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A B S T R A C T   

Life itself is colorful and brings situations where making the right decision is a matter of compromise given the 
various criteria, often conflicting with each other. To handle such situations, a plethora of mathematical methods 
supporting decision-making has been developed. A little attention has been paid to cases where either criteria or 
expert preferences are not transitive by nature. Usually, standard decision-making methods handle such a case as 
an input error (input inconsistency). Being designed for consistent cases, standard methods may conclude in 
wrong results. We present a novel framework aimed at dealing with inconsistent preferences, without forcing 
experts to reconsider their initial judgments thus distorting their spontaneous assessments. A simulation analysis 
has been led to check the methodological validity of our proposal. Specifically, by setting different consistency 
ranges, thousands of experiments on simulated matrices confirm that our framework represents a valid alter-
native to the traditional practice. The applicability of the proposed approach has been eventually demonstrated 
through a real-world case study focused on supply chain management of a relevant industrial problem.   

1. Introduction and State of Art 

Multi-criteria decision-making methods enable decision-makers to 
establish which solution (or which set of alternatives) represents the best 
trade-off according to differently weighted evaluation criteria referring 
to such practical aspects as, for instance, safety & security, cost, pro-
ductivity, and so on. Among the plethora of existing methods, literature 
agrees on considering the analytic hierarchy process (AHP) as one of the 
most popular. See, for example, (Vaidya & Kumar, 2006; de FSM Russo 
& Camanho, 2015; Petruni et al., 2019). The AHP, initially developed by 
Saaty (1980), has been widely demonstrated to be suitable to narrow the 
gap between theory and practice, by combining the objectivity of the 
traditional scientific method with the real behavior of humans and 
complex systems in decision-making problems (Benítez, Carpitella, 
Certa, Izquierdo, & La Fata, 2017). 

The AHP is based on the concept of pairwise comparisons between 
pairs of elements expressed by a decision-making team (Dong & Cooper, 
2016), or maybe, by a single expert in the field of interest, in the form of 
linguistic variables (Franek & Kresta, 2014). Judgements of pairwise 
comparisons have to be collected and aggregated into input matrices, 

called pairwise comparison matrices (PCMs) - see Grzybowski and Starc-
zewski, 2020. PCMs will be mathematically manipulated to obtain the 
vector of weights of the involved elements, the last ones being eventu-
ally ranked based on the calculated weights Liu, Zhang, Zhang, and 
Pedrycz, 2020. The final ranking well represents evaluations of the 
expert(s) given an additional assumption of consistency is met, that may 
be easily verified mathematically. The key point of the AHP is the 
consistency of pairwise comparisons attributed by experts, which 
directly influence the quality of final decisions Hsieh et al., 2018. 

For various reasons, it is however impossible to achieve a complete 
degree of consistency when expressing judgments. A certain degree of 
inconsistency is expected (and allowed) due to the limits of human 
reasoning Benítez, Carpitella, Certa, and Izquierdo, 2020. When a given 
threshold is not met, that is in the case of inconsistency, either the tool of 
the AHP may not be used, or the evaluations of expert(s) have to be 
manipulated in such a way that matrices are consistent (at least to some 
degree). As shown by Benítez, Delgado-Galván, Izquierdo, and Pérez- 
García (2011), increasing consistency by manipulating PCMs necessarily 
yields decisions that no more reflect the initial opinions expressed by 
experts. This evidence leads to establishing a feedback-based 
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relationship with the decision making group Benítez, Carpitella, Certa, 
Ilaya-Ayza, and Izquierdo, 2018 to find a good trade-off between the 
twofold objective: reflecting the reality on the one hand and keeping 
PCMs within the allowed threshold of consistency on the other hand. 

Such a normative position of the AHP may be limiting. Indeed, one 
may easily design decision-making problems leading to inconsistent 
PCMs. This corresponds well to the current discussion in the domain of 
the expected utility theory (EUT) introduced by Von and Morgenstern 
(1953), a canonical theory of individual decision-making. Many obser-
vations of systematic violations of the EUT axioms, see e.g. Tversky, 
1969, motivated various authors to develop alternative decision-making 
theories, such as Fishburn (1988),tarmer (2000), or Machina (2004). In 
particular, the axiom of transitivity of preferences is not always sup-
ported by empirical evidence Bar-Hillel and Margalit, 1988; Butler, 
Pogrebna, and Blavatskyy, 2016. A concise mathematical model of non- 
transitive decision-making has been proposed in Kreweras, 1961; Fish-
burn, 1982, representing preferences with a skew-symmetric bi-linear 
(SSB) functional. Such theory may deal with inconsistent PCMs seam-
lessly, therefore it will be used to transform the above-elicited PCMs into 
weight vectors. Thus one obtains a method converging to a shared 
choice among various decision-makers that may express their prefer-
ences with no additional limitations on their judgments. 

The present paper is organised as follows. The next Section 2 states 
the motivation of this research and describes the existent methodologies 
that will be used to elaborate on a new approach to handle inconsis-
tency. In particular, this new methodological approach is presented in 
Section 3. Section 4 applies the new method first to numerical examples, 
then to simulated data, and finally to a real-world case study of indus-
trial reality. In particular, a real logistic problem will be sorted out to 
test the validity of our method and its applicability for practical 
problems. 

2. Motivation and Existent Methodologies 

First we elaborate the motivation to deal with inconsistent prefer-
ences, see SubSection 2.1. In SubSection 2.2 basic notation and defini-
tions are summarized together with a concise introduction of the AHP 
method. An aggregated preference matrix is defined in SubSection 2.3, 
and the theory of SSB representation is introduced in SubSection 2.4. 

2.1. Motivation 

In case of a consistent input, the AHP offers an effective tool to find a 
solution of the decision problem described using pairwise comparison 
matrices. One may use the AHP for inconsistent input as well, but there 
is no guarantee that the solution of the process leads to the best alter-
native. From the AHP perspective, an inconsistent input is wrong by 
principle and the decision maker internally ambivalent and irrational. 
However, real-world problems are often inconsistent in the above sense 
(e.g. non-transitive evaluation of alternatives given by an expert). In 
such a case the AHP necessarily loses a considerable amount of infor-
mation in the process of representing an inconsistent PCM by a weight 
vector. To avoid such a bottleneck, we propose an alternative to the AHP 
employing the theory of SSB representation of (potentially intransitive) 
preferences, see e.g. Fishburn, 1988; Pǐstěk, 2018; Pǐstěk, 2019. First we 
aggregate all the data into a PCM yielding the aggregated preferences. 
On such a basis we find a maximal preferred element in the sense of the 
SSB representation, that is a probability vector yielding a more preferred 
outcome more likely than any other probability vector. Based on such 
vector we finally rank the options in the same way the global score 
vector is used in the AHP. 

2.2. Notation, Basic Definitions and Analytic Hierarchy Process 

Let k be a positive integer. By P (k) we denote the set of all proba-
bility distributions having a finite support of cardinality k, i.e. P (k) =

{
p ∈ Rk : p⩾0,

∑k
i=1pi = 1

}
. Depending on the context, elements of 

P (k) may be called convex combinations of k elements, or lotteries over 
k elements. 

Let X be a square matrix, we denote the transpose of X by X⊺. Matrix 
X is skew-symmetric if X⊺ = − X. A square matrix with positive entries 
obtained from comparisons between certain attributes following a pre-
defined scale is a pairwise comparison matrix (PCM). A PCM matrix X of 
order k is reciprocal, X ∈ R (k), if xji = 1/xij for all i, j = 1, …, k, and 
homogeneous if xii = 1 for all i = 1,…,k. Note that homogeneity derives 
from reciprocity, since for i = j, xijxji = 1 and xij > 0 gives xii = 1. 
However, for the sake of clarity it is customary to present these prop-
erties separately. Finally, we say that a reciprocal matrix X ∈ R (k) is 
consistent with a weight vector w ∈ P (k) if w reflects the priorities 
expressed by elements of X in such a way that xij = wi/wj for all i, j = 1,
…,k. 

For a (binary) relation ≻ defined on a set S, an element s ∈ S is a 
maximal element of S with respect to ≻ if set {q ∈ S : q ≻ s} is empty. We 
say that ≻ is asymmetric if p ≻ q implies q¬ ≻ p for all p,q ∈ S, and ≻ is 
transitive if p ≻ q and q ≻ r implies p ≻ r for all p, q, r ∈ S. Further, we 
assume that S is P (k). If there is a skew-symmetric matrix X that rep-
resents relation ≻ on set P (k) as follows: 

p ≻ q ⇔ p⊺Xq > 0 for all p, q ∈ P (k),

we say that matrix X is skew-symmetric bi-linear (SSB) representation of ≻, 
see e.g. Fishburn, 1988; Pǐstěk, 2018; Pǐstěk, 2019. A relation admitting 
a SSB representation will further be called SSB preference relation. Note 
that such a (preference) relation ≻ on P (k) is asymmetric, but not 
necessarily transitive. Finally, the indifference relation ∼ and preference- 
or-indifference relation ≿ are 

p ∼ q ⇔ neither p ≻ q nor q ≻ p ⇔ p⊺Xq = 0,
p ≿ q ⇔ p ≻ q or p ∼ q ⇔ p⊺Xq⩾0.

Next we introduce a quick overview on the AHP that, as already 
underlined, is a useful and flexible decision-support tool based on the 
use of the above defined PCMs. The AHP application allows converging 
to a shared decision among different stakeholders who express their 
judgments of preference about pairs of various elements of analysis 
(criteria, sub-criteria, and alternatives). 

The AHP decomposes the decision-making problem into sets of ele-
ments to be organised through different levels of a hierarchical struc-
ture. The first step to apply the AHP technique consists in breaking the 
problem down and representing it in a hierarchical way Saaty and 
Vargas, 1994. Then the elements of each level are pairwise compared to 
each element belonging to the immediate upper level. Such pairwise 
comparisons are attributed through numerical values associated with 
evaluations from one of the various scales available in the literature; the 
most used is the nine-point scale by Saaty (1977). 

Performing such a comparison for a finite set of k elements (criteria 
or alternatives) yields a k × k PCM X = (xij). Then, the problem is to 
produce a set of numerical values w1,…,wk reflecting the priorities of 
the compared elements according to the elicited judgments xij. As pre-
viously explained,if all judgments have been expressed in a completely 
consistent way, the relations between weights wi and judgments xij are 
simply given by wi/wj = xij (i, j = 1,2,…,k), and matrix X is then said to 
be (fully) consistent. 

However, as some degree of inconsistency is always expected during 
the process of judgments attribution because of the natural lack of 
consistency of human thinking, the reciprocal PCM X is, in general, not 
consistent. As shown by Saaty (2003), the eigenvector is necessary for 
obtaining priorities. The hypothesis is that the estimates of these values 
are small perturbations of the ”right” values guarantees a small pertur-
bation of the eigenvalues, see, e.g., Stewart, 2001. For non-consistent 
matrices, one has to solve the eigenvalue problem, Xw = λw, to find 
λmax the unique largest eigenvalue of X that gives the Perron eigenvector 
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as an estimate of the priority vector. Note finally that also the geometric 
mean method may be used to estimate the priority vector, see Saaty and 
Vargas, 1984. However, in this paper, we consider only the above- 
described eigenvector method. 

The AHP theory developed by Saaty provides a measure of consis-
tency in each set of judgments. It is determined through the so-called 
consistency ratio CR: 

CR =
CI
RI

, (1)  

where CI is the consistency index, and RI is the random index. For matrices 
of order k, CI is defined as: 

CI =
λmax − k

k − 1
, (2)  

Furthermore, Saaty (2000) provided average consistencies (RI values) of 
randomly generated matrices. In general, when CR⩽0.1 it implies 
acceptable consistency. Otherwise, pairwise comparison judgments may 
not be reliable and should be reconsidered. Judgment modifications can 
be performed either by employing tools for improving consistency or by 
asking for a new elicitation from decision-makers. 

Let us consider a decision-making problem with m criteria {c1,c2, …, 
cm} and n options {o1,o2, …, on}. The input data for the AHP application 
can be collected by using several pairwise comparison matrices A,B(k),

k = 1, …, m, where A ∈ R (m) with aij > 0 is a PCM representing the 
importance of different criteria. B(k) ∈ R (n) with b(k)ij > 0 is expressing 
the degree of preference of option oi over option oj with respect to k-th 
criterion, k ∈ {1,…,m}. 

The standard AHP approach is based on the assumption that given 
the set of k elements (criteria or alternatives) to be pairwise compared, 
all the input matrices faithfully estimate their respective priority vec-
tors. As mentioned above, the assumption of consistency can be easily 
violated. Hereinafter, we propose to take a more general position by 
assuming matrix A ∈ R (m) to be acceptably consistent and contem-
plating the possibility that matrices B(k) ∈ R (n) may be even highly 
inconsistent. We will denote as w ∈ P (m) the vector of criteria weights 
derived from matrix A; as v(k) ∈ P (n) the local priorities that are the 
vectors of options weights from matrices B(k) for all k = 1,…,m; and as 
z ∈ P (n) the vector of final (options) weights calculated on the basis of 
the criteria weights and options’ local priorities. The exact mathematical 
procedure required to calculate vectors w and v(k) involves the compu-
tation of eigenvalues and eigenvectors, through the Perron vector 
Perron, 1907; Frobenius, 1912 which can be easily calculated, for 
example, using the power method Peretti, 2014. Once obtained criteria 
and options priorities, vector z of final weights is obtained as multipli-
cation of matrix V whose columns rows are vectors of local priorities v(k)

and vector w of criteria weights: 

z = Vw. (3)  

Example. (Leader example) To illustrate the standard AHP approach 
let us consider a decision-making problem with n = 3 alternatives and 
m = 4 evaluation criteria. We will use the ”Tom, Dick, and Harry” 
example by Wikipedia contributors (2020). This example introduces the 
real situation in choosing a leader for a company whose founder is about 
to retire. There are three competing candidates (Tom, Dick, and Harry) 
and four different criteria (Age, Charisma, Education, Experience) for 
choosing the most suitable candidate. Criteria are pairwise compared 
and the related judgements of preference aij are collected in the 
following input matrix A: 

Similarly, we can evaluate the preference of each candidate to a 
given criterion. We will denote respective preference matrices as B(l)

where l ∈ {1,2,3,4}. Consistency can be now easily checked by calcu-

lating the consistency ratio according to (1). Since for A and all B(l),l = 1,
…,4, this ratio is smaller than 0.1, see the last columns in Tables 1 and 2, 
matrices A and B(l) are acceptably consistent. 

As it has been already mentioned, to calculate priorities, it is enough 
to get the so-called Perron vector, which is the eigenvector corre-
sponding to the dominant eigenvalue of the respective matrix. The 
leading eigenvalue is 4.1184 in this case, with corresponding eigen-
vector [0.0893,0.4312,0.2022,0.8747]T. After normalizing it (to sum 
up to one), we get the vector of criteria weights for matrix A: 

w = [0.0559, 0.2699, 0.1266, 0.5476]T.

The matrix V, composed of vectors v(k) derived from matrices in Table 2, 
is in Table 3. 

The vector of final weights given by (3) is in Table 4. Based on this, 
one can see that Dick is the best candidate for the position according to 
the AHP. 

2.3. Aggregated Preference Matrix 

We assume that the pairwise comparison of criteria represented by 
matrix A is consistent (to a high-enough degree), thus we may compute 
the vector of evaluation criteria weights, w ∈ P (m), in the standard 
AHP-way. However, in our problem setting, this is not assumed for 
matrices B(l), l = 1,…, k, representing the evaluation of options by in-
dividual criteria. Trying to represent B(l) ∈ P (n) by a vector of weights 
may thus lead to high information loss. To avoid this issue, we combine 
matrices B(l) into a PCM matrix called aggregated preference matrix P ∈

R (n) employing also the weight vector of evaluation criteria w. 
As underlined by Blagojevic, Srdjevic, Srdjevic, and Zoranovic 

(2016), there are various possible procedures for aggregating judgments 
of pairwise comparisons and obtaining matrix P. The most common is 
the aggregation of individual judgments and the aggregation of indi-
vidual priorities Abel, Mikhailov, and Keane, 2015; Ramanathan and 
Ganesh, 1994, but also models based on consensus convergence Lehrer 
and Wagner, 2012 and ‘soft’ consensus computations Wu and Xu, 2012 
have been applied. We will employ an element-wise (weighted) geo-
metric mean of matrices B(l): 

P =
∏

l

(
B(l))wl

, (4)  

where wl⩾0, l = 1,2,…,m such that 
∑

lwl = 1 are criteria weights ob-
tained from matrix A. Let us highlight that both product 

∏
and power Bw 

in (4) are performed element wise. Note that aggregated preference 
matrix P is reciprocal; moreover, P is also consistent provided all B(l) are 
consistent. 

Example. (Continuation of the Leader example) Note that in case of 
matrices A,B(l) from the Leader Example, as defined in Tables 1 and 2, 
respectively, matrix P can be found in Table 5. For the sake of read-
ability, we have rounded the numbers to three decimal places. 

2.4. Skew-symmetric Bi-linear Representation of Preferences 

Let k be a positive integer and ≻ be a (preference) relation on P (k). 
From the perspective of the EUT, preference relation ≻ is rational if and 
only if it may be represented by a linear functional on P (k), i.e. there 

Table 1 
A: criteria pairwise comparison.   

Age Charisma Education Experience CR 

Age 1 1/5 1/3 1/7  
Charisma 5 1 3 1/3 0.04435 
Education 3 1/3 1 1/4  

Experience 7 3 4 1   
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has to exist x ∈ P (k) such that 

p ≻ q ⇔ x⊺p > x⊺q for all p, q ∈ P (k).

Representing a preference scale for any element of P (k) by a real 
number, the EUT-based model of rationality may not account for 
possible intransitives of individual preferences. To this end a more 
general1 theory of the SSB representation of preferences has been pro-
posed Fishburn, 1982. Omitting the ongoing discussion about intransi-
tivity of preferences from the normative perspective, see e.g., Anand, 
Pattanaik, and Puppe (2009, Chapter 6), we simply note that in the 
domain of the AHP a need for a tool that may deal with possibly 
intransitive experts’ evaluations is evident. 

Assume next that an asymmetric matrix X is a SSB representation of 
≻, that is 

p ≻ q ⇔ p⊺Xq > 0 for all p, q ∈ P (k).

For such a general X one may easily find examples of p, q, r ∈ P (k) such 
that p ≻ q,q ≻ r, and r ≻ p. This seems to be an insurmountable obstacle 
for decision-making using such preferences. However, the well-known 
Minimax Theorem, see, e.g., Von and Morgenstern, 1953, implies that 
there is a maximal element s ∈ P (k) such that s ≻ q, s ≻ p, and s ≻ r. 

Theorem 2.1. Let ≻ be a preference relation on P (k) that has a SSB 
representation, then there exists a maximal element of P (k) w.r.t. ≻. 

More general existence theorems have been proposed in, e.g., Fish-
burn, 1982; Pǐstěk, 2018; Pǐstěk, 2019. 

Recall that elements xij of X are proportional to the scale of prefer-
ence of alternative i over j. Thus, for any p,q ∈ P (k), one may evaluate 
the probability vector of p yielding a more preferred outcome than q by 
p⊺Xq. This gives a clear interpretation to the maximal element s ∈ P (k): 
satisfying s⊺Xq⩾0 for all q ∈ P (k), element s yields a more preferred 
outcome more (or equally) likely than any other probability vector in 
P (k). This condition can be equivalently2 stated as s⊺X⩾0, and finally 
transformed to 

Xs⩽0 (5)  

using skew-symmetry of X, i.e., X = − X⊺. Solution of (5) may be found 
directly by using the methods of polyhedral geometry. We conclude this 
section by stating that for a typical skew-symmetric matrix X, there 
exists a unique maximal element. 

Remark 2.2. For almost all3 SSB preference relations on P (k) there is 
a unique maximal element in P (k). 

The above remark is precisely mathematically formulated in Brandl 
(2017, Propositon 4). 

3. New Approach to Cope with Inconsistency 

By applying the tools introduced in Section 2, we will obtain a new 
method that may well handle the possible inconsistency of experts’ 
judgements (note, however, that from the perspective of the SSB rep-
resentation, the AHP-inconsistency is, actually, not an inconsistency), 
see SubSection 3.1. In SubSection 3.2 a relationship of this method to the 
AHP in the consistent case is discussed; its resistance to the so-called 
order reversal is elaborated in Section 3.3. These observations are 
illustrated by basic examples in SubSection 4.1. 

3.1. New Method 

Let P ∈ R (n) be the aggregated preference matrix P given by (4). To 
apply the theory of the SSB representation, one needs a skew-symmetric 
matrix X such that xij, if positive, represents the scale of preference of i 
over j. One may come with many ways how to transform aggregated 
preference matrix P into a SSB matrix; we propose to use an element- 
wise logarithm 

X = logP (6)  

to this end. Indeed, such a matrix is skew-symmetric using reciprocity of 
P, the sign of xij indicates if i is preferred to j or vice versa, and the 
absolute value of xij corresponds to the scale of such a preference. 

Table 2 
B(k): alternative pairwise comparison in each criterion.   

Tom Dick Harry CR 

(a) B(1): Age 
Tom 1 1/3 5  
Dick 3 1 9 0.02795 

Harry 1/5 1/9 1  
(b) B(2): Charisma 

Tom 1 5 9  
Dick 1/5 1 4 0.06852 

Harry 1/9 1/4 1  
(c) B(3): Education 

Tom 1 3 1/5  
Dick 1/3 1 1/7 0.06239 

Harry 5 7 1  
(d) B(4): Experience 

Tom 1 1/4 4  
Dick 4 1 9 0.03548 

Harry 1/4 1/9 1   

Table 3 
Matrix V of local priorities v(k).   

Age Charisma Education Experience 

Tom 0.267 0.193 0.220 0.735 
Dick 0.669 0.083 0.713 0.199 

Harry 0.064 0.724 0.067 0.065  

Table 4 
Vector z of final weights.   

final weights 

Tom 0.304 
Dick 0.454 

Harry 0.242  

Table 5 
Aggregated preference matrix P for the Leader example.   

Tom Dick Harry 

Tom 1 0.781 3.451 
Dick 1.280 1 4.280 

Harry 0.290 0.234 1  

1 Let ≻ be a rational preference in the sense of the EUT, then there exist 
vectors u,w ∈ P (k) such that matrix X given by xij = uiwj − wiuj is a SSB rep-
resentation of ≻, see, e.g. Fishburn (1988, page 77). 

2 To show that s⊺Xq⩾0 for all q ∈ P (k) implies s⊺X⩾0, consider all q ∈ P (k)
such that qi = 1 for a particular i = 1,…, k.  

3 Almost all in the sense of the measure theory. Indeed, in Brandl, 2017 
necessary conditions for distribution of SSB preference relations are examined 
such that a randomly chosen preference relation almost surely admits a unique 
maximal element. This result is presented in the realm of the game theory; 
however, there is a one-to-one correspondence between SSB maximal elements 
and optimal strategies of symmetric two-players zero-sum games (identifying 
the pay-off matrix of a game with the matrix of SSB preference relation). 
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The maximal preferred element with respect to such matrix will be 
called the final distribution of preference, and denoted by ζ ∈ P (n). By 
using (5), vector ζ satisfies (logP)ζ⩽0. In other words, all final distri-
butions of preference form a non-empty polyhedron determined by 
(

logP

)

ζ⩽0, ζ⩾0,
∑n

i=1
ζi = 1, (7)  

which is, typically, degenerated into just one point, cf. Remark 2.2. Let 
us recall that such ζ ∈ P (n) leads to a more preferred outcome more (or 
equally) likely than any other probability distribution in P (n). 

Example. (Continuation of the Leader example) To illustrate the fact 
that log(P) is an SSB matrix, let us apply the element-wise log trans-
formation to matrix P of Table 5. We obtain a matrix logP shown in 
Table 6. The final distribution of preference ζ calculated by solving the 
problem from polyhedral geometry (7) is shown in Table 7; note that for 
the given matrix P it is unique. 

Contrary to the final weights vector z of the AHP, see (3), the final 
distribution of preference ζ ∈ P (n) determined by (7) often has many 
zero elements, see, e.g. the solution of the Leader example in Table 7. 
Thus, ζ indicates well which element of P (n) leads to the best choice 
more (or equally) likely than any other, but it may not be reasonably 
used to rank all alternatives. To this end one may evaluate the pair-wise 
degree of preference of ζ, defined by 

π = P⊺ ζ. (8)  

Such πi corresponds to the (expected) degree of preference of ζ over any 
alternative i = 1,…, k that is measured on the Saaty’s scale4. Observe 
that by skew-symmetry of logP together with (7) we have (logP)⊺ ζ⩾0 
and so 

π = P⊺ ζ⩾exp{(logP⊺)ζ}⩾1  

using Jensen inequality. Thus πi⩾0 for all i = 1,…, k well indicating that 
ζ is optimal. 

On the other hand, when ζ ∈ P (n) determined by (7) has a unique 
positive value at the i-th component, to obtain the second best option, 
we may apply (7) again with a reduced aggregated preference matrix 
P(i) obtained by erasing the i-th row and column from P. Then, ac-
cording to ζ ′ ∈ P (n − 1) determined by (7) with substitution P(i) for P, 
the second best option is found. Moreover, if ζ ′ ∈ P (n − 1) a unique 
positive value, we can find the third best option by repeating the same 
procedure. 

Example. (Continuation of the Leader example) Having matrix P, the 
pair-wise degree of preference π is shown in Table 8. 

Note that for the case of final distribution ζ being concentrated on 
one optimal alternative, like in the Leader example, see Table 7, the pair- 

wise degree of preference π corresponds directly to the respective row of 
P, cf. Tables 5 and 8. The values 1.196 and 2.654 in Table 8 mean that 
Dick is preferred 1.196 times more than Tom and 2.654 times than Harry 
in the holistic evaluation. 

3.2. Consistent Case: Relation to Analytic Hierarchy Process 

In this subsection, we will show the similarity and differences be-
tween the AHP and the proposed SSB-based method. To this end, we 
consider a case when all given comparison matrices are consistent. 

Let A ∈ R (m) and B(l) ∈ R (n) for all l = 1, ..,m be such that, given 
positive vectors w ∈ P (m) and v(l) ∈ P (n) for all l = 1, ..,m, it holds 

akl =
wk

wl
, and b(l)

ij =
v(l)i

v(l)j

(9)  

for all i, j = 1, .., n and k, l = 1, ..m. It is well known that, in this fully 
consistent case, the weights obtained in the conventional AHP proced-
ure are given by w ∈ P (m) and v(l) ∈ P (n) for all l = 1, ..,m. Therefore, 
the best alternative is determined as the j*-th alternative satisfying 
∑

l
wl v(l)j☆ = max

j=1,..,n

∑

l
wl v(l)j . (10)  

Theorem 3.1. Consider matrices A,B(l) defined by (9) with w ∈ P (m)

and v(l) ∈ P (n) for all l = 1,..,m. Let j* ∈ {1, .., n} be the index of element 
which maximizes 

∏
lv

(l)
j

wl , namely, j* satisfies 
∏

l
v(l)j*

wl
= max

j=1,..,n

∏

l
v(l)j

wl
, or equivalently,

∑

l
wl log

(
v(l)j☆

)

= max
j=1,..,n

∑

l
wl log

(
v(l)j

)
. (11)  

Then, the vector of final distribution of preferences ζ satisfies 

ζi =

{
1, if i = j*,
0, otherwise, i = 1, 2,…, n. (12)  

Accordingly, π given by (8) satisfies 

πi =
∏

l
v(l)j*

wl

/
∏

l
v(l)i

wl
, i = 1, 2, .., n. (13)   

Proof. Because matrix A is consistent, the positive vector w = [w1,w2,

…,wm] ∈ P (m) is estimated by the estimation method of the standard 
AHP. The (i, j)-component pij of (P) is obtained as 

pij =
∏

l

(
b(l)

ij

)wl
=

∏

l

(
v(l)i

)wl

∏

l

(
v(l)j

)wl , i, j = 1,…, n.

Table 6 
logP - an SSB matrix.   

Tom Dick Harry 

Tom 0 − 0.247 1.239 
Dick 0.247 0 1.454 

Harry − 1.239 − 1.454 0  

Table 7 
The final distribution of preference ζ.   

Tom Dick Harry  

0 1 0  

Table 8 
The pair-wise degree of preference π.  

Tom Dick Harry 

1.280 1 4.280  

4 This interpretation is actually the main motivation for setting X = logP in 
(6). One may use other skew-symmetric matrix being somehow proportional to 
preference relation P, e.g. X̃ = P − P⊺. Then, however, incompatibility of such X̃ 
with both multiplicative reciprocity assumed for B(l) as well as geometrical 
mean used to aggregated preferences into P would not allow such an inter-
pretation of π. 
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From the definition of j*, we have 
∏

l

(
v(l)i

)wl
⩽
∏

l

(
v(l)j*

)wl
, i = 1,…, n.

This implies 

pij* =

∏

l

(
v(l)i

)wl

∏

l

(
v(l)j*

)wl ⩽1, i = 1,…, n.

We obtain 

logpij* ⩽0, i = 1,…, n.

Hence, ζ defined by (8) is a solution satisfying (6). Corresponding to this 
solution, we obtain π defined by (9). □ From Theorem 3.1, we 
observe that the holistic evaluation is made by the weighted geometric 
mean of local priorities (or equivalently, by the weighted arithmetic 
mean of logarithms of local priorities) whereas in the AHP it is made by 
the weighted arithmetic mean of local priorities. We note that pij =
∏

l(v
(l)
i )

wl
/
∏

l(v
(l)
j )

wl
=
∏

l(v
(l)
i /v(l)j )

wl in the proof of Theorem 3.1 reminds 
us the weighted product model (WPM) method (Triantaphyllou, 2000). 
In the WPM method, the j*-th alternative with pj* i⩾1 for all i ∈ {1,2,… 
, n} is considered as the best option. As log(pij* )⩽0 corresponds to pij* ⩽1 
equivalent to pj* i⩾1, we may see the proposed method corresponds to 
WPM method when evaluations by criteria and the weights of criteria 
are not exactly given. On the other hand, it is known that the AHP 
corresponds to the weighted sum model (WSM) method (Tri-
antaphyllou, 2000) when evaluations by criteria and the weights of 
criteria are not exactly given. From these correspondences, we can see 
that the proposed SSB-based method provides a dimensionless analysis 
(Triantaphyllou, 2000) because pij eliminates any units of measure 
which is an advantage of the proposed method. 

3.3. Considerations about Order Reversal 

Belton and Gear (1983) demonstrated that a ranking inconsistency 
can occur in the AHP analysis when an identical alternative is added to 
the original set of alternatives. As shown in the following theorem, such 
order reversal never occurs in our method even when the added alter-
native is not equivalent to any of original alternatives as far as the scores 
under criteria are given, see also Example 4.3 below. 

Theorem 3.2. Let sc(l)i , i = 1,…, n be scores of n alternatives under the 
l-th criterion (l = 1,…,m). Consider the (n + 1)-th alternative having a 
score sc(l)n+1 under the l-th criterion l = 1,…,m. Then, in the proposed 
method, the order among the first n alternatives is not changed by 
adding the (n + 1)-th alternative regardless a pairwise comparison 
matrix A among criteria. 

Proof. Let w = (w1,…,wm)
T be the weight vector obtained from A. 

Before adding the (n + 1)-th alternative, the normalized scores v(l)i , i = 1,
…, n under the l-th criterion are obtained by 

v(l)i =
sc(l)i
∑n

k=1
sc(l)k

, l = 1,…,m. (14)  

Then the overall score Sci of the i-th alternative is obtained by 

Sci =
∏m

l=1
v(l)i

wl
=

∏m
l=1 sc(l)i

∏m
l=1

(
∑n

k=1
sc(l)k

), i = 1,…, n. (15)  

In the same way, after adding the (n + 1)-th alternative, the overall 

score Scj of the j-th alternative is obtained by 

Sci =

∏m
l=1 sc(l)j

∏m
l=1

(
∑n+1

k=1
sc(l)k

), j = 1,…, n+ 1. (16)  

The denominators of (15) are same among n alternatives and the de-
nominators of (16) are same among (n+1) alternatives. The numerators 
of Sci in (15) and Sci in (16) are same for i = 1,…,n. Therefore, we have 

Sci⩾Scj if and only if Sci⩾Scj, i, j ∈ {1,…, n}. (17)  

Therefore, the order among the original n alternatives does not change 
by adding the (n + 1)-th alternative having any scores. □ Theorem 
3.2 implies that the order reversal never occurs by adding/deleting any 
alternatives in the proposed method as far as the scores under criteria 
are given. 

4. Applications 

Now we apply the above introduced method to various decision 
making problems. First, we will solve several illustrative examples. 
Then, a simulation analysis is provided to compare the AHP and the 
proposed method statistically. Finally, we show a real-world study to 
demonstrate our method in detail. 

4.1. Illustrative Examples 

The following example demonstrates the difference between the AHP 
and the proposed method. 

Example 4.1. To see the difference between the AHP and the proposed 
method, let us consider the case where n = 5 and m = 2, namely, we 
compare five options o1,o2, …., o5 by two criteria. Both criteria have the 
same importance, i.e. A is a matrix of ones and corresponding w1 = w2 =

0.5. The pairwise comparison matrices B(1) and B(2) are given as in 
Table 9. 

Applying the conventional AHP approach (eigenvalue method), we 
obtain local priorities as 

v(1) = [0.4058, 0.4101, 0.1008, 0.04841, 0.03488]T,
v(2) = [0.3822, 0.3842, 0.1149, 0.07596, 0.04272]T.

Then we obtain final weight vector z as 

z =

⎡

⎢
⎢
⎢
⎢
⎣

0.4058 0.3822
0.4101 0.3842
0.1008 0.1149
0.04841 0.07596
0.03488 0.04272

⎤

⎥
⎥
⎥
⎥
⎦

[
0.5
0.5

]

=

⎡

⎢
⎢
⎢
⎢
⎣

0.3940
0.3971
0.1079
0.06219
0.03880

⎤

⎥
⎥
⎥
⎥
⎦
.

Therefore, we obtain o2 ≻ o1 ≻ o3 ≻ o4 ≻ o5. 

Table 9 
Matrices B(1) and B(2).   

o1 o2 o3 o4 o5 CR 

(a) B(1): Criterion 1 
o1 1 2 4 6 8  
o2 1/2 1 9 8 9  
o3 1/4 1/9 1 4 3 0.09321 
o4 1/6 1/8 1/4 1 2  
o5 1/8 1/9 1/3 1/2 1  

(b) B(2): Criterion 2 
o1 1 2 2 5 6  
o2 1/2 1 4 8 9  
o3 1/2 1/4 1 1 3 0.06160 
o4 1/5 1/8 1 1 2  
o5 1/6 1/9 1/3 1/2 1   
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However, the decision maker evaluates that option o1 is qualitatively 
better than any other options in both criteria because we have b(1)1j > 1,

b(2)1j > 1, j = 2,…,5 and b(l)ij > 1 implies the i-th option is more important 
than j-th option in the l-th criterion. From this point of view, from 
Table 9, we see that decision maker orders the options qualitatively as 
o1 ≻ o2 ≻ o3 ≻ o4 ≻ o5 in both criteria through pairwise comparisons. 
Hence, we have the same order in the holistic evaluation. 

When we apply the proposed approach, we obtain 

P =

⎡

⎢
⎢
⎢
⎢
⎣

1 2 2.8284 5.4772 6.9282
0.5 1 6 8 9

0.3536 0.16667 1 2 3
0.1826 0.125 0.5 1 2
0.1443 0.1111 0.3333 0.5 1

⎤

⎥
⎥
⎥
⎥
⎦
.

and thus, 

logP =

⎡

⎢
⎢
⎢
⎢
⎣

0 0.6931 1.0397 1.70060 1.93560
− 0.6931 0 1.7918 2.0794 2.1972
− 1.0397 − 1.79176 0 0.6931 1.0986
− 1.7006 − 2.0794 − 0.6931 0 0.6931
− 1.9356 − 2.1972 − 1.0986 − 0.6931 0

⎤

⎥
⎥
⎥
⎥
⎦
.

Then we obtain ζ = (1,0, 0,0, 0)T as the final distribution of preference, 
which implies that o1 is surely the most preferred option. Repeating the 
application of (7) to the reduced aggregated preference matrix of P by 
erasing the option corresponding to the unique positive value of ζ, we 
can rank the options. In this example, we obtain o1 ≻ o2 ≻ o3 ≻ o4 ≻ o5 
which is the same as the decision maker’s preference obtained through 
pairwise comparisons. Example 4.1 demonstrates that the proposed 
approach respects the qualitative meanings of pairwise comparisons 
rather than the degrees of intensity of pairwise comparisons which AHP 
respects. 

The following example demonstrates the difference between AHP 
and the proposed approach when the pairwise comparison matrices are 
intransitive. 

Example 4.2. Consider a virtual singer selection problem. A music 
company would like to employ a singer for selling her/his music records. 
There are five candidates of singers, o1, o2, o3, o4 and o5. The singers are 
evaluated by their singing prowess and marketability by the respective 
domain experts. Those two criteria are equally important, i.e., w1 =

w2 = 0.5. The pairwise comparison matrices B(1) (singing prowess) and 
B(2) (marketability) are given as in Table 10. 

As the evaluations of the singing prowess and the marketability are 
complex, we found the non-transitivity among o1, o2 and o3 in both 
evaluations in the singing prowess and the marketability. For example, 
in the pairwise comparison matrix B(1), o1 is preferred to o2 and o2 is 
preferred to o3 because of b(1)12 > 1 and b(1)23 > 1. However, o3 is preferred 
to o1 because of b(1)31 > 1. 

Applying the AHP, we obtain local priorities as 

v(1) = [0.3397, 0.3159, 0.2750, 0.03702, 0.03235]T,
v(2) = [0.2598, 0.3639, 0.2933, 0.04184, 0.04112, ]T.

As CR values of B(1) and B(2) are obtained as shown in Table 10. We 
found B(1) is too inconsistent to utilize v(1). Then we need to ask the 
domain experts for singing prowess to revise the pairwise comparison 
matrix. However, we guess that the revision might be difficult because 
some part of the singing prowess evaluation would not be explained 
mathematically. 

If we enforce to use v(1), we obtain the final weights as 

z = [0.2997, 0.3399, 0.2842, 0.03943, 0.03673]T.

This implies that o1, o2 and o3 are better than o4 and o5 and that o2 is the 
best and o1 is the second best. 

Now, we apply the proposed method, we obtain 

P =

⎡

⎢
⎢
⎢
⎢
⎣

1 1.1547 0.8165 5.4772 6.9282
0.8660 1 1.4142 8 7.9373
1.2247 0.7071 1 6.4807 4.4721
0.1826 0.125 0.1543 1 1.4142
0.1443 0.1260 0.2236 0.7071 1

⎤

⎥
⎥
⎥
⎥
⎦
.

and thus, 

logP =

⎡

⎢
⎢
⎢
⎢
⎣

0 0.1438 − 0.2027 1.7006 1.9356
− 0.1438 0 0.3466 2.0794 2.0716
0.2027 − 0.3466 0 1.8688 1.4979
− 1.7006 − 2.0794 − 1.8688 0 0.3466
− 1.9356 − 2.0716 − 1.4979 − 0.3466 0

⎤

⎥
⎥
⎥
⎥
⎦
.

From (7), we obtain 

ζ = [0.5, 0.2925, 0.2075, 0, 0]T.

ζ4 = ζ5 = 0 implies that candidates o4 and o5 cannot be selected. On the 
other hand, the first three candidates o1, o2 and o3 can be selected 
because ζi, i = 1,2, 3 are positive. This corresponds to the fact that the 
evaluations of those three candidates are intransitive and the other two 
are inferior in pairwise comparison matrices B(1) and B(2). The fact that ζ 
has multiple positive elements implies the non-conclusive. However, the 
values of ζi’s show the tendencies (probabilities) to be selected as the 
final solution. 

In the current selection problem, candidate o1 has the highest ten-
dency to be selected. Therefore, selecting o1 would be convincing. This 
result is different from the result by enforced application of the AHP. 

As demonstrated in Example 4.2, the proposed approach solves the 
multi-criteria decision problem with inconsistent pairwise comparison 
matrices by giving a probability distribution where each probability 
shows the tendency to be selected as the final solution. 

Finally, using the example given by Belton and Gear (1983) where 
the weights of criteria and scores of alternatives under each criterion are 
given exactly, we demonstrate that the order reversal discussed in 
Subection 3.3 does not occur in the proposed SSB-based model. 

Example 4.3. Consider a multi-criteria decision problem with three 
alternatives A1,A2,A3 and three criteria C1,C2,C3 shown in Table 11a. 

As the weights of criteria and scores of alternatives are given, this 
corresponds to a consistent case with wl = 1/3, l = 1, 2,3 and v(l)i , i =
1,2,3, l = 1,2,3 are given by 

Table 10 
Matrices B(1) and B(2).   

o1 o2 o3 o4 o5 CR 

(a) B(1): Criterion 1 
o1 1 4 1/3 6 8  
o2 1/4 1 4 8 7  
o3 3 1/4 1 7 4 0.313741 
o4 1/6 1/4 1/7 1 2  
o5 1/8 1/7 1/4 1/2 1  

(b) B(2): Criterion 2 
o1 1 1/3 2 5 6  
o2 3 1 1/2 8 9  
o3 1/2 2 1 6 5 0.107289 
o4 1/5 1/8 1/6 1 1  
o5 1/6 1/9 1/5 1 1   
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v(1)1 =
1

1 + 9 + 1
=

1
11

, v(1)2 =
9

1 + 9 + 1
=

9
11
, v(1)3 =

1
1 + 9 + 1

=
1

11
,

v(2)1 =
9

9 + 1 + 1
=

9
11

, v(2)2 =
1

9 + 1 + 1
=

1
11
, v(2)3 =

1
9 + 1 + 1

=
1

11
,

v(3)1 =
8

8 + 9 + 1
=

4
9
, v(3)2 =

9
8 + 9 + 1

=
1
2
, v(3)3 =

1
8 + 9 + 1

=
1
18

.

(18)  

Based on the AHP procedure, we obtain the holistic evaluation scores of 
alternatives A1,A2 and A3 as 134/297,31/66 and 47/594, respectively. 
Namely the holistic scores of alternatives A1,A2 and A3 are approxi-
mately, 0.45,0.47 and 0.08, respectively. Therefore, the three alterna-
tives are ranked as A2 ≻ A1 ≻ A3. However, if a new alternative A4 is 
evaluated same as alternative A2, i.e., the multi-criteria problem shown 
in Table 11b. 

In the case of Table 11b, normalized scores v(l)i , i = 1,2,3,4, l = 1,2,3 
are given by  

Then, by the AHP procedure, the holistic evaluation scores of alterna-
tives A1,A2,A3 and A4 are obtained as 148/405, 13/45,23/405 and 13/
45 which are approximately 0.37,0.29,0.06 and 0.29, respectively. This 
implies A1 ≻ A2 ∼ A4 ≻ A3. The order between A1 and A2 are reversed 
in the rankings without A4 and with A4. 

On the other hand, we have 

∏

l=1,2,3
v(l)1

wl
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1⋅9⋅4

11⋅11⋅9
3

√

=

̅̅̅̅̅̅̅̅
4

121
3

√

≈ 0.32,

∏

l=1,2,3
v(l)2

wl
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9⋅1⋅1

11⋅11⋅2
3

√

=

̅̅̅̅̅̅̅̅
9

242
3

√

≈ 0.33,

∏

l=1,2,3
v(l)3

wl
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1⋅1⋅1

11⋅11⋅18
3

√

=

̅̅̅̅̅̅̅̅̅̅
1

2178
3

√

≈ 0.08.

(20)  

Therefore, we obtain j* = 2 (the index j of the alternative maximizing 
∏

lv
(l)
j

wl ) in the original multi-criteria decision problem. Moreover, we 
have 

∏

l=1,2,3
v(l)1

wl
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1⋅9⋅8

20⋅12⋅27
3

√

=

̅̅̅̅̅
1

90
3

√

≈ 0.22,

∏

l=1,2,3
v(l)2

wl
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9⋅1⋅1

20⋅12⋅3
3

√

=

̅̅̅̅̅
1
80

3

√

≈ 0.23,

∏

l=1,2,3
v(l)3

wl
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1⋅1⋅1

20⋅12⋅27
3

√

=

̅̅̅̅̅̅̅̅̅̅
1

6480
3

√

≈ 0.05,

∏

l=1,2,3
v(l)3

wl
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9⋅1⋅1

20⋅12⋅3
3

√

=

̅̅̅̅̅
1
80

3

√

≈ 0.23.

(21)  

Then, we obtain k* = 2 or 4 (the index k of the alternative maximizing 
∏

lv
(l)
k

wl ) in the extended multi-criteria decision problem by adding 
alternative A4. As we obtain A2 ∼ A4 ≻ A1 ≻ A3, the order among A1,A2 
and A3 does not change between without A4 and with A4. 

4.2. Simulation Analysis 

To show the effectiveness of the proposed method, we performed 
15.000 of simulated experiments. Since the preferential matrix A is 
treated in the same way as in the AHP, we kept A ∈ R (5) fixed. Yet we 
did two rounds of simulations to eliminate the influence of such a 
choice. First we used matrix A from the Industrial application below, see 
Table 15, and then we repeated simulations with A being the matrix of 
ones. As there were no qualitative differences in the obtained results, we 
shall present them together. Further, given the dimension of matrix A, it 
was necessary to generate preferential matrices B(k), k = 1,…,5 for each 
experiment. Each matrix B(k) was repeatedly randomly chosen from 
R (4) until the consistency ratio CR(B(k)) was in the preset threshold 
interval. Next, the best options were identified using both the AHP as 

well as the newly designed procedure. By progressively setting different 
consistency thresholds CR we thus obtained results reported in Table 12. 

Typically, both methods found the same best option. The number of 
different outcomes increases when limits for CR threshold increase; i.e. 
when pairwise comparisons are less consistent. Indeed, for acceptably 
consistent matrices with CR⩽0.1, we have observed divergence of the 
best options determined by the two methods in 18.5% of the simulated 
cases. This percentage increases to 33.1% given the threshold for CR is 

Table 11 
Original and extended multi-criteria decision problem.   

C1 C2 C3 

(a) The original problem 
A1 1 9 8 
A2 9 1 9 
A3 1 1 1 

weight 1/3 1/3 1/3 
(b) The extended problem 

A1 1 9 8 
A2 9 1 9 
A3 1 1 1 
A4 9 1 9 

weight 1/3 1/3 1/3  

Table 12 
Overview of the results from the simulation analysis.  

CR limits divergent results (%) mean of differences   

0⩽CR⩽0.1 18.5% 0.0354   
0.1 < CR⩽0.2 21.6% 0.0396   
0.2 < CR⩽0.3 22.3% 0.0375   
0.3 < CR⩽0.4 22.9% 0.0421   
0.4 < CR⩽0.5 25.0% 0.0422   
0.5 < CR⩽0.6 28.0% 0.0458   
0.6 < CR⩽0.7 28.1% 0.0444   
0.7 < CR⩽0.8 27.1% 0.0483   
0.8 < CR⩽0.9 31.3% 0.0490   
0.9 < CR⩽1 33.1% 0.0480    

v(1)1 =
1

1 + 9 + 1 + 9
=

1
20

, v(1)2 =
9

1 + 9 + 1 + 9
=

9
20
, v(1)3 =

1
1 + 9 + 1 + 9

=
1
20

, v(1)4 =
9

1 + 9 + 1 + 9
=

9
20

v(2)1 =
9

9 + 1 + 1 + 1
=

9
12

, v(2)2 =
1

9 + 1 + 1 + 1
=

1
12
, v(2)3 =

1
9 + 1 + 1 + 1

=
1
12

, v(2)4 =
1

9 + 1 + 1 + 1
=

1
12

v(3)1 =
8

8 + 9 + 1 + 9
=

8
27

, v(3)2 =
9

8 + 9 + 1 + 9
=

1
3
, v(3)3 =

1
8 + 9 + 1 + 9

=
1
27
, v(3)4 =

9
8 + 9 + 1 + 9

=
1
3
.

(19)   
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between 0.9 and 1. For the divergent cases, we measured the difference 
of the two options by the difference of the corresponding elements of 
(the AHP based) weight vector z; the means of such differences are re-
ported in the table for each considered range of CR. Thus obtained dif-
ferences confirm to be quantitatively almost insignificant in the vast 
majority of the experiments, especially for lower values of CR, and so 
any of these two best options is equally efficient with respect to the 
considered criteria. From the above presented results we can conclude 
that the methodological approach based on the SSB is a valid alternative 
to the AHP for consistent judgments. Moreover, it may be used also in 
the presence of inconsistent judgments when the traditional AHP loses 
its scientific validity. 

4.3. Industrial Application 

The proposed case study presents a real-world decision-making 
problem whose main goal consists in optimising the number of stocked 
materials in industrial warehouses. In particular, we aim to establish 
which plan of storage management should be implemented for an Italian 
manufacturing enterprise operating in the alimentary sector. The deci-
sion has to be made among four (n = 4) different options, each one 
expressing a different planning possibility in terms of numerical quan-
tities of stock materials. Items to be stored are essentially packaging 
materials (PMs) according to the production of finite products (FPs) to 
be led based on the received orders. In detail, the planning involves 
three types of FP produced by the company (FP1, FP2, FP3) and six types 
of related packaging materials stored in the industrial warehouse (PM1, 
PM2, PM3, PM4, PM5, PM6). Four stock quantity plans (o1, o2, o3, o4), 
synthesised in Table 13, have been elaborated by the management of the 
company and represent the options of the decision-making problem 
currently under evaluation for establishing short time logistic strategies. 
As we can observe, data of Table 13 refer to the expected quantities of 
FPs to be produced in the first trimester of the next year and contemplate 
various quantities of PMs to face possible demand changes. In particular, 
quantities of FPs are the same for all the four plans over a given month, 
and quantities of PMs (highlighted in bold) vary based on the FPs to be 
packed, from a minimum to a maximum stockpile level. These levels 
have been determined by taking into account the storage capacity and 

the average performance indices from historical data. 
We search for a solution, among the set of considered options, that 

represents the best trade-off according to various aspects (or criteria) to 
support the decision-making process of the company and to have a 
positive impact on its whole level of performance. 

To such an aim, the chosen solution will have to simultaneously 
optimise the following five aspects (m = 5), herein considered as eval-
uation criteria: c1 supplies management, c2 relations with clients, c3 
order risk, c4 packaging time, c5 storage management. Let us briefly 
explain the meaning of the criteria: the first criterion c1 refers to cost 
efficiency as well as relationships with suppliers above all in terms of 
communication quality and flexibility in managing possible sudden 
changes during the process of orders management. The second and the 
third criteria, namely c2 and c3, respectively, refer to the flexibility of 
customers for product delivery times and the presence of penalties and/ 
or extra costs due to possible delays in delivery. Lastly, the fourth and 
fifth criteria refer to processing times for packaging and the costs related 
to the process of stock management as well as security aspects, respec-
tively. 

A decision-making group made of four equally weight stakeholders 
has been involved to get the vector of criteria weights by means of the 
AHP technique. The four decision-makers (DMs) have been involved on 
the basis of their experience and complementary points of view, to 
achieve as accurate knowledge about the problem under analysis as 
possible. Experts’ roles are the following: DM1 general manager, DM2 

Table 13 
Stock quantity plans.  

Month Type Plan o1 Plan o2 Plan o3 Plan o4 

Jan. 2021 FP1 1200 1200 1200 1200  
FP2 900 900 900 900  
FP3 800 800 800 800  
PM1 1400 1700 2000 2400  
PM2 2100 2400 2700 3100  
PM3 1100 1400 1700 2100  
PM4 1200 1500 1800 2200  
PM5 1000 1300 1600 2000  
PM6 850 1150 1450 1850 

Feb. 2021 FP1 1000 1000 1000 1000  
FP2 1000 1000 1000 1000  
FP3 900 900 900 900  
PM1 1200 1500 1800 2200  
PM2 1600 1900 2200 2600  
PM3 1200 1500 1800 2200  
PM4 1600 1900 2200 2600  
PM5 1100 1400 1700 2100  
PM6 1200 1500 1800 2200 

Mar. 2021 FP1 1100 1100 1100 1100  
FP2 900 900 900 900  
FP3 800 800 800 800  
PM1 1300 1600 1900 2300  
PM2 1900 2200 2500 2900  
PM3 1100 1400 1700 2100  
PM4 1200 1500 1800 2200  
PM5 1000 1300 1600 2000  
PM6 850 1150 1450 1850  

Table 14 
Criteria evaluations issued by the decision makers.  

(a) DM1: general manager 
DM1 c1 c2 c3 c4 c5 CR 

c1 1 1 1
3 

2 1
3  

c2 1 1 1
3 

2 1
3  

c3 3 3 1 2 1 0.0445 
c4 1

2 
1
2 

1
2 

1 1
2  

c5 3 3 1 2 1         

(b) DM2: logistic manager 
DM2 c1 c2 c3 c4 c5 CR 
c1 1 2 4 2 1

3  
c2 1

2 
1 1 1

3 
1
5  

c3 1
4 

1 1 1
3 

1
7 

0.0291 

c4 1
2 

3 3 1 1
3  

c5 3 5 7 3 1         

(c) DM3: company consultant 
DM3 c1 c2 c3 c4 c5 CR 
c1 1 1 1

3 
1 1

2  
c2 1 1 1

3 
1 1

2  
c3 3 3 1 2 1

2 
0.0299 

c4 1 1 1
2 

1 1
2  

c5 2 2 2 2 1         

(d) DM4: storage responsible (operator) 
DM4 c1 c2 c3 c4 c5 CR 
c1 1 1 4 1

3 
1
2  

c2 1 1 3 1
3 

1
2  

c3 1
4 

1
3 

1 1
3 

1
4 

0.0594 

c4 3 3 3 1 1
2  

c5 2 2 4 2 1   
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logistic manager, DM3 company consultant, DM4 storage responsible 
(operator). Each DM was asked to fill in a PCM by pairwise comparing 
evaluation criteria with respect to the main decision-making goal. The 
four PCMs collecting input evaluations are reported in Table 14. The last 
columns of matrices report the related consistency ratio and, in all the 
cases, we have CR⩽0.1, which confirms the consistency of judgments. 
Decision-makers’ opinions have to be successively aggregated to pro-
duce the final consensus priority vector. 

The aggregation of individual judgments is herein applied as an ag-
gregation procedure for obtaining a group priority vector supporting the 
decision-making process. The individual comparison matrices are 
merged into a single PCM, reported in Table 15 so that the group can be 
treated as a new individual. The aggregated PCM has been obtained 
employing the weighted geometrical mean, see Eq. (4), by assuming a 
weight equal to 0.25 associated with each stakeholder since, as already 
mentioned, decision-makers have been considered as having the same 
mutual importance. The Perron vector w expressing the mutual impor-
tance of evaluation criteria, obtained via the power method Peretti, 
2014, is also given in Table 15. 

Table 16 presents the options’ evaluations related to the five 
considered criteria. The last columns give the values of consistency ra-
tios CR. In particular, we can observe that judgments’ consistency is 
verified just in the first and in the second cases since all the remaining 
CR values surpass the threshold of 0.1. The list of vectors v(k) derived 
from matrices in Table 16 is in Table 17a. 

Having matrix P, the pair-wise degree of preference is 

π = [1.092, 1, 2.898, 3.046]T.

As emerged from ζ = [0,1, 0,0]T, plan o2 seems to be the most suitable 
candidate to sort out the decision-making problem discussed in the 
proposed case study. The selected solution is expected to be more 
expensive with respect to the condition of minimum cost represented by 
plan o1, the last one characterised by the minimum amount of stocked 
materials. However, one has to observe that the implementation of plan 
o2 is far less expensive with respect to the remaining plans o3 and o4. 
Moreover, plan o2 guarantees acceptable values of fire load as well as 
acceptable order risk evaluations. These aspects can be translated into 
the possibility of reaching a good degree of flexibility for relationships 
with both clients and suppliers. We can conclude that plan o2 (now 
scheduled as a part of the company strategy for the warehouse man-
agement) represents a good trade-off by satisfactorily matching all the 
criteria considered as relevant by the company. This result fully corre-
sponds with a standard AHP solution z = [0.248, 0.387, 0.178, 0.186], 
suggesting also o2 ≻ o1 ≻ o4 ≻ o3. Our method, however, represents an 
alternative to traditional decision-making approaches that is particu-
larly valuable for real-life situations where transitivity of judgements 
cannot be granted. On the one hand, the AHP claims that inconsistent 
solutions are not reliable according to the mathematical point of view. 
On the other hand, our proposal bypasses this perspective by simulta-
neously guaranteeing mathematical accuracy. By encouraging the 
application of a valid methodology to practical engineering problems we 
pursue the integration between the domains of scientific research and 
industry. This can be fundamental for improving the performance of 
core industrial processes, as the analysed logistic problem of storage and 
orders management. 

5. Conclusion 

A novel approach for solving complex real-world decision-making 
problems has been proposed, that is based on the preliminary collection 
of judgements of pairwise comparisons from selected stakeholders. 
Being elicited by human decision-makers, such judgments are often 
inconsistent. If minimal consistency requirements are not met in the 
AHP, experts are requested to revise - and possibly distort - their original 
judgments. We solve this issue by using the SSB representation of pref-
erences. In this way a mathematically well founded method is obtained 
with no consistency assumptions whatsoever. We established basic 
properties of this method: its relation to the AHP in the consistent case as 

Table 15 
Aggregated PCM A and vector of criteria weights w.  

A c1 c2 c3 c4 c5 w 

c1 1 1.189 1.155 1.075 0.408 16.59% 
c2 0.841 1 0.760 0.687 0.359 12.71% 
c3 0.866 1.316 1 0.816 0.366 14.79% 
c4 0.931 1.456 1.225 1 0.452 17.32% 
c5 2.449 2.783 2.736 2.213 1 38.59%  

Table 16 
Evaluation of options with respect to criteria and CR values.  

(a) B(1)

o1 o2 o3 o4 CR   

o1 1 1 2 3    
o2 1 1 3 3 0.0077   
o3 1

2 
1
3 

1 1    

o4 1
3 

1
3 

1 1            

(b) B(2)

o1 1 1
2 

1 1
3    

o2 2 1 1 1 0.0442   
o3 1  1 1    
o4 3 1 1 1            

(c) B(3)

o1 1 1 1
3 

1
3    

o2 1 1 1 1 0.1159   
o3 3 1 1 1

3    
o4 3 1 3 1            

(d) B(4)

o1 1 1 1 1    
o2 1 1 3 4 0.1100   
o3 1 1

3 
1 1

2    
o4 1 1

4 
2 1            

(e) B(5)

o1 1 1 2 2    
o2 1 1 6 6 0.1515   
o3 1

2 
1
6 

1 4    

o4 1
2 

1
6 

1
4 

1     

Table 17 
Case study.  

(a) Matrix V of local priorities v(k)

c1 c2 c3 c4 c5 

o1 0.347 0.159 0.141 0.233 0.283 
o2 0.383 0.280 0.234 0.420 0.468 
o3 0.142 0.245 0.234 0.150 0.163 
o4 0.128 0.316 0.391 0.197 0.086       

(b) P   
o1 o2 o3 o4  

o1 1 0.916 1.246 1.159  
o2 1.092 1 2.898 3.046  
o3 0.803 0.345 1 1.287  
o4 0.863 0.328 0.777 1   
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well as the fact that contrary to the AHP, this method does not exhibit 
the so-called order reversal when adding/deleting alternatives. In the 
simulation analysis we have shown that for consistent data our method 
typically yields the same best option as the AHP, see Table 12. These 
results validate that our approach provides a rigorous calculation in-
dependent on consistency limits. Thus analysts can easily contemplate 
real-life situations in which preferences expressed from expert(s) may be 
naturally inconsistent. Eventually, the practical applicability of our 
method has been proved by means of a case study related to the complex 
industrial reality. In particular, the field of supply chain management in 
the alimentary industry has been explored and a problem of storage 
management has been solved in a structured way for an Italian 
manufacturing company based on (inconsistent) opinions provided by a 
decision-making group. As demonstrated, the presented research can be 
helpful by conjugating the reliability of a scientific decision-making 
framework with the subjective experience of decision-makers reflect-
ing practical reality. Indeed, integrating the SSB within the AHP 
framework has the advantage to propose a final decision on the basis of 
real experience without forcing experts to reconsider their opinions for 
potential AHP reiterations. 
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