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The paper deals with a comprehensive theory of mappings, whose local behavior can 
be described by means of linear subspaces, contained in the graphs of two (primal 
and dual) generalized derivatives. This class of mappings includes the graphically 
Lipschitzian mappings and thus a number of multifunctions, frequently arising in 
optimization and equilibrium problems. The developed theory makes use of new 
generalized derivatives, provides us with some calculus rules and reveals a number of 
interesting connections. In particular, it enables us to construct a modification of the 
semismooth* Newton method with improved convergence properties and to derive a 
generalization of Clarke’s Inverse Function Theorem to multifunctions together with 
new efficient characterizations of strong metric (sub)regularity and tilt stability.
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1. Introduction

When implementing the semismooth∗ Newton method [14] for solving an inclusion of the form

0 ∈ F (x)

with some set-valued mapping F : Rn ⇒ Rn, we observed that it is advantageous to work with linear 
subspaces L ⊆ Rn ×Rn having dimension n and contained in the graph of the limiting coderivative, i.e.,

L ⊆ gphD∗F (x, y)

at points (x, y) ∈ gphF .
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However, this paper goes far beyond the analysis of the above issue and presents a comprehensive study 
of a class of mappings, whose local behavior can be described by appropriately constructed linear subspaces. 
This class turns out to be rather broad and the developed theory helps us both to suggest an efficient mod-
ification of the semismooth∗ Newton method as well as to derive a number of new results concerning strong 
metric subregularity, strong metric regularity and tilt stability. More precisely, for the mentioned mapping 
F , primal and dual generalized derivatives are introduced, whose elements are subspaces of dimension n. In 
order to define these derivatives, we consider points in the graph of the mapping where the tangent cone 
amounts to a subspace and then perform an outer limiting operation in a certain compact metric space.

Our construction is motivated by the definition of the B-subdifferential (Bouligand-subdifferential) for 
single-valued mappings, whose elements are given as limit of Jacobians at points where the mapping is 
Fréchet differentiable. Note that the tangent cone to the graph of a map is a subspace whenever the mapping 
is differentiable at the point under consideration. Instead of computing limits of matrices, we consider the 
limit of subspaces given by the graph of the linear mappings induced by the matrices. When the mapping 
is Lipschitzian, then we obtain a one-to-one correspondence between the new primal generalized derivative 
and the B-subdifferential. However, for non-Lipschitzian single-valued mappings there will be a difference 
because we are considering limits of subspaces in a compact metric space whereas the underlying matrices 
can be unbounded.

There are some relations between our generalized derivatives and existing ones. The dual derivative 
consists of subspaces contained in the limiting coderivative and the elements of the primal derivative are 
subspaces contained in the so-called outer limiting graphical derivative. To the best of our knowledge, 
the latter has not yet been considered in the literature and is contained in the so-called strict graphical 
derivative.

Our theory is not applicable to arbitrary mappings. However, as already mentioned, the class of mappings 
which are suited for our approach, is rather broad and important for applications. In particular, every map-
ping which is graphically Lipschitzian, i.e., its graph coincides under some change of coordinates with the 
graph of a locally Lipschitzian mapping, belongs to this class. Graphically Lipschitzian mappings have been 
already considered by Rockafellar [33]. E.g., locally maximally hypomonotone mappings like the subdiffer-
ential mapping of prox-regular and subdifferentially continuous functions possess this property [27]. Thus, 
our approach is particularly suitable for second-order theory and we will establish a strong relationship with 
the so-called quadratic bundle introduced in the recent paper [35]. Note that in [33] also a limit of tangent 
spaces has been considered. However, in [33] an inner limit with respect to the usual set-convergence has 
been used yielding a different sort of results.

Within the framework of the new theory one can introduce a new regularity notion leading to an adap-
tation of the semismooth∗ Newton method. This notion is weaker than metric regularity and enables us to 
streamline the algorithm and to relax the assumptions, ensuring its locally superlinear convergence. Un-
der the respective regularity condition it is also possible to show that a semismooth∗ mapping is strongly 
metrically subregular, not only at the reference point itself but also on a neighborhood of it. It seems that 
this somewhat extended property of strong metric subregularity around the reference point has not been 
considered yet. As a byproduct, we present a characterization of this property by means of the outer limiting 
graphical derivative.

Finally we turn our attention to the property of strong metric regularity. Since strongly regular mappings 
are graphically Lipschitzian by the definition, the preceding theory enables us to reveal some interesting new 
connections. In particular, one obtains a generalization of Clarke’s Inverse Function Theorem to set-valued 
mappings and, when applied to specific problem classes, these results lead to new characterizations of strong 
metric regularity for locally maximally monotone operators and to a new characterization of tilt-stability. 
Compared with existing characterizations, the new ones have the advantage, that not the whole strict 
graphical derivative or limiting coderivative must be checked (as, e.g., in [20,8,28]) but only a condition on 
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the subspaces contained in its graph. In this way the arsenal of available criteria for strong metric regularity 
(cf. [31,9,20,15,8,10]) and tilt stability (cf. [28,11,24]) is enriched.

The plan of the paper is as follows. After the Preliminaries, devoted to relevant notions from variational 
analysis, in Section 3 we introduce and analyze the crucial class of SCD (subspace containing derivative) 
mappings. In their analysis we make use of the mentioned generalized derivatives, for which some basic 
calculus rules are developed and exact formulas in case of graphically Lipschitzian mappings are provided. 
In Section 4 we introduce the notion of SCD-regularity, which plays a central role in the subsequent sections. 
Section 5 deals with the adaptation of the semismooth∗ Newton method to SCD mappings. The property of 
strong metric subregularity around a point is characterized in Section 6. Finally, in Section 7 we present a 
generalization of Clarke’s Inverse Function Theorem and new characterizations of strong metric regularity 
and tilt stability for various classes of SCD mappings.

The following notation is employed. Given a linear subspace L ⊆ Rn, L⊥ denotes its orthogonal comple-
ment and, for a closed cone K with vertex at the origin, K◦ signifies its (negative) polar. Further, given a 
multifunction F , gphF := {(x, y) | y ∈ F (x)} stands for its graph. For an element u ∈ Rn, ‖u‖ denotes its 
Euclidean norm and Bδ(u) denotes the closed ball around u with radius δ. In a product space we use the 
norm ‖(u, v)‖ :=

√
‖u‖2 + ‖v‖2. Given an m ×n matrix A, we employ the operator norm ‖A‖ with respect 

to the Euclidean norm and we denote the range of A by rge A. Given a set Ω ⊂ Rs, we define the distance 
of a point x to Ω by dΩ(x) := dist(x, Ω) := inf{‖y − x‖ | y ∈ Ω} and the indicator function is denoted by 
δΩ. When a mapping F : Rn → Rm is differentiable at x, we denote by ∇F (x) its Jacobian.

2. Preliminaries

Throughout the whole paper, we will frequently use the following basic notions of modern variational 
analysis. All the sets under consideration are supposed to be locally closed around the points in question 
without further mentioning.

Definition 2.1. Let A be a set in Rs and let x̄ ∈ A. Then

(i) The tangent (contingent, Bouligand) cone to A at x̄ is given by

TA(x̄) := Lim sup
t↓0

A− x̄

t

and the paratingent cone to A at x̄ is given by

TP
A (x̄) := Lim sup

x
A→ x̄
t↓0

A− x

t

(ii) The set

N̂A(x̄) := (TA(x̄))◦

is the regular (Fréchet) normal cone to A at x̄, and

NA(x̄) := Lim sup
A

x→x̄

N̂A(x)

is the limiting (Mordukhovich) normal cone to A at x̄. Given a direction d ∈ Rs,
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NA(x̄; d) := Lim sup
t↓0

d′→d

N̂A(x̄ + td′)

is the directional limiting normal cone to A at x̄ in direction d.

In this definition “Lim sup” stands for the Painlevé-Kuratowski outer (upper) set limit, see, e.g., [1]. If A
is convex, then N̂A(x̄) = NA(x̄) amounts to the classical normal cone in the sense of convex analysis and we 
will write NA(x̄). By the definition, the limiting normal cone coincides with the directional limiting normal 
cone in direction 0, i.e., NA(x̄) = NA(x̄; 0), and NA(x̄; d) = ∅ whenever d /∈ TA(x̄).

The above listed cones enable us to describe the local behavior of set-valued maps via various generalized 
derivatives. All the set-valued mappings under consideration are supposed to have locally closed graph
around the points in question.

Definition 2.2. Consider a multifunction F : Rn ⇒ Rm and let (x̄, ȳ) ∈ gphF .

(i) The multifunction DF (x̄, ȳ) : Rn ⇒ Rm given by gphDF (x̄, ȳ) = TgphF (x̄, ȳ) is called the graphical 
derivative of F at (x̄, ȳ).

(ii) The multifunction D∗F (x̄, ȳ) : Rn ⇒ Rm given by gphD∗F (x̄, ȳ) = TP
gphF (x̄, ȳ) is called the strict 

(paratingent) derivative of F at (x̄, ȳ).
(iii) The multifunction D̂∗F (x̄, ȳ) : Rm ⇒ Rn defined by

gph D̂∗F (x̄, ȳ) = {(y∗, x∗) | (x∗,−y∗) ∈ N̂gphF (x̄, ȳ)}

is called the regular (Fréchet) coderivative of F at (x̄, ȳ).
(iv) The multifunction D∗F (x̄, ȳ) : Rm ⇒ Rn, defined by

gphD∗F (x̄, ȳ) = {(y∗, x∗) | (x∗,−y∗) ∈ NgphF (x̄, ȳ)}

is called the limiting (Mordukhovich) coderivative of F at (x̄, ȳ).
(v) Given a pair of directions (u, v) ∈ Rn ×Rm, the multifunction D∗F ((x̄, ȳ); (u, v)) : Rm ⇒ Rn, defined 

by

gphD∗F ((x̄, ȳ); (u, v)) = {(y∗, x∗) | (x∗,−y∗) ∈ NgphF ((x̄, ȳ); (u, v))}

is called the directional limiting coderivative of F at (x̄, ȳ) in direction (u, v).

The directional limiting normal cone and coderivative were introduced by the first author in [12] and 
various properties of these objects can be found also in [13] and in the references therein. Note that 
D∗F (x̄, ȳ) = D∗F ((x̄, ȳ); (0, 0)) and that domD∗F ((x̄, ȳ); (u, v)) = ∅ whenever v /∈ DF (x̄, ȳ)(u).

Note that by [34, Proposition 6.6] and the definition of the limiting coderivative we have

gphD∗F (x̄, ȳ) = Lim sup
(x,y) gph F−→ (x̄,ȳ)

gphD∗F (x, y). (1)

If F is single-valued, we can omit the second argument and write DF (x), D̂∗F (x), . . . instead of 
DF (x, F (x)), D̂∗F (x, F (x)), . . .. However, be aware that when considering limiting objects at x where 
F is not continuous, it is not enough to consider only sequences xk → x but we must work with sequences 
(xk, F (xk)) → (x, F (x)).
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Definition 2.3. Let U ⊂ Rn be open and let F : U → Rm be a mapping. The B-subdifferential of F at x ∈ U

is defined as

∇F (x) := {A | ∃xk → x : F is Fréchet differentiable at xk and A = lim
k→∞

∇F (xk)} (2)

Recall that the Clarke Generalized Jacobian is given by conv∇F (x), i.e., the convex hull of the B-
subdifferential.

There exists the following relation between the B-subdifferential and the coderivative of F , which states 
that every element from the B-subdifferential defines a certain subspace contained in the graph of the 
coderivative.

Proposition 2.4. Let U ⊂ Rn be open and let F : U → Rm be a mapping. Let F be continuous at x ∈ U and 
let A ∈ ∇F (x). Then

(y∗, AT y∗) ∈ gphD∗F (x) ∀y∗ ∈ Rm.

Proof. Consider A ∈ ∇F (x) together with some sequence xk → x such that ∇F (xk) → A as k → ∞. By [34, 
Example 9.25(b)] we have TgphF (xk, F (xk)) = {(u, ∇F (xk)u) | u ∈ Rn} and therefore (y∗, ∇F (xk)T y∗) ∈
gph D̂∗F (xk), ∀y∗ ∈ Rm. By passing to the limit, the assertion follows from the definition of the limiting 
coderivative. �

If the mapping F : U → Rm is Lipschitz continuous, by Rademacher’s Theorem F is differentiable 
almost everywhere in U and ‖∇F (x)‖ is bounded there by the Lipschitz constant of F . Thus ∇F (x̄) �= ∅
for Lipschitz continuous mappings F .

Let q : Rn → R̄ be an extended-real-valued function with the domain and the epigraph

dom q := {x ∈ Rn | q(x) < ∞}, epi q := {(x, α) ∈ Rn ×R | α ≥ q(x)}.

The (limiting/Mordukhovich) subdifferential of q at x̄ ∈ dom q is defined geometrically by

∂q(x̄) := {x∗ ∈ Rn | (x∗,−1) ∈ Nepi q(x̄, q(x̄))}.

This subdifferential is a general extension of the classical gradient for smooth functions and of the classical 
subdifferential of convex ones.

If q(x̄) is finite, define the parametric family of second-order difference quotients for q at x̄ for x̄∗ ∈ Rn

by

Δ2
t q(x̄, x̄∗)(w) := q(x̄ + tw) − q(x̄) − t〈x̄∗, w〉

1
2 t

2 with w ∈ Rn, t > 0.

The second-order subderivative of q at x̄ for x̄∗ is given by

d2q(x̄, x̄∗)(w) = lim inf
t↓0

w′→w

Δ2
t q(x̄, x̄∗)(w′).

q is called twice epi-differentiable at x̄ for x̄∗, if the functions Δ2
t q(x̄, ̄x∗) epi-converge to d2q(x̄, ̄x∗) as t ↓ 0.

Let us now recall the following regularity notions.

Definition 2.5. Let F : Rn ⇒ Rm be a mapping and let (x̄, ȳ) ∈ gphF .
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1. F is said to be metrically subregular at (x̄, ȳ) if there exists κ ≥ 0 along with some neighborhood X of 
x̄ such that

dist(x, F−1(ȳ)) ≤ κ dist(ȳ, F (x)) ∀x ∈ X. (3)

The infimum over all κ ≥ 0 such that (3) holds for some neighborhood X is denoted by subregF (x̄, ȳ).
2. F is said to be strongly metrically subregular at (x̄, ȳ) if it is metrically subregular at (x̄, ȳ) and there 

exists a neighborhood X ′ of x̄ such that F−1(ȳ) ∩X ′ = {x̄}.
3. F is said to be metrically regular around (x̄, ȳ) if there is κ ≥ 0 together with neighborhoods X of x̄

and Y of ȳ such that

dist(x, F−1(y)) ≤ κ dist(y, F (x)) ∀(x, y) ∈ X × Y. (4)

The infimum over all κ ≥ 0 such that (4) holds for some neighborhoods X, Y is denoted by regF (x̄, ȳ).
4. F is said to be strongly metrically regular around (x̄, ȳ) if it is metrically regular around (x̄, ȳ) and F−1

has a single-valued localization around (ȳ, ȳ), i.e., there are open neighborhoods Y ′ of ȳ, X ′ of x̄ and a 
mapping h : Y ′ → Rn with h(ȳ) = x̄ such that gphF ∩ (X ′ × Y ′) = {(h(y), y) | y ∈ Y ′}.

It is well-known, see, e.g., [10] that the property of (strong) metric subregularity for F at (x̄, ȳ) is 
equivalent with the property of (isolated) calmness for F−1 at (ȳ, ̄x). Further, F is metrically regular 
around (x̄, ȳ) if and only if the inverse mapping F−1 has the so-called Aubin property around (ȳ, ̄x). In this 
paper we will frequently use the following characterization of strong metric regularity.

Theorem 2.6 ( cf. [10, Proposition 3G.1]). F : Rn ⇒ Rm is strongly metrically regular around (x̄, ȳ) if and 
only if F−1 has a Lipschitz continuous localization h around (ȳ, ̄x). In this case there holds

regF (x̄, ȳ) = lim sup
y,y′→ȳ
y 	=y′

‖h(y) − h(y′)‖
‖y − y′‖ .

In this paper we will also use the following point-based characterizations of the above regularity properties.

Theorem 2.7. Let F : Rn ⇒ Rm be a mapping and let (x̄, ȳ) ∈ gphF .

(i) (Levy-Rockafellar criterion) F is strongly metrically subregular at (x̄, ȳ) if and only if

0 ∈ DF (x̄, ȳ)(u) ⇒ u = 0, (5)

and in this case one has

subregF (x̄, ȳ) = sup{‖u‖ | (u, v) ∈ gphDF (x̄, ȳ), ‖v‖ ≤ 1}.

(ii) (Mordukhovich criterion) F is metrically regular around (x̄, ȳ) if and only if

0 ∈ D∗F (x̄, ȳ)(y∗) ⇒ y∗ = 0. (6)

Further, in this case one has

reg F (x̄, ȳ) = sup{‖y∗‖ | (y∗, x∗) ∈ gphD∗F (x̄, ȳ), ‖x∗‖ ≤ 1}. (7)



H. Gfrerer, J.V. Outrata / J. Math. Anal. Appl. 508 (2022) 125895 7
(iii) F is strongly metrically regular around (x̄, ȳ) if and only if

0 ∈ D∗F (x̄, ȳ)(u) ⇒ u = 0 (8)

and (6) holds. In this case one also has

reg F (x̄, ȳ) = sup{‖u‖ | (u, v) ∈ gphD∗F (x̄, ȳ), ‖v‖ ≤ 1}. (9)

Proof. Statement (i) follows from [10, Theorem 4E.1], see also [21]. Statement (ii) can be found in [22, 
Theorem 3.3]. The criterion for strong metric regularity follows from Dontchev and Frankowska [8, Theorem 
16.2] by taking into account that the condition x̄ ∈ lim infy→ȳ F

−1(y) appearing in [8, Theorem 16.2] can 
be ensured by the requirement that F is metrically regular which in turn can be characterized by the 
Mordukhovich criterion. �

For a sufficient condition for metric subregularity based on directional limiting coderivatives we refer to 
[13].

The properties of (strong) metric regularity and strong metric subregularity are stable under Lipschitzian 
and calm perturbations, respectively, cf. [10]. Further note that the property of (strong) metric regularity 
holds around all points belonging to the graph of F sufficiently close to the reference point, whereas the 
property of (strong) metric subregularity is guaranteed to hold only at the reference point. This leads to 
the following definition.

Definition 2.8. We say that the mapping F : Rn ⇒ Rm is (strongly) metrically subregular around (x̄, ȳ) ∈
gphF if there is a neighborhood W of (x̄, ȳ) such that F is (strongly) metrically subregular at every point 
(x, y) ∈ gphF ∩W and we define

l-subregF (x̄, ȳ) := lim sup
(x,y) gph F−→ (x̄,ȳ)

subregF (x, y) < ∞.

In this case we will also speak about (strong) metric subregularity on a neighborhood.

Note that every polyhedral multifunction, i.e., a mapping whose graph is the union of finitely many 
convex polyhedral sets, is metrically subregular around every point of its graph by Robinson’s result [32]. 
In Section 6, characterizations of strong metric subregularity on a neighborhood will be investigated.

Next we introduce the semismooth∗ sets and mappings.

Definition 2.9 (cf. [14]).

1. A set A ⊆ Rs is called semismooth∗ at a point x̄ ∈ A if for all u ∈ Rs it holds

〈x∗, u〉 = 0 ∀x∗ ∈ NA(x̄;u). (10)

2. A set-valued mapping F : Rn ⇒ Rm is called semismooth∗ at a point (x̄, ȳ) ∈ gphF , if gphF is 
semismooth∗ at (x̄, ȳ), i.e., for all (u, v) ∈ Rn ×Rm we have

〈u∗, u〉 = 〈v∗, v〉 ∀(v∗, u∗) ∈ gphD∗F ((x̄, ȳ); (u, v)). (11)

The class of semismooth* mappings is rather broad. We list here two important classes of multifunctions 
having this property.
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Proposition 2.10.

(i) Every mapping whose graph is the union of finitely many closed convex sets is semismooth∗ at every 
point of its graph.

(ii) Every mapping with closed subanalytic graph is semismooth∗ at every point of its graph.

Proof. The first assertion was already shown in [14, Proposition 3.4, 3.5]. As mentioned in [14, Remark 
3.10], the semismooth∗ property of sets amounts to the notion of semismoothness introduced in [16]. It 
follows thus from [19, Theorem 2], that all closed subanalytic sets are automatically semismooth∗ and the 
second statement holds by the definition of semismooth∗ mappings. �

The statement of Proposition 2.10(ii) can be considered as the counterpart to [4], where it is shown that 
locally Lipschitz tame mappings F : U ⊆ Rn → Rm are semismooth in the sense of Qi and Sun [30]. In 
case of single-valued Lipschitzian mappings the semismooth∗ property is equivalent with the semismooth 
property introduced by Gowda [15], which is weaker than the one in [30].

In the above definition the semismooth∗ sets and mappings have been defined via directional limiting 
normal cones and coderivatives. For our purpose it is convenient to make use of equivalent characterizations 
in terms of standard (regular and limiting) normal cones and coderivatives, respectively.

Proposition 2.11 (cf. [14, Corollary 3.3]). Let F : Rn ⇒ Rm and (x̄, ȳ) ∈ gphF be given. Then the following 
three statements are equivalent

(i) F is semismooth∗ at (x̄, ȳ).
(ii) For every ε > 0 there is some δ > 0 such that

|〈x∗, x− x̄〉 − 〈y∗, y − ȳ〉| ≤ ε‖(x, y) − (x̄, ȳ)‖‖(x∗, y∗)‖
∀(x, y) ∈ Bδ(x̄, ȳ) ∀(y∗, x∗) ∈ gph D̂∗F (x, y). (12)

(iii) For every ε > 0 there is some δ > 0 such that

|〈x∗, x− x̄〉 − 〈y∗, y − ȳ〉| ≤ ε‖(x, y) − (x̄, ȳ)‖‖(x∗, y∗)‖
∀(x, y) ∈ Bδ(x̄, ȳ) ∀(y∗, x∗) ∈ gphD∗F (x, y). (13)

3. SCD mappings

In what follows we denote by Zn the metric space of all n-dimensional subspaces of R2n equipped with 
the metric

dZ (L1, L2) := ‖P1 − P2‖

where Pi is the symmetric 2n × 2n matrix representing the orthogonal projection on Li, i = 1, 2.
Sometimes we will also work with bases for the subspaces L ∈ Zn. Let Mn denote the collection of all 

2n × n matrices with full rank n and for L ∈ Zn we define

M (L) := {Z ∈ Mn | rge Z = L},

i.e., the columns of Z ∈ M (L) are a basis for L. Further we denote by M orth(L) the set of all matrices 
Z ∈ M (L) with ZTZ = I, i.e., the columns of Z are an orthogonal basis for L. Recall that, given any 
matrix Z̄ ∈ M (L) (or Z̄ ∈ M orth(L)), there holds
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M (L) = {Z̄B | B nonsingular n× n matrix} (M orth(L) = {Z̄B | B orthogonal n× n matrix}).

Further recall that the 2n × 2n matrix P , representing the orthogonal projection on some L ∈ Zn, admits 
the representations

P = Z(ZTZ)−1ZT , Z ∈ M (L) and P = ZZT , Z ∈ M orth(L). (14)

Lemma 3.1.

(i) Let Zk ∈ Mn be a sequence converging to some Z ∈ Mn. Then rge Zk converges in Zn to rge Z ∈ Zn.
(ii) Let Lk ∈ Zn be a sequence converging to L ∈ Zn. Then there is a sequence Zk ∈ M (Lk) converging 

to some Z ∈ M (L).
(iii) Let Ak be a sequence of nonsingular 2n × 2n matrices converging to a nonsingular matrix A and let 

Lk ∈ Zn be a sequence converging to L ∈ Zn. Then limk→∞ dZ (AkLk, AL) = 0.
(iv) The metric space Zn is compact.
(v) Let Lk ∈ Zn be a sequence and let L ∈ Zn. Then Lk converges to L in Zn, i.e., limk→∞ dZ (Lk, L) = 0, 

if and only if limk→∞ Lk = L in the sense of Painlevé-Kuratowski convergence.

Proof. The first statement follows immediately from Z(ZTZ)−1ZT = limk→∞ Zk(ZT
k Zk)−1ZT

k together 
with (14). In order to prove (ii), choose Zk ∈ M orth(Lk) and Z ∈ M orth(L). Then ZZT = limk→∞ ZkZ

T
k

due to Lk
Zn−→L and consequently Z = ZZTZ = limk→∞ Z̃k with Z̃k := Zk(ZT

k Z). Hence, for sufficiently 
large k we have Z̃k ∈ Mn and Z̃k ∈ M (Lk) follows. This proves (ii) and (iii) follows from (ii) and (i). 
In order to prove the compactness of Zn, consider a sequence Lk ∈ Zn together with basis matrices 
Zk ∈ M orth(Lk). By possibly passing to a subsequence we may assume that Zk converges to some Z. 
Since ZTZ = limk→∞ ZT

k Zk = I, we conclude Z ∈ Mn and rge Z = limk→∞ Lk ∈ Zn by (i). Hence the 
metric space Zn is (sequentially) compact. Finally, by [34, Example 5.35] there holds Lk → L in the sense 
of Painlevé-Kuratowski convergence if and only if the projections PLk

on Lk converge graphically to the 
projection PL on L. Since the projections on subspaces in Zn are linear mappings with norm equal to 1, 
graphical convergence of PLk

to PL is equivalent to uniform convergence limk→∞ ‖PLk
− PL‖ = 0 by [34, 

Theorems 5.43, 5.44]. �
We treat every element of R2n as a column vector. In order to keep our notation simple we write (u, v)

instead of 
(
u

v

)
∈ R2n when this does not lead to confusion. In order to refer to the components of the 

vector z =
(
u

v

)
we set π1(z) := u, π2(z) := v.

Let L ∈ Zn and consider Z ∈ M (L), which can be written in the form Z =
(

A

B

)
. But we will rather 

write it as Z = (A, B); thus rge (A, B) := {(Au, Bu) | u ∈ Rn} 
.=
{( Au

Bu

)
| u ∈ Rn

}
= L. Similarly as 

before, we will also use π1(Z) := A, π2(Z) := B for referring to the two n × n parts of Z.
Further, for every L ∈ Zn we define

L∗ := {(−v∗, u∗) | (u∗, v∗) ∈ L⊥}, (15)

where L⊥ denotes as usual the orthogonal complement of L. Note that

(L∗)⊥ = {(v, u) | 〈v,−v∗〉 + 〈u, u∗〉 = 0 ∀(u∗, v∗) ∈ L⊥} = {(v, u) | (u,−v) ∈ (L⊥)⊥}
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and therefore

(L∗)∗ = {(u, v) | (v,−u) ∈ (L∗)⊥} = {(u, v) | (−u,−v) ∈ L} = L.

We denote by Sn the 2n × 2n orthogonal matrix

Sn :=
(

0 −I
I 0

)
,

so that L∗ = SnL
⊥. If P represents the orthogonal projection on L then I−P is the orthogonal projection on 

L⊥ and Sn(I−P )ST
n is the orthogonal projection on L∗. Given two subspaces L1, L2 ∈ Zn with orthogonal 

projections P1, P2, we obtain

dZ (L∗
1, L

∗
2) = ‖Sn(I − P1)ST

n − Sn(I − P2)ST
n ‖ = ‖Sn(I − P1 − (I − P2))ST

n ‖ = ‖P1 − P2‖ = dZ (L1, L2).

Thus the mapping L �→ L∗ defines an isometry on Zn and a sequence (Lk) converges in Zn to some L if 
and only if the sequence (L∗

k) converges to L∗.
Consider the following relation between the graphical derivative and differentiability in case of single-

valued mappings.

Lemma 3.2. Consider f : U → Rn with U ⊆ Rn open and a point x ∈ U . Then one has:

(i) If f is Fréchet differentiable at x, then DF (x) is a single-valued linear mapping, DF (x)(u) = ∇f(x)u, 
u ∈ Rn, and consequently Tgph f (x, f(x)) = rge (I, ∇f(x)) ∈ Zn.

(ii) Conversely, if Tgph f (x, f(x)) ∈ Zn and f is calm at x, i.e., there is some κ ≥ 0 such that the estimate 
‖f(x′) − f(x)‖ ≤ κ‖x′ − x‖ holds for all x′ sufficiently close to x, then f is Fréchet differentiable at x.

Proof. The statement (i) follows immediately from [34, Exercise 9.25]. In order to show (ii), we first 
prove that there is an n × n matrix A such that Tgph f (x, f(x)) = rge (I, A). Considering any Z ∈
M (Tgph f (x, f(x))), we will show that B := π1(Z) is nonsingular. Assuming on the contrary that B is 
singular, there is some p �= 0 with Bp = 0. Then v := π2(Z)p �= 0 because otherwise Zp = 0 which is 
not possible. Hence (0, v) = Zp ∈ Tgph f and there exists sequences tk ↓ 0 and (uk, vk) → (u, v) such that 
f(x) +tkvk = f(x +tkuk) ∀k implying tk‖vk‖ = ‖f(x +tkuk) −f(x)‖ ≤ κtk‖uk‖ and ‖v‖ = limk→∞ ‖uk‖ = 0, 
a contradiction. Hence B is nonsingular and we obtain Tgph f (x, f(x)) = rge (B, π2(Z)) = rge (I, π2(Z)B−1)
proving our claim with A = π2(Z)B−1. Hence Df(x)u = Au, u ∈ Rn and the assertion follows once more 
from [34, Exercise 9.25]. �

Note that, when f : U → Rn, U ⊆ Rn open, is Fréchet differentiable at u ∈ U , then we even have 
Tgph f (u, f(u)) = Limt↓0t

−1(gph f − (u, f(u))).
We now introduce new generalized derivatives for set-valued mappings. We confine ourselves to the 

particular case F : Rn ⇒ Rn and, as we will see in the sequel, this restriction still permits a considerable 
number of applications.

Definition 3.3. Consider a mapping F : Rn ⇒ Rn.

1. We say that F is graphically smooth of dimension n at (x, y) ∈ gphF , if TgphF (x, y) = gphDF (x, y) ∈
Zn. Further we denote by OF the set of all points where F is graphically smooth of dimension n.

2. Associate with F the four mappings ŜF , Ŝ ∗F , SF , S ∗F , all of which map gphF ⇒ Zn and are 
given by
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ŜF (x, y) :=
{
{gphDF (x, y)} if (x, y) ∈ OF ,
∅ else,

Ŝ ∗F (x, y) :=
{
{gphDF (x, y)∗} if (x, y) ∈ OF ,
∅ else,

SF (x, y) := Lim sup
(u,v) gph F−→ (x,y)

ŜF (u, v)

= {L ∈ Zn | ∃(xk, yk)
OF−→(x, y) : lim

k→∞
dZ (L, gphDF (xk, yk)) = 0},

S ∗F (x, y) = Lim sup
(u,v) gph F−→ (x,y)

Ŝ ∗F (u, v)

= {L ∈ Zn | ∃(xk, yk)
OF−→(x, y) : lim

k→∞
dZ (L, gphDF (xk, yk)∗) = 0}.

3. (a) We say that F has the SCD (subspace containing derivative) property at (x, y) ∈ gphF , if 
S ∗F (x, y) �= ∅.

(b) We say that F has the SCD property around (x, y) ∈ gphF , if there is a neighborhood W of (x, y)
such that F has the SCD property at every (x′, y′) ∈ gphF ∩W .

(c) Finally, we call F an SCD mapping if F has the SCD property at every point of its graph.

Apart from the collections SF (x, y) and S ∗F (x, y) of subspaces we will sometimes use the unions⋃
SF (x, y) :=

⋃
L∈SF (x,y)

L,
⋃

S ∗F (x, y) :=
⋃

L∈S ∗F (x,y)

L. (16)

Remark 3.4. By definition of the regular coderivative there holds

gph D̂∗F (x, y) = gphDF (x, y)∗, (x, y) ∈ OF .

Remark 3.5. Since L �→ L∗ is an isometry on Zn and (L∗)∗ = L, we have

S ∗F (x, y) = {L∗ | L ∈ SF (x, y)}, SF (x, y) = {L∗ | L ∈ S ∗F (x, y)}.

Hence, F has the SCD property at (x, y) ∈ gphF if and only if SF (x, y) �= ∅.

Since we consider convergence in the compact metric space Zn, we obtain readily the following result.

Lemma 3.6. A mapping F : Rn ⇒ Rn has the SCD property at (x, y) ∈ gphF if and only if (x, y) ∈ cl OF . 
Further, F is an SCD mapping if and only if cl OF = cl gphF , i.e., F is graphically smooth of dimension 
n at the points of a dense subset of its graph.

The name “SCD property” is motivated by the following statement.

Lemma 3.7. Let F : Rn ⇒ Rn and let (x, y) ∈ gphF . Then 
⋃

S ∗F (x, y) ⊆ gphD∗F (x, y).

Proof. Let L ∈ S ∗F (x, y) and consider a sequence (xk, yk, Lk) → (x, y, L) with (xk, yk) ∈ OF and 
Lk := (gphDF (xk, yk))∗ ∈ Ŝ ∗F (xk, yk). By Remark 3.4 we have Lk = gph D̂∗F (xk, yk). Consider 
Zk ∈ M orth(Lk). By possibly passing to a subsequence the matrices Zk converge to some Z and L = rge Z

by Lemma 3.2. Taking into account Zkp ∈ Lk = gph D̂∗F (xk, yk), we obtain Zp = limk→∞ Zkp ∈
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gphD∗F (x, y) ∀p ∈ Rn by the Definitions 2.1, 2.2 showing that L ⊆ gphD∗F (x, y). Since this holds 
for every L ∈ S ∗F (x, y), the assertion follows. �

We will now show that the primal subspaces L ∈ SF (x, y) also belong to the graph of some suitable 
generalized derivative mapping. Consider the following definition.

Definition 3.8.

1. Let A ⊂ Rn and let x̄ ∈ A. The outer limiting tangent cone to A at x̄ is defined as

T �
A(x̄) := Lim sup

x
A→ x̄

TA(x) = Lim sup
x

A→ x̄

(
Lim sup

t↓0

A− x

t

)
(17)

2. Consider a multifunction F : Rn ⇒ Rm and let (x̄, ȳ) ∈ gphF . The outer limiting graphical derivative
of F at (x̄, ȳ) is the multifunction D�F (x̄, ȳ) : Rn ⇒ Rm given by

gphD�F (x̄, ȳ) = T �
gphF (x̄, ȳ).

Remark 3.9. Comparing (17) with the definition of the paratingent cone TP
A (x̄) it follows that T �

A(x̄) ⊆ TP
A (x̄)

and therefore D�F (x̄, ȳ)(u) ⊆ D∗F (x̄, ȳ)(u), u ∈ Rn.

Using similar arguments as in the proof of Lemma 3.7 one obtains the following result.

Lemma 3.10. Let F : Rn ⇒ Rn and let (x, y) ∈ gphF . Then 
⋃

SF (x, y) ⊆ gphD�F (x, y).

For single-valued mappings the constructions of Definition 3.3 are related to the B-subdifferential.

Lemma 3.11. Let U ⊂ Rn be open and let f : U → Rn be continuous. Then for every x ∈ U there holds

S f(x) := S (x, f(x)) ⊇ {rge (I, A) | A ∈ ∇f(x)}, (18)

S ∗f(x) := S ∗(x, f(x)) ⊇ {rge (I, AT ) | A ∈ ∇f(x)}. (19)

If f is Lipschitz continuous near x, these inclusions hold with equality and f has the SCD property around 
x.

Proof. Consider x ∈ U and A ∈ ∇f(x) together with sequences xk → x and ∇f(xk) → A. Then for each k
we have Tgph f (xk, f(xk)) = rge (I, ∇f(xk)) =: Lk ∈ Zn by Lemma 3.2 implying that (xk, f(xk)) ∈ Of and 
Ŝ f(xk) = {Lk}. Thus the subspaces Lk converge in Zn to rge (I, A) ∈ S f(x) by Lemma 3.1(i). This proves 
(18). By taking into account the identity rge (I, A)⊥ = rge (−AT , I), it follows that rge (I, A)∗ = rge (I, AT )
verifying (19). Now assume that f is Lipschitzian near x and consider L ∈ S f(x) together with a sequence 

(xk, f(xk)) 
Of−→(x, f(x)) such that Lk := Tgph f (xk, f(xk)) 

Zn−→L. By Lemma 3.2 we conclude that f is 
differentiable at xk and Lk = rge (I, ∇f(xk)). By Lipschitz continuity of f the derivatives ∇f(xk) are 
bounded. Hence, by possibly passing to a subsequence, we can assume that ∇f(xk) converges to some 

A ∈ ∇f(x) and Lk
Zn−→ rge (I, A) follows. This proves equality in (18) and equality in (19) easily follows 

from the identity rge (I, A)∗ = rge (I, AT ). Since ∇f(x) �= ∅ for Lipschitz continuous mappings, the SCD 
property at x is established. This also holds for every point sufficiently close to x and thus f has the SCD 
property even around x. �
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Remark 3.12. In particular, every Lipschitz continuous mapping f : U → Rn with U ⊆ Rn open is an SCD 
mapping. However, the converse is not true: Consider the function f(x) =

√
|x| which is an SCD mapping 

but not Lipschitz continuous.

Lemma 3.13. Consider a mapping F : Rn ⇒ Rn and let (x, y) ∈ gphF . Then

SF (x, y) = Lim sup
(u,v) gph F−→ (x,y)

SF (u, v), S ∗F (x, y) = Lim sup
(u,v) gph F−→ (x,y)

S ∗F (u, v).

Proof. We prove only the first equation. The inclusion SF (x, y) ⊆ Lim sup
(u,v) gph F−→ (x,y)

SF (u, v) =: S

follows easily from the definition of SF (x, y) together with ŜF (u, v) ⊆ SF (u, v), (u, v) ∈ gphF . In 

order to show the reverse inclusion, consider L ∈ S together with sequences (uk, vk) 
gphF−→ (x, y) and Lk ∈

SF (uk, vk) with Lk
Zn−→L. By definition, for every k we can find (u′

k, y
′
k) ∈ OF and L′

k ∈ ŜF (uk, vk))
such that ‖(uk, vk) − (u′

k, v
′
k)‖ ≤ 1

k and dZ (Lk, L′
k) ≤ 1

k . Thus (u′
k, v

′
k) 

OF−→(x, y) and L′
k

Zn−→L verifying 
L ∈ SF (x, y). �

We now provide some calculus rules.

Proposition 3.14. Given a mapping G : Rn ⇒ Rn and a mapping Φ : R2n → R2n, consider the mapping 
F : Rn ⇒ Rn given by

gphF = {(x, y) | Φ(x, y) ∈ gphG}.

Then for every (x, y) ∈ gphF such that Φ is continuously differentiable in some neighborhood of (x, y) and 
∇Φ(x, y) is nonsingular, there holds

SF (x, y) = ∇Φ(x, y)−1SG(Φ(x, y))(:= {∇Φ(x, y)−1L | L ∈ SG(Φ(x, y))}), (20)

S ∗F (x, y) = Sn∇Φ(x, y)TST
n S ∗G(Φ(x, y)). (21)

Proof. By the classical Inverse Function Theorem, there is some open neighborhood W of (x, y) such that 
Φ is a one-to-one mapping from W to the open neighborhood W̃ := Φ(W ) of Φ(x, y) and ∇Φ(x′, y′) is non-
singular for every (x′, y′) ∈ W . By [34, Exercise 6.7] we have TgphF (x′, y′) = ∇Φ(x′, y′)−1TgphG(Φ(x′, y′))
for all (x′, y′) ∈ gphF ∩ W and it follows that OG ∩ W̃ = Φ(OF ∩ W ). Consider L ∈ SF (x, y) to-
gether with sequences (xk, yk) 

OF−→(x, y) and Lk ∈ ŜF (xk, yk) converging to L. Then for all k sufficiently 
large we have TgphG(Φ(xk, yk)) = ∇Φ(xk, yk)TgphF (xk, yk) = ∇Φ(xk, yk)Lk ∈ ŜG(Φ(xk, yk)) showing 
∇Φ(x, y)L = limk→∞ ∇Φ(xk, yk)Lk ∈ SG(Φ(x, y)) by Lemma 3.1(iii). This proves that SF (x, y) ⊆
∇Φ(x, y)−1SG(Φ(x, y)).

To show the reverse inclusion, consider L ∈ SG(Φ(x, y)) together with sequences zk
OG∩W̃−→ Φ(x, y) and 

Lk ∈ ŜG(zk) with Lk → L. It follows that the sequence (xk, yk) := Φ−1(zk) ∩ W converges to (x, y)
and TgphF (xk, yk) = ∇Φ(xk, yk)−1Lk ∈ ŜF (xk, yk) implying ∇Φ(x, y)−1L ∈ SF (x, y) by Lemma 3.2(iii). 
Hence ∇Φ(x, y)−1SG(Φ(x, y)) ⊆ SF (x, y) and equation (20) follows. To prove the equation (21), just use 
Remark 3.5 together with the fact that for any L ∈ Zn we have (∇Φ(x, y)−1L)⊥ = ∇Φ(x, y)TL⊥ implying

(∇Φ(x, y)−1L)∗ = Sn∇Φ(x, y)TL⊥ = Sn∇Φ(x, y)TST
nL

∗. �
Proposition 3.15. Let F : Rn ⇒ Rn have the SCD property at (x, y) ∈ gphF and let h : U → Rn be 
continuously differentiable at x ∈ U where U ⊆ Rn is open. Then F +h has the SCD property at (x, y+h(x))
and
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S (F + h)(x, y + h(x)) =
{(

I 0
∇h(x) I

)
L | L ∈ SF (x, y)

}
(22)

S ∗(F + h)(x, y + h(x)) =
{( I 0

∇h(x)T I

)
L | L ∈ S ∗F (x, y)

}
(23)

Proof. We have gph (F + h) = {(u, v + h(u)) | (u, v) ∈ gphF} = {(x, y) | (x, y − h(x)) ∈ gphF} and the 
assertion follows from Proposition 3.14 with Φ(x, y) = (x, y − h(x)). �

Next, let us proceed to the large class of graphically Lipschitzian mappings.

Definition 3.16 (cf. [34, Definition 9.66]). A mapping F : Rn ⇒ Rm is graphically Lipschitzian of dimension 
d at (x̄, ȳ) ∈ gphF if there is an open neighborhood W of (x̄, ȳ) and a one-to-one mapping Φ from W onto 
an open subset of Rn+m with Φ and Φ−1 continuously differentiable, such that Φ(gphF ∩W ) is the graph 
of a Lipschitz continuous mapping f : U → Rn+m−d, where U is an open set in Rd.

In what follows we will refer to the mapping Φ as transformation mapping.

Proposition 3.17. Assume that F : Rn ⇒ Rn is graphically Lipschitzian of dimension n at (x̄, ȳ) ∈ gphF

with transformation mapping Φ. Then F has the SCD property around (x̄, ȳ) and for every (x, y) ∈ gphF , 
sufficiently close to (x̄, ȳ), one has

SF (x, y) = ∇Φ(x, y)−1S f(u) =
{

rge
[
∇Φ(x, y)−1

(
I

B

)]
| B ∈ ∇f(u)

}
, (24a)

S ∗F (x, y) = Sn∇Φ(x, y)TST
n S ∗f(u) =

{
rge

[
Sn∇Φ(x, y)TST

n

(
I

BT

)]
| B ∈ ∇f(u)

}
, (24b)

where f is as in Definition 3.16 and u := π1(Φ(x, y)).

Proof. Follows from Proposition 3.14 together with Lemma 3.11. �
Remark 3.18. Note that for a graphically Lipschitzian mapping F with transformation mapping Φ we have 
Φ(OF ∩ W ) = Of by the proof of Proposition 3.14, where W and f are as in Definition 3.16. At points 
(u, f(u)) ∈ Of the mapping f is Fréchet differentiable at u by Lemma 3.2(ii) and therefore Tgph f (u, f(u)) =
Limt↓0t

−1(gph f − (u, f(u))). Since the graphs of F and f coincide locally up to a change of coordinates, we 
may conclude that TgphF (x, y) = Limt↓0t

−1(gphF − (x, y)), (x, y) ∈ OF ∩W , i.e., F is proto-differentiable 
at these points, cf. [34, Section 8.H].

Corollary 3.19. Let F : Rn ⇒ Rn and let (x̄, ȳ) ∈ gphF be given. Suppose that there is an open neighborhood 
V of x̄ and a continuously differentiable mapping h : V → Rn such that F + h is strongly metrically regular 
around (x̄, ȳ + h(x̄)). Then F is graphically Lipschitzian of dimension n with transformation mapping 
Φ(x, y) = (y + h(x), x). Therefore F has the SCD property around (x̄, ȳ) and for every (x, y) ∈ gphF

sufficiently close to (x̄, ȳ) one has

SF (x, y) = {rge (B, I −∇h(x)B) | B ∈ ∇(F + h)−1(y + h(x))} (25a)

=
(

0 I
I −∇h(x̄)

)
S (F + h)−1(ȳ + h(x̄), x̄),

S ∗F (x, y) = {rge (BT , I −∇h(x)TBT ) | B ∈ ∇(F + h)−1(y + h(x))} (25b)

=
(

0 I
I −∇h(x)T

)
S ∗(F + h)−1(y + h(x), x).
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Proof. By Theorem 2.6 there are open neighborhoods U of ȳ + h(x̄), W ′ of (ȳ + h(x̄), ̄x) and a Lipschitz 
continuous mapping f : U → Rn such that gph f = gph (F+h)−1∩W ′. Since gph (F+h)−1 = {(y+h(x), x) |
(x, y) ∈ gphF, x ∈ V }, F is graphically Lipschitzian of dimension n and (25) follows from Proposition 3.17
by taking into account that

∇Φ(x, y) =
(
∇h(x) I

I 0

)
, ∇Φ(x, y)−1 =

(
0 I
I −∇h(x)

)
, Sn∇Φ(x, y)TST

n = −
(

0 I
I −∇h(x)T

)
. �

Some examples of graphically Lipschitzian mappings F : Rn ⇒ Rn of dimension n were already given 
in [33,27]. Next, we extend these examples and give an explicit description of the subspaces contained in 
SF (x, y) and S ∗F (x, y), respectively. Recall that a mapping F : Rn ⇒ Rn is said to be monotone if

〈y1 − y2, x1 − x2〉 ≥ 0 for all (xi, yi) ∈ gphF, i = 1, 2.

It is maximally monotone if, in addition, there holds gphF = gphT for every monotone mapping T : Rn ⇒
Rn with gphF ⊂ gphT . Next we define several types of local monotonicity.

Definition 3.20. Let F : Rn ⇒ Rn and let (x, y) ∈ gphF . We say the following:

1. F is locally monotone at (x, y) if there is an open neighborhood X × Y of (x, y) such that

〈y1 − y2, x1 − x2〉 ≥ 0 for all (xi, yi) ∈ gphF ∩ (X × Y ), i = 1, 2. (26)

It is locally maximally monotone if, in addition, there holds gphF ∩ (X × Y ) = gphT ∩ (X × Y ) for 
every monotone mapping T : Rn ⇒ Rn with gphF ∩ (X × Y ) ⊆ gphT .

2. F is locally (maximally) hypomonotone at (x, y) if γI+F is locally (maximally) monotone at (x, γx +y)
for some γ ≥ 0.

Related with maximally monotone operators are the so-called firmly nonexpansive mappings.

Definition 3.21.

1. A mapping f : Rn → Rn is called firmly nonexpansive if 〈f(u1) − f(u2), u1 − u2〉 ≥ ‖f(u1) − f(u2)‖2, 
u1, u2 ∈ Rn.

2. An n ×n matrix B is called firmly nonexpansive, if the linear mapping u → Bu is firmly nonexpansive, 
i.e., 〈Bv, v〉 ≥ ‖Bv‖2, v ∈ Rn.

Note that an n × n matrix B is firmly nonexpansive if and only if ‖2B − I‖ ≤ 1, see, e.g., [3, Fact 1.1]. 
Further, a firmly nonexpansive matrix B is positive semidefinite and satisfies ‖B‖ ≤ 1 and, when B is 
symmetric, these conditions are also sufficient for B being firmly nonexpansive.

Proposition 3.22. Let F : Rn ⇒ Rn be locally maximally monotone at (x̄, ȳ). Then F is graphically Lips-
chitzian of dimension n at (x̄, ȳ) with transformation mapping Φ(x, y) = (x + y, x) and consequently F has 
the SCD property around (x̄, ȳ). Further, for every (x, y) ∈ gphF sufficiently close to (x̄, ȳ) and for every 
subspace L ∈ SF (x, y) there is a firmly nonexpansive n × n matrix B such that L = rge (B, I − B) and 
L∗ = rge (BT , I −BT ).

Proof. Let Floc : Rn ⇒ Rn be given by gphFloc = gphF ∩ (X ×Y ), where (X ×Y ) is as in Definition 3.20. 
Then Floc is monotone, has a maximally monotone extension F̃ , cf. [34, Proposition 12.6] and gphF ∩ (X×
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Y ) = gph F̃ ∩ (X × Y ). By [2, Corollary 23.8], rge (I + F̃ ) = Rn and the resolvent f := (I + F̃ )−1 is a 
single-valued, firmly nonexpansive mapping on Rn. Since f(x̄+ ȳ) = x̄, we can find an open neighborhood U
of x̄+ ȳ such that f(u) ∈ X and u −f(u) ∈ Y for all u ∈ U . It follows that (I+F )−1(u) = (I+ F̃ )−1(u) and 
therefore I +F is strongly metrically regular around (x̄, ̄x+ ȳ). Thus F is graphically Lipschitzian at (x̄, ȳ)
and has the SCD property around (x̄, ȳ) by Corollary 3.19. Now consider a subspace L ∈ SF (x, y), where 
(x, y) is close to (x̄, ȳ). By (25a) there is a matrix B ∈ ∇f(x + y) such that L = rge (B, I − B). Since f is 
firmly nonexpansive, for every (u′, f(u′)) ∈ Of we have 〈∇f(u′)v, v〉 ≥ ‖∇f(u′)v‖2 and ‖Bv‖2 ≤ 〈Bv, v〉, 
v ∈ Rn follows. This completes the proof. �

If F is only locally maximally hypomonotone at (x̄, ȳ), it follows that (1 + γ)I +F is strongly metrically 
regular around (x̄, (1 + γ)x̄ + ȳ) for some γ ≥ 0. Hence we obtain the following corollary.

Corollary 3.23. Let F : Rn ⇒ Rn be locally maximally hypomonotone at (x̄, ȳ). Then there is some γ ≥ 0
such that F is graphically Lipschitzian at (x̄, ȳ) of dimension n with transformation mapping Φ(x, y) =
((1 + γ)x + y, x) and therefore F has the SCD property around (x̄, ȳ). For every (x, y) ∈ gphF sufficiently 
close to (x̄, ȳ) and every subspace L ∈ SF (x, y) there is a firmly nonexpansive n × n matrix B such that 
L = rge (B, I − (1 + γ)B) and L∗ = rge (BT , I − (1 + γ)BT ).

Corollary 3.24. A mapping F : Rn ⇒ Rn which is locally maximally hypomonotone on a dense subset of its 
graph is an SCD mapping.

We now consider the subdifferential mapping ∂q of some lsc function q : Rn → R̄.

Definition 3.25.

1. A function q : Rn → R̄ is prox-regular at x̄ ∈ dom q for x̄∗ ∈ ∂q(x̄) if q is locally lsc around x̄ and there 
exist ε > 0 and ρ ≥ 0 such that for all x′, x ∈ Bε(x̄) with |q(x) − q(x̄)| ≤ ε one has

q(x′) ≥ q(x) + 〈x∗, x′ − x〉 − ρ

2‖x
′ − x‖2 whenever x∗ ∈ ∂q(x) ∩ Bε(x̄∗).

When this holds for all x̄∗ ∈ ∂q(x̄), q is said to be prox-regular at x̄.
2. A function q : Rn → R̄ is called subdifferentially continuous at x̄ ∈ dom q for x̄∗ ∈ ∂q(x̄) if for any 

sequence (xk, x∗
k) 

gph ∂q−→ (x̄, ̄x∗) we have limk→∞ q(xk) = q(x̄). When this holds for all x̄∗ ∈ ∂q(x̄), q is 
said to be subdifferentially continuous at x̄.

Proposition 3.26. Suppose that q : Rn → R̄ is prox-regular and subdifferentially continuous at x̄ for 
x̄∗ ∈ ∂q(x̄). Then ∂q is locally maximally hypomonotone at (x̄, ̄x∗) and there is some λ > 0 such that 
∂q is graphically Lipschitzian at (x̄, ȳ) with transformation mapping Φ(x, x∗) = (x + λx∗, x). Thus ∂q has 
the SCD property around (x̄, ̄x∗). Further, for every (x, x∗) ∈ gph ∂q sufficiently close to (x̄, ̄x∗) one has 
S ∗∂q(x, x∗) = S ∂q(x, x∗) and for every L ∈ S ∂q(x, x∗) there is a symmetric positive semidefinite n × n

matrix B such that L = L∗ = rge (B, 1λ (I −B)).

Proof. Let q̃(x) := q(x) −〈x̄∗, x〉. Then ∂q̃(·) = ∂q(·) − x̄∗ and q̃ is prox-regular at x̄ for 0. By the definition 
of prox-regularity we have

q̃(x′) ≥ q̃(x̄) − ρ

2‖x
′ − x̄‖2 ∀x′ ∈ Bε(x̄)

for some ε > 0 and some ρ ≥ 0. Hence the function q̂ := q̃+δBε
fulfills the baseline assumption of [27, Section 

4]. By [27, Proposition 4.8] the subdifferential mapping ∂q̂ is locally maximally hypomonotone around (x̄, 0)
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and, by the proof of [27, Theorem 4.7], for any λ ∈ (0, 1ρ ) the mapping ∂q̂ is graphically Lipschitzian with 
transformation mapping Φ(x, x∗) = (x + λx∗, x). Moreover, by [27, Theorem 4.4], (I + λ∂q̂)−1 is locally 
monotone at (x̄, ̄x) and there holds

∇eλq̂(u) = 1
λ

(
I − (I + λ∂q̂)−1)(u) (27)

for all u sufficiently close to x̄, where

eλq̂(y) := inf
x
{ 1
2λ‖x− y‖2 + q̂(x)}

denotes the Moreau envelope of q̂. Consider a pair (x, ̂x∗) close to (x̄, 0) and a subspace L ∈ S ∂q̂(x, ̂x∗). 
According to Corollary 3.23, there is a matrix B ∈ ∇(I+λ∂q̂)−1(x +λx̂∗) with L = ∇Φ(x, ̂x∗)−1rge (I, B) =
rge (B, 1λ (I −B)), where we have taken into account

∇Φ(x, x̂∗) =
(
I λI
I 0

)
, ∇Φ(x, x̂∗)−1 =

(
0 I
1
λI − 1

λI

)
.

Since (I+λ∂q̂)−1 is locally monotone at (x̄, ̄x), it follows that B is positive semidefinite. Further, by (27) we 
have 1λ (I−B) ∈ ∇(∇eλq̂)(x +λx̂∗). By [34, Theorem 13.52], ∇(∇eλq̂)(x +λx̂∗) consists of symmetric matrices 
and consequently B is symmetric. Since L⊥ = rge ( 1

λ (I − B), −B), we obtain L∗ = L and S ∗∂q̂(x, ̂x∗) =
S ∂q̂(x, ̂x∗) follows. Now, by taking into account that ∂q̃ and ∂q̂ coincide near x̄ and ∂q differs from ∂q̃ only 
by the constant x̄∗, it follows that all the shown properties do not hold only for ∂q̂ but also for ∂q. �
Corollary 3.27. For every lsc function q : Rn → R̄ which is prox-regular and subdifferentially continuous at 
x for x∗ on a dense subset of gph ∂q, its subdifferential mapping ∂q is an SCD mapping.

Clearly, every lsc convex function is prox-regular and subdifferentially continuous at all points of its 
domain. Further, the proof of Proposition 3.26 holds true with λ = 1 and (I + ∂q)−1 is firmly nonexpansive 
and therefore ‖B‖ ≤ 1 ∀B ∈ ∇(I + ∂q̂)−1(x̄). Thus we obtain the following corollary.

Corollary 3.28. For every lsc proper convex function q : Rn → R̄ the subdifferential mapping ∂q is graphically 
Lipschitzian of dimension n at every point (x, x∗) of its graph. Hence ∂q is an SCD mapping and for every 
(x, x∗) ∈ gph ∂q and every L ∈ S ∗∂q(x, x∗) = S ∂q(x, x∗) there is a symmetric positive semidefinite n × n

matrix B with ‖B‖ ≤ 1 such that L = rge (B, I −B).

Example 3.29. Let C ⊂ Rn be a convex polyhedral set and consider q = δC so that ∂q = NC . By the 
well-known reduction Lemma, see, e.g., [10, Lemma 2E.4], we have TgphNC

(x, x∗) = gphNKC(x,x∗), where 
KC(x, x∗) := TC(x) ∩ [x∗]⊥ denotes the critical cone to C at x for x∗. Thus NC is graphically smooth 
of dimension n at (x, x∗) if and only if KC(x, x∗) is a subspace and in this case we have ŜNC(x, x∗) =
KC(x, x∗) ×KC(x, x∗)⊥ = Ŝ ∗NC(x, x∗). Given (x̄, ̄x∗) ∈ gphNC , by [10, Lemma 4H.2], for every sufficiently 
small neighborhood W of (x̄, ̄x∗), the collection of all critical cones KC(x, x∗), (x, x∗) ∈ W coincides with 
the collection of all sets of the form F1 − F2, where F1, F2 are faces of KC(x̄, ̄x∗) with F2 ⊆ F1. Since 
F1 − F2 is a subspace if and only if F1 = F2 and KC(x̄, ̄x∗) has only finitely many faces, we obtain

SNC(x̄, x̄∗) = S ∗NC(x̄, x̄∗) = {(F − F ) × (F − F )⊥ | F is face of KC(x̄, x̄∗)}. (28)
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Of course, for every face F of KC(x̄, ̄x∗) we have

(F − F ) × (F − F )⊥ = rge (B, I −B),

where B represents the orthogonal projection on F − F .
Let us compare the representation (28) with the limiting coderivative D∗NC(x̄, ̄x∗). It was shown in [9, 

Proof of Theorem 2] that NgphNC
(x̄, ̄x∗) is the union of all product sets K◦ ×K associated with cones K

of the form F1 −F2, where F1 and F2 are closed faces of the critical cone KC(x̄, ̄x∗) satisfying F2 ⊂ F1. 
Thus, gphD∗NC(x̄, ̄x∗) is the union of all respective sets of the form (F2 − F1) × (F1 − F2)◦ and we see 
that S ∗NC(x̄, ̄x∗) has a simpler structure than the limiting coderivative D∗NC(x̄, ̄x∗) whenever the critical 
cone KC(x̄, ̄x∗) is not a subspace.

Given a function q : Rn → R̄, S ∗∂q(x, x∗) amounts to a generalized derivative of the subgradient 
mapping and constitutes therefore some generalized second-order derivative of q. In the framework of a 
study of sufficient conditions for local optimality, Rockafellar [35] has introduced another type of generalized 
second-order derivative as an epigraphical limit of certain second-order subderivatives.

Definition 3.30 ([35]).

1. A function φ : Rn → R̄ is called a generalized quadratic form, if φ(0) = 0 and the subgradient mapping 
∂φ is generalized linear, i.e., gph ∂φ is a subspace of Rn ×Rn.

2. A function q : Rn → R̄ is called generalized twice differentiable at x for a subgradient x∗ ∈ ∂q(x), if it 
is twice epi-differentiable at x for x∗ with the second-order subderivative d2q(x, x∗) being a generalized 
quadratic form.

3. Given a function q : Rn → R̄ and a pair (x, x∗) ∈ gph ∂q, the quadratic bundle of q at x for x∗ is defined 
by

quad q(x, x∗) :=

⎡⎢⎢⎣
the collection of generalized quadratic forms φ for which 
∃(xk, x∗

k) → (x, x∗) with q generalized twice differentiable at 
xk for x∗

k and such that the generalized quadratic forms φk =
d2q(xk, x∗

k) converge epigraphically to φ.

We establish now a strong relationship between S ∂q and quad q for prox-regular and subdifferentially 
continuous functions q. We start with the following lemma.

Lemma 3.31. Let q : Rn → R̄ be prox-regular and subdifferentially continuous at x for x∗ ∈ ∂q(x). Then 
(x, x∗) ∈ O∂q if and only if q is generalized twice differentiable at x for x∗, and in this case one has

Ŝ ∂q(x, x∗) = {gph ∂
(1
2d2q(x, x∗)

)
}. (29)

Proof. By [34, Theorem 13.40], the subgradient mapping ∂q is proto-differentiable at (x, x∗) if and only if 
q is twice epi-differentiable at x for x∗, and then

D(∂q)(x, x∗) = ∂
(1
2d2q(x, x∗)

)
.

By Proposition 3.26, ∂q is graphically Lipschitzian of order n at (x, x∗). Hence, if (x, x∗) ∈ O∂q then 
∂q is proto-differentiable at (x, x∗) by Remark 3.18 and consequently q is twice epi-differentiable at x
for x∗ and gph ∂

( 1
2d2q(x, x∗)

)
= gphD(∂q)(x, x∗) = Tgph ∂q(x, x∗) is a subspace. This verifies that q is 

generalized twice differentiable at x for x∗. Conversely, if q is generalized twice differentiable at x for x∗, 
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then Tgph ∂q(x, x∗) = gph ∂
(1

2d2q(x, x∗)
)

is a subspace. The dimension of this subspace must be n because 
∂q is graphically Lipschitzian of dimension n, and (x, x∗) ∈ O∂q follows. �

We will also make use of the following variant of Attouch’s theorem, see, e.g., [34, Theorem 12.35], which 
states the connection between graphical convergence of subdifferential mappings and epi-convergence of the 
functions themselves, when the functions are convex.

Lemma 3.32. Let φk : Rn → R̄, k ∈ N and φ : Rn → R̄ be proper lsc functions and assume that there is 
some ρ ≥ 0 such that the functions φ̂k := φk + ρ‖ · ‖2 are convex. Then the following two statements are 
equivalent.

(i) The functions φk epi-converge to φ.
(ii) The mappings ∂φk converge graphically to ∂φ, φ̂ := φ + ρ‖ · ‖2 is convex and there is some sequence 

(xk, x∗
k) converging to some (x̄, ̄x∗) ∈ gph ∂φ such that (xk, x∗

k) ∈ gph ∂φk ∀k and limk→∞ φk(xk) =
φ(x̄).

Proof. Observe that assertion (i) is equivalent to epi-convergence of φ̂k → φ̂ by [34, Exercise 7.8], and in 
this case the epigraphical limit φ̂ is convex, cf. [34, Theorem 7.17]. Similarly, ∂φk converges graphically to 
∂φ if and only if ∂φ̂k converges graphically to φ̂. Indeed, since ∂φ̂k(x) = ∂φk(x) + 2ρx, we easily obtain

Lim sup
k→∞

gph φ̂k = {(x, x∗ + 2ρx) | (x, x∗) ∈ Lim sup
k→∞

gphφk},

Lim inf
k→∞

gph φ̂k = {(x, x∗ + 2ρx) | (x, x∗) ∈ Lim inf
k→∞

gphφk}

and the claim follows. Finally we have φ(x̄) = limk→∞ φk(xk) for some sequence (xk, x∗
k) → (x̄, ̄x∗) ∈ gph ∂φ

with (xk, x∗
k) ∈ gph ∂φk, if and only if φ̂(x̄) = limk→∞ φ̂k(xk) and gph ∂φ̂k � (xk, x∗

k + 2ρxk) → (x̄, ̄x∗ +
2ρx̄) ∈ gph ∂φ̂. Now the equivalence between (i) and (ii) follows from Attouch’s theorem [34, Theorem 12.35]
applied to the convex functions φ̂k and φ̂. �
Proposition 3.33. Suppose that q : Rn → R̄ is prox-regular at x̄ for x̄∗ ∈ ∂q(x̄). Further assume that for all 
(x, x∗) ∈ gph ∂q sufficiently close to (x̄, ̄x∗) the function q is subdifferentially continuous at x for x∗. Then

S ∗∂q(x̄, x̄∗) = S ∂q(x̄, x̄∗) = {gph ∂(1
2φ) | φ ∈ quad q(x̄, x̄∗)}.

Proof. Let ε and ρ ≥ 0 be as in Definition 3.25. Then we can find an open neighborhood W of (x̄, ̄x∗) such 
that W ⊂ B ε

2
(x̄) ×B ε

2
(x̄∗) and for all (x, x∗) ∈ gph ∂q∩W the function q is subdifferentially continuous at x

for x∗ and |q(x) −q(x̄)| < ε
2 . Consider (x̂, ̂x∗) ∈ gph ∂q∩W . Then for all x, x′ ∈ B ε

2
(x̂) with |q(x) −q(x̂)| ≤ ε

2
and all x∗ ∈ ∂q(x) ∩ B ε

2
(x̂∗) we have x, x′ ∈ Bε(x̄), |q(x) − q(x̄)| ≤ ε and x∗ ∈ ∂q(x) ∩ Bε(x̄∗) implying 

q(x′) ≥ q(x) + 〈x∗, x′ − x〉 − ρ
2‖x′ − x‖2. Thus q is prox-regular at x̂ for x̂∗ and therefore graphically 

Lipschitzian of dimension n at (x̂, ̂x∗). Further, by [34, Proposition 13.49] and its proof, we may conclude 
that d2q(x̂, ̂x∗) + ρ‖ · ‖2 is a lsc convex function.

Now consider φ ∈ quad q(x̄, ̄x∗) together with some sequence (xk, x∗
k) → (x̄, ̄x∗) such that q is generalized 

twice differentiable at xk for x∗
k and the generalized quadratic forms φk := d2q(xk, x∗

k) converge epigraphi-
cally to φ. We may assume that (xk, x∗

k) ∈ gph ∂q ∩W ∀k and thus (xk, x∗
k) ∈ O∂q ∩W by Lemma 3.31. By 

Lemma 3.32, ∂φk converges graphically to ∂φ, i.e., gph ∂φk → gph ∂φ in the sense of Painlevé-Kuratowski 
convergence. Now it follows from Lemma 3.1(v) and (29) that gph ∂(1

2φ) ∈ S ∂q(x̄, ̄x∗).
Conversely, consider a subspace L ∈ S ∂q(x̄, ̄x∗) together with sequences (xk, x∗

k) ∈ O∂q ∩W and Lk ∈
Ŝ ∂q(xk, x∗

k) with limk→∞ dZ (Lk, L) = 0. According to Proposition 3.26 we can find symmetric positive 
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semidefinite matrices Bk, B such that Lk = rge (Bk, 1λ (I −Bk)), L = rge (B, 1λ (I −B)) with λ = 1/(ρ + 1). 
Now let U := rge B and set Q := 1

λ (B† − BB†), where B† denotes the Moore-Penrose inverse of B. Since 
B is symmetric and positive semidefinite, so is B† as well. Further, BB†B = B and BB† = B†B is the 
orthogonal projection onto rge B, so that I − B†B is the orthogonal projection onto U ⊥ = kerB. Now 
consider the generalized quadratic form φ(x) := 〈Qx, x〉 + δU (x). Since Q is symmetric, we obtain

∂(1
2φ)(x) =

{
Qx + U ⊥ = 1

λ (B† −BB†)x + U ⊥ if x ∈ U ,
∅ else.

Thus

gph ∂(1
2φ) =

{(
Bp,

1
λ

(B† −BB†)Bp + (I −B†B)v
)
| p, v ∈ Rn

}
=
{(

B
(
B†Bp + (I −B†B)v

)
,
1
λ

(I −B)
(
B†Bp + (I −B†B)v

))
| p, v ∈ Rn

}
= rge (B,

1
λ

(I −B)) = L.

The matrix Q + 1
λI = 1

λB
† + 1

λ (I − BB†) is positive semidefinite as the sum of two positive semidefinite 
matrices and therefore the function φ̂ := φ + 1

λ‖ · ‖2 = φ + (ρ + 1)‖ · ‖2 is convex. For each k, the function 
φk := d2q(xk, x∗

k) fulfills gph ∂(1
2q) = Lk by Lemma 3.31 and φ̂k := φk + (ρ + 1)‖ · ‖2 is convex. Since 

(0, 0) ∈ Lk = gph ∂(1
2φk), we have 0 ∈ ∂φk(0). Further, φk(0) = φ(0) = 0 and 0 ∈ ∂φ(0). Since convergence 

of Lk to L implies that ∂φk converges graphically to ∂φ, it follows from Lemma 3.32 that φk converges 
epigraphically to φ and we conclude φ ∈ quad q(x̄, ̄x∗). Thus L ∈ {gph ∂(1

2φ) | φ ∈ quad q(x̄, ̄x∗)} verifying 
S ∂q(x̄, ̄x∗) = {gph ∂(1

2φ) | φ ∈ quad q(x̄, ̄x∗)}. By Proposition 3.26 we have S ∗∂q(x̄, ̄x∗) = S ∂q(x̄, ̄x∗)
and the proof is complete. �
Corollary 3.34. For every lsc proper convex function q : Rn → R̄ and for every pair (x, x∗) ∈ gph ∂q we 
have

S ∗∂q(x, x∗) = S ∂q(x, x∗) = {gph ∂(1
2φ) | φ ∈ quad q(x, x∗)}.

4. SCD regularity

In this section we present the definition and basic properties of a certain property called SCD regularity, 
which has various applications as we will demonstrate in the subsequent sections.

Definition 4.1.

1. We denote by Z reg
n the collection of all subspaces L ∈ Zn such that

(y∗, 0) ∈ L ⇒ y∗ = 0. (30)

2. A mapping F : Rn ⇒ Rn is called SCD regular around (x, y) ∈ gphF , if F has the SCD property 
around (x, y) and

(y∗, 0) ∈
⋃

S ∗F (x, y) ⇒ y∗ = 0, (31)

i.e., L ∈ Z reg
n for all L ∈ S ∗F (x, y). Further, we will denote by
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scd reg F (x, y) := sup{‖y∗‖ | (y∗, x∗) ∈
⋃

S ∗F (x, y), ‖x∗‖ ≤ 1}

the modulus of SCD regularity of F around (x, y).

In the following proposition we state some basic properties of subspaces L ∈ Z reg
n .

Proposition 4.2. Given a 2n × n matrix Z, there holds rge Z ∈ Z reg
n if and only if the n × n matrix π2(Z)

is nonsingular. Thus, for every L ∈ Z reg
n there is a unique n × n matrix CL such that L = rge (CL, I). 

Further, L∗ = rge (CT
L , I) ∈ Z reg

n ,

〈x∗, CT
L v〉 = 〈y∗, v〉 ∀(y∗, x∗) ∈ L ∀v ∈ Rn, (32)

and

‖y∗‖ ≤ ‖CL‖‖x∗‖ ∀(y∗, x∗) ∈ L. (33)

Proof. Clearly, if π2(Z) is nonsingular then rge Z ∈ Zn. Further, given (y∗, 0) ∈ rge Z, there is some p with 
y∗ = π1(Z)p, 0 = π2(Z)p implying p = y∗ = 0 and therefore rge Z ∈ Z reg

n . Conversely, consider L ∈ Z reg
n

and Z ∈ M (L). Because L ∈ Zn, the matrix Z has full column rank n and therefore there cannot exist 
p �= 0 with Zp = 0. Thus, if A := π2(Z) were singular, there is some 0 �= p ∈ Rn with Ap = 0 and Bp �= 0
with B := π1(Z), implying (Bp, 0) ∈ L and Bp �= 0 which is not possible because of L ∈ Z reg

n . This proves 
that A is nonsingular and L = rge ZA−1 = rge (CL, I) with CL = BA−1 follows. Clearly, CL is uniquely 
given by L and does not depend on the particular choice of A and B. From L = rge (CL, I) we deduce 
L⊥ = rge (I, −CT

L ) and L∗ = SnL
⊥ = rge (CT

L , I). Further, for every p ∈ Rn we have (p, −CT
Lp) ∈ L⊥, 

implying

〈p, y∗〉 − 〈CT
L p, x

∗〉 = 〈p, y∗ − CLx
∗〉 = 0 ∀(y∗, x∗) ∈ L

and (32) follows. Finally, for every (y∗, x∗) ∈ L there is some p ∈ Rn with y∗ = CLp, x∗ = p implying 
(33). �
Remark 4.3. Note that for every L ∈ Z reg

n there holds CL = π1(Z)π2(Z)−1 for every Z ∈ M (L).

In case of SCD regularity we obtain from Proposition 4.2 that

⋃
S ∗F (x, y) = {(CLp, p) | L ∈ S ∗F (x, y), p ∈ Rn}

and consequently

scd reg F (x, y) = sup{‖CLp‖ | L ∈ S ∗F (x, y), p ∈ Rn, ‖p‖ ≤ 1}

= sup{‖CL‖ | L ∈ S ∗F (x, y)}. (34)

Remark 4.4. In case of a single-valued, locally Lipschitzian mapping F : Rn → Rn, by virtue of Lemma 3.11, 
SCD regularity of F around x̄ means that all matrices belonging to the B-subdifferential are nonsingular. 
This is exactly the so-called BD-regularity property from [29].

By isometry of the mapping L �→ L∗ and Proposition 4.2 we obtain readily the following lemma.
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Lemma 4.5. The mapping F : Rn ⇒ Rn is SCD regular around (x̄, ȳ) ∈ gphF if and only if

(u, 0) ∈
⋃

SF (x, y) ⇒ u = 0. (35)

Further,

scd reg F (x, y) = sup{‖u‖ | (u, v) ∈
⋃

SF (x, y), ‖v‖ ≤ 1} = sup{‖CL‖ | L ∈ SF (x, y)}.

Note that SCD regularity is weaker than the metric regularity of F around (x, y). Indeed, condition (6)
for metric regularity of F near (x, y) can be equivalently written as

(y∗, 0) ∈ gphD∗F (x, y) ⇒ y∗ = 0

and 
⋃

S ∗F (x, y) is contained in gphD∗F (x, y) by Lemma 3.7. The next example shows that SCD regularity 
is even strictly weaker than metric regularity, see also Example 6.5 below.

Example 4.6. Consider the SCD mapping

F (x) := −x + NR−(x) = ∂q(x) with q(x) = −1
2x

2 + δR−(x)

at (0, 0). Then

D∗F (0, 0)(y∗) = −y∗ +

⎧⎪⎪⎨⎪⎪⎩
{0} if y∗ < 0
R if y∗ = 0
R+ if y∗ > 0

and therefore the only subspaces contained in gphD∗F (0, 0) are {(y∗, −y∗) | y∗ ∈ R} and {0} ×R. Hence 
F is SCD regular at (0, 0), but F is not metrically regular near (0, 0) because of 0 ∈ D∗F (0, 0)(1).

Lemma 4.7. Let F : Rn ⇒ Rn be SCD regular around (x, y) ∈ gphF . Then scd reg F (x, y) < ∞.

Proof. Assume on the contrary that there are sequences Lk ∈ S ∗F (x, y) and (y∗k, x∗
k) ∈ Lk such that 

‖y∗k‖ ≥ k and ‖x∗
k‖ ≤ 1. By possibly passing to some subsequence we can assume that y∗k/‖y∗k‖ con-

verges to some y∗ with ‖y∗‖ = 1 and Lk converges in the compact metric space Zn to some L. Then 
(y∗, 0) = limk→∞(y∗k, x∗

k)/‖y∗k‖ ∈ L and L ∈ S ∗F (x, y) by Lemma 3.13 contradicting the assumption of 
SCD regularity. �
Proposition 4.8. Assume that F : Rn ⇒ Rn is SCD regular around (x̄, ȳ) ∈ gphF . Then F is SCD regular 
around every (x, y) ∈ gphF sufficiently close to (x̄, ȳ) and

lim sup
(x,y) gph F−→ (x̄,ȳ)

scd reg F (x, y) ≤ scd reg F (x̄, ȳ).

Proof. By contraposition. If any of the assertions does not hold, we can find some κ > scd reg F (x̄, ȳ) and 

sequences (xk, yk) 
gphF−→ (x̄, ȳ), Lk ∈ S ∗F (xk, yk) and (y∗k, x∗

k) ∈ Lk with ‖y∗k‖ ≥ κ and ‖x∗
k‖ ≤ 1. By possibly 

passing to some subsequence we can assume that (y∗k, x∗
k)/‖y∗k‖ converges to some (y∗, x∗) and Lk converges 

to some L. Then ‖y∗‖ = 1, ‖x∗‖ ≤ 1
κ , (y∗, x∗) ∈ L and L ∈ S ∗F (x̄, ȳ) by Lemma 3.13. Since L is a 

subspace, we also have (κy∗, κx∗) ∈ L ⊆
⋃

S ∗F (x̄, ȳ) implying together with ‖κx∗‖ ≤ 1 the contradiction 
scd reg F (x̄, ȳ) ≥ ‖κy∗‖ = κ. �
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5. On semismooth* Newton methods for SCD mappings

Consider the inclusion

0 ∈ F (x), (36)

where F : Rn ⇒ Rn. Assume that x̄ is a reference solution of (36). The idea behind the semismooth∗

Newton method [14] for solving (36) is as follows. If F is semismooth∗ at (x̄, 0) and we are given some point 
(x, y) ∈ gphF close to (x̄, 0), then for every (y∗, x∗) ∈ gphD∗F (x, y) there holds

〈x∗, x− x̄〉 = 〈y∗, y − 0〉 + o(‖(x, y) − (x̄, 0)‖‖(x∗, y∗)‖)

by the definition of the semismoothness* property. We choose now n pairs (y∗i , x∗
i ) ∈ gphD∗F (x, y), i =

1, . . . , n, compute a solution Δx of the system

〈x∗
i ,Δx〉 = −〈y∗i , y〉, i = 1, . . . , n (37)

and expect that ‖(x + Δx) − x̄‖ = o(‖(x, y) − (x̄, 0)‖. When dealing with SCD mappings F we can simplify 
this procedure by choosing the pairs (y∗i , x∗

i ) as a basis of some subspace L ∈ S ∗F (x, y), which allows us 
to weaken the notion of semismoothness* along the lines of Proposition 2.11.

Definition 5.1. We say that F : Rn ⇒ Rn is SCD semismooth∗ at (x̄, ȳ) ∈ gphF if F has the SCD property 
around (x̄, ȳ) and for every ε > 0 there is some δ > 0 such that

|〈x∗, x− x̄〉 − 〈y∗, y − ȳ〉| ≤ ε‖(x, y) − (x̄, ȳ)‖‖(x∗, y∗)‖ (38)

holds for all (x, y) ∈ gphF ∩ Bδ(x̄, ȳ) and all (y∗, x∗) ∈
⋃

S ∗F (x, y).
We say that F : Rn ⇒ Rn is SCD semismooth∗ around (x̄, ȳ) ∈ gphF if there is some neighborhood W

of (x̄, ȳ) such that F is SCD semismooth∗ at every (x, y) ∈ gphF ∩W .

The chosen subspace L ∈ S ∗F (x, y) should have the property that the resulting system (37) has a unique 
solution. Taking the pairs (y∗i , x∗

i ), i = 1, . . . , n, as columns of a 2n ×n matrix Z, this yields the requirement 
that π2(Z) is nonsingular, which in turn is equivalent to L ∈ Z reg

n by Proposition 4.2. Comparing (32) with 
(37), we see that Δx = −CT

L y is a solution to (37) in this case.
We are now in the position to describe the iteration step of the SCD variant of the semismooth∗ Newton 

method introduced in [14]. Assume we are given some iterate x(k). Since we cannot expect in general that 
F (x(k)) �= ∅ or that 0 is close to F (x(k)), even if x(k) is close to a solution x̄, we first perform some 
preparatory step which yields (x̂(k), ŷ(k)) ∈ gphF as an approximate projection of (x(k), 0) onto gphF . We 
require that

‖(x̂(k), ŷ(k)) − (x̄, 0)‖ ≤ η‖x(k) − x̄‖ (39)

for some constant η > 0. E.g., if

‖(x̂(k), ŷ(k)) − (x(k), 0)‖ ≤ β dist((x(k), 0), gphF )

holds with some β ≥ 1, then

‖(x̂(k), ŷ(k)) − (x̄, 0)‖ ≤ ‖(x̂(k), ŷ(k)) − (x(k), 0)‖ + ‖(x(k), 0) − (x̄, 0)‖
≤ β dist((x(k), 0), gphF ) + ‖(x(k), 0) − (x̄, 0)‖ ≤ (β + 1)‖(x(k), 0) − (x̄, 0)‖
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and (39) holds with η = β + 1. Further we require that S ∗F (x̂(k), ŷ(k)) ∩ Z reg
n �= ∅ and compute the new 

iterate as x(k+1) = x̂(k)−CT
L ŷ

(k) for some L ∈ S ∗F (x̂(k), ŷ(k)) ∩Z reg
n . In fact, in a numerical implementation 

we will not calculate the matrix CL, but two n × n matrices A, B such that L = rge (BT , AT ), compute 
Δx(k) as a solution of the system AΔx = −Bŷ(k) and set x(k+1) = x̂(k) + Δx(k).

This leads to the following conceptual algorithm.

Algorithm 1 (SCD semismooth∗ Newton-type method for inclusions).

1. Choose a starting point x(0), set the iteration counter k := 0.
2. If 0 ∈ F (x(k)), stop the algorithm.
3. Approximation step: Compute

(x̂(k), ŷ(k)) ∈ gphF

satisfying (39) such that S ∗F (x̂(k), ŷ(k)) ∩ Z reg
n �= ∅.

4. Newton step: Select n ×n matrices A(k), B(k) with L(k) := rge
(
B(k)T , A(k)T ) ∈ S ∗F (x̂(k), ŷ(k)) ∩Z reg

n , 
calculate the Newton direction Δx(k) as a solution of the linear system A(k)Δx = −B(k)ŷ(k) and obtain 
the new iterate via x(k+1) = x̂(k) + Δx(k).

5. Set k := k + 1 and go to 2.

We have Δx(k) = −CT
L(k) ŷ

(k) and therefore (Δx(k), −ŷ(k)) ∈ −L(k)∗ = L(k)∗ ∈ SF (x̂(k), ŷ(k)) by Propo-
sition 4.2. Thus, alternatively we can perform the Newton step also in the following way:

4. Newton step: Select n ×n matrices A(k), B(k) with rge
(
B(k), A(k)) ∈ SF (x̂(k), ŷ(k)) ∩Z reg

n , compute a 
solution p of the linear system A(k)p = −ŷ(k) and compute the new iterate x(k+1) = x̂(k) + Δx(k) with 
Newton direction Δx(k) = B(k)p.

Remark 5.2. Note that −ŷ(k) ∈ D�F (x̂(k), ŷ(k))(Δx(k)) but we do not necessarily have −ŷ(k) ∈
DF (x̂(k), ŷ(k))(Δx(k)) as it is the case in Newton methods based on the graphical derivative, cf. [7,17,25].

Which possibility for calculating the Newton direction is actually chosen, depends on the availability of 
the respective derivative. Let us analyze the two alternatives for the special case when F is single-valued 
and continuously differentiable at x(k). In Algorithm 1, the matrices A(k), B(k) with rge

(
B(k)T , A(k)T ) ∈

S ∗F (x̂(k), ŷ(k)) fulfill A(k)T = ∇F (x̂(k))TB(k)T and thus the Newton direction is computed by solving the 
linear system 

(
B(k)∇F (x̂(k))

)
Δx = −B(k)ŷ(k). On the other hand, given A(k), B(k) with rge

(
B(k), A(k)) ∈

SF (x̂(k), ŷ(k)), we have A(k) = ∇F (x̂(k))B(k) and in this case the Newton direction is computed via 
Δx(k) = B(k)p = −B(k)(∇F (x̂(k))B(k))−1

ŷ(k). The structure of the second approach resembles the adjoint 
system method known from PDE-constrained optimization and optimal control.

We now consider convergence of Algorithm 1.

Proposition 5.3. Assume that F : Rn ⇒ Rn is SCD semismooth∗ at (x̄, ȳ) ∈ gphF . Then for every ε > 0
there is some δ > 0 such that the inequality

‖x− CT
L (y − ȳ) − x̄‖ ≤ ε

√
n(1 + ‖CL‖2)‖(x, y) − (x̄, ȳ)‖ (40)

holds for every (x, y) ∈ gphF ∩ Bδ(x̄, ȳ) and every L ∈ S ∗F (x, y) ∩ Z reg
n .
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Proof. Pick ε > 0 and choose δ > 0 such that (38) holds. Now consider any (x, y) ∈ gphF ∩ Bδ(x̄, ȳ)
and any L ∈ S ∗F (x, y) ∩ Z reg

n . By Proposition 4.2 we have L = rge (CL, I) and therefore (CLei, ei) ∈ L, 
i = 1, . . . , n, where ei denotes the i-th unit vector. From (38) we obtain

|〈ei, x̄− x〉 − 〈CLei, ȳ − y〉| = |〈ei, x− CT
L (y − ȳ) − x̄〉| ≤ ε‖(ei, CLei)‖‖(x, y) − (x̄, ȳ)‖

≤ ε
√

1 + ‖CL‖2‖(x, y) − (x̄, ȳ)‖

and

‖x− CT
L (y − ȳ) − x̄‖ ≤ ε

√
n(1 + ‖CL‖2)‖(x, y) − (x̄, ȳ)‖

follows. �
Given η, κ > 0, we now define for x ∈ Rn the set

G η,κ
F,x̄ (x) := {(x̂, ŷ, L) | (x̂, ŷ) ∈ gphF, ‖(x̂, ŷ) − (x̄, 0)‖ ≤ η‖x− x̄‖, L ∈ S ∗F (x̂, ŷ) ∩ Z reg

n , ‖CL‖ ≤ κ}.

Theorem 5.4. Assume that F is SCD semismooth∗ at (x̄, 0) ∈ gphF and assume that there are η, κ > 0
such that for every x /∈ F−1(0) sufficiently close to x̄ we have G L,κ

F,x̄ (x) �= ∅. Then there exists some δ > 0
such that for every starting point x(0) ∈ Bδ(x̄) Algorithm 1 either stops after finitely many iterations at a 
solution or produces a sequence x(k) which converges superlinearly to x̄, provided we choose in every iteration 
(x̂(k), ŷ(k), L(k)) ∈ G η,κ

F,x̄ (x(k)).

Proof. Using Proposition 5.3 with ȳ = 0, we can find some δ̄ > 0 such that (40) holds with ε = 1
2η
√

n(1+κ2)

for all (x, y) ∈ gphF ∩ Bδ̄(x̄, 0) and all L ∈ S ∗F (x, y) ∩ Z reg
n . Set δ := δ̄/η and consider an iterate 

x(k) ∈ Bδ(x̄) /∈ F−1(0). Then

‖(x̂(k), ŷ(k)) − (x̄, 0)‖ ≤ η‖x(k) − x̄‖ ≤ δ̄

and consequently

‖x(k+1) − x̄‖ ≤ 1
2η
√
n(1 + κ2)

√
n(1 + κ2)‖(x̂(k), ŷ(k)) − (x̄, 0)‖ ≤ 1

2‖x
(k) − x̄‖

by Proposition 5.3. It follows that for every starting point x(0) ∈ Bδ(x̄) Algorithm 1 either stops after finitely 
many iterations with a solution or produces a sequence x(k) converging to x̄. The superlinear convergence 
of the sequence x(k) is now an easy consequence of Proposition 5.3. �

So far Algorithm 1 is only a straightforward adaption of the semismooth∗ Newton method from [14]
to SCD mappings. However, in [14] the semismooth∗ Newton method was only guaranteed to converge 
under the assumption of strong metric regularity, whereas we will now prove that for its SCD variant a less 
restrictive condition is sufficient.

Proposition 5.5. Let F : Rn ⇒ Rn be SCD regular around (x̄, 0) ∈ gphF . Then for every η > 0 and every 
κ > scd reg F (x̄, 0) there is a neighborhood U of x̄ such that for every x ∈ U the set G η,κ

F,x̄ (x) is nonempty 
and amounts to

G η,κ
F,x̄ (x) =

{
(x̂, ŷ, L) | (x̂, ŷ) ∈ gphF, ‖(x̂, ŷ) − (x̄, 0)‖ ≤ η‖x− x̄‖, L ∈ S ∗F (x̂, ŷ)

}
. (41)
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Proof. By Proposition 4.8 we can find some positive radius ρ such that F is SCD regular around (x, y) with 
modulus scd reg F (x, y) ≤ κ for every (x, y) ∈ gphF ∩ Bρ(x̄, 0). By taking U := Bρ/η(x̄), for every x ∈ U

and every (x̂, ŷ) ∈ gphF with ‖(x̂, ŷ) − (x̄, 0)‖ ≤ η‖x − x̄‖ we have (x̂, ŷ) ∈ Bρ(x̄, 0). By (34) we obtain that 
‖CL‖ ≤ κ whenever L ∈ S ∗F (x̂, ŷ) and the assertion follows. �

Since in (41) the right hand side does not depend on κ, we obtain the following corollary of Theorem 5.4.

Corollary 5.6. Assume that F is SCD semismooth∗ at (x̄, 0) ∈ gphF and SCD regular around (x̄, 0). Then 
for every η > 0 there is a neighborhood U of x̄ such that for every starting point x(0) ∈ U Algorithm 1 is 
well-defined and either stops after finitely many iterations at a solution of (36) or produces a sequence x(k)

converging superlinearly to x̄ for any choice of (x̂(k), ŷ(k)) satisfying (39) and any L(k) ∈ S ∗F (x̂(k), ŷ(k)).

Remark 5.7. Note that Corollary 5.6 guarantees not only locally superlinear convergence, but also that the 
method is locally well-defined, which is an advantage in comparison with the Josephy-Newton method from 
[18]. In Theorem 6.2 below we will show that, under the assumptions of Corollary 5.6, the mapping F is 
strongly metrically subregular at (x̄, 0). By [5, Theorem 6.1], in such a case the convergence of the Josephy-
Newton method is also locally superlinear, provided the method is well-defined. This, however, need not 
be the case as illustrated in [14, Example 5.13], where the assumptions of Corollary 5.6 are fulfilled, the 
semismooth∗ Newton method works well, but the Jospehy-Newton method collapses.

6. Strong metric subregularity on a neighborhood

We first present a characterization of strong metric subregularity on a neighborhood, cf. Definition 2.8, 
by means of the outer limiting graphical derivative defined in Definition 3.8.

Theorem 6.1. Consider a mapping F : Rn ⇒ Rn and let (x̄, ȳ) ∈ gphF . Then F is strongly metrically 
subregular around (x̄, ȳ) if and only if the condition

0 ∈ D�F (x̄, ȳ)(u) ⇒ u = 0 (42)

holds and in this case one has

l-subregF (x̄, ȳ) = sup{‖u‖ | (u, v) ∈ gphD�F (x̄, ȳ), ‖v‖ ≤ 1}. (43)

Proof. We prove the “if”-part by contraposition. Assume that (42) holds but F is not strongly metrically 

subregular around (x̄, ȳ). Then we can find a sequence (xk, yk) 
gphF−→ (x̄, ȳ) such that either F is not strongly 

metrically subregular at (xk, yk) for infinitely many k or lim supk→∞ subregF (xk, yk) = ∞. After possibly 
passing to some subsequence and taking into account Theorem 2.7, in both cases there is a sequence 
κk → ∞ and (uk, vk) ∈ gphDF (xk, yk) with ‖vk‖ ≤ 1 such that ‖uk‖ > κk‖vk‖. Defining (ũk, ̃vk) :=
(uk, vk)/‖uk‖ ∈ gphDF (xk, yk), we have ‖ṽk‖ ≤ 1/κk implying limk→∞ ṽk = 0. By possibly passing to 
a subsequence once more, ũk converges to some u with ‖u‖ = 1 and from the definition of D�F (x̄, ȳ) we 
obtain (u, 0) ∈ gphD�F (x̄, ȳ) contradicting (42). This proves the “if”-part.

In order to show the “only if”-part assume that (42) does not hold, so that there is some u �= 0 with 

(u, 0) ∈ gphD�F (x̄, ȳ). By definition of D�F (x̄, ȳ) there are sequences (xk, yk) 
gphF−→ (x̄, ȳ) and (uk, vk) →

(u, 0) with (uk, vk) ∈ gphDF (xk, yk). If F is not strongly metrically subregular at (xk, yk) for infinitely 
many k, then it is not strongly metrically subregular around (x̄, ȳ) by definition. On the other hand, if F is 
strongly metrically subregular at (xk, yk) then vk �= 0 and subregF (xk, yk) ≥ ‖uk‖/‖vk‖, which follows from 
Theorem 2.7. Hence, lim supk→∞ subregF (xk, yk) = ∞ and F is again not strongly metrically subregular 
around (x̄, ȳ). This proves the “only if”-part. There remains to show (43). By definition we have
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l-subregF (x̄, ȳ) = lim sup
(x,y) gph F−→ (x̄,ȳ)

sup{‖u‖ | (u, v) ∈ gphDF (x, y), ‖v‖ ≤ 1}

and therefore there are sequences (xk, yk) 
gphF−→ (x̄, ȳ) and (uk, vk) ∈ gphDF (xk, yk) with ‖vk‖ ≤ 1 and 

‖uk‖ → l-subregF (x̄, ȳ) < ∞. By possibly passing to a subsequence, (uk, vk) converges to some (u, v) with 
‖v‖ ≤ 1. By definition of D�F we have (u, v) ∈ gphD�F (x̄, ȳ) and l-subregF (x̄, ȳ) = ‖u‖ ≤ ξ := sup{‖u‖ |
∃v : (u, v) ∈ gphD�F (x̄, ȳ), ‖v‖ ≤ 1} follows. Next consider a sequence (uk, vk) ∈ gphD�F (x̄, ȳ) with 
‖vk‖ ≤ 1 and ‖uk‖ → ξ. Then for every k there are (xk, yk) ∈ gphF and (u′

k, v
′
k) ∈ gphDF (xk, yk) such 

that ‖(xk, yk) − (x̄, ȳ)‖ ≤ 1
k and (‖u′

k, v
′
k) − (uk, vk)‖ ≤ 1

k and

subregF (xk, yk) ≥ ξk :=
{‖u′

k‖
‖v′

k‖
if ‖v′k‖ > 1

‖u′
k‖ if ‖v′k‖ ≤ 1

follows. In case when ‖v′k‖ > 1 we have

| ‖u
′
k‖

‖v′k‖
− ‖u′

k‖| = ‖v′k‖ − 1
‖v′k‖

‖u′
k‖ ≤ 1

k + 1‖u
′
k‖

and limk→∞ ξk = ξ follows. Hence l-subregF (x̄, ȳ) ≥ lim supk→∞ ξk = ξ and relation (43) is established. �
From Lemma 3.10 together with Lemma 4.5, we may conclude that strong metric subregularity around 

(x̄, ȳ) ∈ gphF implies SCD regularity around (x̄, ȳ) and that l-subregF (x̄, ȳ) ≥ scd reg F (x̄, ȳ). Next 
we show that, conversely, SCD regularity in conjunction with SCD semismoothness* provides a sufficient 
condition for strong metric subregularity.

Theorem 6.2. Assume that F : Rn ⇒ Rn is SCD regular around (x̄, ȳ) ∈ gphF . Then for every κ >
scd reg F (x̄, ȳ) there is a neighborhood W of (x̄, ȳ) such that F is strongly metrically subregular with modulus 
subregF (x, y) < κ at every point (x, y) ∈ gphF ∩W where F is SCD semismooth∗.

Proof. Fixing κ > κ̃ > scd reg F (x̄, ȳ), by Proposition 4.8 there is an open neighborhood W of (x̄, ȳ) such 
that for every (x, y) ∈ gphF∩W the mapping F is SCD regular around (x, y) with modulus scd reg F (x, y) ≤
κ̃. Consider (x̃, ỹ) ∈ gphF∩W where F is SCD semismooth∗. Assume now that F is not metrically subregular 
at (x̃, ỹ) or that subregF (x̃, ỹ) > κ̃. Then there is some κ′ > κ̃ and a sequence xk converging to x̃ such 
that dist(xk, F−1(ỹ)) > κ′ dist(ỹ, F (xk)) ∀k. Consider yk ∈ F (xk) with dist(ỹ, F (xk)) = ‖yk − ỹ‖. Then yk
converges to ỹ and for all k sufficiently large we have (xk, yk) ∈ gphF ∩W . Pick Lk ∈ S ∗F (xk, yk). Using 
Proposition 5.3 and (34) we have that ‖CLk

‖ ≤ κ̃ and

‖xk − CT
Lk

(yk − ỹ) − x̃‖ ≤ 1
k

√
n(1 + ‖CLk

‖2)‖(xk − x̃, yk − ỹ)‖ ≤ 1
k

√
n(1 + κ̃2)(‖xk − x̃‖ + ‖yk − ỹ‖)

implying

(1 − αk)‖xk − x̃‖ ≤ ‖CLk
(yk − ỹ)‖ + αk‖yk − ỹ‖ ≤ (κ̃ + αk)‖yk − ỹ‖,

where αk := 1
k

√
n(1 + κ̃2). Since αk → 0 as k → ∞, we have (κ̃ + αk)/(1 − αk) < κ′ for all k sufficiently 

large and therefore ‖xk − x̃‖ < κ′‖yk − ỹ‖ in contrary to our assumption. This shows that F is metrically 
subregular at (x̃, ỹ) and subregF (x̃, ỹ) ≤ κ̃ < κ. Further x̃ must be an isolated point in F−1(ỹ). Assume on 
the contrary that there is a sequence xk ∈ F−1(ỹ) converging to x̃. Taking Lk ∈ S ∗F (xk, ỹ) and applying 
Proposition 5.3 with ε = 1/(2

√
n(1 + κ̃2), we obtain for all k sufficiently large
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‖xk − x̃‖ = ‖xk − CT
Lk

(ỹ − ỹ) − x̃‖ ≤ 1
2‖(xk − x̃, ỹ − ỹ)‖ = 1

2‖xk − x̃‖,

a contradiction. This shows that F is even strongly metrically subregular at (x̃, ỹ). �
Remark 6.3. In the special case of a single-valued locally Lipschitzian mapping F : Rn → Rn the statement 
of Theorem 6.2 can be derived also from [15, Proposition 1].

For semismooth∗ mappings we arrive thus at the following equivalence.

Corollary 6.4. Assume that F : Rn ⇒ Rn is SCD semismooth∗ around (x̄, ȳ) ∈ gphF . Then F is strongly 
metrically subregular around (x̄, ȳ) if and only if F is SCD regular around (x̄, ȳ) and in this case one has 
l-subregF (x̄, ȳ) = scd reg F (x̄, ȳ).

Example 6.5. Consider the mapping F := R2 ⇒ R2 given by

F (x1, x2) :=
(

x1
−x2

)
+ h(x) + NC(x1, x2),

where C := {(x1, x2) | −1
2x1 ≤ x2 ≤ 1

2x1} is a convex polyhedral cone and h : R2 → R2 is any 
continuously differentiable mapping satisfying h(0, 0) = (0, 0), ∇h(0, 0) = 0. As the reference point we 
take (x̄, ȳ) =

(
(0, 0), (0, 0)

)
. The mapping NC is a polyhedral mapping and therefore semismooth∗ at 

any point of its graph by [14]. Further, NC(x) = ∂δC(x) is an SCD mapping by Corollary 3.28. Thus, 
F is both an SCD mapping around and semismooth∗ at any point of its graph, because it differs from 
NC by a continuously differentiable mapping. Now let us calculate S ∗F (x̄, ȳ). The critical cone KC(x̄, ȳ)
amounts to C and has therefore the 4 faces C, {(u, 12u) | u ≥ 0}, {(u, −1

2u) | u ≥ 0} and {(0, 0)}. 
By using Example 3.29 we conclude that S ∗NC(0, 0) consists of the 4 subspaces L1 := R2 × {(0, 0)}, 
L2 := {((u, 12u), (−1

2v, v)) | (u, v) ∈ R2}, L3 := {((u, −1
2u), (1

2v, v)) | (u, v) ∈ R2} and L4 := {(0, 0)} ×R2

and Proposition 3.15 tells us that S ∗F (x̄, ȳ) = {TL1, TL2, TL3, TL4} where

T =

⎛⎜⎝1 0 0 0
0 1 0 0
1 0 1 0
0 −1 0 1

⎞⎟⎠ .

Straightforward calculations yield

TL1 = {((u, v), (u,−v)) | (u, v) ∈ R2}, TL2 = ((u, 1
2u), (u− 1

2v,−
1
2u + v)) | (u, v) ∈ R2},

TL3 = {((u,−1
2u), (u + 1

2v,
1
2u + v)) | (u, v) ∈ R2}, TL4 = {((0, 0), (u, v)) | (u, v) ∈ R2}.

Now it easily follows that F is SCD regular around (x̄, ȳ) with

CTL1 =
(

1 0
0 −1

)
, CTL2 =

( 4
3

2
3

2
3

1
3

)
, CTL3 =

( 4
3 −2

3
−2

3
1
3

)
, CTL4 =

(
0 0
0 0

)

and ‖CTL1‖ = 1, ‖CTL2‖ = ‖CTL3‖ = 5
3 , ‖CTL4‖ = 0. Hence, by virtue of Theorem 6.2, F is strongly 

metrically subregular around (x̄, ȳ) with modulus l-subregF (x̄, ȳ) = 5 .
3
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To illustrate this result, we explicitly compute F−1 in case h = 0. One obtains that

F−1(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
z1(y)

}
if − 1

2y1 + y2 > 0, 2y1 + y2 ≥ 0,{
z1(y), z2(y), z3(y)

}
if − 1

2y1 + y2 ≤ 0, −1
2y1 − y2 ≤ 0,{

z3(y)
}

if − 1
2y1 − y2 > 0, 2y1 − y2 ≥ 0,{

z4(y)
}

if 2y1 + y2 ≤ 0, 2y1 − y2 ≤ 0
}
,

(44)

with the mappings zi(y), i = 1, . . . , 4, in (44) specified via

z1(y) :=
(4

3y1 + 2
3y2,

2
3y1 + 1

3y2

)
, z2(y) := (y1,−y2),

z3(y) :=
(4

3y1 −
2
3y2,−

2
3y1 + 1

3y2

)
, z4(y) := (0, 0).

We see that F−1 has the isolated calmness property at every point of its graph close to (0, 0), but it is not 
single-valued.

7. On strong metric regularity

Our results on strong metric regularity pertain again mappings F : Rn ⇒ Rn and are partly expressed 
in terms of certain bases for the subspaces L ∈ SF (x̄, ȳ).

Given a mapping F : Rn ⇒ Rn which is graphically Lipschitzian of dimension n at (x̄, ȳ) ∈ gphF with 
transformation mapping Φ according to Definition 3.16, we denote by ∇ΦF (x̄, ȳ) the collection of all 2n ×n

matrices Z such that rge Z ∈ SF (x̄, ȳ) and π1(∇Φ(x̄, ȳ)Z) = I.
Note that by Proposition 3.17 for every L ∈ SF (x̄, ȳ) there exists a unique Z ∈ ∇ΦF (x̄, ȳ) ∩ M (L). 

Since for every Lipschitzian mapping f : U → Rn, U ⊂ Rn open, the B-subdifferential ∇f(u) is compact 
for every u ∈ U , we conclude from (24a) that ∇ΦF (x̄, ȳ) is compact as well.

The next statement provides us with an upper approximation of the graphs of the strict derivative and 
the limiting coderivative, respectively.

Proposition 7.1. Let F : Rn ⇒ Rn be graphically Lipschitzian at (x̄, ȳ) ∈ gphF with transformation mapping 
Φ. Then

gphD∗F (x̄, ȳ) ⊆
⋃

Z∈conv∇Φ
F (x̄,ȳ)

rge Z, (45)

gphD∗F (x̄, ȳ) ⊆
⋃

Z∈conv∇Φ
F (x̄,ȳ)

(rge Z)∗ (46)

Proof. According to Definition 3.16 consider the open neighborhoods W of (x̄, ȳ), U of w̄ and the 
Lipschitzian mapping f : U → Rn with Φ(gphF ∩ W ) = gph f , where w̄ = π1(Φ(x̄, ȳ)). Consider 
(u, v) ∈ gphD∗F (x̄, ȳ) together with sequences (x1

k, y
1
k) 

gphF−→ (x̄, ȳ), (x2
k, y

2
k) 

gphF−→ (x̄, ȳ) and tk ↓ 0 such that 
(u, v) = limk→∞(x2

k − x1
k, y

2
k − y1

k)/tk. For each k let wi
k, i = 1, 2 be given by wi

k = π1(Φ(xi
k, y

i
k)). Then

(w2
k − w1

k, f(w2
k) − f(w1

k)) = Φ(x2
k, y

2
k) − Φ(x1

k, y
1
k) = ∇Φ(x̄, ȳ)(x2

k − x1
k, y

2
k − y1

k) + o(‖(x2
k − x1

k, y
2
k − y1

k)‖)

= ∇Φ(x̄, ȳ)(x2
k − x1

k, y
2
k − y1

k) + o(tk)
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implying that

lim
k→∞

(w2
k − w1

k, f(w2
k) − f(w1

k))
tk

= lim
k→∞

∇Φ(x̄, ȳ) (x2
k − x1

k, y
2
k − y1

k)
tk

= ∇Φ(x̄)(u, v) ∈ gphD∗f(w̄).

Hence π2(∇Φ(x̄)(u, v)) ∈ D∗f(w̄)(π1(∇Φ(x̄)(u, v))) and by [34, Theorem 9.62] there is some B ∈
conv∇f(w̄) satisfying π2(∇Φ(x̄)(u, v)) = Bπ1(∇Φ(x̄)(u, v)) which is the same as ∇Φ(x̄)(u, v) ∈ rge (I, B). 
B can be expressed as a convex combination 

∑N
i=1 αiBi with Bi ∈ ∇f(w̄), αi ≥ 0, 

∑N
i=1 αi = 1 and 

therefore

(u, v) ∈ ∇Φ(x̄, ȳ)−1rge (I,B) = Φ(x̄, ȳ)−1rge
[ N∑

i=1
αi

(
I

Bi

)]
= rge

[ N∑
i=1

αiΦ(x̄, ȳ)−1

(
I

Bi

)]
.

Denoting Zi := Φ(x̄, ȳ)−1

(
I

Bi

)
we have rge Zi ∈ SF (x̄, ȳ) by (24a) and π1(Φ(x̄, ȳ)Zi) = I yielding 

Zi ∈ ∇Φ
F (x̄, ȳ). Thus (u, v) ∈ rge Z with Z =

∑N
i=1 αiZi ∈ conv∇ΦF (x̄, ȳ) verifying (45).

Now consider (y∗, x∗) ∈ gphD∗F (x̄, ȳ) which is the same as

ST
n (y∗, x∗) ∈ NgphF (x̄, ȳ) = ∇Φ(x̄, ȳ)TNgph f (w̄, f(w̄),

where the second equality follows from [34, Exercise 6.7]. Hence z∗ := Sn∇Φ(x̄, ȳ)−TST
n (y∗, x∗) ∈

SnNgph f (w̄, f(w̄) = gphD∗f(w̄) implying π2(z∗) ∈ D∗f(w̄)(π1(z∗)). By [34, Theorem 9.62] there is some 
B ∈ conv∇f(w̄) such that π2(z∗) = BTπ1(z∗) which is the same as z∗ ∈ rge (I, BT ) and

(y∗, x∗) ∈ rge
[
Sn∇Φ(x̄, ȳ)TST

n

(
I

BT

)]
follows. Taking into account that

rge
[
Sn∇Φ(x̄, ȳ)TST

n

(
I

BT

)]⊥
= rge

[
Sn∇Φ(x̄, ȳ)−1ST

n

(
B

−I

)]
= rge

[
− Sn∇Φ(x̄, ȳ)−1

(
I

B

)]
,

we obtain

rge
[
Sn∇Φ(x̄, ȳ)TST

n

(
I

BT

)]∗
= Snrge

[
− Sn∇Φ(x̄, ȳ)−1

(
I

B

)]
= rge

[
∇Φ(x̄, ȳ)−1

(
I

B

)]
.

As we have shown above, the latter subspace equals to rge Z with Z ∈ conv∇Φ
F (x̄, ȳ) and (y∗, x∗) ∈

(rge Z)∗ follows. �
On the basis of Proposition 7.1 we can now establish the following characterization of strong metric 

regularity.

Theorem 7.2. Consider a mapping F : Rn ⇒ Rn and let (x̄, ȳ) ∈ gphF .

(i) If F is strongly metrically regular around (x̄, ȳ) then it is graphically Lipschitzian of dimension n at 
(x̄, ȳ) with transformation mapping Φ(x, y) = (y, x) and one has that {rge Z | Z ∈ conv∇ΦF (x̄, ȳ)} ⊆
Z reg

n . Further, F is SCD regular around (x̄, ȳ) and regF (x̄, ȳ) = scd reg F (x̄, ȳ).
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(ii) Conversely, if F is graphically Lipschitzian of dimension n at (x̄, ȳ) with some transformation mapping 
Φ such that {rge Z | Z ∈ conv∇ΦF (x̄, ȳ)} ⊆ Z reg

n then F is strongly metrically regular around (x̄, ȳ).

Proof. If F is strongly metrically regular around (x̄, ȳ), then by Theorem 2.6 it is clearly graphically 
Lipschitzian with the given transformation mapping Φ and from Proposition 3.17 we obtain SF (x̄, ȳ) =
{rge (B, I) | B ∈ ∇f(ȳ)} where f denotes the Lipschitz continuous localization of F−1 around (ȳ, ̄x). Thus

∇ΦF (x̄, ȳ) =
{(B

I

)
| B ∈ ∇f(ȳ)

}

and consequently every matrix Z ∈ conv∇ΦF (x̄, ȳ) is of the form Z =
(
B

I

)
with B ∈ conv∇f(ȳ). 

From this we can easily deduce that L := rge Z ∈ Z reg
n and B = CL showing that F is SCD regular. 

In order to verify the formula for the modulus of strong metric regularity we use (9). Let ε > 0 and 
consider (u, v) ∈ gphD∗F (x̄, ȳ) with ‖v‖ ≤ 1 and ‖u‖ ≥ regF (x̄, ȳ) − ε. By Proposition 7.1 there is some 
Z ∈ conv∇ΦF (x̄, ȳ) and some w ∈ Rn with (u, v) = Zw. Thus there is B̄ ∈ conv∇f(ȳ) such that u = B̄w

and v = w yielding

regF (x̄, ȳ) − ε ≤ ‖u‖ ≤ ‖B̄‖‖v‖ ≤ ‖B̄‖ ≤ sup{‖B‖ | B ∈ conv∇f(ȳ)}
= sup{‖B‖ | B ∈ ∇f(ȳ)} = sup{‖CL‖ | L ∈ SF (x̄, ȳ)} = scd reg F (x̄, ȳ)

by Lemma 4.5. Since ε > 0 can be chosen arbitrarily small, there holds regF (x̄, ȳ) ≤ scd reg F (x̄, ȳ). On the 
other hand, we have 

⋃
SF (x̄, ȳ) ⊆ gphD�F (x̄, ȳ) ⊆ gphD∗F (x̄, ȳ) implying scd reg F (x̄, ȳ) ≤ regF (x̄, ȳ)

by Lemma 4.5 and (9). This proves (i).
The statement (ii) follows from Theorem 2.7 together with Proposition 7.1. If 0 ∈ gphD∗F (x̄, ȳ)(u) then 

there is some Z ∈ conv∇ΦF (x̄, ȳ) such that (u, 0) ∈ rge Z and u = 0 follows from rge Z ∈ Z reg
n . Similarly, if 

0 ∈ D∗F (x̄, ȳ)(y∗) then there is some Z ∈ conv∇ΦF (x̄, ȳ) such that (y∗, 0) ∈ (rge Z)∗. Since rge Z ∈ Z reg
n , 

we have (rge Z)∗ ∈ Z reg
n by Proposition 4.2 and y∗ = 0 follows. Hence, both (8) and (6) are fulfilled and 

strong metric regularity of F has been established. �
Consider the special case of a single-valued Lipschitzian mapping F : Rn → Rn so that Φ(x, y) = (x, y). 

Then ∇ΦF (x, F (x)) = {(I, B) | B ∈ ∇F (x)} by Lemma 3.11 and therefore

conv∇ΦF (x, F (x)) = {(I,B) | B ∈ conv∇F (x)}.

Thus the requirement in Theorem 7.2(ii) that {rge Z | Z ∈ conv∇ΦF (x̄, ȳ)} ⊆ Z reg
n is equivalent to 

the condition that every matrix B belonging to Clarke’s generalized Jacobian conv∇F (x) is nonsingular. 
Therefore we may consider Theorem 7.2(ii) as a generalization of Clarke’s Inverse Function Theorem, see, 
e.g., [6, Theorem 7.1.1], to set-valued mappings.

Note that regF (x̄, ȳ) = scd reg F (x̄, ȳ) whenever F is strongly metrically regular around (x̄, ȳ). This 
fact will not be repeated in the following results, where we present sufficient conditions for strong metric 
regularity.

The sufficient condition for strong metric regularity in Theorem 7.2(ii) depends on the particular basis 
representation ∇ΦF (x̄, ȳ) of SF (x̄, ȳ). The next results are stated in terms of the elements L ∈ SF (x̄, ȳ)
which do not depend on a basis.

Corollary 7.3. Given F : Rn ⇒ Rn and a point (x̄, ȳ) ∈ gphF , assume that SF (x̄, ȳ) = {L̄} is a singleton. 
Then F is strongly metrically regular around (x̄, ȳ) if and only if F is graphically Lipschitzian of dimension 
n at (x̄, ȳ) and L̄ ∈ Z reg

n .
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When SF (x̄, ȳ) is a singleton and F is not graphically Lipschitzian at (x̄, ȳ) then F cannot be strongly 
metrically regular by Theorem 7.2(i). However, if F is SCD semismooth∗ at (around) (x̄, ȳ), then it is at 
least strongly metrically subregular at (around) (x̄, ȳ). Consider the following example.

Example 7.4. Let q : R → R be given by q(x) = 2
3 sign (x)|x| 32 . Then ∂q(x) = |x| 12 is not graphically 

Lipschitzian of dimension 1 at (0, 0) but it is an SCD mapping and SCD semismooth∗. Further, S ∂q(0, 0) =
{{0} ×R} is a singleton and clearly {0} ×R ∈ Z reg

n . Thus we deduce from Corollary 6.4 that ∂q is strongly 
metrically subregular around (0, 0). However, ∂q is not strongly metrically regular around (0, 0) because 
∂q−1(y) = ∅ for every y < 0.

We will now present a basis-independent characterization of strong metric regularity for locally maximally 
hypomonotone mappings.

Theorem 7.5. Assume that F : Rn ⇒ Rn is locally maximally hypomonotone at (x̄, ȳ) ∈ gphF . Then the 
following two statements are equivalent:

(i) F is SCD regular around (x̄, ȳ) and for every L ∈ SF (x̄, ȳ) the matrix CL is positive semidefinite.
(ii) F is strongly metrically regular around (x̄, ȳ) and

lim inf
(x1,y1),(x2,y2) gph F−→ (x̄,ȳ)

〈x1 − x2, y1 − y2〉
‖x1 − x2‖‖y1 − y2‖ ≥ 0 (47)

with the convention 0/0 := 0.

Proof. We first prove (i)⇒(ii). By Corollary 3.23 there is some λ ≥ 1 such that F is graphically Lipschitzian 
at (x̄, ȳ) with transformation mapping Φ(x, y) = (λx + y, x) and for every Z ∈ ∇ΦF (x̄, ȳ) there is a 

firmly nonexpansive n × n matrix B, such that Z =
(

B

I − λB

)
. Since F is SCD regular around (x̄, ȳ), 

π2(Z) = I − λB is nonsingular and Crge Z = B(I − λB)−1. Consider u ∈ Rn and set v := (I − λB)u. By 
the posed assumption, B(I − λB)−1 is positive semidefinite and we obtain

0 ≤ λ〈v,B(I − λB)−1v〉 = λ〈v,Bu〉 = λ〈(I − λB)u,Bu〉

implying 〈u, λBu〉 ≥ ‖λBu‖2. Thus λB is firmly nonexpansive and, consequently, ‖2λB − I‖ ≤ 1. Since 
I − λB is nonsingular, we deduce from [3, Theorem 3.3] that ‖λB‖ < 1. Now consider Z̄ ∈ conv∇ΦF (x̄, ȳ). 

It follows that Z̄ =
(

B̄

I − λB̄

)
, where B̄ is some convex combination of matrices Bi with ‖λBi‖ < 1 and 

‖2λBi − I‖ ≤ 1. It follows that ‖λB̄‖ < 1 and ‖2λB̄ − I‖ ≤ 1. Thus π2(Z̄) = I − λB̄ is nonsingular 
and from Proposition 4.2 we may deduce that rge Z̄ ∈ Z reg

n . Now strong regularity of F follows from 
Theorem 7.2(ii). Next we prove (47) by contraposition. Assume on the contrary that there are sequences 
(xi

k, y
i
k) 

gphF−→ (x̄, ȳ), i = 1, 2, and some η > 0 such that 〈x1
k − x2

k, y
1
k − y2

k〉 < −η‖x1
k − x2

k‖‖y1
k − y2

k‖ for 
all k. By local hypomonotonicity, 〈x1

k − x2
k, y

1
k − y2

k〉 ≥ −(λ − 1)‖x1
k − x2

k‖2 and therefore λ > 1 and 
‖x1

k − x2
k‖ ≥ η

λ−1‖y1
k − y2

k‖. On the other hand, by strong metric regularity, choosing c > regF (x̄, ȳ), we 
have ‖x1

k − x2
k‖ ≤ c‖y1

k − y2
k‖ for all k sufficiently large. Let tk := ‖y1

k − y2
k‖ + ‖x1

k − x2
k‖. By possibly 

passing to a subsequence, (x1
k − x2

k, y
1
k − y2

k)/tk converges to some (u, v) ∈ D∗F (x̄, ȳ) with ‖u‖ + ‖v‖ = 1, 
η

λ−1‖v‖ ≤ ‖u‖ ≤ c‖v‖ and 〈u, v〉 ≤ −η‖u‖‖v‖. We deduce that both u and v are nonzero and thus 〈u, v〉 < 0. 
By Proposition 7.1 there is some Z̄ ∈ conv∇ΦF (x̄, ȳ) and some p ∈ Rn with (u, v) = Z̄p. As shown above, 
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Z̄ =
(

B̄

I − λB̄

)
for some n × n matrix B̄ with ‖2λB̄ − I‖ ≤ 1, i.e., λB̄ is firmly nonexpansive. It follows 

that

0 ≤ 〈p, λB̄p〉 − ‖λB̄p‖2 = λ〈B̄p, p− λB̄p〉 = λ〈u, v〉,

contradicting 〈u, v〉 < 0. Hence the implication (i)⇒(ii) is verified.
To show the reverse implication note that strong metric regularity implies SCD regularity by Theorem 7.2. 

We prove that CL is positive semidefinite for every L ∈ SF (x̄, ȳ) by contradiction. Assume that there exists 
some L ∈ SF (x̄, ȳ) and p ∈ Rn with 〈CLp, p〉 < 0. Since (CLp, p) ∈ L ⊆ D�F (x̄, ȳ) ⊆ D∗F (x̄, ȳ), there are 

sequences tk ↓ 0, (xk, yk) 
gphF−→ (x̄, ȳ) and (uk, vk) → (CLp, p) with (x′

k, y
′
k) := (xk, yk) + tk(uk, vk). It follows 

that (x′
k − xk)/‖x′

k − xk‖ = uk/‖uk‖ → CLp, (y′k − yk)/‖y′k − yk‖ = vk/‖vk‖ → p/‖p‖ and therefore

lim
k→∞

〈x′
k − xk, y

′
k − yk〉

‖x′
k − xk‖‖y′k − yk‖

= 〈CLp, p〉
‖CLp‖‖p‖

< 0 (48)

contradicting (47). �
Corollary 7.6. Let F : Rn ⇒ Rn be locally monotone around (x̄, ȳ) ∈ gphF . Then the following statements 
are equivalent.

(i) F is strongly metrically regular around (x̄, ȳ).
(ii) F is metrically regular around (x̄, ȳ).
(iii) F is SCD regular around (x̄, ȳ) and locally maximally monotone at (x̄, ȳ).

In this case, the matrices CL, L ∈ SF (x̄, ȳ), are positive semidefinite.

Proof. The equivalence between (i) and (ii) follows from the definitions of (strong) metric regularity and 
[10, Theorem 3G.5]. In view of Theorem 7.5, in order to verify (i)⇒(iii), we only have to show that F is 
locally maximally monotone. By taking into account that gphF−1 = {(y, x) | (x, y) ∈ gphF}, it follows 
readily from the definition that F is locally maximally monotone at (x̄, ȳ) if and only if F−1 is locally 
maximally monotone at (ȳ, ̄x). F−1 has a Lipschitz continuous monotone localization and is therefore locally 
maximally monotone at (ȳ, ̄x) by [23, Lemma 2.1]. This proves (i)⇒(iii). We now claim that (iii) implies 
that CL is positive semidefinite for every L ∈ SF (x̄, ȳ). Assuming that CL is not positive semidefinite 
for some L ∈ SF (x̄, ȳ), the same arguments as in the proof of Theorem 7.5 can be used to obtain (48)
contradicting the local monotonicity of F . Hence our claim holds true and the implication (iii)⇒(i) follows 
from Theorem 7.5. �
Remark 7.7. Theorem 7.5 improves the sufficient conditions for strong metric regularity obtained by Nghia 
et al. [26]. E.g., in [26, Corollary 3.11] it is shown that F : Rn ⇒ Rn is strongly metrically regular around 
(x̄, ȳ) if

(a) F is locally hypomonotone at (x̄, ȳ) and
(b) D∗F (x̄, ȳ) is positive definite in the sense that 〈u∗, v∗〉 > 0 holds for all u∗ ∈ D∗F (x̄, ȳ)(v∗), v∗ �= 0.

We now show that these assumptions imply the assumptions of Theorem 7.5(i). Indeed, by the positive 
definiteness of the coderivative D∗F (x̄, ȳ) together with the Mordukhovich criterion (6) we may deduce that 
F is metrically regular around (x̄, ȳ) and therefore SCD regular as well. Further, for every L ∈ SF (x̄, ȳ)
we have rge (CT

L , I) ⊆ gphD∗F (x̄, ȳ) by Proposition 4.2 and Remark 3.5 implying 〈CT
L p, p〉 > 0 for all 
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p with CT
L p �= 0 by assumption (b). Hence, CL is positive semidefinite. By assumption (a) there is some 

γ ≥ 0 such that γI + F is locally monotone at (x̄, ȳ) and, since D∗(γI + F )(x̄, γx̄ + ȳ) = γI + D∗F (x̄, ȳ)
is positive definite, we conclude from the Mordukhovich criterion that γI + F is metrically regular around 
(x̄, γx̄+ ȳ). Thus, by Corollary 7.6, the mapping γI +F is locally maximally monotone at (x̄, γx̄+ ȳ) and F
is locally maximally hypomonotone at (x̄, ȳ) by the definition. Hence, we have shown that the assumptions 
of Theorem 7.5(i) are weaker than those of [26, Corollary 3.11]. When we now consider, e.g., the mapping 
F (x1, x2) = (−x2, x1) and an arbitrary reference point (x̄, F (x̄)), we observe that the positive definiteness 
assumption (b) is not fulfilled. Nevertheless, Theorem 7.5 works well and so it in fact improves the mentioned 
statement in [26].

Next we turn our attention to the characterization of tilt-stable minimizers by SCD regularity of the 
subdifferential.

Definition 7.8 (tilt-stable minimizers). Let q : Rn → R̄, and let x̄ ∈ dom q. Then:

(i) x̄ is a tilt-stable local minimizer of q if there is a number γ > 0 such that the mapping

Mγ(x∗) := arg min
{
q(x) − 〈x∗, x〉 | x ∈ Bγ(x̄)

}
, x∗ ∈ Rn, (49)

is single-valued and Lipschitz continuous in some neighborhood of x̄∗ = 0 ∈ Rn with Mγ(0) = {x̄}.
(ii) The exact bound of tilt stability of q at x̄ is defined by

tilt (q, x̄) := lim sup
v∗,w∗→0
v∗ 	=w∗

‖Mγ(v∗) −Mγ(w∗)‖
‖v∗ − w∗‖ . (50)

The theory developed in Section 5 enables us to provide a new characterization of tilt-stable local mini-
mizers.

Theorem 7.9. For a function q : Rn → R̄ having 0 ∈ ∂q(x̄) and such that q is both prox-regular and 
subdifferentially continuous at x̄ for x̄∗ = 0, the following statements are equivalent:

(i) x̄ is a tilt-stable local minimizer of q.
(ii) ∂q is SCD regular around (x̄, 0) and CL is positive semidefinite for every L ∈ S ∂q(x̄, 0).

Further, if x̄ is a tilt-stable minimizer of q then tilt (q, ̄x) = scd reg ∂q(x̄, 0).

Proof. If x̄ is a tilt-stable minimizer, we may conclude from [28, Theorem 1.3] that the mapping Mγ is a 
single-valued Lipschitzian localization of ∂q−1 around (0, ̄x) so that ∂q is strongly metrically regular around 
(x̄, 0) and tilt (q, ̄x) = reg ∂q(x̄, 0) = scd reg ∂q(x̄, 0). By [28, Theorem 1.3], statement (i) is equivalent to 
the condition

(iii) The coderivative D∗∂q(x̄, 0) is positive definite in the sense that

〈v∗, u∗〉 > 0 whenever u∗ ∈ D∗F (x̄, ȳ)(v∗), v∗ �= 0. (51)

So it suffices to prove the equivalence (ii)⇔(iii).
Proof that (ii) ⇒ (iii). By Proposition 3.26, there is some λ > 0 such that ∂q is graphically Lipschitzian 

with transformation mapping Φ(x, x∗) = (x +λx∗, x). Further, any Z ∈ ∇Φ∂q(x̄, 0) satisfies rge Z = (rge Z)∗



H. Gfrerer, J.V. Outrata / J. Math. Anal. Appl. 508 (2022) 125895 35
and is of the form Z =
(

B
1
λ (I −B)

)
, where B is some symmetric positive semidefinite n ×n matrix. Consider 

Z ∈ ∇Φ∂q(x̄, 0) and set B := π1(Z). Since ∂q is SCD regular around (x̄, 0), the matrix π2(Z) = 1
λ (I −B) is 

nonsingular by Proposition 4.2 and Crge Z = λB(I−B)−1. If the eigenvalues of B are denoted by μ1, . . . , μn, 
the eigenvalues of CL are λμi/(1 − μi), i = 1, . . . , n, and, together with μi ≥ 0, we conclude that CL is 
positive semidefinite if and only if maxμi = ‖B‖ < 1. Since ∇Φ∂q(x̄; 0) is compact, it follows that η :=
max{‖π1(Z)‖ | Z ∈ ∇Φ∂q(x̄; 0)} < 1. Now consider (v∗, u∗) ∈ gphD∗F (x̄, ȳ). By Proposition 7.1 there is 
some Z̄ ∈ conv∇Φ∂q(x̄, 0) such that (v∗, u∗) ∈ (rge Z̄)∗. The matrix B̄ := π1(Z̄) is a convex combination of 
symmetric positive semidefinite matrices Bi satisfying ‖Bi‖ ≤ η. Thus B̄ is symmetric positive semidefinite 
and ‖B̄‖ ≤ η < 1. By taking into account π2(Z̄) = 1

λ (I − B̄), (rge Z̄)⊥ = rge ( 1
λ (I − B̄, −B̄) and (rge Z̄)∗ =

rge Z̄ follows. Thus we may find some p ∈ Rn with (v∗, u∗) = (B̄p, 1λ (I − B̄)p to obtain

〈v∗, u∗〉 = 1
λ
pT B̄(I − B̄)p.

The matrix B̄(I − B̄) is symmetric and has eigenvalues μi(1 − μi), where μ1, . . . , μn are the eigenvalues of 
B̄. Since 0 ≤ μi ≤ η < 1, i = 1, . . . , n, the matrix B̄(I − B̄) is positive semidefinite implying 〈v∗, u∗〉 ≥ 0. 
Further, pT B̄(I − B̄)p vanishes if and only if p is a linear combination of eigenvectors associated with the 
zero eigenvalues of B̄, i.e., B̄p = v∗ = 0 and (51) follows.

Proof that (iii) ⇒ (ii). Condition (51) implies that the Mordukhovich criterion (6) is fulfilled and we may 
conclude that ∂q is SCD regular around (x̄, 0). Further, for every L ∈ SF (x̄, 0) we have L∗ = rge (CT

L , I) ⊆
gphD∗∂q(x̄, 0) by Proposition 4.2 and Lemma 3.7 and therefore (CT

Lp, p) ∈ gphD∗∂q(x̄, 0) ∀p. From (51)
we deduce 〈CT

Lp, p〉 > 0 for all p with CT
L p �= 0 and the positive semidefiniteness of CT

L and CL follows. �
Example 7.10. Consider again the mapping F : R2 → R2 from Example 6.5. If h = ∇φ for some potential 
φ : Rn → R, we see that the inclusion 0 ∈ F (x) describes in fact the first-order optimality condition for the 
optimization problem

min
x∈C

1
2x

2
1 −

1
2x

2
2 + φ(x).

Since CTL1 is not positive semidefinite, we conclude from Theorem 7.9 that x̄ = 0 is not a tilt stable local 
minimizer. This is also in accordance with [28, Theorem 4.5].

8. Conclusion

Subspaces contained in the graph of the limiting coderivative may definitely serve as a basis for con-
struction of suitable local approximations in the broad class of SCD multifunctions. It came to us, however, 
as a surprise that these subspaces and their counterparts in case of the limiting outer graphical derivative 
contain a lot of information about stability behavior of the considered mappings. The developed theory 
makes use of notions, mimicking the generalized derivatives and coderivatives in the “standard” generalized 
differential calculus. However, their structure is, in most cases, somewhat simpler when compared with the 
standard notions and so the derived new characterization of strong metric (sub)regularity and tilt stability 
are typically easier to work with. Finally, let us point out that the property of strong metric subregularity 
around the reference point, characterized via the subspaces contained in the limiting outer graphical deriva-
tive, seems to be a weak stability property ensuring the locally superlinear convergence of the semismooth* 
Newton method.
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