M = {1, 2, . . . , n}
such that ϕ takes value a in M. Furthermore, let ln(τ) be
the cardinality of the (finite) set containing every model for
the signature τ with domain {1, 2, . . . , n}. Now, the desired
proportion of models is given as

µan(ϕ) =
lan(ϕ)

ln(τ)
.

From this, we can define the asymptotic probability of ϕ taking
value a as follows:

µa(ϕ) = lim
n→∞

µan(ϕ).

When restricted to classical models, the only possible
choices of a are 1 and 0, and so µ1(ϕ) becomes the asymptotic
probability of ϕ being true. In [5] Rudolf Carnap already
introduced these notions for classical first-order logic and
proved1 that, whenever the signature is finite and has only
unary predicate symbols, for any sentence ϕ either µ(ϕ) = 1
or µ(ϕ) = 0 (i.e., µ(¬ϕ) = 1). Thus, he obtained the
kind of result that in probability theory is usually called a
0-1 law. In the context of systematic development of finite
model theory, the result was generalized to finite relational
signatures by Ronald Fagin in the foundational paper [23] with
a proof that serves as inspiration for the present contribution
(a bit earlier, the authors of [24] had obtained the result but
using instead a quantifier elimination method). Importantly,
not every expressive extension of classical first-order logic
satisfies a 0-1 law:

Example 1 (cf. Example 4.1.1 from [19]). Second-order
classical logic does not satisfy a 0-1 law. The sentence

ϕ := (∃X)((∀x)Xxx ∧ (∀x, y)(Xxy → Xyx)

∧(∀x, y, z)((Xxy ∧Xyz)→ Xxz)

∧(∀x)(∃y)=1(Xxy ∧ y 6= x))

is true, among finite structures, in exactly those with an even
domain, so the fraction of structures with domain {1, . . . , n}
making ϕ true does not converge to a limit as n tends to ∞.
Hence, in first-order logic we cannot axiomatize the class of
even structures.

1Carnap’s motivation seem to have been related to his views on confirmation
and the role of probabilistic methods in scientific inquiry (this sort of topic
is still actively discussed today in philosophy of science e.g. [32]).
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The goal of the present contribution is to obtain a many-
valued extension of Fagin’s 0-1 law. More precisely, we want
to prove that, for each sentence ϕ, there is a value a ∈ A
such that µa(ϕ) = 1 (and for all other values the asymptotic
probability is 0). Our strategy consists in generalizing the
classical model-theoretic proof from [23] to many-valued
structures now that enough model-theoretic machinery has
been developed in the many-valued setting (particularly, the
back-and-forth games from [17]). Hence, we will establish
a result that will imply the classical 0-1 law as a particular
instance.

There is one notable exception to the absence of literature on
the finite model theory of predicate fuzzy logics, namely [29].
In that paper, the authors establish (by techniques completely
different to ours) a 0-1 law for the particular case of logics
based on finite Łukasiewicz linearly ordered algebras (more
precisely, those Łukasiewicz algebras where the number of
elements is a power of 2). This result now follows as an
instance of our more general Theorem 16. One important
point to observe is that we have established our theorem
for languages with truth-constants for all the elements of the
algebra of truth-values, whereas the language of [29] only
has the constants 1, 0. Hence, having shown our result in a
more powerful expressive setting and more general algebraic
framework, the previous result follows as a particular instance.

Our work will be based in the algebraic setting of MTL-
algebras [8], [25]. We cannot allow for completely arbitrary
MTL-algebras, though. Instead, we will assume that we have
fixed a finite MTL-chain (i.e. linearly ordered). There are three
main reasons for these restrictions:

(1) In the area of fuzzy logic, it is a fundamental requirement
that the truth-values of the intended semantics (typically
the interval [0, 1] and subsets thereof) are linearly ordered.
This algebraic feature allows to model language with
vague predicates in such a way that any pair of instances
always have comparable truth-degrees.

(2) We have a compactness property for first-order languages
with semantics given over a fixed finite MTL-chain [15,
Theorem 4.4]): every finitely satisfiable set of sentences
is satisfiable (in a possibly infinite structure). We use
compactness below to obtain a model of the theory Tτ
from Definition 4, which is instrumental in the proof of
Theorem 16. Compactness is not preserved in general
when dealing with infinite MTL-chains: product pred-
icate logic with the standard semantics on the interval
[0, 1] is known to be incompact, and Gödel predicate logic
in the same interval loses compactness for uncountable
languages.

(3) More importantly, the asymptotic probability introduced
in Definition 5 below would not make sense if the algebra
is infinite since there would be infinitely many possible
models on a given finite domain. Hence, the question
of whether similar work to what we do here can be
generalized to infinite algebras remains open.2

2It might be possible to define some other reasonable probability measure
on logics based on particular infinite MTL-chains but we do not know of any
nicely motivated measure for this purpose on an arbitrary infinite MTL-chain.

Moreover, this is also the same theoretical framework used
recently in [1]–[3], [18].

II. PRELIMINARIES

In this section we introduce the basic notions of graded
model theory framework that gives the theoretical context for
the kind of finite model theory studied in this paper. Let us
start with the syntax and semantics of graded predicate logics,
and recall the basic notions we will use in the paper. We
(mostly) use the notation and definitions of the Handbook of
Mathematical Fuzzy Logic [9].

a) Syntax: The syntactical aspects of our logical setting
are (almost) completely classical. We start from a basic
propositional language that contains the binary connectives
∧ (lattice conjunction), ∨ (lattice disjunction), & (residuated
conjunction), and → (implication), and two truth-constants: 0
(falsum) and 1 (verum). Two other connectives are defined:
¬ϕ = ϕ→ 0 and ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ).

A signature (or predicate language) τ is a triple
〈Predτ , Funcτ , Arτ 〉, where Predτ is a non-empty set of
predicate symbols, Funcτ is a set of function symbols (disjoint
from Predτ ), and Arτ represents the arity function, which
assigns a natural number to each predicate symbol or function
symbol. We call this natural number the arity of the sym-
bol. The function symbols with arity zero are named object
constants (constants for short). Object variables, τ -terms, τ -
formulas, and the notions of free occurrence of a variable,
open formula, substitutability, and sentence are defined as
in classical predicate logic. A theory is a set of sentences.
When τ is clear from the context, we will refer to τ -terms
and τ -formulas simply as terms and formulas. Also, when
no confusion can arise, we will identify τ with the set of
its symbols (i.e. Predτ ∪ Funcτ ) and write expressions such
τ ⊆ τ ′, meaning that Predτ ⊆ Predτ ′ and Funcτ ⊆ Funcτ ′

and Arτ ′ agrees with Arτ in the symbols of τ .
b) Semantics: The non-classicality appears on the se-

mantical side. In graded predicate logics we work with models
based on an algebra of (possibly more than two) truth-values.
Propositional connectives are semantically interpreted by the
notion of an MTL-algebra [25], that is, a structure of the form
A = 〈A,∧A,∨A,&A,→A, 0

A
, 1

A〉 such that

• 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice,
• 〈A,&A, 1

A〉 is a commutative monoid,
• for each a, b, c ∈ A, we have:

a&A b ≤ c iff b ≤ a→A c, (residuation)

(a→A b) ∨A (b→A a) = 1
A

(prelinearity)

A is called an MTL-chain if its underlying lattice is linearly
ordered. Observe that the two-element Boolean algebra, B2,
can be seen, in particular, as an MTL-algebra (identifying the
operations & and ∧, and defining the complement as ¬x =
x→ 0).

Typical examples of non-Boolean MTL-chains are the
algebras [0, 1]G, [0, 1]�, and [0, 1]Π, respectively used in
the semantics of Gödel–Dummett, Łukasiewicz, and Product
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logics (three prominent examples of fuzzy logics; see e.g. [9]).
In all cases, ∧, ∨, 0, 1 are interpreted respectively as the
minimum, the maximum, the number 0, and the number 1,
while the interpretations of the other operations differ:

a&[0,1]G b = min{a, b},
a&[0,1]� b = max{a+ b− 1, 0},
a&[0,1]Π b = ab (standard product of reals),

a→[0,1]G b =
{

1, if a ≤ b,
b, otherwise,

a→[0,1]� b =
{

1, if a ≤ b,
1−a+b, otherwise,

a→[0,1]Π b =
{

1, if a ≤ b,
b/a, otherwise.

For the purposes of this paper, it will be very illustrative to
introduce as well some examples of finite MTL-chains.

Example 2 (The algebra of Łukasiewicz 3-valued logic [31]).
The algebra Ł3 = 〈{0, 1

2 , 1},∧
Ł3 ,∨Ł3 ,&Ł3 ,→Ł3 , 0, 1〉 such

that

• ∧Ł3(x, y) = min{x, y}
• ∨Ł3(x, y) = max{x, y}
• &Ł3(x, y) = max{0, x+ y − 1}
• →Ł3 (x, y) = min{1, 1− x+ y}

Example 3 (The algebra of Gödel 4-valued logic [25]). The
algebra G4 = 〈{0, 1

3 ,
2
3 , 1},∧

G4 ,∨G4 ,&G4 ,→G4 , 0, 1〉 such
that

• ∧G4(x, y) = &G4(x, y) = min{x, y}
• ∨G4(x, y) = max{x, y}
• and for →G4 :

→G4 (x, y) =

{
1
A

if x ≤ y

y otherwise.

An MTL-chain A may be expanded, for greater expressive
power of the logic, with truth-constants (i.e. 0-ary connec-
tives) a, for each a ∈ A, demanding that they denote their
corresponding element (see e.g. [20], [21]). We will do that
in the remainder of this paper.

Based on MTL-chains (and their expansions) as algebraic
interpretations of the propositional language, now we can
give the semantics of first-order predicate formulas. Given a
signature τ = 〈Predτ , Funcτ , Arτ 〉, we define a τ -structure
as a pair M = 〈A,M〉 where A is an MTL-chain and

M = 〈M, (PM)P∈Predτ , (FM)F∈Funcτ 〉,

where M is a non-empty set (the domain), PM is an n-ary
A-valued relation for each n-ary predicate symbol P , i.e., a
function from Mn to A, identified with an element of A if
n = 0; and FM is a function from Mn to M , identified with
an element of M if n = 0. We will call 〈A,M〉 an A-structure
whenever we need to stress its algebraic part. M is said to be
finite if its part M is.

An M-evaluation of the object variables is a mapping v
assigning to each object variable an element of M . If v is an

M-evaluation, x is an object variable and d ∈M , we denote
by v[x 7→ d] the M-evaluation so that v[x 7→ d](x) = d and
v[x 7→ d](y) = v(y) for y an object variable such that y 6= x.
We define the values of terms and the truth-values of formulas
in M for an M-evaluation v recursively as follows:

‖x‖AM,v = v(x);
‖F (t1, . . . , tn)‖AM,v = FM(‖t1‖AM,v, . . . , ‖tn‖AM,v), for
each F ∈ Funcτ ;
‖P (t1, . . . , tn)‖AM,v = PM(‖t1‖AM,v, . . . , ‖tn‖AM,v), for
each P ∈ Predτ ;
‖ϕ ◦ ψ‖AM,v = ‖ϕ‖AM,v ◦A ‖ψn‖AM,v , for each binary
connective ◦;
‖a‖AM,v = aA;
‖(∀x)ϕ‖AM,v = inf{‖ϕ‖AM,v[x7→d] | d ∈M};
‖(∃x)ϕ‖AM,v = sup{‖ϕ‖AM,v[x7→d] | d ∈M}.

If the infimum or the supremum do not exist, we take the
truth-value of the formula as undefined. A τ -structure 〈A,M〉
is said to be safe if the value ‖ϕ‖AM,v is defined for each
formula ϕ and each M-evaluation v. Certainly, the semantics
can be restricted to models based on completely ordered
chains, that is, chains with suprema and infima of all their
subsets (for instance, by taking only finite chains as we will
do later in this paper) which ensures that all models would be
safe. However, in general, this gives rise to serious drawbacks
regarding the axiomatizability of the corresponding first-order
logics (see [9, Chapter XI]), which justifies the design choice
for the general theory of safe models instead. We call the first-
order language described with the above semantics L A

ωω [2].

Remark 1. We can close L A
ωω under infinitary lattice dis-

junctions and conjunctions, e.g. by allowing formulas
∧
i∈I ϕi

and
∨
i∈I ϕi (where I has any cardinality) with the following

semantics:∥∥∧
i∈I ϕi

∥∥A
M,v

= inf{‖ϕi‖AM,v | i ∈ I};∥∥∨
i∈I ϕi

∥∥A
M,v

= sup{‖ϕi‖AM,v | i ∈ I}.

We call the resulting language and semantics L A
∞ω . If, further-

more, we allow only k > 1 many variables in our formulas,
we obtain L kA

∞ω .

For a set of formulas Φ, we write ‖Φ‖AM,v = 1
A, if

‖ϕ‖AM,v = 1
A for every ϕ ∈ Φ. We denote by ‖ϕ‖AM = 1

A the
fact that ‖ϕ‖AM,v = 1

A for all M-evaluations v; analogously
for sets Φ. We say that 〈A,M〉 is a model of a set of formulas
Φ, if ‖Φ‖AM = 1

A (in symbols, 〈A,M〉 |= Φ). Observe that in
this general presentation we have not required yet the presence
of an equality symbol in the language, but it can be added
in the form of a binary relational symbol ≈ interpreted as
(crisp) equality in the models, i.e. ‖t1 ≈ t2‖AM,v = 1

A if
‖t1‖AM,v = ‖t2‖AM,v , and ‖t1 ≈ t2‖AM,v = 0

A otherwise.
Hence, we will let ≈ stand for crisp equality throughout this
paper (x 6≈ y will abbreviate x ≈ y → 0).

We use the notation −→x for a finite sequence of variables,
and
−→
d for a finite sequence of elements of a domain M (by

a slight abuse of language, we write
−→
d ⊆ M ). Given an
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M-evaluation v, we define v[−→x 7→
−→
d ] as the M-evaluation

such that v[−→x 7→
−→
d ](xi) = di for each i ∈ {1, . . . , n} and

v[−→x 7→
−→
d ](y) = v(y) for each y /∈ −→x . We write ϕ(−→x ) to

indicate that the free variables of ϕ are among {x1, . . . , xn}.
Given a τ -structure 〈A,M〉 and a formula ϕ(−→x ), we say that−→
d ⊆ M satisfies ϕ(−→x ) (or that ϕ(−→x ) is satisfied by

−→
d ) if

‖ϕ(−→x )‖AM,v[−→x 7→
−→
d ]

= 1
A for any M-evaluation v (also written∥∥∥ϕ[

−→
d ]
∥∥∥A

M
= 1

A or 〈A,M〉 |= ϕ[
−→
d ]). Finally, we say that a

set of sentences Φ is satisfiable is there is a safe τ -structure
〈A,M〉 such that ‖Φ‖AM = 1

A, and we say that it is finitely
satisfiable if each finite subset of Φ is satisfiable.

Proposition 4. [15, Theorem 4.4] Given a set of sentences
Σ, if every finite subset Σ0 ⊆ Σ has a model 〈A,MΣ0

〉 (finite
or infinite), then Σ has a model 〈A,N〉.

Corollary 5 (Finitarity). Let A be a fixed finite chain. For
every set of sentences Σ ∪ {ϕ}, if Σ |=A ϕ, then there is a
finite subset Σ0 ⊆ Σ such that Σ0 |=A ϕ.

Remark 6. Observe that when we restrict ourselves to the
study of models with finite domains (as those relevant for
Definition 5), compactness breaks apart. It is easy to see that
the infinite theory

(∀x1)(x1 < x1 → 0)

(∀x1, x2, x3,)(x1 < x2 ∧ x2 < x3 → x1 < x3)

(∃x1, . . . , xn)(
∧

1≤i<j≤n

xi < xj) (for all n > 1)

is finitely satisfiable on finite models (i.e. every finite subset of
the theory has a finite model) but not satisfiable as a whole.

c) Equivalent formulas, elementary equivalence, and
(partial) isomorphisms: The many-valued semantics brings
forth an interesting increase of complexity of basic notions
of classical model theory, starting from the very notions
of equivalence of formulas and elementary equivalence of
structures. Indeed, given two formulas ϕ(−→x ) and ψ(−→x ), we
can define their equivalence in two different ways:
• ϕ(−→x ) and ψ(−→x ) are 1-equivalent if for any model
〈A,M〉 and any sequence of elements

−→
d ∈M , we have:

〈A,M〉 |= ϕ[
−→
d ] iff 〈A,M〉 |= ψ[

−→
d ],

• ϕ(−→x ) and ψ(−→x ) are equivalent if for any model
〈A,M〉 and any sequence of elements

−→
d ∈ M , we

have: 〈A,M〉 |= ϕ ↔ ψ[
−→
d ] (that is, for each v,

‖ϕ(−→x )‖AM,v[−→x 7→
−→
d ]

= ‖ψ(−→x )‖AM,v[−→x 7→
−→
d ]

).
Similarly, equivalence between two structures can be mean-

ingfully defined in two different ways. We say that two safe
τ -structures 〈A,M〉 and 〈A,N〉 are elementarily equivalent
(in symbols: 〈A,M〉 ≡ 〈A,N〉) if they are models of the
same sentences, i.e. for every τ -sentence σ, ‖σ‖AM = 1

A if
and only if ‖σ‖AN = 1

A.
In case the two structures are based on the same algebra we

can define a stronger notion of equivalence by requiring sen-
tences to take the exact same values. More precisely, given safe
τ -structures 〈A,M〉 and 〈A,N〉, we say that they are strongly

elementarily equivalent (in symbols: 〈A,M〉 ≡s 〈A,N〉) if
for every τ -sentence σ, ‖σ‖AM = ‖σ‖AN.

For classical structures, i.e. when A ∼= B2, these two
definitions give the classical notion of elementary equivalence.
But, in general, they differ as shown with counterexamples in
[12].

Definition 1 ( [12]). Let 〈A,M〉 and 〈A,N〉 be τ -structures,
p be a partial mapping from M to N . We say that p is a
partial isomorphism from 〈A,M〉 to 〈A,N〉 if

1) p is injective,
2) for every n-ary functional symbol F ∈ Funcτ

and every d1, . . . , dn ∈ M such that
d1, . . . , dn, FM(d1, . . . , dn) ∈ dom(p),

p(FM(d1, . . . dn)) = FN(p(d1), . . . , p(dn)),

3) for every n-ary predicate symbol P ∈ Predτ and
d1, . . . , dn ∈M such that d1, . . . , dn ∈ dom(p),

PM(d1, . . . , dn) = PN(p(d1), . . . , p(dn)).

Definition 2 ( [12]). Two τ -structures 〈A,M〉 and 〈A,N〉 are
said to be finitely isomorphic, written 〈A,M〉 ∼=f 〈A,N〉, if
there is a sequence 〈In | n < ω〉 with the following properties:

1) Every In is a non-empty set of partial isomorphisms
from 〈A,M〉 to 〈A,N〉.

2) For each n < ω, In+1 ⊆ In.
3) (Forth-property) For every p ∈ In+1 and m ∈M , there

is a p′ ∈ In such that p ⊆ p′ and m ∈ dom(p′).
4) (Back-property) For every p ∈ In+1 and n ∈ N , there

is a p′ ∈ In such that p ⊆ p′ and n ∈ rg(p′).

Definition 3 (k-potentially isomorphic structures). Given an
integer k ≥ 1, two τ -structures 〈A,M〉 and 〈A,N〉 are said
to be k-potentially isomorphic, written 〈A,M〉 ∼=k 〈A,N〉,
if there is a set I of partial isomorphisms with the following
properties:

1) I is a non-empty set of partial isomorphisms from
〈A,M〉 to 〈A,N〉.

2) I is downward-closed: if p ∈ I and p′ ⊆ p, then p′ ∈ I .
3) If p ∈ I and |dom(p)| < k,

a) (Forth-property) for every m ∈M , there is a p′ ∈
I such that p ⊆ p′ and m ∈ dom(p′).

b) (Back-property) for every n ∈ N , there is a p′ ∈ I
such that p ⊆ p′ and n ∈ rg(p′).

All these definitions are simplifications of the general case
that allows of different algebras in different models, which
would require the introduction mappings between the algebras
too (see [17]). The key intuitive difference between Defini-
tion 2 and Definition 3 is that in the latter the back-and-forth
game can only be played for partial isomorphisms defined
on less than k-many individuals from the domain of one of
the structures. If the propositional language is expanded with
truth-constants, all the mentioned notions are extended in the
obvious way. In what follows, we fix a finite MTL-chain A
for all our models.
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III. 0-1 LAW: THE CASE OF L A
ωω

We start by recalling a technical result that gives a useful
sufficient condition for strong elementary equivalence:

Proposition 7. [17, Theorem 14 (b)] Consider models M
and N for a finite signature τ . Then, (i) =⇒ (ii), where
(i) M ∼=f N, i.e., M and N are finitely isomorphic.

(ii) M ≡s N, i.e., M and N are strongly elementarily
equivalent.

Next, we introduce the definition of a certain theory, which
we call Tτ given a particular finite relational signature τ , that
will be instrumental in what follows.

Definition 4 (cf. [19]). Consider a finite relational signature
τ . For any integer r > 0, let ∆r+1 be the (finite) set of all
formulas ϕ(v1, . . . , vr, vr+1) where ϕ is an atomic formula
R−→x in the signature τ , vr+1 appears in the sequence −→x , and
all variables in −→x are from the list v1, . . . , vr, vr+1. Let Tτ be
the theory containing, for every A-valued set Φ : ∆r+1 −→ A,
the axiom χrΦ (we will drop the superscript when convenient)
defined as:

(∀v1, . . . , vr)((¬
∧

1≤i<j≤r

vi 6≈ vj)∨

(∃vr+1)

( ∧
1≤i≤r vi 6≈ vr+1

∧
∧
ϕ∈∆r+1

(ϕ↔ Φ(ϕ))

)
)

We call the above an r + 1 extension axiom of Tτ .

We can show that Tτ has an infinite model by a compactness
argument using Corollary 15 below, which provides models for
any finite subset of Tτ .

Proposition 8. Consider a finite relational signature τ . If
M,N are models of Tτ , then M ∼=f N, i.e., M and N are
finitely isomorphic.

Proof. For any models M,N and any finite sequences −→e of
elements of M and

−→
d of elements of M , we write −→e ≡at

−→
d

if ‖ϕ[−→e ]‖M =
∥∥∥ϕ[
−→
d ]
∥∥∥N for every atomic formula ϕ.

To show that M ∼=f N, we define a system 〈Ik | k < ω〉 of
sets of partial isomorphisms with Ik = I (for each k < ω)
where:

I = {p | r > 0, p : M −→ N is a partial mapping, p :=
−→e 7→

−→
d ,−→e = e1, . . . , er,

−→
d = d1, . . . , dr,

−→e ≡at
−→
d }.

Note that the Iks are non-empty since at least they contain ∅.
Next, we check the forth property. Suppose that p ∈ Ik+1 =

I , p : M −→ N is a partial mapping p := −→e 7→
−→
d ,−→e =

e1, . . . , er,
−→
d = d1, . . . , dr,

−→e ≡at
−→
d . Then, take er+1 ∈ M

(distinct from any element in the sequence −→e ). Consider now
the A-valued set Φ with domain ∆r+1 defined as follows:

Φ(ϕ(v1, . . . , vr, vr+1)) = ‖ϕ[−→e , er+1]‖M.

Since N |= Tτ , we must have that N |= χΦ. Hence,

N |= (∃vr+1)((
∧

1≤i≤r

vi 6≈ vr+1) ∧ (
∧

ϕ∈∆r+1

ϕ↔ Φ(ϕ)))[
−→
d ],

Consequently, for some dr+1 ∈ N ,

N |= (
∧

1≤i≤r

vi 6≈ vr+1) ∧ (
∧

ϕ∈∆r+1

ϕ↔ Φ(ϕ))[
−→
d , dr+1].

Now simply consider the partial mapping p′ : M −→ N

defined as p′ := −→e ′ 7→
−→
d ′ where −→e ′ = e1, . . . , er, er+1,

−→
d =

d1, . . . , dr, dr+1. This works because −→e ′ ≡at
−→
d ′.

Finally, the back property follows similarly.

Corollary 9. For any sentence ϕ in a finite relational signa-
ture τ , there is a unique value a ∈ A such that Tτ � ϕ↔ a.

Proof. If M,N are models of Tτ , then M ≡s N. This follows
from Proposition 7 and Proposition 8. Hence, the value of ϕ
is fixed across models of Tτ . The value a is unique as if
Tτ � ϕ ↔ a and Tτ � ϕ ↔ a′, then Tτ � a′ ↔ a, which,
since Tτ has a model means that a = a′.

Definition 5 (Asymptotic probabilites; cf. [23]). Take a sig-
nature τ . For any formula ϕ, a ∈ A, and n > 1, let lan(ϕ) be
the cardinality of the (finite) set Ka

τ consisting of all models
M for the signature τ with domain {1, 2, . . . , n} such that
‖ϕ‖M = a. Furthermore, let ln(τ) be the cardinality of the
(finite) set containing every model M for the signature τ with
M = {1, 2, . . . , n}. Observe that, had our algebra A been
infinite, ln(τ) would not be an integer (and the fraction below
would not be defined). Now, let

µan(ϕ) =
lan(ϕ)

ln(τ)
.

The asymptotic probability of ϕ getting value a is defined as:

µa(ϕ) = lim
n→∞

µan(ϕ).

Example 10. Consider a signature containing a unary relation
P and suppose that 3 ≤ |A|. Then,

µ1
A

n ((∀x)(Px ∨ ¬Px)) =
2n

|A|n

µ1
A

((∀x)(Px ∨ ¬Px)) = lim
n→∞

2n

|A|n
= 0.

Therefore, almost no structure makes the predicate P crisp.

Example 11. Consider a signature containing a unary relation
P and suppose that A = Ł3. Then,

µ
1
2
n ((∀x)(Px ∨ ¬Px)) =

3n − 2n

3n

µ
1
2 ((∀x)(Px ∨ ¬Px)) = lim

n→∞

3n − 2n

3n
= 1.

Example 12. Let τ be the empty signature. For any k, let

ϕ=k := (∃x1, . . . , xk)

( ∧
1≤i<j≤k xi 6≈ xj

∧ (∀xk+1)(
∨

1≤i≤k xk+1 ≈ xi)

)
.

M |= ϕ=k iff |M | = k. Then, for the infinitary sentence∨
k>1 ϕ

=2k+1, M |=
∨
k>1 ϕ

=2k+1 iff |M | is odd. Then,

µ1
A

n (
∨
k>1

ϕ=2k+1) =

{
1 if n is odd
0 otherwise.

So, in this case, µ1
A

(
∨
k>1 ϕ

=2k+1) does not exist.
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Example 13 (cf. Example 4.1.1 from [19]). Consider a
signature containing a unary relation R and an object constant
symbol c. Let a ∈ A. Then, for any n > 1,

µan(Rc) =
1

|A|
since in any given model M with domain M = {1, 2, . . . , n}
where we have fixed the interpretation of c, there are 1

|A|
chances of interpreting R in such a way that ‖Rc‖M = a.
Hence,

µa(Rc) = lim
n→∞

µan(Rc) =
1

|A|
.

Lemma 14. Let τ be a finite relational signature. Fix ∆r+1

and some A-valued set Φ : ∆r+1 −→ A. Then, for the
extension axiom χΦ, µ1

A

(χΦ) = 1. In other words, χΦ takes
value 1

A
almost surely.

Proof. Let a ∈ A be the co-atom of A. If we manage to show
that µ1

A

(χΦ → a) = 0, then almost surely no model gives
χΦ → a the value 1

A
, which means that almost every model

gives χΦ the value 1
A
, since in every model either χΦ or

χΦ → a will take value 1
A
. Let c be the number of possible

A-valued sets with domain ∆r+1. It turns out that for any
n > 1,

µ1
A

n (χΦ → a) ≤ nr(c− 1

c
)n−r.

As limn→∞( c−1
c )n−r = 0 since c−1

c < 1, it follows that

lim
n→∞

nr(
c− 1

c
)n−r = 0,

so µ1
A

(χΦ → a) = limn→∞ µ1
A

n (χΦ → a) = 0.
Now let us show where the number nr( c−1

c )n−r comes
from. Let M be a model for the signature τ with M =
{1, 2, . . . , n} such that M |= χΦ → a. This means that there
is a sequence of elements −→e = e1, . . . , er ∈M such that the
formulas
(1) (

∧
1≤i<j≤r vi 6≈ vj),

(2) (∃vr+1)

( ∧
1≤i≤r vi 6≈ vr+1

∧
∧
ϕ∈∆r+1

(ϕ↔ Φ(ϕ))

)
→ a

are both satisfied (take value 1
A) by −→e in M. (2) being

satisfied by −→e means, furthermore, that for every er+1 at least
one of

(
∧

1≤i≤r

vi 6≈ vr+1)

or
(
∧

ϕ∈∆r+1

ϕ↔ Φ(ϕ))

is not satisfied by −→e er+1. The number c−1
c is the proba-

bility that −→e er+1 will not satisfy (
∧
ϕ∈∆r+1

ϕ ↔ Φ(ϕ))
in a randomly chosen M (recall that c is the number of
possible A-valued sets with domain ∆r+1) with domain M =
{1, 2, . . . , n} . Since we have n − r ways of choosing er+1

different from all elements in −→e once −→e is fixed, ( c−1
c )n−r

is the probability that we can find an er+1 not satisfying
(
∧
ϕ∈∆r+1

ϕ ↔ Φ(ϕ)). Finally, nr is the number of possible
choices of a sequence of r many elements from M .

Corollary 15. Let τ be a finite relational signature. For any
finite T ′τ ⊆ Tτ , there is a number k such that for any n > k,
T ′τ has a model with a universe of objects of size n.

Proof. Let a ∈ A be the co-atom of our algebra. If T ′τ =
{χΦ1

, . . . , χΦr}, we pick k large enough that if n > k,
µ1

A

n (χΦ → a) < 1
r for each χΦ ∈ T ′τ , which is possible

as µ1
A

(χΦ → a) = 0. It then follows that for n > k,

µ1
A

n ((χΦ1
→ a) ∨ · · · ∨ (χΦr → a)) ≤

µ1
A

n (χΦ1
→ a) + · · ·+ µ1

A

n (χΦr → a) < 1.

The second inequality is immediate given the choice of k.
Hence, there must be a model M of T ′τ with universe M =
{1, . . . , n}.

Notice that the proof of Corollary 15 shows how probabilis-
tic techniques can be used in the absence of compactness to
indirectly show the existence of models for a (in this case
finite) theory, even if we do not necessarily know how to
construct them.

Theorem 16 (First 0-1 Law). If ϕ is a sentence in the finite
relational signature τ , then there is a ∈ A such that µa(ϕ) =
1, and for any other truth-value a′, µa

′
(ϕ) = 0. In other

words, for any ϕ there is a truth-value that ϕ takes almost
surely in a given model and every other value almost surely
does not take.

Proof. Let b ∈ A be the co-atom of our algebra. We know
from Corollary 9 that for some a ∈ A, Tτ � ϕ ↔ a. Then,
by finitarity (or, equivalently, compactness), for some finite
set {χΦ1

, . . . , χΦr} ⊆ Tτ ,
∧
{χΦ1

, . . . , χΦr} � ϕ↔ a, which
means that

(ϕ↔ a)→ b � (
∧
{χΦ1

, . . . , χΦr})→ b, i.e.

(ϕ↔ a)→ b �
∨
{χΦ1

→ b, . . . , χΦr → b}.

We can observe that for any n,

µ1
A

n ((ϕ↔ a)→ b) ≤

µ1
A

n ((χΦ1
→ b) ∨ · · · ∨ (χΦr → b)) ≤

µ1
A

n (χΦ1
→ b) + · · ·+ µ1

A

n (χΦr → b)

The latter tends to 0 as n approaches ∞ from Lemma 14
(since for any θ, µ1

A

n (θ) = 1− µ1
A

n (θ → b)), hence

µ1
A

((χΦ1
→ b) ∨ · · · ∨ (χΦr → b)) = 0, so

µ1
A

((ϕ↔ a)→ b) = 0.

But then µ1
A

(ϕ↔ a) = 1, which implies that µa(ϕ) = 1.

The classical version of this result (e.g. [27, Thm. 7.4.7]),
for B2, simply states that either µ1(ϕ) = 1 and µ0(ϕ) = 0,
or µ1(ϕ) = 0 and µ0(ϕ) = 1. This is an immediate corollary
of Theorem 16, and so is the central result from [29].

From our 0-1 law and Example 12, it follows, as in the
classical case, that the infinitary sentence

∨
k>1 ϕ

=2k+1 in
the empty signature is not 1-equivalent to any first-order
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sentence θ in a relational signature, i.e., there is no θ such
that M |= θ iff M |=

∨
k>1 ϕ

=2k+1. This is because the
formula

∨
k>1 ϕ

=2k+1 is crisp, i.e., it can only take values in

the set {0A, 1A} since equality is assumed to be crisp. And
here lies one of the uses of a result of this kind: it allows us to
measure the expressive power of a language satisfying a 0-1
law in the way that compactness does in the setting of infinite
model theory.

IV. 0-1 LAW: THE CASE OF L kA
∞ω

In this section, we extend our 0-1 law to the infinitary
language L kA

∞ω , where we admit arbitrarily long infinite lattice
conjunctions and disjunctions but only finitely many (in fact,
k-many) individual variables. If L kA

∞ω is to satisfy a 0-1 law,
it must be, of course, expressively weaker than the full L A

∞ω .

Example 17. The language L ωA
∞ω =

⋃
k L kA
∞ω is, in general,

more expressive than its counterpart L A
ωω. For example, in the

class of finite orderings, we can write in L 2B2
∞ω a sentence in

the signature of linear orderings saying that the cardinality of
the domain of the ordering is an even number (in particular,
this sentence is an infinitary disjunction of sentences χn from
L B2
ωω in just two variables saying that the domain is exactly

of size n, for n even) [19, Example 3.3.1 (a)]. On the other
hand, it is well known [30, Thm. 3.6] that for any formula
ϕ of L B2

ωω in the signature of linear orderings there are two
linear orderings of even and odd size, respectively, satisfying
ϕ.

Proposition 18. Consider models M and N for a finite
signature τ . Then, (i) =⇒ (ii), where
(i) M ∼=k N, i.e., M and N are k-potentially isomorphic.

(ii) ‖ϕ‖M = ‖ϕ‖N for any sentence of L kA
∞ω .

Proof. This follows by adapting the proof of [17, Theorem 14
(b)]. That proof appeals to the classical two-sorted translation
from [16] and classical results for back-and-forth systems. For
us it suffices to observe that the aforementioned translation
preserves the number of variables allowed in the language
from the many-valued point of view in the number of variables
allowed in the language in the second sort of the translation.
Rather than appealing to the classical Fraı̈ssé theorem as
in [16], in our case the reader simply has to appeal to a simple
two-sorted variant of the standard finite-variable version of the
result [30, Lemma 11.10].

Proposition 19. Consider a finite signature τ . If M,N are
models of χrΦ for all r ≤ k, then M ∼=k N, i.e., M and N are
k-potentially isomorphic.

Proof. To show that M ∼=k N, we define the following set I
of partial isomorphisms:

I = {p | r ≤ k, p : M −→ N is a partial mapping, p :=
−→e 7→

−→
d ,−→e = e1, . . . , er,

−→
d = d1, . . . , dr,

−→e ≡at
−→
d }.

Note that I is non-empty as it contains ∅. Furthermore,
it clearly is downward-closed on the right: if p ∈ I and
p′ ⊆ p (hence p′ is also a partial mapping meeting all the
requirements) then p′ ∈ I .

Next, we check the forth property. Suppose that p ∈ I ,
|dom(p)| < k, p : M −→ N is a partial mapping p := −→e 7→−→
d ,−→e = e1, . . . , er,

−→
d = d1, . . . , dr,

−→e ≡at
−→
d . Then, take

er+1 ∈ M (distinct from any element in the sequence −→e ).
Consider now the A-valued set Φ with domain ∆r+1 defined
as follows:

Φ(ϕ(v1, . . . , vr, vr+1)) = ‖ϕ[−→e , er+1]‖M .

Since r < k, we must have that N |= χrΦ. Hence,

N |= (∃vr+1)((
∧

1≤i≤r

vi 6≈ vr+1) ∧ (
∧

ϕ∈∆r+1

ϕ↔ Φ(ϕ)))[
−→
d ],

Consequently, for some dr+1 ∈ N ,

N |= (
∧

1≤i≤r

vi 6≈ vr+1) ∧ (
∧

ϕ∈∆r+1

ϕ↔ Φ(ϕ))[
−→
d , dr+1].

Now simply consider the partial mapping p′ : M −→ N

defined as p′ := −→e ′ 7→
−→
d ′ where −→e ′ = e1, . . . , er, er+1,

−→
d =

d1, . . . , dr, dr+1. This works because −→e ′ ≡at
−→
d ′.

Finally, the back property follows similarly and the proof
is complete.

Theorem 20 (Second 0-1 Law). If ϕ is a sentence of L kA
∞ω

in the finite relational signature τ , then there is a ∈ A such
that µa(ϕ) = 1 and for any other truth-value a′, µa

′
(ϕ) = 0.

This immediately give us the result for the language L ωA
∞ω as

well.

Proof. Consider the finitary conjunction
∧
r≤k χ

r
Φ. Then,

from Proposition 18 and Proposition 19, for some a ∈ A,∧
r≤k χ

r
Φ � ϕ ↔ a. The rest of the proof is just as Theorem

16.

This result serves as a tool for showing that properties
of structures whose asymptotic probabilities do not converge
to a limit cannot be expressed even in a relatively powerful
language like L ωA

∞ω .

V. CONCLUDING REMARKS

It is important to observe that our main result (Theorem
16) does not simply follow from applying the classical 0-1
law to the two-sorted language employed in [16] to provide
a translation of L A

ωω into classical logic. The problem is that
the two-sorted language in question contains several functions
and constant symbols, whereas the classical 0-1 law holds, in
general, only for languages where those features are absent.
Hence, our result cannot be obtained in a lazy manner: one
must do the “honest toil”, let it be from a classical two-sorted
standpoint or from our many-valued one.

Furthermore, there is an interesting dynamics at play when
looking at results in many-valued model theory through the
different prisms of many-valued and classical logic. For ex-
ample, from the point of view of classical logic, Theorem 16
is a prima facie useless claim about a very specific two-sorted
language. In contrast, from the perspective of many-valued
logic, Theorem 16 is a generalization of an important classical
theorem. This observation provides evidence to believe that
the many-valued approach can have certain advantages over
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the classical approach, at the very minimum methodologically.
However, since the 0-1 law is also known to fail in classical
logic for languages with function symbols in general [19,
Example 4.4.1(b)], we also have that the two-sorted translation
we obtain of our result is a classical case where under certain
conditions we obtain the 0-1 law for the identities of a
language with function symbols.

Regarding future work, we plan to develop a more general
and lengthy study of finite model theory of many-valued logics
which we conjecture will yield, by different methods to those
of the present paper, 0-1 laws for logics with semantics over
arbitrary finite lattices.
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