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Abstract

The class of exact transferable utility coalitional games, introduced in 1972 by
Schmeidler, has been studied both in the context of game theory and in the context
of imprecise probabilities. We characterize the cone of exact games by describing the
minimal set of linear inequalities defining this cone; these facet-defining inequalities for
the exact cone appear to correspond to certain set systems (= systems of coalitions).
We noticed that non-empty proper coalitions having non-zero coefficients in these facet-
defining inequalities form set systems with particular properties.

More specifically, we introduce the concept of a semi-balanced system of coalitions,
which generalizes the classic concept of a balanced coalitional system in cooperative
game theory. The semi-balanced coalitional systems provide valid inequalities for the
exact cone and minimal semi-balanced systems (in the sense of inclusion of set systems)
characterize this cone. We also introduce basic classification of minimal semi-balanced
systems, their pictorial representatives and a substantial concept of an indecomposable
(minimal) semi-balanced system of coalitions. The main result of the paper is that
indecomposable semi-balanced systems are in one-to-one correspondence with facet-
defining inequalities for the exact cone. The second relevant result is the rebuttal of a
former conjecture claiming that a coalitional game is exact iff it is totally balanced and
its anti-dual is also totally balanced. We additionally characterize those inequalities
which are facet-defining both for the cone of exact games and for the cone of totally
balanced games.

Keywords: coalitional game, exact game, totally balanced game, anti-dual of a game, semi-
balanced set system, indecomposable min-semi-balanced system.

1 Introduction

The class of exact (transferable utility) games is one of the topics of interest in cooperative
game theory; see [16, §V.1] or [8, § 3.4]. Exact games were introduced by Schmeidler [17] in
1972 within a wide framework of cooperative games with possibly infinite amount of players.
In this paper we, however, consider the usual game-theoretical framework and assume that
the set N of players (for considered cooperative games) is a (fixed) non-empty finite set.
Mathematically equivalent concept of a coherent lower probability (to the one of an exact
game) has later appeared in the context of imprecise probabilities [25], where N has the
interpretation of the sample space for considered (discrete) probability distributions. Exact
games have various applications described in detail in [7, § 1]. For example, it was shown
in [6] that exact games coincide with risk allocation games with no aggregate uncertainty
and in [5] that non-negative exact games coincide with multi-issue allocation games.

1



1.1 Overview of former related results

It was shown already by Schmeidler [17, § 2] that the exact games involve traditional convex
(= supermodular) games [20] and form a subclass of a popular class of totally balanced
games [16, Chapter V]. The latter class is then included in the class of balanced games [19],
defined as the class of cooperative games with non-empty core polyhedron. Note that all
these game-theoretical concepts have also their counterparts in the context of imprecise
probabilities; see [13] for more details about the correspondence.

In our framework of a finite set N of players, one can consider the geometric point of view
on the situation. It follows from the results in [7, 12] that the set of (characteristic functions
for) exact games over a fixed set N of players forms a polyhedral cone; the same is true for
other three classes of cooperative games mentioned above. Thus, exact games over N can
be characterized by means of a finite number of linear inequalities and a natural question
of theoretical interest is what is the minimal set of such inequalities. Note in this context
that we do not distinguish between an inequality and its multiple by a positive factor and
that the uniqueness of the minimal defining set of linear inequalities for a polyhedral set is
relative to the affine (= a shifted linear) space generated by the set; these are the so-called
facet-defining inequalities for the polyhedral set.

Let us mention other related results. Balanced games were characterized in terms of
linear inequalities already in the 1960s [3, 19] and the facet-defining inequalities for this
cone correspond to certain systems of subsets of N , called the minimal balanced set systems
(= collections). The facet-defining inequalities for the cone of supermodular games can
also be assigned to set systems, namely to pairs of sets S, T ⊆ N such that S \ T and
T \S are singletons [11, Corollary 11]. The facet-defining inequalities for the cone of totally
balanced games were recently characterized in [10]: they also correspond to set systems,
called irreducible (minimal) balanced systems on subsets of N .

The existence of a finite system of linear inequalities characterizing exact games follows
from the results by Lohmann et al. [12]. The inequalities reported in [12] also correspond
to systems of subsets of N ; nevertheless, not all these inequalities are facet-defining for the
exact cone. The problem of the characterization of facet-defining inequalities for this cone
was then discussed in [10, § 6] where a conjecture has been raised about their form. That
conjecture, confirmed in case |N | ≤ 5, has an equivalent formulation saying that a game is
exact iff it is totally balanced and its anti-dual game [14] is totally balanced as well.

Recall that every polyhedral cone can be characterized by means of (finitely many)
linear inequalities, which characterization is named the outer description. Nonetheless,
every polyhedral cone can also alternatively be defined as the conic hull of finitely many
vectors, which characterization is named the inner description. The latter approach leads to
the task to characterize the extreme rays of (a pointed version of) the polyhedral cone. The
generators of the extreme rays of the cones of (suitably) standardized cooperative games are
named extreme games [16, §V.4]. Note in this context that the inner description for the cone
of balanced games was presented in [10, § 5.2]. On the other hand, the number of extreme
rays for the other three (standardized) cones seems to grow more than exponentially with
|N |; this observation decreases the hope that they have manageable inner description. The
available results here are the criteria to recognize extreme games: we have proposed simple
and easily implementable such linear criteria based on the (vertices of the) corresponding
core polyhedron both in the supermodular case [22] and in case of exact games [23].
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1.2 Main results in this paper

This paper is devoted to the problem of characterization of facet-defining inequalities for
the cone of exact games. We follow the line of research indicated above. More specifically,
we introduce the concept of a (minimal) semi-balanced system of subsets of N , which
generalizes the classic concept of a (minimal) balanced set system on N from [19]. Linear
inequalities assigned to these set systems are shown to characterize the cone of exact games
(see Corollary 9). This result is analogous to [12, Theorem 3.4] in which exact games are
characterized by means of the so-called “exact balanced collections” of subsets of N , but
there is one important difference. Our semi-balanced set systems technically differ from
the collections of sets introduced by Lohmann et al. [12], although the assigned sets of
inequalities (as a whole) are necessarily equivalent.

The point is that our concept of a semi-balanced set system allows one to recognize easily
certain hidden symmetry. More specifically, every game over N is exact iff its anti-dual game
is exact and this fact is reflected in the linear inequalities for exact games: an inequality
is valid/facet-defining for the exact cone iff the same holds for its conjugate inequality (see
Section 5.1). Each semi-balanced set system S has a complementary semi-balanced set
system S? and the inequality assigned to S? is conjugate to the inequality assigned to S.
We also introduce basic classification for minimal semi-balanced set systems, called briefly
min-semi-balanced systems (on N), into four basic classes; the class of minimal balanced
(= min-balanced) set systems on N is one of them (Section 5.2). In addition to that we
introduce pictorial representatives for (permutational types of) min-semi-balanced systems
(Section 5.3), which easily encode the assigned inequalities and reflect both the classification
and complementarity relationships.

Besides that we establish a certain one-to-many correspondence between min-balanced
systems on N involving at least 3 sets and purely min-semi-balanced set systems on N ,
that is, those that are not balanced (Section 6.1). This correspondence may be a basis for a
procedure to generate the complete list of min-semi-balanced systems on N on basis of the
list of all min-balanced systems on N . The point is that if |N | ≥ 3 then every facet-defining
inequality for the exact cone corresponds to a purely min-semi-balanced system. Note in
this context that an analogous observation that the min-balanced systems are not needed
for the minimal description of the exact cone was already made in [12, § 5, Theorem 5.4].

Nonetheless, even purely min-semi-balanced set systems can be superfluous in the sense
that the assigned inequalities are not facet-defining. We introduce a narrower concept of an
indecomposable min-semi-balanced set system (see Section 7) and show that if |N | ≥ 3 then
any facet-defining inequality corresponds to an indecomposable set system. In fact, our
main result is that the facet-defining inequalities for the exact cone are just those assigned
to indecomposable min-semi-balanced set systems (see Theorem 18).

We also put more light on the relation of the cones of exact and totally balanced games.
Specifically, we first give a counterexample to a former conjecture from [10, § 6] mentioned
above in Section 1.1 (Section 8.1). Then we derive, as a consequence of our main result, that
those facet-defining inequalities for the cone of totally balanced games which concern strict
subsets of N are also facet-defining for the cone of exact games (Section 8.2). In fact, these
inequalities correspond to min-semi-balanced systems from one of four basic classes in our
classification (from Section 5.2). In particular, every irreducible min-balanced system on a
strict subset of N from [10] can be extended uniquely to a certain special indecomposable
min-semi-balanced set system (on N).
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1.3 Structure of the paper

In Section 2 we recall elementary concepts and basic facts. Our concept of a semi-balanced
system is introduced in Section 3. We give several equivalent definitions of a minimal
semi-balanced system, called a min-semi-balanced system, there and introduce the linear
inequalities assigned to these set systems. The cone of exact games is characterized by
means of these inequalities in Section 4. In Section 5 we then introduce the concept of a
complementary set system and basic classification of min-semi-balanced systems. We also
propose special pictures to represents these set systems and the inequalities assigned to
them. In Section 6 we establish the correspondence of purely min-semi-balanced systems
to min-balanced ones and shown that the inequalities assigned to min-balanced systems are
superfluous if |N | ≥ 3. The concept of an indecomposable min-semi-balanced set system
is then defined formally in Section 7. We formulate our main result there saying that
indecomposability is a necessary and sufficient condition for the assigned inequality to be
facet-defining. Section 8 is devoted to the relation of the exact cone to the cone of totally
balanced games. We first give a counterexample to the conjecture from [10, § 6]. Then we
characterize those facet-defining inequalities for the totally balanced cone which are also
facet-defining for the exact cone. In Conclusions (Section 9) we summarize our findings and
give a reference to our catalogue of indecomposable min-semi-balanced systems over sets of
low cardinality. Some of the longer technical proofs are moved to the Appendix.

2 Preliminaries

Throughout the paper the symbol N will denote a finite set of players and we restrict
ourselves to the non-degenerate case |N | ≥ 2. The power set P(N) := {S : S ⊆ N} of the
set of players is the set of coalitions. The symbol ⊂ will denote strict inclusion of either
sets or set systems, that is, S ⊂ T iff S ⊆ T and S 6= T . Given a set system S ⊆ P(N) the
union of sets in S will be denoted by

⋃
S; analogously,

⋂
S will denote their intersection.

The set of real numbers will be denoted by R, the set of rational numbers by Q.

2.1 Basic versions of linear combinations

We are going to deal with vectors in real Euclidean spaces RI , where I is a non-empty finite
index set. Our elementary linear algebraic operations will concern the space RN in which
case one has I = N . But later on, some more advanced geometric considerations will be in
space RI where I will be a class of subsets of N , mostly I = P(N).

The incidence vector of a coalition (= set) S ⊆ N will be denoted by χS ∈ RN :

χS(i) :=

{
1 if i ∈ S,
0 if i 6∈ S,

for i ∈ N .

A vector whose components equal each other, that is, a vector of the form [r, . . . , r] ∈ RN
where r ∈ R, will be called a constant vector in RN .

A special case of a constant vector in RN is the zero vector in RN , denoted by 0. A
finite set S of vectors in RN is linearly independent if

∑
x∈ S αx · x = 0 with αx ∈ R, x ∈ S,

implies [ ∀x ∈ S αx = 0 ], otherwise it is called linearly dependent. Analogously, a finite set
S ⊆ RN is affinely independent if

[
∑
x∈ S

αx · x = 0 with αx ∈ R, x ∈ S, satisfying
∑

x∈ S αx = 0 ] implies [ ∀x ∈ S αx = 0 ] ,
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otherwise it is called affinely dependent.

Other elementary concepts apply to any real Euclidean space RI , 0 < |I| <∞. We are
going to use the symbol

〈θ, x〉 :=
∑
ι∈I

θ(ι) · x(ι) for vectors θ, x ∈ RI

to denote the respective scalar product in RI . A (finite) linear combination
∑

i∈I λi · xi of
vectors xi ∈ RI with real coefficients λi ∈ R is called

• non-zero if there is i ∈ I with λi 6= 0,

• affine if
∑

i∈I λi = 1,

• conic if λi ≥ 0 for all i ∈ I, and

• convex if it is both affine and conic.

The convex hull of a set S ⊆ RI is the collection of all convex combinations of vectors
from S; it will be denoted by conv (S). A set S ⊆ RI is convex if it is closed under convex
combinations: S = conv (S). The conic hull of S ⊆ RI is the set of all conic combinations
of vectors from S; it will be denoted by cone (S).

Analogously, the affine hull of a set S ⊆ RI is the collection of all affine combinations
of vectors from S. It is always an affine subspace of RI , that is, a subset A ⊆ RI closed
under affine combinations. A non-empty affine subspace is always a shifted linear subspace
of RI , that is, a set of the form A = x+ L := {x+ y : y ∈ L }, where x ∈ RI and L ⊆ RI
is a linear subspace [4, § 1]; L is then uniquely determined by A while x is not unique.

The dimension of a set S ⊆ RI , denoted by dim(S), is the dimension of its affine hull
A, defined as the dimension of L. Recall that the linear space L is determined uniquely by
the set S through its affine hull A.

A hyperplane in RI is an affine subspace H of RI of the dimension |I|−1. An equivalent
condition is that it is the set of solutions x ∈ RI to the equation 〈θ, x〉 = β, where β ∈ R
and θ ∈ RI is a non-zero vector in RI ; see [4, § 1].

2.2 Some concepts from polyhedral geometry

Throughout the paper we assume that the reader is familiar with standard concepts and
basic facts from polyhedral geometry; see [4, 18, 1, 26], for example. Nevertheless, for
reader’s convenience, we recall those of them that are used (repeatedly) in our paper.
On the other hand, those readers that are not interested in the proofs and technicalities
can possibly skip the claims from Section 2.2 and consult it only when they encounter an
unknown concept from polyhedral geometry.

Given distinct x, y ∈ RI , the convex hull of {x, y} is the closed segment, denoted by
[x, y], while the open segment , denoted by ]x, y[, consists of convex combinations of x and
y which have both coefficients non-zero:

]x, y[ := { (1− α) · x+ α · y : 0 < α < 1 } .

A polyhedron in RI , 0 < |I| < ∞, is the set of vectors x ∈ RI specified by finitely many
linear inequalities 〈θ, x〉 ≥ β for x ∈ RI , where θ ∈ RI and β ∈ R. A polyhedron is called
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rational if, moreover, θ ∈ QI and β ∈ Q for these inequalities. A set S ⊆ RI is bounded if
there are constants c0, c1 ∈ R such that c0 ≤ x(ι) ≤ c1 for any component x(ι), ι ∈ I, of
any x ∈ S. A polytope (in RI) is the convex hull of a non-empty finite set of vectors in RI .
A fundamental result in polyhedral geometry says that a subset of RI is a polytope iff it is
a non-empty bounded polyhedron; see [4, Theorem 9.2] or [26, Theorem 2.15].

A face of a polyhedron P ⊆ RI , more precisely an exposed face of P [4, § 5], is a subset
F ⊆ P consisting of vectors x ∈ P satisfying 〈θ, x〉 = β for some θ ∈ RI , β ∈ R, such that
〈θ, y〉 ≥ β is a valid inequality for all y ∈ P. In case of a polyhedron P, this is equivalent
to the condition that F ⊆ P is a convex subset of it such that one has [y, z] ⊆ F whenever
y, z ∈ P and ]y, z[∩F 6= ∅; use [4, § 8] or see [1, Theorem 7.51]. The number of faces of a
polyhedron P is finite; see [4, Corollary 8.5]. The face-lattice of P ⊆ RI is the collection of
its faces, ordered by inclusion relation ⊆; it is indeed a lattice in usual sense [4, § 5].

Given a non-empty polyhedron P, any of its faces of the dimension dim(P)− 1 is called
a facet of P. An equivalent definition is that a facet (of P) is a maximal face F of P distinct
from P; use [4, Corollary 8.6]. A basic fact is that each full-dimensional proper polyhedron
P ⊂ RI , that is, each polyhedron with dim(P) = |I| and P 6= RI , is specified by those valid
inequalities for P which define facets and the specification of P by facet-defining inequalities
is the unique inclusion-minimal inequality description of P (up to positive multiples of
inequalities); see [4, Theorem 8.2].

A vertex (= an extreme point) of a convex set P ⊆ RI is a vector x ∈ P such that there
is no open segment ]y, z[ with (distinct) y, z ∈ P and x ∈ ]y, z[, which is, in case of a polytope
P, another way of saying that {x} is a face of P (of the dimension 0). The set of vertices of (a
polytope) P will be denoted by ext (P). A well-known consequence of famous Krein-Milman
theorem is that every polytope P has finitely many vertices and equals to the convex hull
of the vertex set: P = conv (ext (P)); see [4, Theorem 7.2(c)] or [26, Proposition 2.2(i)].

One of easy observations is that if S = conv (T) for S,T ⊆ RI then ext (S) ⊆ T.
Another immediate observation is that if Q ⊆ P are polytopes in RI then x ∈ Q ∩ ext (P)
implies x ∈ ext (Q). Every non-empty face F of a polytope P is again a polytope and
ext (F) = F ∩ ext (P); see [4, Theorem 7.3] or [26, Proposition 2.3(i)]. Further basic fact,
which follows from the properties of the operator S 7→ conv (S) and Krein-Milman theorem,
is the following one: if Pj , j ∈ J , where J is a finite index set, are bounded polyhedrons in
RI then Q := conv (

⋃
j∈J Pj) is a bounded polyhedron in RI as well.

An edge of a polytope P is a closed segment [y, z] ⊆ P which is a face of P (of the
dimension 1); then necessarily y, z ∈ ext (P). Further special fact is as follows. Given a
polytope P ⊆ RI and a hyperplane H in RI with H ∩ P 6= ∅, the intersection Q := H ∩ P is
a polytope and x ∈ ext (Q) iff either x ∈ H∩ ext (P) or there is an edge [y, z] of P such that
x ∈ ]y, z[ and [y, z] ∩ H = {x}; use [4, Theorem 11.1(d)].

A polyhedral cone in RI is a subset C of RI defined as the conic hull of a non-empty finite
set S of vectors from RI . An equivalent definition is that C is specified by finitely many
inequalities 〈θ, x〉 ≥ 0 for x ∈ RI [26, Theorem 1.3]; thus, it is a non-empty polyhedron. A
polyhedral cone C ⊆ RI is called pointed, if −C ∩ C = {0}, where −C := {−y : y ∈ C }
and 0 denotes the zero vector in RI . An equivalent condition is that there exists (non-zero)
θ ∈ RI such that 〈θ, x〉 > 0 for any x ∈ C\{0}; see [21, Proposition 2]. It makes no problem
to observe that if, moreover, C \ {0} 6= ∅, then, for each β > 0, the intersection of C with
the hyperplane H := {x ∈ RI : 〈θ, x〉 = β } is a polytope; this is because one can find
finite ∅ 6= S ⊂ H with C = cone (S). The reader can verify (using alternate definitions of
a face) that then the mapping F ⊆ C 7→ F ∩ H establishes a one-to-one correspondence
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between non-empty faces F of C and (all) faces of the polytope P := C ∩ H: the inverse
mapping is F′ ⊆ C ∩ H 7→ cone (F′ ∪ {0}) ≡ {0} ∪ {α · x : α ≥ 0 & x ∈ F′ }. This
correspondence preserves the inclusion ordering; thus, it is an isomorphism between the
lattice of non-empty faces of C and the face-lattice of P.

Every subset S ⊆ RI can be assigned its dual cone

S∗ := { θ ∈ RI : 〈θ, x〉 ≥ 0 for any x ∈ S } , which is clearly a closed convex cone.

A well-known elementary fact is that C ⊆ RI is a non-empty closed convex cone iff C = C∗∗,
which happens iff C = S∗ for some S ⊆ RI ; see for example [21, Consequence 1]. Moreover,
the dual cone to a polyhedral cone is also a polyhedral cone; use [1, Corollary 7.12]. Thus,
if one shows, for a polyhedral cone C ⊆ RI , and for a set D ⊆ RI that D = C∗ then this
fact already implies that C and D are mutually dual polyhedral cones, which means both
C = D∗ and D = C∗. Another useful fact from polyhedral geometry is that the lattices of
non-empty faces of mutually dual polyhedral cones are anti-isomorphic. More specifically,
the mapping is as follows:

F ⊆ C a non-empty face of C 7→ F⊥ := { θ ∈ D : 〈θ, x〉 = 0 for all x ∈ F }

and the inverse mapping is of the same form (exchange C for D); use [1, Theorem 7.41] to
derive that. This particular one-to-one correspondence reverses the inclusion ordering and
has the property that dim(F) + dim(F⊥) = |I|; use [1, Theorem 7.42].

2.3 Some concepts from game theory

A (transferable utility coalitional ) game over (a set of players) N is modeled by a real
function m : P(N) → R such that m(∅) = 0, called the “characteristic function” of the
game. The class of all games over N will be denoted by G(N). Given m ∈ G(N) and
∅ 6= S ⊆ N , the restriction mS of m to P(S) is called a subgame of the game m ∈ G(N).

The core C(m) of a game m ∈ G(N) is the polyhedron

C(m) := { [xi]i∈N ∈ RN :
∑
i∈N

xi = m(N) &
∑
i∈S

xi ≥ m(S) for all S ⊆ N} .

We say that a game m ∈ G(N) is balanced if it has a non-empty core,

• totally balanced if every subgame of m is balanced,

• exact if, for each coalition S ⊆ N , there exists a vector [xi]i∈N ∈ C(m) in the core
that is tight for S, which means that

∑
i∈S xi = m(S).

The set T (N) of all totally balanced games over N is known to be a polyhedral cone in
RP(N); the same is true for the set E(N) of all exact games over N ; see [10, § 2].

Recall from [9, Theorem 1] thatm is totally balanced iff it has a finite min-representation,
which means that there exists a non-empty finite X ⊆ RN such that

m(S) = min
x∈X

∑
i∈S

xi for any S ⊆ N.

It is a well-known fact that m is exact iff it has a min-representation ∅ 6= X ⊆ C(m)
consisting of the elements in the core; see [23, Proposition 1], for example. Hence, we know
that every exact game is totally balanced.
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Following [14], given m ∈ E(N), by the anti-dual of m we call the game

m�(S) := m(N \ S)−m(N) for all S ⊆ N .

Note that, by habitual terminology in cooperative game theory, the (−1) multiple of m�

is named the dual game of m; see [15, Definition 6.6.3]. Nonetheless, for our purpose the
concept of an anti-dual is more relevant as m ∈ E(N) iff m� ∈ E(N), see [10, § 3.2]. In
particular, if m is exact then both m and m� are totally balanced. On the other hand,
m ∈ E(N) 6⇒ −m ∈ E(N) in general; thus, duals of exact games need not be exact.

3 Balanced and semi-balanced set systems

We first recall a classic well-known concept in cooperative game theory [19].

Definition 1 (non-trivial and balanced set system)
LetN be a finite set with |N | ≥ 2. A system S of its subsets such that ∅ 6= S ⊆ P(N)\{∅, N}
will be called a non-trivial set system on N .

A balanced system (on N) is such a non-trivial set system B (on N) that χN is a conic
combination of vectors {χS : S ∈ B} with all coefficients non-zero. A balanced system B
on N is called minimal if there is no balanced system C on N with C ⊂ B; B will then be
called briefly min-balanced (on N).

In other words, B is balanced on N if χN is a linear combination of vectors {χS : S ∈ B}
with strictly positive coefficients. In the sequel we are going to generalize this concept.

3.1 Semi-balanced set systems

Our generalization is based on the following elementary concept.

Definition 2 (semi-conic combination)
We shall say that a linear combination

∑
i∈I λi · xi in RN is semi-conic if at most one of its

coefficients λi is strictly negative, that is, |{j ∈ I : λj < 0}| ≤ 1.

While linear combination concepts recalled in Section 2.1 are standard in mathematics,
the concept of a semi-conic combination is a specific concept relevant to the topic of our
study. Our terminology is motivated by the fact that the remaining coefficients λi, i 6= j,
in a such a linear combination must be non-negative. Thus, any conic combination is also
semi-conic. Nonetheless, despite this fact, the concepts of semi-conic and conic combination
differ substantially from each other.

Remark 1 In this side note we explain the principal difference between conic and semi-
conic combinations. Recall that the conic hull of a set S in a real Euclidean space is the
collection cone (S) of all conic combinations of vectors from S and it is always a convex
cone. Another well-known fact is that the mapping S 7→ cone (S) is a closure operator in
sense of abstract algebra [2, §V.1]; this means that it is extensive [S ⊆ cone (S)], monotone
[S ⊆ T implies cone (S) ⊆ cone (T)] and idempotent [cone (cone (S)) = cone (S)]. One can
analogously introduce the semi-conic hull semi-cone (S) as the set of all semi-conic combi-
nations of vectors from S, but this set need not be convex. The operator S 7→ semi-cone (S)
is then extensive and monotone but it is not idempotent. Consider, for example, the case
S = {(1, 0), (0, 1)} ⊆ R2. Thus, the mapping S 7→ semi-cone (S) is not a closure operator.
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Now, we are ready to introduce basic concepts in our treatise.

Definition 3 (semi-balanced set system, exceptional set)
Assume that N is a finite set with |N | ≥ 2. We shall say that a non-trivial set system
S on N is semi-balanced (on N) if there is a constant vector in RN which is a semi-conic
combination of vectors {χS : S ∈ S} with all coefficients non-zero. A semi-balanced system
S on N will be called minimal if there is no semi-balanced system C on N with C ⊂ S. We
will then say briefly that such a set system is min-semi-balanced (on N).

A semi-balanced set system S (on N) which is not balanced (on N) will be called purely
semi-balanced (on N). Analogously, a minimal semi-balanced system which is not balanced
will be called purely min-semi-balanced.

Given a non-trivial set system S on N , we will say that a set T ∈ S is exceptional within
S if there exists a linear combination

∑
S∈S λS · χS yielding a constant vector in RN with

λT < 0 and λS ≥ 0 for S ∈ S \ {T}.

It follows directly from the definition that any balanced system is also semi-balanced.
Let us emphasize that both these concepts are relative to N despite one may have

⋃
S ⊂ N

for a semi-balanced system S on N (see Example 1 below); this is because the constant
vector is required to be in RN . Note that, for a semi-balanced system, all coefficients in any
of the considered linear combinations must be strictly positive with one possible exception
of a strictly negative coefficient (with an exceptional set).

If a set T ⊂ N is exceptional within a system S then it is exceptional within any
larger non-trivial system T ⊇ S: put λS := 0 for S ∈ T \ S. Of course, every non-
trivial set system with an exceptional set contains a semi-balanced system because the
considered linear combination is semi-conic. Conversely, every purely semi-balanced system
has at least one exceptional set. Note that, in case of a (purely) min-semi-balanced system,
this exceptional set is uniquely determined; the uniqueness of this set follows from later
Lemmas 1 and 2.

A set system containing a semi-balanced system need not be semi-balanced. In fact, even
the union of two semi-balanced systems need not be a semi-balanced system (see Example 1
below). On the other hand, the union of a semi-balanced system and a balanced system
has to be a semi-balanced system: consider a suitable non-trivial convex combination of the
respective semi-conic combinations yielding constant vectors. The same argument implies
that the union of two balanced systems on N is a balanced system on N .

Example 1 Given N := {a, b, c, d}, take set systems S := { a, b, ab } and T := { c, bc, acd }.
The equalities 1 · χa + 1 · χb + (−1) · χab = 0 and (−1) · χc + 1 · χbc + 1 · χacd = χN imply
that both S and T is semi-balanced on N . To show that their union D := S ∪ T is not
semi-balanced on N consider a linear combination

∑
S∈D λS · χS = [r, r, r, r] ∈ RN having

all coefficients non-zero. Realize that λacd =
∑

S∈D: d∈S λS = r. The equality λacd = r =∑
S∈D: c∈S λS = λc + λbc + λacd then gives λc + λbc = 0 and the assumption λc 6= 0 6= λbc

implies that [λc < 0 or λbc < 0 ]. Analogously, λacd = r =
∑

S∈D: a∈S λS = λa + λab + λacd
means λa + λab = 0, which implies that [λa < 0 or λab < 0 ]. Therefore, one has λT < 0 for
at least two sets T ∈ D and the considered linear combination is not semi-conic.

The following lemma contains a few elementary observations valid for semi-balanced set
systems; in fact, they hold for a wider class of systems containing semi-balanced ones. Its
proof is shifted to Appendix A.
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Lemma 1 Given |N | ≥ 2 and ∅ 6= S ⊆ P(N) \ {∅, N}, let
∑

S∈S λS · χS = ρ be a non-zero
semi-conic combination yielding a constant vector ρ = [r, . . . , r] ∈ RN (with zero coefficients
allowed). Then one has

∑
S∈S λS ≥ r ≥ 0; moreover, r > 0 in case of a conic combination.

In any case
∑

S∈S λS > 0 and by a positive factor multiplication one gets an affine semi-conic

combination
∑

S∈S λ̃S · χS yielding a constant vector ρ̃ = [r̃, . . . , r̃] ∈ RN with r̃ ∈ [0, 1].
Finally, if the considered linear combination is not conic, then S has to contain at least
three different sets and the existence of such a set system forces |N | ≥ 3.

It follows from (the last claim in) Lemma 1 that every purely semi-balanced system
contains at least three sets and, thus, there is no such a set system on a two-element set.

We now provide equivalent definitions of min-semi-balanced systems. Slightly longer
proof of the next lemma is shifted to Appendix B.

Lemma 2 Given |N | ≥ 2, let ∅ 6= S ⊆ P(N) \ {∅, N} be a non-trivial set system on N .
Then the following conditions on S are equivalent:

(a) S is a minimal set system such that there is a constant vector in RN which can be
written as a non-zero semi-conic combination of vectors {χS : S ∈ S},

(b) S is a minimal semi-balanced set system on N ,

(c) S is semi-balanced on N , the vectors {χS : S ∈ S} are affinely independent and in
case

⋃
S = N even linearly independent,

(d) there is only one affine combination of vectors {χS : S ∈ S} yielding a constant vector
in RN and this unique combination is semi-conic and has all coefficients non-zero,

(e) there is only one affine semi-conic combination of vectors {χS : S ∈ S} which is a
constant vector in RN and this unique combination has all coefficients non-zero.

Given (purely) min-semi-balanced system S onN with an exceptional set T , by Lemma 1
one can consider an affine combination

∑
S∈S λS ·χS yielding a constant vector where λT < 0

and λS ≥ 0 for S ∈ S \ {T}. Then, by Lemma 2(d), such a combination is unique. This
implies that the exceptional set T within S is uniquely determined by S.

The following Example 2 illustrates that the requirement concerning the case
⋃
S = N

in the condition (c) of Lemma 2 cannot be removed.

Example 2 There exists a semi-balanced set system S on N with
⋃
S = N where vectors

{χS : S ∈ S} are affinely independent but not linearly independent. Take N := {a, b, c, d}
and put S := { a, b, ab, abc, abd }. Then one has

1 · χa + 1 · χb + (−2) · χab + 1 · χabc + 1 · χabd = χN ,

which implies that S is semi-balanced. The equality 0 = 1 · χa + 1 · χb + (−1) · χab implies
that {χS : S ∈ S} are linearly dependent. On the other hand, the condition

α · χa + β · χb + γ · χab + δ · χabc + ε · χabd = 0

together with α+β+γ+δ+ε = 0 implies α = . . . = ε = 0, which means that {χS : S ∈ S}
are affinely independent. Indeed, take d first to derive ε = 0, then c to get δ = 0, a to
obtain α = −γ and b to obtain β = −γ; thus, 0 = α + β + γ + δ + ε = −γ gives the
conclusion. Hence, by Lemma 2, the system S is not min-semi-balanced on N ; two of its
proper subsystems that are semi-balanced are { a, b, ab } and { ab, abc, abd }.
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The basic requirement in the condition (d) of Lemma 2 is geometric: the affine subspace
{
∑

S∈S λS · χS ∈ RN :
∑

S∈S λS = 1} intersects the line {[r, . . . , r] ∈ RN : r ∈ R} of
constant vectors in precisely one vector. The following Example 3 shows that both additional
requirements on this unique affine combination are necessary.

Example 3 There exists a non-trivial system D on N such that only one affine combination
of {χS : S ∈ D} yields a constant vector in RN and this unique combination is conic but
has not all coefficients non-zero. Take N := {a, b, c} and put D := { a, b, bc }. Then

1

2
· χa + 0 · χb +

1

2
· χbc =

1

2
· χN ,

is the above-mentioned unique affine combination. Of course, this particular set system D
is not semi-balanced but its subsystem D′ := { a, bc } is even balanced.

There is also a non-trivial set system C on N with a unique affine combination of
{χS : S ∈ C} yielding a constant vector in RN , where all the coefficients in this combination
are non-zero but the combination is not semi-conic. Take N := {a, b, c, d, e} and consider
C := { ab, ac, ad, abc, abce }. Then

(−1) · χab + (−1) · χac + 1 · χad + 1 · χabc + 1 · χabce = χN

is that unique combination. By Lemma 1, the system C is not semi-balanced on N .

A consequence of Lemma 2 is the observation that the concept of a min-semi-balanced
system generalizes the one of a min-balanced system.

Corollary 3 Given |N | ≥ 2, a balanced system B on N is minimal within the class of
balanced systems on N iff it is minimal within the class of semi-balanced systems on N . In
other words, B is min-balanced (on N) iff it is balanced and min-semi-balanced (on N).

Proof. The fact that B is balanced on N implies
⋃
B = N . By Lemma 2(c), its minimality

within semi-balanced systems means that {χS : S ∈ B} are linearly independent, while,
by [10, Lemma 2.1], this condition characterizes its minimality within balanced systems. �

Lemma 2(c) also sets a limit on the number of sets in a min-semi-balanced system.

Corollary 4 Given |N | ≥ 2 and a min-semi-balanced system S on N one has |S| ≤ |N |.

Proof. If
⋃
S ⊂ N then affine independence of {χS : S ∈ S} gives |S| ≤ |

⋃
S|+ 1 ≤ |N |

because affinely independent set in RM has at most |M |+ 1 elements. In case
⋃
S = N the

linear independence of the respective set of vectors implies directly |S| ≤ |N |. �

3.2 Inequalities assigned to semi-balanced systems

Given a non-trivial set system S on N , any non-zero semi-conic combination
∑

S∈S λS · χS
yielding a constant vector [r, . . . , r] ∈ RN gives an inequality

r ·m(N) ≥
∑
S∈S

λS ·m(S) for m ∈ RP(N),

which appears to be valid for all exact games m. To ensure one-to-one correspondence
between the inequalities and semi-conic combinations we limit ourselves to affine combina-
tions, which is possible owing to Lemma 1. The formal definition is as follows.
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Definition 4 (vectors of coefficients, inequalities induced by set systems)
Let S be a non-trivial set system on N , |N | ≥ 2. Any affine semi-conic combination∑

S∈S λS · χS yielding a constant vector [r, . . . , r] ∈ RN is assigned a vector θ ∈ RP(N):

θ(S) = −λS for S ∈ S, θ(N) = r, θ(∅) = 1− r, θ(L) = 0 for other L ⊆ N . (1)

The vector θ is then interpreted as the coefficient vector in an inequality

0 ≤ 〈θ,m〉 :=
∑
S⊆N

θ(S) ·m(S) for vectors m ∈ RP(N) with m(∅) = 0. (2)

The symbol ΘS will denote the set of vectors θ for all such affine semi-conic combinations.
Provided |ΘS | = 1, the only vector in ΘS will be denoted by θS .

Note that every coefficient vector θ is given by a suitable affine combination and that
the values θ(S) for S ∈ S correspond to the coefficients in the combination; however, the
remaining contingent non-zero values θ(N) and θ(∅) are determined by them.

Here are some elementary observations on the set of coefficient vectors.

Corollary 5 Given |N | ≥ 2 and a non-trivial set system S on N , one has ΘS 6= ∅ iff S
contains a semi-balanced system. The inclusion T ⊆ S of two non-trivial systems on N
implies ΘT ⊆ ΘS . The set ΘS is the union of sets ΘT for semi-balanced systems T with
T ⊆ S. One has |ΘS | = 1 iff S contains just one semi-balanced system on N . In particular,
every min-semi-balanced system S on N satisfies |ΘS | = 1.

These facts mean that the inequalities (2) from Definition 4 are just those that are
assigned to semi-balanced systems. The last claim says that solely a non-minimal semi-
balanced system S may have non-singleton ΘS and, thus, be assigned several inequalities.

On the other hand, the substantial inequalities appear to be those assigned to min-
semi-balanced systems; see later Corollary 9(iii). Thus, the inequalities assigned to other
non-trivial set systems are superfluous for the description of the exact cone. Nonetheless, in
order to follow the analogy with former results by Lohmann et al. [12], we have also assigned
the inequalities to non-minimal semi-balanced set systems; see later Corollary 9(ii).

Proof. The first claim follows from Definition 3 and Lemma 1, further two ones are direct
consequences of Definition 4. As concerns the fourth claim, the necessity of the uniqueness
of a semi-balanced subsystem can be shown by contradiction with the help of Lemma 1.
For its sufficiency realize that the unique semi-balanced system T on N with T ⊆ S is
necessarily minimal. Given θ ∈ ΘS , the set system {S ⊂ N : S 6= ∅ & θ(S) 6= 0} ⊆ S is
semi-balanced on N , and, thus, it has to coincide with T . The condition (e) in Lemma 2
(for T ) implies the uniqueness of θ ∈ ΘS ; hence, |ΘS | ≤ 1. This implies the last claim. �

The following example shows that the set ΘS need not be convex.

Example 4 Take N := {a, b, c, d} and put B := { a, b, c, d, ab, cd }. The conic combination

1

2
· χa +

1

2
· χb +

1

2
· χc +

1

2
· χd +

1

2
· χab +

1

2
· χcd = χN
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means that B is balanced on N . A semi-conic combination 1 · χa + 1 · χb + (−1) · χab = 0
leads to a coefficient vector θ1 ∈ ΘB:

θ1(a) = −1, θ1(b) = −1, θ1(ab) = +1, θ1(∅) = +1, θ1(L) = 0 otherwise.

Analogously, 1 · χc + 1 · χd + (−1) · χcd = 0 gives rise to the vector θ2 ∈ ΘB:

θ2(c) = −1, θ2(d) = −1, θ2(cd) = +1, θ2(∅) = +1, θ1(L) = 0 otherwise.

Their convex combination 1
2 · θ

1 + 1
2 · θ

2, however, does not belong to ΘB because the
corresponding affine combination 1

2(χa + χb + χc + χd − χab − χcd) = 0 is not semi-conic.

On the other hand, ΘS is always the union of finitely many closed convex sets.

Corollary 6 Given a semi-balanced system S on N , |N | ≥ 2, the set ΘS is the union of
finitely many rational polyhedrons. In particular, if S is min-semi-balanced then the unique
vector θS in ΘS has rational components: θS ∈ QP(N).

Proof. In fact, ΘS is the union over T ∈ S of sets ΘS:T consisting of θ ∈ RP(N) such that

• θ(N) + θ(∅) = 1 =
∑

S∈S −θ(S),
∑

S∈S −θ(S) · χS = θ(N) · χN ,

• ∀S ∈ S \ {T} θ(S) ≤ 0, ∀L ∈ P(N) \ (S ∪ {∅, N}) θ(L) = 0.

Indeed, the above conditions defining ΘS:T are the rewriting of (1) and of the requirements
on the respective linear combination

∑
S∈S λS · χS , where λT is allowed to be negative.

These constraints have clearly rational coefficients. In case of a minimal S one has |ΘS | = 1
by Corollary 5. Thus, {θS} = ΘS:T for some T ∈ S then. Because ΘS:T is specified by
rational constraints it is a rational polyhedron. Another well-known fact from polyhedral
geometry is that every vertex of a rational polyhedron has rational components; see [21,
Statement 3] for example. This gives θS ∈ QP(N). �

Note that (the first claim in) later Lemma 7 implies that every set ΘS:T from the above
proof is, in fact, a bounded polyhedron: the set ΘS:T with S := P(N) \ {∅, N} coincides
with the below-defined set Θ̃N

D for D = T .

4 Characterization of exact games

Note that readers not interested in technicalities (or proofs) can possibly skip this section.
The inequalities of the form (2) from Definition 4 allow one to delimit the cone of exact
games. To this end we introduce the following convex sets.

Definition 5 (auxiliary cones and polyhedrons)
Given |N | ≥ 2 and ∅ 6= D ⊆ N we put

ΘN
D := { θ ∈ RP(N) : θ(S) ≤ 0 for any S ⊆ N such that S 6∈ {∅, D,N},∑

L⊆N
θ(L) = 0 and

∑
L⊆N : i∈L

θ(L) = 0 for any i ∈ N },

Θ̃N
D := ΘN

D ∩ { θ ∈ RP(N) : θ(N) + θ(∅) = 1 },
∆ := conv (

⋃
D: ∅6=D⊆N

Θ̃N
D) .
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Observe that Θ̃N
D = ΘN

D ∩ {θ ∈ RP(N) :
∑

L: ∅6=L⊂N θ(L) = −1 }, which re-writing
allows one to ignore the component for ∅ and interpret these convex sets as subsets of
RP(N)\{∅}. It follows directly from the definition that Θ̃N

N ⊆ Θ̃N
D for any ∅ 6= D ⊂ N ; thus,

one can, alternatively, consider the union over ∅ 6= D ⊂ N in the definition of ∆. The proof
of the next lemma, based on some facts from [10, § 5.1], is moved to Appendix C.

Lemma 7 Given |N | ≥ 2, every set Θ̃N
D , where ∅ 6= D ⊆ N , is a bounded polyhedron.

Every vector θ ∈ ΘN
D satisfies both θ(N) ≥ 0 and θ(∅) ≥ 0 and every non-zero vector θ ∈ ΘN

D

satisfies θ(N) + θ(∅) > 0. Given m ∈ RP(N) with m(∅) = 0, one has

m ∈ E(N) ⇔ [∀ θ ∈
⋃

∅6=D⊆N

Θ̃N
D 〈θ,m〉 ≥ 0 ] . (3)

The first claim in Lemma 7 allows one to observe that ∆ is a bounded polyhedron as
well; this follows from basic facts in polyhedral geometry recalled in Section 2.2.

The second claim in Lemma 7 means that each set ΘN
D , ∅ 6= D ⊆ N , is a pointed

polyhedral cone. An equivalent formulation is that every non-zero vector θ ∈ ΘN
D satisfies∑

L: ∅6=L⊂N θ(L) < 0, which is relevant if ΘN
D is interpreted as a subset of RP(N)\{∅}.

Further auxiliary observation says that the vertices of the (bounded) polyhedrons from
Definition 5 correspond to (certain) min-semi-balanced set systems on N . Thus, together
with Lemma 7, it puts in relation exact games and semi-balanced systems. Its proof is also
shifted to Appendix D.

Lemma 8 Given |N | ≥ 2 and ∅ 6= D ⊆ N , every vertex of Θ̃N
D has either the form θB,

where B is a min-balanced set system on N , or the form θS , where S is a min-semi-balanced
system on N having D as the exceptional set.
Conversely, in case ∅ 6= D ⊂ N , every vector θS , where S is a min-semi-balanced system on
N having D as the exceptional set, is a vertex of Θ̃N

D : θS ∈ ext (Θ̃N
D).

Note in this context that one can show, using the same arguments as in the proof of
Lemma 8, that ext (Θ̃N

N ) consists just of the vectors θB where B is a min-balanced set system
on N ; nonetheless, this observation is not necessarily needed to derive our results. On the
other hand, the delimitation of ext (Θ̃N

D) for D ⊂ N in the first claim of Lemma 8 is not
tight. Analogous arguments can be used to show that θB ∈ ext (Θ̃N

D) for every min-balanced
system B on N with D ∈ B. For a min-balanced system B on N such that D 6∈ B, however,
the vector θB may or may not be a vertex of Θ̃N

D as the next example shows.

Example 5 Take N := {a, b, c} and put D := {a, b}; the set system B := { a, b, c } is then
min-balanced on N . The corresponding vector θB ∈ RP(N) is given by

θB(N) = +
1

3
, θB(a) = θB(b) = θB(c) = −1

3
, θB(∅) = +

2

3
, θB(L) = 0 otherwise,

evidently belongs to Θ̃N
D . Consider another min-balanced system C := { c, ab } on N with

θC(N) = θC(∅) = +
1

2
, θC(c) = θC(ab) = −1

2
, θC(L) = 0 otherwise,
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and a min-semi-balanced system D := { a, b, ab } on N with

θD(ab) = θD(∅) = +1, θD(a) = θD(b) = −1, θC(L) = 0 otherwise .

These two vectors both belong to Θ̃N
D and one has θB = 2

3 · θC + 1
3 · θD. In particular, θB is

not a vertex of Θ̃N
D . On the other hand, the min-balanced system B′ := { a, bc } on N with

θB′(N) = θB′(∅) = +
1

2
, θB′(a) = θB′(bc) = −1

2
, θB′(L) = 0 otherwise,

also complies with D 6∈ B′ and it makes no problem to show that θB′ ∈ ext (Θ̃N
D).

Lemmas 7 and 8 allow one to characterize exact games in terms of semi-balanced systems.

Corollary 9 Given |N | ≥ 2, consider a function m ∈ RP(N) such that m(∅) = 0. Then
the following conditions on the game m are equivalent:

(i) m is an exact game over N , that is, m ∈ E(N),

(ii) for every semi-balanced set S system on N one has 〈θ,m〉 ≥ 0 for all θ ∈ ΘS ,

(iii) for every min-semi-balanced set S system on N one has 〈θS ,m〉 ≥ 0.

Note that one is entitled to write θS in (iii) since, by Corollary 5, |ΘS | = 1 then.

Proof. The implication (i)⇒(ii) follows from (3) in Lemma 7, one only needs to realize
that, given a semi-balanced system S on N , one has ΘS ⊆ Θ̃N

D for some ∅ 6= D ⊆ N .
Indeed, any θ ∈ ΘS is defined in (1) from an affine (semi-conic) combination

∑
S∈S λS · χS

yielding a constant vector in RN , which gives both θ(N) + θ(∅) = −
∑

L:∅6=L⊂N θ(L) = +1

and
∑

L⊆N :i∈L θ(L) = 0 for any i ∈ N . Thus, if it is a conic combination then θ ∈ Θ̃N
N ,

otherwise one has θ ∈ Θ̃N
T for the only (exceptional) T ∈ S with λT < 0.

The implication (ii)⇒(iii) is immediate.

To verify (iii)⇒(i) we apply the first claim in Lemma 8 to observe that 〈θ,m〉 ≥ 0 for
any θ ∈ ext (Θ̃N

D) and ∅ 6= D ⊆ N . Hence, the same holds for any θ ∈ Θ̃N
D and arbitrary

∅ 6= D ⊆ N . In particular, one can use (3) in Lemma 7 to derive (i). �

Let us remark that the observations from Corollary 9 are analogous to former results
by Lohmann et al. [12], specifically to Theorem 3.4 in [12, § 3] and Theorem 5.1 in [12, § 5].
The proviso is that Lohmann et al. used a different formal way to associate set systems with
inequalities – see later Remark 2 for the explanation. We believe that our approach and
presentation offers an elegant geometric interpretation and simpler arguments. Moreover,
it can be extended to get the following characterization of facet-defining inequalities.

Corollary 10 Given |N | ≥ 2, the inequality (2), that is, 0 ≤ 〈θ,m〉 for m ∈ RP(N),
with a coefficient vector θ ∈ RP(N), where

∑
S⊆N θ(S) = 0 and

∑
L: ∅6=L⊂N θ(L) = −1, is

facet-defining for the cone of exact games E(N) iff θ ∈ ext (∆).
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Note that the above requirements
∑

S⊆N θ(S) = 0 and
∑

L: ∅6=L⊂N θ(L) = −1 on a
coefficient vector θ are solely technical constraints which can, without loss of generality, be
assumed to hold for any facet-defining inequality for the exact cone. The former requirement
is related to the facts that m(∅) = 0 for any game m ∈ G(N) and that E(N) is a full-
dimensional cone in RP(N)\{∅}: it is a convention on the value θ(∅). The latter requirement
is related to the fact that facet-defining inequalities are determined uniquely up to a positive
multiple: it is a particular convention about the choice of the multiplicative factor.

The proof is based on a geometric consideration concerning the duality of polyhedral
cones. It is more convenient technically to imagine both the cone of exact games and its
dual cone within the space RP(N)\{∅} because then the dual cone becomes pointed.

Proof. Consider the space RP(N)\{∅} and interpret the polyhedrons Θ̃N
D from Definition 5

as its subsets. Introduce a polyhedral cone ∆̄ ⊆ RP(N)\{∅} as the conic hull of ∆. Since
every θ ∈ ∆ satisfies

∑
∅6=L⊂N θ(L) = −1 every non-zero θ ∈ ∆̄ satisfies

∑
∅6=L⊂N θ(L) < 0

meaning that ∆̄ is pointed and its extreme rays are generated by vertices θ ∈ ext (∆)
(see Section 2.2). The first claim in Lemma 7 allows one to observe that ∆ is a bounded
polyhedron, while the third claim in Lemma 7 means that the cone E(N) is dual to ∆̄:
E(N) = (∆̄)∗.

Hence, by the basic facts from polyhedral geometry recalled in Section 2.2, the cones ∆̄
and E(N) are mutually dual polyhedral cones and the lattices of their non-empty faces are
anti-isomorphic. In particular, extreme rays of ∆̄ correspond to facets of E(N). Moreover,
the lattice of non-empty faces of ∆̄ is isomorphic to the face-lattice of ∆, which implies
that the extreme rays of ∆̄ are just those rays that are generated by vertices of ∆. In
other words, a coefficient vector θ normalized by

∑
∅6=L⊂N θ(L) = −1 yields a facet-defining

inequality for E(N) iff θ is a vertex of ∆. �

Remark 2 Lohmann et al. introduced in [12] the concept of an exact balanced collection
of sets with the intention to use such set systems to generate linear inequalities specifying
the cone of exact games. These collections of sets often coincide with our semi-balanced set
systems, but there is one (substantial) technical difference in their approach. It concerns
the inequalities 〈θ,m〉 ≥ 0 for m ∈ E(N) with θ(N) = 0. They ascribe such inequalities
to the so-called “minimal sub-balanced” collections which are certain set systems always
involving the grand coalition N . To give an example of the difference consider the vector
θ ∈ RP(N), where N = {a, b, c}, given by

θ(∅) = +1, θ(ab) = +1, θ(a) = −1, θ(b) = −1, θ(L) = 0 for other L ⊆ N .

One has θ ∈ ΘN
D for D = ab and 〈θ,m〉 ≥ 0 is facet-defining for m ∈ E(N). Our approach

is to associate this inequality with a set system { a, b, ab } while Lohmann et al. [12] ascribe
that inequality to the set system { a, b, ab,N }. We have two arguments why their approach
is not appropriate for our purpose:

• there is no one-to-one correspondence between set systems and inequalities in their
approach although technically all inequalities assigned to a minimal sub-balanced
collection are equivalent (see [12, Theorem 3.9]),

• their approach does not allow one to reveal one important relation of complementarity
among set systems which corresponds to the respective relation of conjugacy between
facet-defining inequalities for E(N) (see [10, Lemma 3.4]). The reader can find further
details in Section 5.1.
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That is why we believe our way of inequality description is more appropriate.

5 Properties of semi-balanced systems

In this section we discuss some structural relations among semi-balanced set systems.

5.1 Complementarity of set systems

A substantial fact about the cone of exact games is that its facet-defining inequalities come
in pairs of mutually conjugate inequalities, as shown already in [10, Lemma 3.4]. Therefore,
the corresponding set systems also come in pairs of mutually complementary systems.

Definition 6 (conjugate inequality, complementary set system)
Assume |N | ≥ 2. The conjugate inequality to the inequality (2), that is, to the inequality
0 ≤ 〈θ,m〉 for m ∈ RP(N) with a coefficient vector θ ∈ RP(N), is the inequality

0 ≤ 〈θ?,m〉 for m ∈ RP(N), where θ?(L) := θ(N \ L) for any L ⊆ N . (4)

Given a non-trivial set system S on N , its complementary system is the set system

S? := {N \ S : S ∈ S} .

Of course, both concepts are relative to N . Here are the relevant observations.

Lemma 11 Given |N | ≥ 2, let S be a non-trivial set system on N . Then S is semi-
balanced iff S? is semi-balanced and ΘS? = {θ? : θ ∈ ΘS}. An analogous statement holds
for balanced systems. In particular, S is min-semi-balanced iff S? is min-semi-balanced and
the same holds for min-balanced systems on N . Clearly, θ?S := (θS)? = θS? then.
Given θ ∈ RP(N) with

∑
S⊆N θ(S) = 0 and

∑
∅6=L⊂N θ(L) = −1, the inequality (2) is

facet-defining for E(N) iff its conjugate inequality (4) is facet-defining for E(N).

Proof. By Lemma 1, S is semi-balanced if r · χN =
∑

S∈S λS · χS with r ∈ [0, 1] and
an affine semi-conic combination on the right-hand side (which has all its coefficients non-
zero). One can multiply that by (−1) and add to that the equality χN =

∑
S∈S λS · χN

to get (1 − r) · χN =
∑

S∈S λS · χN\S =
∑

L∈S? λN\L · χL, which means that S? is semi-
balanced; one can then put r? = 1 − r and λ?L = λN\L for L ∈ S?. Thus, the relation
ΘS? = {θ? : θ ∈ ΘS} follows from Definition 4. The same argument works for balanced
systems: the linear combination is even conic then. The relation of non-trivial systems
T ⊆ S iff T ? ⊆ S? then implies the consequences concerning minimal such systems.

The last claim in Lemma 11 can be derived from Corollary 10 using Definition 5. Note
that θ ∈ Θ̃N

N ⇔ θ? ∈ Θ̃N
N , and, for every ∅ 6= D ⊂ N , θ ∈ Θ̃N

D ⇔ θ? ∈ Θ̃N
N\D, which

allows one to deduce θ ∈ ∆ ⇔ θ? ∈ ∆. Since θ 7→ θ? is a linear mapping one has
θ ∈ ext (∆) ⇔ θ? ∈ ext (∆) and the rest follows from Corollary 10. �

Note that T ∈ S is exceptional within a non-trivial set system S on N (see Definition 3)
iff N \ T ∈ S? is exceptional within S?: given a combination r · χN =

∑
S∈S λS · χS

multiply it by (−1) and add (
∑

S∈S λS) ·χN to get (
∑

S∈S λS− r) ·χN =
∑

S∈S λS ·χN\S =∑
R∈S? λN\R · χR. In particular, a non-trivial system S on N is purely min-semi-balanced

iff the same holds for its complementary system S?.
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5.2 Basic classification of min-semi-balanced systems

The uniqueness condition (d) in Lemma 2 on an affine combination yielding a constant
vector allows one to classify min-semi-balanced systems by the values of the constant.

Lemma 12 Given |N | ≥ 2 and a min-semi-balanced set system S on N , let
∑

S∈S λS ·χS
be the unique affine (semi-conic) combination yielding a constant vector r · χN , r ∈ [0, 1].
One has then r = 0 iff there exists a min-balanced system B on M ⊂ N , |M | ≥ 2, such that
S = B ∪ {M}; another equivalent condition is

⋃
S ⊂ N . Moreover, a min-balanced system

B on M ⊂ N , |M | ≥ 2, yields a min-semi-balanced one S := B ∪ {M} on N with r = 0.
One has r = 1 iff S is a complementary system to a system S? with

⋃
S? ⊂ N ; another

equivalent condition is
⋂
S 6= ∅.

On the other hand, every min-balanced system S on N satisfies 0 < r < 1.

The proof of Lemma 12 is shifted to Appendix E. Thus, one can distinguish at least
three classes of min-semi-balanced systems S:

• those with
⋃
S ⊂ N , which are extensions of min-balanced systems on strict subsets,

• those with
⋂
S 6= ∅, which can be viewed as their complementary systems, and

• min-balanced systems on N , which satisfy both
⋃
S = N and

⋂
S = ∅.

Nevertheless, as the next example shows, there is the fourth class of min-semi-balanced
systems: these satisfy both

⋃
S = N and

⋂
S = ∅ but they are not balanced on N .

Example 6 Take N := {a, b, c, d} and S := { a, ab, bc, abd }. The semi-conic combination

1 · χa + (−1) · χab + 1 · χbc + 1 · χabd = χN

implies that S is semi-balanced on N . Since
⋃
S = N and {χS : S ∈ S} are linearly inde-

pendent, by Lemma 2(c), S is min-semi-balanced. Clearly, the unique linear combination
yielding χN is not conic; hence, S is not balanced.

Remark 3 We showed in Lemma 12 that every min-balanced set system B on a strict
subset M ⊂ N leads to a semi-balanced system B ∪ {M} on N . Note in this context that
B itself is never semi-balanced on N . This is because the vectors {χS : S ∈ B} are then
linearly independent [10, Lemma 2.1]. Thus,

⋃
B = M ⊂ N implies that a contingent

semi-conic combination of {χS : S ∈ B} can only yield the zero constant vector 0, while
the linear independence implies that only the zero linear combination yields 0.

5.3 Pictorial representation of min-semi-balanced systems

We propose to use certain special pictures to represent (permutational types of) minimal
semi-balanced set systems. In fact, our diagrams additionally encode the corresponding
linear inequalities (2). Corollary 6 says that, given a min-semi-balanced system S on N ,
the vector θS has rational components, that is, it is given by an affine rational semi-conic
combination

∑
S∈S λS · χS = r · χN . One can multiply this by a natural number ` so that

αS := ` ·λS , S ∈ S, become integers with no common prime divisor. Then αN := ` · r ∈ Z+

and one can introduce α∅ := −αN +
∑

S∈S αS ∈ Z+ (use Lemma 1). Thus, one gets∑
S∈S

αS · χS = α∅ · χ∅ + αN · χN , where all the coefficients αS are integers.

18



One can have α∅ = 0 or αN = 0, while the remaining coefficients are non-zero. Provided
there is T ∈ S with λT < 0 one can re-write that in the form∑
S∈S\{T}

αS ·χS = α∅ ·χ∅+(−αT ) ·χT +αN ·χN with non-negative integers as coefficients.

A diagram representing a set system S has the form of a pair of two-dimensional arrays
whose entries are colorful boxes; the arrays encode the sides of the above vector equality.
The rows of these arrays correspond to the elements of the base set N (= players); they
are labeled if the diagram represents a particular set system S and they are unlabeled if it
represents a permutational type of such systems.

The columns of the arrays encode sets S from the enlarged system S ∪ {∅, N}. Each of
the sets has its own color; however, the black color is reserved for the grand coalition N , a
fully blank (= white) column implicitly encodes the empty set and the grey color is reserved
for a contingent set T with a negative coefficient λT < 0 (= an exceptional set in S). The
other sets from S have bright colors then. The column representing a set S has boxes of
the respective color just in rows corresponding to elements of S. To express the value of the
respective coefficient αS ∈ Z in the inequality the respective column is repeated |αS |-times.

The left array is composed of columns which correspond to sets with positive coefficients
λS > 0, S ∈ S, while the array on the right-hand side has either fully black columns, fully
blank (= white) columns and possibly columns containing grey boxes.

e

d

c

b

a

=

Figure 1: A picture representing the set system from Example 7.

Example 7 Take N := {a, b, c, d, e} and put S := { ab, ac, bc, abd, abe }. The relation

1 · χac + 1 · χbc + 2 · χabd + 2 · χabe = 1 · χ∅ + 3 · χab + 2 · χN

allows one to observe that S is semi-balanced on N . As the vectors {χS : S ∈ S} are
linearly independent S is minimal. A picture representing this set system is in Figure 1.

Note that, in any row, the numbers of boxes in the left and right array coincide: this is
because of the equality

∑
S∈S αS · χS(i) = αN · χN (i) for any i ∈ N . Another interesting

observation is that the diagram for the complementary system S? can easily by obtained
by “reflection” from the diagram for S: the boxes are interchanged with non-boxes and the
colors for columns are kept, under a convention that the color for blank columns is black.

One can also easily recognize on basis of the diagram for S to which of the four basic
classes it belongs. Systems S with

⋃
S ⊂ N , that is, those with the constant r = 0, have
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no black column. Their complementary systems S with
⋂
S 6= ∅, that is, those with the

constant r = 1, have no blank (= white) column. The min-balanced systems on N have no
grey column and other min-semi-balanced systems have blank, grey and black columns.

6 Purely min-semi-balanced systems

Let us first discuss the situation when only two players exist, that is, |N | = 2. Then, as
explained below Lemma 1, there is no purely semi-balanced system on N . In fact, the only
semi-balanced system over N = {a, b} is the min-balanced system B := { a, b }. Thus, by
Corollary 9, a game m ∈ RP(N), m(∅) = 0, is exact iff 〈θB,m〉 ≥ 0, and the cone of exact
games is specified by a single inequality m(ab)−m(a)−m(b) ≥ 0.

6.1 How to get purely min-semi-balanced systems

Therefore, in the sequel we limit our attention to a non-trivial case |N | ≥ 3, when there
exist purely semi-balanced systems on N . We first establish some relation between min-
balanced and purely min-semi-balanced systems. The proof of the next lemma is shifted to
Appendix F.

Lemma 13 Assume |N | ≥ 3. If B is a min-balanced set system on N such that |B| ≥ 3
and Z ∈ B then Y := N \ Z is not in B, the set system S := (B \ {Z}) ∪ {Y } is purely
min-semi-balanced on N and Y is the exceptional set within S.

Conversely, if S is a (purely) min-semi-balanced system on N and Y ∈ S the exceptional
set within S then Z := N \Y is not in S and B := (S \{Y })∪{Z} is a min-balanced system
on N such that |B| ≥ 3.

Thus, by Lemma 13, there is one-to-many correspondence B ↔ S between min-balanced
systems B on N satisfying |B| ≥ 3 and purely min-semi-balanced systems S on N which is
realized by the mutual exchange of a set Z ∈ B and of its complement Y ∈ S. It allows
one to generate a complete list of min-semi-balanced systems on N on basis of the list of all
min-balanced systems on N . Note that the fact that balanced systems on N induce in this
way other semi-balanced systems on N has already been recognized in [12, § 4, Theorem 4.4].
Nevertheless, the above correspondence was not revealed there in its full scope for the reason
mentioned in Remark 2.

Let us remark in this context that the discussed transition from a min-balanced system
B to a purely min-semi-balanced system S (and back) can be recognized easily on basis of
their diagrams/pictures from Section 5.3. Indeed, if a diagram represents a min-balanced
system B and has αZ columns representing a set Z ∈ B then the diagram representing
S := (B \ {Z}) ∪ {Y }, where Y := N \ Z, can be obtained from it by removing those αZ
columns of bright color from the left array, αZ blank columns and αZ black columns from
the right array and by adding αZ grey columns representing the set Y to the right array.
Of course, the transition back can be done by an inverse operation with the diagrams. The
following example illustrates the procedure.

Example 8 Take N := {a, b, c, d} and put B := { ab, ac, bc, d }. One can observe that B is
min-balanced on N using the equality relation

1

2
· χab +

1

2
· χac +

1

2
· χbc + 1 · χd = χN .
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d

c

b

a

=

B ↑ ↑ ↑ ↑ ↑ ↑

d

c

b

a

=

S ↓ ↓

Figure 2: Pictures representing the set systems B and S from Example 8.

The choice of a set Z := d from B leads, by Lemma 13, to a min-semi-balanced system
S := (B \ {Z}) ∪ {Y } = { ab, ac, bc, abc }. The diagrams for both systems are in Figure 2.
We observe that two columns representing Z, ∅ and N from the diagram for B are missing
in the diagram for S and replaced there by two columns representing Y := N \ Z = abc.

6.2 The case of balanced systems

We now show that the inequalities corresponding to balanced systems on N , |N | ≥ 3, are
superfluous. The next observation follows from Lemma 13.

Corollary 14 Given |N | ≥ 3, let B be a min-balanced set system on N with |B| ≥ 3.
Then θB is a (non-trivial) convex combination of θD for a min-balanced system D on N
with |D| = 2 and of θS for a purely min-semi-balanced system S on N with |S| = |B|.

Proof. We take Z ∈ B, put Y := N \Z and observe, by Lemma 13, that S := (B\{Z})∪{Y }
is min-semi-balanced on N . Consider the unique affine conic combination

∑
S∈B λS · χS

yielding a constant vector in RN . Let us add −λZ · χN to that and obtain a semi-conic
combination

∑
S∈B\{Z} λS ·χS+(−λZ)·χY . By Lemma 1, applied to the latter combination,

get 0 <
∑

S∈B\{Z} λS + (−λZ) = 1 − 2λZ . Thus, (1 − 2λZ)−1-multiple of it is an affine
combination. Put D := {Y,Z}, which is a min-balanced system on N , and the respective
affine conic combination 1

2 · χY + 1
2 · χZ yields a constant vector in RN . Then∑

S∈B
λS · χS = 2λZ · [

1

2
· χY +

1

2
· χZ ]

+ (1− 2λZ) · [
∑

S∈B\{Z}

(1− 2λZ)−1 · λS · χS + (1− 2λZ)−1 · (−λZ) · χY ] ,

and using (1) derive that θB = 2λZ · θD + (1− 2λZ) · θS . �

Corollary 14 says that the vector θB for a min-balanced system B with |B| ≥ 3 is a
convex combination of vectors for min-semi-balanced systems of cardinality at most |B|.
The vector θD for a min-balanced system D on N with |D| = 2 can also be written as a
convex combination of other vectors. Nevertheless, the difference is that the summands in
the combination correspond to set systems of higher cardinality.

Lemma 15 Assume |N | ≥ 3. If D is a min-balanced system on N with |D| = 2 then θD
is a convex combination of θS and θT for purely min-semi-balanced systems S and T on N .
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Proof. We have D = {Y, Z} where Y ∩ Z = ∅, Y ∪ Z = N , ∅ 6= Z and |Y | ≥ 2. Thus,
there exists a set ∅ 6= R ⊂ Y and one can put S := {Z,R,Z ∪R } and T := {Z ∪R, Y,R }.
The equalities χZ + χR − χZ∪R = 0 and χZ∪R + χY − χR = χN together with affine/linear
independence of involved vectors allows one to observe using Lemma 2 that both S and
T is a min-semi-balanced system on N . The respective affine semi-conic combinations are
related as follows:

[
1

2
·χY +

1

2
·χZ ] =

1

2
· [ 1 ·χZ + 1 ·χR + (−1) ·χZ∪R ] +

1

2
· [ 1 ·χZ∪R + 1 ·χY + (−1) ·χR ] ,

which equality implies using (1) that θD = 1
2 · θS + 1

2 · θT . �

The previous two results allow one to derive the following conclusion.

Corollary 16 If |N | ≥ 3 and B is a min-balanced system on N then the inequality given
by θ = θB is not facet-defining for the exact cone E(N).

Recall that the fact that balanced systems provide superfluous inequalities has already
been shown in [12, § 5, Theorem 5.4]; we give our short proof for the sake of completeness.

Proof. By combining Corollary 14 with Lemma 15 observe that every vector θB for a
min-balanced system B on N is a non-trivial convex combination of vectors θS for purely
min-semi-balanced systems S on N . Then apply Corollary 10 to observe that the inequality
(2) with θ = θB is not facet-defining for E(N). �

7 Indecomposable semi-balanced systems

Nevertheless, even purely min-semi-balanced systems can induce superfluous inequalities.
We give a simple sufficient condition for that.

Definition 7 (decomposition, indecomposable system)
Assume |N | ≥ 3. Given a purely min-semi-balanced set system S on N and E ⊆ N with
E 6∈ (S ∪{∅, N}) we say that E yields a decomposition of S if E is an exceptional set within
S ∪ {E} (see Definition 3). A purely min-semi-balanced set system on N will be called
indecomposable if it has no decomposition.

Recall from Section 5.1 that a set is exceptional within a non-trivial set system iff
its complement is exceptional within its complementary system. This implies that S has
a decomposition iff its complementary system S? has a decomposition. Therefore, S is
indecomposable iff the same holds for S?. Our main result follows from the following
lemma; its technical proof is moved to Appendix G.

Lemma 17 Let S be a purely min-semi-balanced system on N , |N | ≥ 3, with exceptional
set T ∈ S and W := P(N) \ ({∅, N} ∪ S). Then the following conditions are equivalent:

(a) θS 6∈ ext (∆), (see Definition 5)

(b) there exists a convex combination θS =
∑

D∈W∪{T} αD ·θD where αT < 1 and θD ∈ Θ̃N
D

whenever αD > 0,
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(c) the set ∆(S) := conv (
⋃
D∈W Θ̃N

D)∩{ θ ∈ RP(N) : θ(W ) ≥ 0 for W ∈ W } is non-empty,

(d) there exists E ∈ W such that E is exceptional in S ∪ {E}, (= S has a decomposition)

(e) there exists E ∈ W such that E is exceptional in (S \ {T}) ∪ {E},

(f) a min-semi-balanced system D on N exists such that D \ S = {E} for some E ∈ W,
the set E is exceptional within D, and T 6∈ D,

(g) a min-semi-balanced system D on N exists with an exceptional set E and D\S = {E}.

Now, we are ready to state our main result.

Theorem 18 Given |N | ≥ 3 the inequality 0 ≤ 〈θ,m〉 for m ∈ RP(N) with a coefficient
vector θ ∈ RP(N), where

∑
S⊆N θ(S) = 0 and

∑
L: ∅6=L⊂N θ(L) = −1, is facet-defining for

m ∈ E(N) iff θ = θS for an indecomposable min-semi-balanced system S on N .

Proof. By Corollary 10, facet-defining inequalities 0 ≤ 〈θ,m〉 for m ∈ E(N) correspond to
vertices θ of the polytope ∆. Each θ ∈ ext (∆) must be a vertex of Θ̃N

D for some ∅ 6= D ⊆ N
(see Section 2.2). By Lemma 8, every vertex θ ∈ ext (Θ̃N

D) has the form θ = θS for a
min-semi-balanced system S on N . Corollary 16 excludes the case that S is min-balanced.
In case of a purely min-semi-balanced system S one applies Lemma 17, the equivalence of
negations ¬(a)⇔ ¬(d), which says that θ = θS ∈ ext (∆) iff S is indecomposable. �

Note in this context that, by Lemma 17(f), a purely min-semi-balanced system S on N
is indecomposable iff there is no min-semi-balanced system D with T 6∈ D, D\S = {E}, and
E exceptional within D. Thus, provided one has all purely min-semi-balanced systems on
N at disposal, the indecomposable ones among them can be determined by this criterion.

8 Relation of exact and totally balanced games

In this section we deal with the relation of the cone E(N) of exact games and the cone
T (N) of totally balanced games. In [10, § 6] a conjecture has been raised about what are
the facets of E(N), which is equivalent to the condition that

a game m over N is exact iff both m and its anti-dual m� are totally balanced.

We give a counterexample to the conjecture in case |N | = 6. On the other hand, we show
that every originally conjectured inequality from [10, § 6] is indeed facet-defining for E(N)
whenever |N | ≥ 3.

8.1 Counterexample to a former conjecture

Here we present a counterexample to the conjecture from [10, § 6]. Despite we found our
counterexample for |N | = 6 computationally, by the method described in later Remark 4,
the reader need not repeat those computations to check its validity. The values for coalitions
in our counterexample m are given in Table 1.

To show that m ∈ T (N) for the game m from Table 1 we provide its min-representation
in Table 2 (see Section 2.3). It is boring and tedious but the reader can verify manually in
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Coalition ∅ a b c d e f ab

Value 0 0 0 0 0 0 0 0
tight vector [1] [7] [1] [2] [1] [11] [1] [7]

Coalition ac ad ae af bc bd be bf

Value 0 0 0 0 0 0 4 0
tight vector [15] [7] [11] [12] [17] [1] [1] [1]

Coalition cd ce cf de df ef abc abd

Value 0 4 8 0 0 0 0 0
tight vector [2] [18] [12] [11] [1] [12] [17] [7]

Coalition abe abf acd ace acf ade adf aef

Value 4 0 0 8 8 0 0 0
tight vector [8] [16] [15] [2] [12] [11] [13] [12]

Coalition bcd bce bcf bde bdf bef cde cdf

Value 0 4 12 4 0 4 6 8
tight vector [17] [18] [1] [1] [1] [1] [2] [13]

Coalition cef def abcd abce abcf abde abdf abef

Value 8 0 0 8 12 4 4 4
tight vector [12] [14] [17] [5] [7] [8] [1] [12]

Coalition acde acdf acef adef bcde bcdf bcef bdef

Value 8 8 8 0 8 12 12 4
tight vector [2] [13] [12] [14] [2] [1] [12] [1]

Coalition cdef abcde abcdf abcef abdef acdef bcdef abcdef

Value 16 8 12 12 4 16 16 20
tight vector [1] [9] [7] [12] [14] [11] [1] [1]

Table 1: Our counterexample m over N = {a, b, c, d, e, f}.

a straightforward way that it is indeed a min-representation of m. As a hint we indicate
already in Table 1 at least one vector from Table 2 which is tight for the respective coalition.
The first 17 vectors in Table 2 are (all) the vertices of the core of m. None of them is tight
for sets {c, e} and {b, c, e}. This implies that there is no element in the core of m which is
tight for one of these two sets. This is because tight vectors for any set S ⊆ N form a face
of the core and, if this face is non-empty then, by arguments from Section 2.2, a vertex of
the core exists that is tight for S. Thus, m 6∈ E(N) (see again Section 2.3).

The anti-dual m� of our game m is given in Table 3, its min-representation in Table 4.
The core of the anti-dual also has 17 vertices, presented in the first 17 lines of the table.
None of them is tight for sets {a, d, f} and {a, b, d, f}; in particular, m� 6∈ E(N), which fact
also follows from a former observation that m 6∈ E(N). A min-representation of m� can
be obtained by adding one additional vector. The reader can verify manually that Table 4
indeed provides a min-representation of m�; for each coalition, we indicate in Table 3 at
least one vector from Table 4 which is tight for it.

Remark 4 This is to describe the way we found our counterexample. Our method was
based on the characterization of E(N) from Section 4. We have succeeded to compute the
extreme rays of all the cones ΘN

D , ∅ 6= D ⊆ N , in case |N | = 6. Thus, we got a finite
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vector identifier a b c d e f

[1] 4 0 12 0 4 0

[2] 2 2 0 0 6 10

[3] 3 1 2 2 3 9

[4] 2 2 4 0 2 10

[5] 2 0 2 2 4 10

[6] 4 0 4 0 4 8

[7] 0 0 8 0 8 4

[8] 0 0 12 0 4 4

[9] 0 0 4 0 4 12

[10] 0 0 4 4 4 8

[11] 0 4 8 0 0 8

[12] 0 4 8 8 0 0

[13] 0 4 8 0 8 0

[14] 0 4 16 0 0 0

[15] 0 4 0 0 8 8

[16] 0 0 12 4 4 0

[17] 0 0 0 0 8 12

[18] 20 0 0 20 4 20

Table 2: The min-representation of our counterexample m.

set of linear inequalities characterizing the cone E(N) in this case, although a pretty big
one. Additionally, on basis of the results from [24], we were able to get a complete list L
of coefficient vectors for the conjectured facet-defining inequalities. Checking the validity
of the conjecture in case |N | = 6 was, therefore, reduced to checking whether, for every
∅ 6= D ⊆ N , every generator of an extreme ray of ΘN

D is in the conic hull of L.
This appeared not to be the case: we found an extreme ray of ΘN

D for |D| = 2 which is

not in the conic hull of L. Specifically, it was an element of θ̂ ∈ ΘN
D for N = {a, b, c, d, e, f}

and D = {c, e} defined as follows (we write ce instead of {c, e} here):

θ̂(∅) = +1, θ̂(ce) = +4, θ̂(abcdef) = +3,

θ̂(be) = −1, θ̂(ace) = −3, θ̂(bcf) = −1, θ̂(bcde) = −1, θ̂(cdef) = −2 ,

and θ̂(S) = 0 for remaining S ⊆ N . On basis of that objective vector θ̂ we found a game
m that satisfies 〈θ̂,m〉 < 0 while 〈θ′,m〉 ≥ 0 for any θ′ ∈ L, which is just the game m
presented in Table 1. Note, however, that the vector θ̂ has appeared not to yield a facet-
defining inequality for m ∈ E(N): the set E = bce yields the decomposition of the respective
min-semi-balanced system.

Remark in this context that an alternative idea of computing the extreme rays of the
cone {m ∈ G(N) : 〈θ,m〉 ≥ 0 for θ ∈ L} has appeared to be computationally infeasible.
This is because the number of the extreme rays of E(N) grows very rapidly with |N | and
we were not able to compute them even in case |N | = 5.
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Coalition ∅ a b c d e f ab

Value 0 -4 -4 -16 -8 -8 -12 -4
tight vector [1] [3] [1] [17] [16] [6] [4] [1]

Coalition ac ad ae af bc bd be bf

Value -16 -8 -8 -12 -20 -12 -12 -12
tight vector [15] [16] [3] [2] [17] [16] [8] [1]

Coalition cd ce cf de df ef abc abd

Value -16 -16 -16 -8 -12 -20 -20 -12
tight vector [13] [5] [1] [6] [4] [9] [17] [16]

Coalition abe abf acd ace acf ade adf aef

Value -12 -14 -16 -20 -16 -8 -16 -20
tight vector [8] [2] [13] [15] [1] [3] [18] [9]

Coalition bcd bce bcf bde bdf bef cde cdf

Value -20 -20 -20 -12 -12 -20 -20 -16
tight vector [16] [14] [1] [8] [1] [8] [13] [1]

Coalition cef def abcd abce abcf abde abdf abef

Value -20 -20 -20 -20 -20 -12 -16 -20
tight vector [4] [9] [16] [14] [1] [8] [18] [7]

Coalition acde acdf acef adef bcde bcdf bcef bdef

Value -20 -16 -20 -20 -20 -20 -20 -20
tight vector [13] [1] [3] [9] [13] [1] [1] [8]

Coalition cdef abcde abcdf abcef abdef acdef bcdef abcdef

Value -20 -20 -20 -20 -20 -20 -20 -20
tight vector [4] [13] [1] [1] [7] [3] [1] [1]

Table 3: The anti-dual m� of our counterexample m.

8.2 Facets shared with the cone of totally balanced games

This is to relate our new concept of an indecomposable min-semi-balanced system to earlier
concepts and results from [10], where facet-defining inequalities for the cone T (N) of totally
balanced games were characterized. The following is a simplified equivalent definition of
a central concept from [10, § 4]; the equivalence of the original definition and the later
simplified version of it was shown in [24, § 2.3].

Definition 8 (reducible and irreducible balanced set system)
A min-balanced set system B on a finite set M , |M | ≥ 2, will be called reducible if there
exists a set ∅ 6= E ⊂M such that χE is a conic combination of {χS : S ∈ B & S ⊂ E }.
A min-balanced set system B on M which is not reducible is called irreducible.

It was shown in [10, Lemma 2.1] that a balanced system B on M is minimal iff vectors
{χS : S ∈ B} are linearly independent. In particular, for a min-balanced set system B
on M , there is a unique linear combination

∑
S∈B γS · χS yielding χM and this unique

combination has all coefficients strictly positive: γS > 0 for S ∈ B. Standard interpretation
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vector identifier a b c d e f

[1] 0 -4 -8 0 0 -8

[2] -2 -2 -4 0 -2 -10

[3] -4 0 -4 0 -4 -8

[4] 0 0 -4 0 -4 -12

[5] 0 0 -12 0 -4 -4

[6] 0 0 -8 0 -8 -4

[7] -2 -2 0 0 -6 -10

[8] 0 -4 0 0 -8 -8

[9] 0 0 0 0 -8 -12

[10] -2 0 -2 -2 -4 -10

[11] 0 0 -4 -4 -4 -8

[12] -3 -1 -2 -2 -3 -9

[13] 0 0 -12 -4 -4 0

[14] 0 -4 -8 0 -8 0

[15] -4 0 -12 0 -4 0

[16] 0 -4 -8 -8 0 0

[17] 0 -4 -16 0 0 0

[18] -4 0 0 -4 0 -8

Table 4: The min-representation of the anti-dual m�.

of a min-balanced system B is then in terms of the assigned linear inequality

m(M) ≥
∑
S∈B

γS ·m(S) ,

which can be interpreted as an inequality for any game m on a superset N of M . Recall
that the main result from [10, Theorem 5.1] says that the facet-defining inequalities for the
cone T (N) of totally balanced games on N , |N | ≥ 2, are just the inequalities assigned to
irreducible min-balanced systems on subsets M ⊆ N , |M | ≥ 2.

Recall from Lemma 12 that every min-balanced set system B on a proper subset M ⊂ N ,
|M | ≥ 2, corresponds to a min-semi-balanced system S := B ∪ {M}. The unique affine
combination

∑
S∈S λS ·χS yielding a constant vector 0 ∈ RN is semi-conic with λM < 0 and

can be written as
∑

S∈B λS · χS = (−λM ) · χM . Therefore, the induced inequality (2) for

m ∈ RP(N), m(∅) = 0, is equivalent to (= is a positive multiple of) the standard inequality
assigned to the min-balanced system B.

The next result says that every irreducible min-balanced system on a proper subset M
of N yields an indecomposable min-semi-balanced system on N . Thus, by Theorem 18, this
implies that the respective inequality is facet-defining for the exact cone E(N).

Lemma 19 Given a min-semi-balanced set system of the form S := B ∪ {M} on N ,
|N | ≥ 3, where B is a min-balanced set system on M ⊂ N , |M | ≥ 2, the next two conditions
are equivalent:

(i) B is irreducible,

(ii) S is indecomposable.
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Proof. We prove the equivalence of negations of those conditions.

To show ¬(i) ⇒ ¬(ii) assume that B is a reducible min-balanced system on M ⊂ N .
Consider ∅ 6= E ⊂ M and a conic combination

∑
S∈B:S⊂E λS · χS = χE and re-write that

as a semi-conic combination
∑

S∈B:S⊂E λS · χS + (−1) · χE = 0 in the space RN . Then
put λS := 0 for remaining S ∈ S = B ∪ {M}, and, because 0 is a constant vector in RN ,
conclude that E is exceptional within S ∪ {E}. This means that S has a decomposition.

To verify ¬(ii)⇒ ¬(i) assume that S = B ∪ {M} has a decomposition, that is, a linear
combination

∑
S∈S λS · χS + λE · χE = r · χN yielding a constant vector in RN exists with

λS ≥ 0 for S ∈ S and with λE < 0 for some ∅ 6= E ⊂ N , E 6∈ S. Since it is a semi-conic
combination, by Lemma 1, one has r ≥ 0. In case E \M 6= ∅ one can choose i ∈ E \M
and its substitution to the equality gives a contradictory conclusion r = λE < 0. This gives
E ⊆ M . Thus, as E 6∈ S = B ∪ {M}, E ⊂ M ⊂ N and the choice j ∈ N \M and its
substitution to the equality gives r = 0, that is,

∑
S∈B∪{M} λS · χS + λE · χE = 0. Hence,

the non-negativity of the coefficients except for λE implies that, for any S ∈ S such that
S \ E 6= ∅ (including S = M) one necessarily has λS = 0. Thus, λS > 0 forces S ⊂ E for
S ∈ S, and one can write the equality in the form

∑
S∈B:S⊂E λS · χS = (−λE) · χE , which

easily implies that B is reducible. �

By Lemma 19 and Theorem 18 every facet-defining inequality for the totally balanced
cone T (N) that corresponds to a strict subset M ⊂ N is also facet-defining for the exact
cone E(N). These are facet-defining inequalities for both cones. Note that, by Lemma 11,
also conjugate inequalities to these inequalities are facet-defining for E(N), but not for
T (N). These two classes of inequalities induced by irreducible min-balanced systems on
M ⊂ N were originally conjectured in [10, § 6] to be all facet-defining inequalities for E(N).

9 Conclusions

The main achievement in this paper is the observation that a linear inequality for games
over N , |N | ≥ 3, is facet-defining for the exact cone E(N) iff it corresponds to (uniquely
determined) indecomposable min-semi-balanced set system on N (Theorem 18). At first we
got these inequalities in case |N | = 6 by computation and later we confirmed the conjecture
that the correspondence holds in general. Because of the computation, we know what are
the numbers of facets of E(N) in cases 2 ≤ |N | ≤ 6; they are shown in Table 5.

Number of players n = 2 n = 3 n = 4 n = 5 n = 6

Number of facets 1 6 44 280 7006
Number of its permutational types 1 2 6 16 53

Table 5: Numbers of facets of E(N) and of its permutational types for n = |N | ≤ 6.

Note that the case |N | = 2 is special in some sense: then the cone of exact games
coincides with the cone of balanced games and the only facet-defining inequality corresponds
to the only min-balanced set system on N with |N | = 2. As concerns the case |N | = 3, the
cone of exact games coincides with the cone of supermodular (= convex) games, while for
|N | ≥ 4 these two cones already differ.

Min-semi-balanced systems and their induced inequalities can synoptically be described
by means of special pictures/diagrams (see Section 5.3). A catalogue of permutational types
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of indecomposable min-semi-balanced set systems over N , 3 ≤ |N | ≤ 6, obtained as a result
of our computation, is available:

http://gogo.utia.cas.cz/indecomposable-min-semi-balanced-catalogue/ ;

thus, it implicitly provides an overview of all facet-defining inequalities in these cases. Hence
we know that every facet-defining inequality for E(N) in case |N | ≤ 5 corresponds to a min-
semi-balanced system S satisfying either

⋃
S ⊂ N or

⋂
S 6= ∅; on the other hand, this is

not the case in case |N | = 6.

Recall that the min-semi-balanced systems break into four basic classes (Section 5.2)
and the pictorial representatives reflect this classification. They also reflect the fact that
(indecomposable) min-semi-balanced systems are closed under complementarity transform
(Section 5.1). Further relevant observation is that (purely) min-semi-balanced systems on
N can be obtained on basis of min-balanced systems on N (Section 6.1), which suggests
that one can possibly get all such systems for |N | ≥ 7.

The second main result in this paper is an example of a game m over N , |N | = 6, such
that both m and its anti-dual m� are totally balanced while m is not exact (Section 8.1).
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A Proof of Lemma 1

For reader’s convenience we recall the result.

Lemma 1: Given |N | ≥ 2 and ∅ 6= S ⊆ P(N) \ {∅, N}, let
∑

S∈S λS · χS = ρ be a
non-zero semi-conic combination yielding a constant vector ρ = [r, . . . , r] ∈ RN . Then one
has

∑
S∈S λS ≥ r ≥ 0; moreover, r > 0 in case of a conic combination.

In any case
∑

S∈S λS > 0 and by a positive factor multiplication one gets an affine semi-conic

combination
∑

S∈S λ̃S · χS yielding a constant vector ρ̃ = [r̃, . . . , r̃] ∈ RN with r̃ ∈ [0, 1].
Finally, if the considered linear combination is not conic, then S has to contain at least
three different sets and the existence of such a set system forces |N | ≥ 3.

Proof. The case of a conic combination is easy: choose L ∈ S with λL > 0, i ∈ L, and
write 0 < λL ≤

∑
S∈S λS · χS(i) = r =

∑
S∈S: i∈S λS ≤

∑
S∈S λS . Thus, in the rest of the

proof we assume that the combination is not conic.

Let T ∈ S be the set with λT < 0; note that ∅ ⊂ T ⊂ N . The choice of j ∈ N \ T gives
r =

∑
S∈S λS · χS(j) =

∑
S∈S: j∈S λS ≥ 0 because λS ≥ 0 whenever S ∈ S \ {T}. Choose

some i ∈ T and observe implications for subsets of N : i 6∈ S ∈ S ⇒ S ∈ S\{T} ⇒ λS ≥ 0.
This gives

∑
S∈S λS ≥

∑
S∈S: i∈S λS =

∑
S∈S λS ·χS(i) = r. For the verification of the claim∑

S∈S λS > 0 assume without loss of generality that λS 6= 0 for any S ∈ S, for otherwise
one can replace S by S ′ := {S ∈ S : λS 6= 0}. We distinguish two cases:
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• In case [∃L ∈ S \ {T} with T \ L 6= ∅ ] we choose k ∈ T \ L. Then λS ≥ 0 whenever
k 6∈ S ∈ S and we write

∑
S∈S λS ≥ λL +

∑
S∈S: k∈S λS >

∑
S∈S: k∈S λS = r ≥ 0.

• In case [ ∀L ∈ S \ {T} one has T ⊆ L ] we first observe
⋃
S \ T 6= ∅. Indeed, by

contradiction: if
⋃
S ⊆ T then ∀L ∈ S \ {T} one has L ⊆ T ⊆ L, which means

S = {T} contradicting
∑

S∈S λS ≥ 0. Thus, one can choose k ∈
⋃
S \ T , fix K ∈ S

with k ∈ K and write
∑

S∈S λS ≥ r =
∑

S∈S: k∈S λS ≥ λK > 0.

Thus, in both cases we have
∑

S∈S λS > 0.

In particular, given a non-zero semi-conic combination
∑

S∈S λS ·χS yielding a constant
vector in RN we put ` :=

∑
S∈S λS > 0 and observe that

∑
S∈S(`−1 ·λS) ·χS is the required

affine semi-conic combination. The inequality
∑

S∈S λS ≥ r applied to an affine combination∑
S∈S λ̃S · χS with

∑
S∈S λ̃S = 1 yields r̃ ∈ [0, 1].

To verify the last claim take T ∈ S with λT < 0 and assume for a contradiction |S| ≤ 2.
If |S| = 1 take j ∈ T and get a contradictory conclusion: 0 ≤ r =

∑
S∈S: j∈S λS = λT < 0.

In case |S| = 2 one has S = {T, L} and contingent choice of j ∈ T \L leads to an analogous
contradiction. Hence, one must have T ⊂ L and the choice of j ∈ T and k ∈ L \ T leads
to another contradiction: r =

∑
S∈S: k∈S λS = λL > λL + λT =

∑
S∈S: j∈S λS = r. Thus,

|S| ≥ 3; since |N | = 2 ⇒ |P(N) \ {∅, N}| = 2, the existence of S forces |N | ≥ 3. �

B Proof of Lemma 2

For reader’s convenience we recall the result.

Lemma 2: Given |N | ≥ 2, let ∅ 6= S ⊆ P(N) \ {∅, N} be a non-trivial set system on N .
Then the following conditions on S are equivalent:

(a) S is a minimal set system such that there is a constant vector in RN which can be
written as a non-zero semi-conic combination of vectors {χS : S ∈ S},

(b) S is a minimal semi-balanced set system on N ,

(c) S is semi-balanced on N , the vectors {χS : S ∈ S} are affinely independent and in
case

⋃
S = N even linearly independent,

(d) there is only one affine combination of vectors {χS : S ∈ S} yielding a constant vector
in RN and this unique combination is semi-conic and has all coefficients non-zero,

(e) there is only one affine semi-conic combination of vectors {χS : S ∈ S} which is a
constant vector in RN and this unique combination has all coefficients non-zero.

Proof. To show (a)⇒(b) assume a non-zero semi-conic combination
∑

S∈S λS · χS which
is a constant vector in RN and put S ′ := {S ∈ S : λS 6= 0}. Because of minimality of S in
(a) one has S ′ = S, which implies that S is semi-balanced. The rest is evident.

To show (b)⇒(a) it is enough to verify the minimality of S in (a). Assume for a contra-
diction that a set system C ⊂ S exists with a non-zero semi-conic combination

∑
S∈C µS ·χS

yielding a constant vector in RN and put C′ := {S ∈ C : µS 6= 0}. Then C′ is semi-balanced
on N and C′ ⊂ S contradicts the minimality of S in (b).
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To show (b)⇒(c) let us fix a semi-conic combination
∑

S∈S λS ·χS yielding a constant
vector in RN with λS 6= 0 for S ∈ S. We first consider the case when it is not a conic
combination, that is, there is a unique set T ∈ S with λT < 0; hence, λS > 0 for S ∈ S\{T}.

We then verify that {χS : S ∈ S} are affinely independent. Assume for a contradiction
that a non-zero linear combination

∑
S∈S µS · χS = 0 with

∑
S∈S µS = 0 exists. One

can assume without loss of generality µT ≤ 0 for otherwise one can multiply the linear
combination by (−1). Moreover,

∑
S∈S µS = 0 implies the existence of L ∈ S with µL < 0.

In fact, there are at least two such sets: otherwise
∑

S∈S µS · χS = 0 is a semi-conic
combination and, by Lemma 1, one has

∑
S∈S µS > 0 which contradicts the assumption. In

particular, there is L ∈ S\{T} with µL < 0. For any ε ≥ 0 and S ∈ S we put λεS := λS+ε·µS
and observe that

∑
S∈S λ

ε
S · χS yields the same constant vector, λεT < 0, while λεS > 0 for

S ∈ S \ {T} and sufficiently small ε. Since λεL tends to −∞ with increasing ε there is a
maximal ε∗ > 0 such that λε

∗
S ≥ 0 for all S ∈ S \ {T}. There must be K ∈ S \ {T} with

λε
∗
K = 0; then the system C := {S ∈ S : λε

∗
S 6= 0} 63 K is semi-balanced on N , which

contradicts the minimality of S.
The second step is to show that if

⋃
S = N then {χS : S ∈ S} are linearly independent.

Note that it involves the case of a conic combination
∑

S∈S λS · χS = r · χN ∈ RN because
then, by Lemma 1, r > 0, which enforces

⋃
S = N . In the sequel, let T denote a contingent

set T ∈ S with λT < 0, which, however, need not exist. Recall that λS > 0 for S ∈ S \{T}.
Assume for a contradiction that a non-zero linear combination

∑
S∈S µS ·χS = 0 exists.

We then show that there exists such a linear combination which, additionally, satisfies
µT ≤ 0 if T exists and µL < 0 for at least one L ∈ S \ {T}. This is easy in case T
does not exist or µT = 0 because possible multiplication of the linear combination by (−1)
reaches the goal. In case µT 6= 0 possible multiplication ensures µT < 0. To show then
the existence of L ∈ S \ {T} with µL < 0 assume for a contradiction the opposite, which
means that

∑
S∈S µS · χS = 0 is a semi-conic combination and C := {S ∈ S : µS 6= 0}

is a semi-balanced system. The minimality of S then implies C = S and, thus, µS > 0 for
S ∈ S \ {T}. Since T ⊂ N there exists i ∈ N \ T and

⋃
S = N implies the existence of

K ∈ S with i ∈ K. Since [ i ∈ S ∈ S ⇒ µS > 0 ], this leads to a contradictory conclusion
0 =

∑
S∈S µS · χS(i) =

∑
S∈S:i∈S µS ≥ µK > 0.

Finally, having a linear combination
∑

S∈S µS · χS = 0 with µT ≤ 0 and µL < 0 for
some L ∈ S \ {T}, one can repeat the construction used in the previous case (of affine
independence) to get a contradiction with the minimality of S.

To show (c)⇒(d) use Lemma 1 to obtain an affine semi-conic combination
∑

S∈S λS ·χS
with all coefficients non-zero yielding a constant vector ρ = [r, . . . , r] ∈ RN with r ∈ [0, 1].
Let us fix this affine combination. Assume that

∑
S∈S σS ·χS is an affine combination yield-

ing a constant vector ς = [s, . . . , s] ∈ RN . It is enough to show that these two combinations
coincide. To this end we distinguish two cases.

In case
⋃
S ⊂ N choose i ∈ N \

⋃
S and have

∑
S∈S λS · χS(i) = 0 =

∑
S∈S σS · χS(i).

This implies that both ρ = 0 and ς = 0. By subtracting we get
∑

S∈S(λS − σS) · χS = 0
with

∑
S∈S(λS − σS) = 0 and by affine independence σS = λS for all S ∈ S.

In case
⋃
S = N the linear independence of vectors {χS : S ∈ S} implies both r 6= 0

and s 6= 0 because solely their zero linear combination yields the vector 0. Hence, we
have

∑
S∈S(r−1 · λS) · χS = χN and

∑
S∈S(s−1 · σS) · χS = χN . By subtracting we get∑

S∈S(r−1 · λS − s−1 · σS) · χS = 0 and by linear independence r−1 · λS = s−1 · σS for all
S ∈ S. Thus, λS = r · s−1 · σS for S ∈ S and, because both combinations are affine, by
summing over S ∈ S one derives 1 = r · s−1. Hence, s = r and σS = λS for all S ∈ S.
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The implication (d)⇒(e) is evident.

To show (e)⇒(b) consider the affine semi-conic combination
∑

S∈S λS · χS with all
coefficients non-zero yielding a constant vector in RN . Its existence implies that S is semi-
balanced. To verify the minimality of S assume for a contradiction that C ⊂ S exists
which is semi-balanced on N . By Lemma 1 applied to C there exists an affine semi-conic
combination

∑
S∈C σS ·χS yielding a constant vector in RN . We extend it by putting σS = 0

for S ∈ S \ C. Thus, we get two different affine semi-conic combinations of {χS : S ∈ S}
yielding a constant vector in RN , which contradicts the assumption. �

C Proof of Lemma 7

For reader’s convenience we recall what is claimed; see Definition 5 for notation.

Lemma 7: Given |N | ≥ 2, every set Θ̃N
D , where ∅ 6= D ⊆ N , is a bounded polyhedron.

Every vector θ ∈ ΘN
D satisfies both θ(N) ≥ 0 and θ(∅) ≥ 0 and every non-zero vector θ ∈ ΘN

D

satisfies θ(N) + θ(∅) > 0. Given m ∈ RP(N) with m(∅) = 0, one has

m ∈ E(N) ⇔ [ ∀ θ ∈
⋃

∅6=D⊆N

Θ̃N
D 〈θ,m〉 ≥ 0 ] . (3)

Proof. Note that ΘN
N ⊆ ΘN

D if D ⊂ N ; thus, assume without loss of generality ∅ 6= D ⊂ N .
To show θ(N) ≥ 0 for θ ∈ ΘN

D choose i ∈ N \D and write θ(N) = −
∑

L⊂N :i∈L θ(L) ≥ 0.
Note that, for any j ∈ N ,

∑
S⊆N\{j} θ(S) =

∑
S⊆N θ(S) −

∑
L⊆N :j∈L θ(L) = 0 − 0 = 0.

Hence, to show θ(∅) ≥ 0 for θ ∈ ΘN
D take j ∈ D and write θ(∅) = −

∑
∅6=S⊆N\{j} θ(S) ≥ 0.

Thus, we have observed that every θ ∈ ΘN
D satisfies both θ(N) ≥ 0 and θ(∅) ≥ 0. In

particular, if θ ∈ Θ̃N
D then θ(N) + θ(∅) = 1 gives both 0 ≤ θ(∅) ≤ 1 and 0 ≤ θ(N) ≤ 1.

The next step is to show that, for θ ∈ Θ̃N
D , if S ⊂ N and S \D 6= ∅ then 0 ≥ θ(S) ≥ −1.

Indeed, because of S 6∈ {∅, D,N}, the choice of i ∈ S \D gives

0 ≥ θ(S) ≥
∑

L⊂N :i∈L
θ(L) = −θ(N) +

∑
L⊆N :i∈L

θ(L)︸ ︷︷ ︸
=0

= −θ(N) ≥ −1 .

To observe that 0 ≥ θ(S) ≥ −1 for θ ∈ Θ̃N
D whenever ∅ 6= S ⊂ N and D \ S 6= ∅ introduce

a vector θ? ∈ RP(N) by θ?(L) := θ(N \L) for L ⊆ N . It is easy to observe that θ? ∈ Θ̃N
N\D:

to this end write for any i ∈ N∑
L⊆N :i∈L

θ?(L) =
∑

L⊆N :i∈L
θ(N \ L) =

∑
S⊆N :i 6∈S

θ(S) =
∑
S⊆N

θ(S)−
∑

S⊆N :i∈S
θ(S) = 0− 0 = 0.

Thus, because of ∅ 6= D \S = (N \S)\ (N \D), one has 0 ≥ θ?(N \S) ≥ −1 by the previous
observation applied to θ?, which, however, means 0 ≥ θ(S) ≥ −1.

Altogether, we have 0 ≥ θ(S) ≥ −1 for θ ∈ Θ̃N
D and S ∈ P(N)\{∅, D,N}, which implies

0 ≥
∑

S:S 6∈{∅,D,N} θ(S) ≥ 3− 2|N |. Taking into consideration that∑
S:S 6∈{∅,D,N}

θ(S) = −θ(∅)− θ(D)− θ(N) +
∑
L⊆N

θ(L)︸ ︷︷ ︸
=0

= −θ(N)− θ(∅)− θ(D) = −1− θ(D)
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one gets 2|N | − 4 ≥ θ(D) ≥ −1. In particular, Θ̃N
D is bounded and so is Θ̃N

N .

The fact that, for any ∅ 6= D ⊆ N , every non-zero vector θ ∈ ΘN
D satisfies θ(N)+θ(∅) > 0

follows directly from [10, Lemma 5.1]. In particular, every non-zero θ ∈ ΘN
D is a positive

multiple of a vector θ̃ ∈ Θ̃N
D . Further important fact, which follows from [10, Lemma 5.3],

is that a game m is exact, that is, m ∈ E(N), iff [ ∀ ∅ 6= D ⊆ N ∀ θ ∈ ΘN
D 〈θ,m〉 ≥ 0 ].

The combination of these two observations gives (3). �

D Proof of Lemma 8

For reader’s convenience we recall what is claimed; see Definition 5 for notation.

Lemma 8: Given |N | ≥ 2 and ∅ 6= D ⊆ N , every vertex of Θ̃N
D has either the form θB,

where B is a min-balanced set system on N , or the form θS , where S is a min-semi-balanced
system on N having D as the exceptional set.
Conversely, in case ∅ 6= D ⊂ N , every vector θS , where S is a min-semi-balanced system on
N having D as the exceptional set, is a vertex of Θ̃N

D : θS ∈ ext (Θ̃N
D).

Proof. Given a vertex θ ∈ ext (Θ̃N
D), we first observe that there exists a min-semi-balanced

system S on N such that θ = θS . To this end we put

S := {S ⊆ N : ∅ 6= S ⊂ N & θ(S) 6= 0 } and λS := − θ(S) for S ∈ S.

Thus,
∑

S∈S λS · χS yields a constant vector θ(N) · χN and S is semi-balanced on N . To
evidence that S is min-semi-balanced we use the condition (c) in Lemma 2. To verify
affine independence of the vectors {χS : S ∈ S} assume for a contradiction that there is
a non-zero linear combination

∑
S∈S σS · χS = 0 with

∑
S∈S σS = 0. Then we put σL := 0

for remaining L ⊆ N and θε(S) := θ(S) + ε · σS for any S ⊆ N and ε ∈ R. Then one has
θε ∈ Θ̃N

D whenever |ε| is small; thus, the relation θ = 1
2 · θ

ε + 1
2 · θ

−ε then contradicts the

assumption of extremity of θ in Θ̃N
D , because of σL 6= 0 for some L ∈ S.

To verify linear independence of the vectors {χS : S ∈ S} in case
⋃
S = N we first

realize that one has θ(N) > 0 then. Indeed, if D = N then θ(S) < 0 for any S ∈ S and if
D 6= N then we choose i ∈ N \D and have θ(S) < 0 for any S ∈ S with i ∈ S; this allows
us to use

∑
L⊆N : i∈L θ(L) = 0 for i ∈ N to derive θ(N) > 0.

Assume for a contradiction that there is a non-zero linear combination
∑

S∈S σS ·χS = 0
and put ς :=

∑
S∈S σS . The case ς = 0 leads to a contradiction as shown in the case of

affine independence. Thus, consider ς 6= 0, put σ∅ := −ς, σL := 0 for remaining L ⊆ N ,
and θε(S) := (1 − ε · ς)−1 · (θ(S) + ε · σS) for any S ⊆ N and ε ∈ R, ε 6= ς−1. One has
θε ∈ Θ̃N

D for small |ε|. Moreover, θ = 1−ε·ς
2 · θε + 1+ε·ς

2 · θ−ε. Because of ς 6= 0 we have
θε(N) = (1 − ε · ς)−1 · θ(N) 6= θ(N) if ε 6= 0. Hence, we get a contradiction with the
assumption of extremity of θ in Θ̃N

D .
We have thus shown that the set system S is min-semi-balanced on N and one clearly

has θ = θS . If S = B is min-balanced then the first option θ = θB occurs. If S has
an exceptional set T ∈ S then θ(T ) = θS(T ) > 0 which forces T = D. Thus, D is the
exceptional set in S in this case.

To verify the second claim assume that S is a min-semi-balanced set system on N and
that D is the exceptional set within S. It is straightforward to evidence that θS ∈ Θ̃N

D .
To show that θS ∈ ext (Θ̃N

D) assume for a contradiction that there is a non-trivial convex
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combination θS = α · θ0 + (1− α) · θ1 with θ0, θ1 ∈ Θ̃N
D , α ∈ (0, 1), and θ0 6= θ1. We know

that θS(S) = 0 any S ⊆ N , S 6∈ {∅, N}∪S and observe that θ0(S) = 0 = θ1(S) for any such
S ⊆ N as well. Indeed, the inclusion Θ̃N

D ⊆ ΘN
D implies θi(L) ≤ 0 for L ⊆ N , L 6∈ {∅, D,N},

which forces θi(S) = 0 for S ⊆ N , S 6∈ {∅, N} ∪ S .
For every ε ≥ 0 we put θε := θ0 + ε · (θ1 − θ0). Note that θε(S) = 0 for any S ⊆ N ,

S 6∈ {∅, N} ∪ S. The fact that Θ̃N
D is bounded (see Lemma 7) implies the existence of

ε� := max {ε ≥ 1 : θε ∈ Θ̃N
D }. There exists L ∈ S with θε

�
(L) = 0 because otherwise one

gets a contradiction with maximality of ε�. We put C := {S ∈ S : θε
�
(S) 6= 0 } and observe,

using the fact θε
� ∈ Θ̃N

D , that C is a semi-balanced system on N . Then L ∈ S \C contradicts
the minimality of S. Thus, there is no non-trivial convex combination of θ0, θ1 ∈ Θ̃N

D

yielding θS , which means that θS is a vertex of Θ̃N
D . �

E Proof of Lemma 12

For reader’s convenience we recall what is claimed.

Lemma 12: Given |N | ≥ 2 and a min-semi-balanced set system S on N , let
∑

S∈S λS ·χS
be the unique affine (semi-conic) combination yielding a constant vector r · χN , r ∈ [0, 1].
One has then r = 0 iff there exists a min-balanced system B on M ⊂ N , |M | ≥ 2, such that
S = B ∪ {M}; another equivalent condition is

⋃
S ⊂ N . Moreover, a min-balanced system

B on M ⊂ N , |M | ≥ 2, yields a min-semi-balanced one S := B ∪ {M} on N with r = 0.
One has r = 1 iff S is a complementary system to a system S? with

⋃
S? ⊂ N ; another

equivalent condition is
⋂
S 6= ∅.

On the other hand, every min-balanced system S on N satisfies 0 < r < 1.

Proof. Recall that all coefficients λS , S ∈ S, are non-zero. If r = 0 then there is T ∈ S
with λT < 0, for otherwise λS > 0 for S ∈ S and S 6= ∅ contradict

∑
S∈S λS ·χS = 0. Given

i ∈ N\T one has λS > 0 whenever i ∈ S ∈ S and 0 =
∑

S∈S λS ·χS(i) =
∑

S∈S:i∈S λS implies
that there is no S ∈ S with i ∈ S. Hence,

⋃
S = T and

∑
S∈S\{T} λS ·χS = (−λT )·χT . This

implies S \ {T} 6= 0 and, thus, forces |T | ≥ 2 (because
⋃
S = T ). The latter equality also

means that S \ {T} is balanced on T and one can put M := T and B := S \ {T}. To show
that B is minimal assume for a contradiction that D ⊂ B exists which is balanced on T , that
is, there are σS > 0, S ∈ D, with

∑
S∈D σS ·χS = χT . Hence,

∑
S∈D σS ·χS + (−1) ·χT = 0

and, by Lemma 1, one has −1 +
∑

S∈D σS > 0 and one can multiply it to get an affine
combination (in RN ) different from

∑
S∈S λS · χS = 0, which contradicts the minimality of

S (use Lemma 2(d)). Thus, B has to be min-balanced on T .
The existence of such B then implies

⋃
S ⊂ N . To complete the chain of implications

realize that, if
⋃
S ⊂ N for a min-semi-balanced set system S on N then the choice of

i ∈ N \
⋃
S gives r =

∑
S∈S:i∈S λS = 0.

To verify the additional claim assume that B is a min-balanced system on M ⊂ N ,
|M | ≥ 2. By [10, Lemma 2.1] {χS : S ∈ B} is linearly independent (even in RN ). Fix a
combination

∑
S∈B λS ·χS = χM with all coefficients strictly positive. Then

∑
S∈B λS ·χS +

(−1)·χM = 0 is a semi-conic combination yielding a constant vector in RN and S := B∪{M}
is semi-balanced. We use the condition (d) in Lemma 2 to show that S is minimal. By
Lemma 1 one has k :=

∑
S∈B λS − 1 > 0 and

∑
S∈B k

−1λS · χS + (−k−1) · χM = 0 is an
affine semi-conic combination with all coefficients non-zero. We need to show that any affine
combination

∑
S∈B σS · χS + σM · χM = ρ yielding a constant vector in RN coincides with
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the above mentioned affine combination. The substitution of some i ∈ N \M allows one to
observe that ρ = 0. One cannot have σM = 0 because then

∑
S∈B σS · χS = 0 contradicts

linear independence of {χS : S ∈ B}. If σM 6= 0 then
∑

S∈B−σ
−1
M σS · χS = χM and

linear independence of {χS : S ∈ B} gives λS = −σ−1M σS for all S ∈ B. We substitute
σS = −σMλS for S ∈ B to

∑
S∈B σS + σM = 1 to get σM = −k−1; hence, the considered

affine combinations coincide.
As concerns the case r = 1, by Lemma 11, S? is also min-semi-balanced and the respec-

tive unique affine combination for S? is
∑

L∈S? λN\L · χL = (1 − r) · χN . Thus, r = 1 iff
the previous case r? = 0 occurs for S?. The formula

⋂
S = N \

⋃
S? then gives the other

equivalent condition.
The definition of a min-balanced system B on N implies

⋃
B = N . By Lemma 11, the

same is true for its complementary system:
⋃
B? = N , which means

⋂
B = ∅. Thus, one

has both
⋃
B = N and

⋂
B = ∅, and by previous claims, r 6= 0 and r 6= 1. �

F Proof of Lemma 13

For reader’s convenience we recall what is claimed.

Lemma 13: Assume |N | ≥ 3. If B is a min-balanced set system on N such that |B| ≥ 3
and Z ∈ B then Y := N \ Z is not in B, the set system S := (B \ {Z}) ∪ {Y } is purely
min-semi-balanced on N and Y is the exceptional set within S.

Conversely, if S is a (purely) min-semi-balanced system on N and Y ∈ S the exceptional
set within S then Z := N \Y is not in S and B := (S \{Y })∪{Z} is a min-balanced system
on N such that |B| ≥ 3.

Proof. I. Let B be a balanced system on N and Z ∈ B such that Y := N \ Z 6∈ B. Then
S := (B \ {Z}) ∪ {Y } is semi-balanced on N . Indeed, there exists a conic combination∑

S∈B λS · χS = χN , λS > 0 for S ∈ B. We add −λZ · χN to that and obtain a semi-conic
combination

∑
S∈B\{Z} λS · χS + (−λZ) · χY = (1− λZ) · χN yielding a constant vector.

II. Analogously, given a semi-balanced system S over N with an exceptional set Y ∈ S
and Z := N \ Y 6∈ S the set system B := (S \ {Y }) ∪ {Z} is balanced on N . Indeed, given
a semi-conic combination

∑
S∈S λS · χS = r · χN with r ∈ R, where λY < 0 and λS > 0 for

S ∈ S \{Y } we add −λY ·χN to that and get
∑

S∈S\{Y } λS ·χS +(−λY ) ·χZ = (r−λY ) ·χN ,
which is a conic combination yielding a constant vector. Then use Lemma 1.

III. Let B be a min-balanced system onN with |B| ≥ 3 and Z ∈ B. Then Y := N\Z 6∈ B
as otherwise D := {Y,Z} ⊂ B is a balanced system contradicting the minimality of B. Step
I. implies that S := (B \ {Z})∪ {Y } is semi-balanced on N , specifically, that there exists a
semi-conic combination

∑
S∈S λS · χS yielding a constant vector in RN with λY < 0.

To show that S is minimal assume for a contradiction that a min-semi-balanced system
S ′ ⊂ S exists. Then necessarily Y ∈ S ′ as otherwise S ′ ⊂ B contradicts the minimality of B
(use Corollary 3). Let

∑
S∈S′ σS ·χS be the (unique) affine semi-conic combination yielding

a constant vector in RN .
Observe that σY < 0 as otherwise one can put σS := 0 for S ∈ S \ S ′, and then

τS := α ·σS + (1−α) ·λS for S ∈ S with α := −λY · (σY −λY )−1 ∈ (0, 1] to get a semi-conic
combination

∑
S∈S τS · χS yielding a constant vector in RN where τY = 0; this means that

E := {S ∈ S : τS 6= 0} ⊂ B is a semi-balanced system which fact contradicts the minimality
of B, by Corollary 3. Thus, Y has to be an exceptional set within S ′ and, by step II. applied
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to S ′, the system B′ := (S ′ \ {Y }) ∪ {Z} ⊂ B is a balanced system on N contradicting the
minimality of B. Thus, the first claim in Lemma 13 has been verified.

IV. Let S be a min-semi-balanced system on N with the exceptional set Y ∈ S within it.
Then Z := N \Y 6∈ S as otherwise D := {Y, Z} ⊂ S is a balanced system contradicting the
minimality of S (note that |S| ≥ 3 by Lemma 1). Step II. implies that B := (S \{Y })∪{Z}
is balanced on N . To show that B is minimal assume for a contradiction that a balanced
system B′ ⊂ B on N exists. Then necessarily Z ∈ B′ as otherwise B′ ⊂ S contradicts the
minimality of S. By step I. applied to B′, the set system S ′ := (B′ \ {Z}) ∪ {Y } ⊂ S is
semi-balanced on N , which contradicts the minimality of S. Of course, |B| = |S| ≥ 3, which
concludes the proof of the second claim in Lemma 13. �

G Proof of Lemma 17

A key induction step in the proof is based on the following auxiliary observations.

Lemma 20 Given |N | ≥ 3, let S be a purely min-semi-balanced system on N . Denote
W := P(N) \ ({∅, N} ∪ S) and introduce the next special polytopes (see Definition 5):

Σ(S) := conv (
⋃
D∈W

Θ̃N
D) ,

∆(S) := Σ(S) ∩ {θ ∈ RP(N) : θ(W ) ≥ 0 for any W ∈ W } .

Moreover, for any Z ⊆ W, we put:

ΣZ(S) := Σ(S) ∩ {θ ∈ RP(N) : θ(Z) = 0 for any Z ∈ Z } ,
∆Z(S) := ΣZ(S) ∩ ∆(S) .

Then, for any Z ⊆ W, one has:

(i) ΣW(S) = ∅,

(ii) if ∅ 6= ∆Z(S) and ΣZ(S) \∆Z(S) 6= ∅ then ∅ 6= ∆Z∪{D}(S) for some D ∈ W \ Z,

(iii) if θ ∈ ext (ΣZ(S)) then θ ∈
⋃
D∈W Θ̃N

D .

Proof. To show (i) assume for a contradiction that θ ∈ ΣW(S) exists. Thus, θ(W ) = 0
for any W ∈ W forces B := {S ⊂ N : S 6= ∅ & θ(S) 6= 0 } ⊆ S. Since, however, every
η ∈

⋃
D∈W Θ̃N

D satisfies η(S) ≤ 0 for any S ∈ S, one has θ′(S) ≤ 0 for any S ∈ S and
θ′ ∈ Σ(S). Hence, θ(S) ≤ 0 for any S ∈ S and our θ ∈ ΣW(S). The fact that θ ∈ Σ(S)
implies the equality constraints θ(N) + θ(∅) = 0,

∑
L⊆N θ(L) = 0, and

∑
L⊆N : i∈L θ(L) = 0

for i ∈ N (use Definition 5). The relations imply
∑

S∈S θ(S) · χS + θ(N) · χN = 0, and,
using

∑
L:∅6=L⊂N θ(L) = −1, also θ(N) > 0. Therefore θ(N) · χN =

∑
S∈S −θ(S) · χS is a

conic combination, which allows one to observe that B is balanced on N . The minimality
of S then implies that B = S, contradicting the assumption that S is not balanced on N .

To show (ii) assume the existence of η ∈ ∆Z(S). By (i) one has W \ Z 6= ∅. If there
is D ∈ W \ Z with η(D) = 0 then η ∈ ∆Z∪{D}(S) and we are done. Thus, assume that
η(W ) 6= 0 for any W ∈ W \Z, which implies, by definition of ∆(S), that η(W ) > 0 for any
W ∈ W \ Z. The second assumption in (ii) means that there exists θ ∈ ΣZ(S) \∆Z(S);
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thus, necessarily η 6= θ. Put θα := (1 − α) · η + α · θ for 0 ≤ α ≤ 1; the convexity of
ΣZ(S) gives θα ∈ ΣZ(S). Take β := max {α ≥ 0 : θα ∈ ∆Z(S) } and θ′ := θβ. Note
that there exists D ∈ W \ Z with θ′(D) = θβ(D) = 0 as otherwise one has θβ(W ) > 0 for
any W ∈ W \ Z, which contradicts the maximality of β. Thus, the facts θ′ ∈ ∆Z(S) and
θ′(D) = 0 imply together that θ′ ∈ ∆Z∪{D}(S).

The condition (iii) can be verified by induction on |Z|. In case Z = ∅ this follows
directly from the definition of Σ(S) using basic facts from polyhedral geometry recalled in
Section 2.2. To verify the induction step assume that the claim is true for some Z ⊂ W,
take Z ∈ W\Z and evidence the claim for Z∪{Z}. Note that the polytope Q := ΣZ∪{Z}(S)
is the intersection of the polytope P := ΣZ(S) with the hyperplane H := { θ : θ(Z) = 0}.
The characterization of vertices of Q = P ∩ H recalled in Section 2.2 says that any vertex
θ ∈ ext (Q) is either a vertex of P, in which case one has θ ∈

⋃
D∈W Θ̃N

D by the induction
assumption, or there is an edge [η, σ] of P such that θ ∈ ]η, σ[ and [η, σ] ∩ H = {θ}. Since
η, σ ∈ ext (P), by the induction hypothesis, one has η, σ ∈

⋃
D∈W Θ̃N

D . As [η, σ] ∩ H = {θ}
one has η(Z) 6= 0 6= σ(Z) and can assume without loss of generality that η(Z) > 0 and
σ(Z) < 0. This forces that η ∈ Θ̃N

Z ; assume that σ ∈ Θ̃N
E for some E ∈ W (possibly E = Z).

It makes no problem to observe that these facts imply that θ ∈ Θ̃N
E (see Definition 5). Hence,

θ ∈
⋃
D∈W Θ̃N

D and the induction step has been verified. �

For reader’s convenience we recall what is claimed.

Lemma 17: Let S be a purely min-semi-balanced system on N , |N | ≥ 3, with exceptional
set T ∈ S and W := P(N) \ ({∅, N} ∪ S). Then the following conditions are equivalent:

(a) θS 6∈ ext (∆), (see Definition 5)

(b) there exists a convex combination θS =
∑

D∈W∪{T} αD ·θD where αT < 1 and θD ∈ Θ̃N
D

whenever αD > 0,

(c) the set ∆(S) := conv (
⋃
D∈W Θ̃N

D)∩{ θ ∈ RP(N) : θ(W ) ≥ 0 for W ∈ W } is non-empty,

(d) there exists E ∈ W such that E is exceptional in S ∪ {E},

(e) there exists E ∈ W such that E is exceptional in (S \ {T}) ∪ {E},

(f) a min-semi-balanced system D on N exists such that D \ S = {E} for some E ∈ W,
the set E is exceptional within D, and T 6∈ D,

(g) a min-semi-balanced system D on N exists with an exceptional set E and D\S = {E}.

Proof. To show (a)⇒(b) realize that θS ∈ Θ̃N
T ⊆ ∆ and assume that θS ∈ ]η, σ[ for

η, σ ∈ ∆, η 6= θS 6= σ. By the definition of ∆ a finite convex combination yielding η exists:
η =

∑
j∈J βj · ηj , where βj > 0 and ηj ∈

⋃
∅6=D⊆N Θ̃N

D for j ∈ J . Since η 6= θS , there exists
j ∈ J with ηj 6= θS . An analogous convex combination exists for σ and by combining them
observe that a finite convex combination yielding θS exists:

θS =
∑
i∈I

αi · θi, where αi > 0 and θi ∈
⋃
∅6=D⊆N Θ̃N

D for all i ∈ I,
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and, moreover, θi 6= θS for at least one i ∈ I. Assume without loss of generality that θi,
i ∈ I, differ from each other and, if there is i ∈ I with θi = θS then, by easy modification,
one gets such a convex combination yielding θS where θi 6= θS for all i ∈ I.

Observe that one can even assume without loss of generality that θi(S) ≤ 0 for any i ∈ I
and S ∈ S\{T}. Indeed, if there exists j ∈ I and S ∈ S\{T} with θj(S) > 0 then the convex

combination can be replaced by another convex combination θS = α̂j · θ̂j +
∑

i∈I\{j} α̂i · θi,
where θ̂j(S) = 0. To observe that realize that αj < 1, as otherwise θj = θS . Thus, one can
put α := 1− αj =

∑
i∈I\{j} αi > 0 and

θ :=
∑

i∈I\{j}

αi
α
· θi , which gives θS = αj · θj + α · θ, that is, θS ∈ ]θj , θ[.

On the other hand, since θj(S) > 0 and θS(S) < 0 there exists unique θ̂j ∈ ]θj , θS [ such that

θ̂j(S) = 0. Note that necessarily θj ∈ Θ̃N
S while θS ∈ Θ̃N

T which facts together allow one to

observe that θ̂j ∈ Θ̃N
T . The vectors θj , θ̂j , θS and θ are on the same line, which implies that

θS ∈ ]θ̂j , θ[. Thus, 0 < γ < 1 exists with θS = γ · θ̂j + (1− γ) · θ and the substitution gives

θS = γ · θ̂j +
∑

i∈I\{j}

(1− γ) · αi
α︸ ︷︷ ︸
α̂i

· θi , where it suffices to put α̂j := γ.

For any i ∈ I, one has θi ∈ Θ̃N
E for some ∅ 6= E ⊆ N . In case E ∈ S \ {T} the above

inequalities θi(S) ≤ 0 for S ∈ S \ {T} give θi ∈ Θ̃N
N and (see Definition 5) the inclusion

Θ̃N
N ⊆ Θ̃N

T allows one to conclude that θi ∈ Θ̃N
D for some D ∈ W ∪ {T}. To summarize

that: there exists a convex combination θS =
∑

i∈I αi · θi, where αi > 0, θi 6= θS and

θi ∈
⋃
D∈W∪{T} Θ̃N

D for all i ∈ I.
Further observation is that there exists j ∈ I and W ∈ W such that θj(W ) > 0. To show

that assume for a contradiction the converse, that is, θi(W ) ≤ 0 for any i ∈ I and W ∈ W.
That basically means, that, for any i ∈ I, the condition θi ∈ Θ̃N

W implies θi ∈ Θ̃N
N ⊆ Θ̃N

T .
In particular, one would have θi ∈ Θ̃N

T , θi 6= θS for any i ∈ I, which contradicts the fact
θS ∈ ext (Θ̃N

T ) claimed by (the second claim in) Lemma 8.
Thus, any i ∈ I can be assigned to some D ∈ W ∪ {T} such that θi ∈ Θ̃N

D ; let us fix
that choice and write i 7→ D to denote that. We already know that there exists j ∈ I and
W ∈ W with θj(W ) > 0, which necessitates j 7→W . For any D ∈ W ∪ {T} we put

αD :=
∑

i∈I: i 7→D
αi and, if αD > 0, θD :=

∑
i∈I: i 7→D

αi
αD
· θi ∈ Θ̃N

D .

Thus, one has θS =
∑

D∈W∪{T} αD · θD, where θD can be chosen arbitrarily in case αD = 0.
It is a convex combination and the existence of j ∈ I and W ∈ W with j 7→ W implies
αW > 0. Hence, αT < 1, which gives the condition (b).

To show (b)⇒(c) consider a convex combination θS =
∑

D∈W∪{T} αD ·θD where αT < 1

and θD ∈ Θ̃N
D whenever αD > 0. The fact θS(T ) > 0 forces both αT > 0 and θT (T ) > 0

because η(T ) ≤ 0 for any η ∈
⋃
D∈W Θ̃N

D . Thus, one has some θT ∈ Θ̃N
T . Let us put

θ :=
∑
D∈W

αD
1− αT

· θD and observe that θS = (1− αT ) · θ + αT · θT .
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By definition, θ ∈ conv (
⋃
D∈W Θ̃N

D). The fact θS ∈ ]θ, θT [ together with θS(W ) = 0 and
θT (W ) ≤ 0 for any W ∈ W forces θ(W ) ≥ 0 for any such W . In particular, θ ∈ ∆(S) and
the condition (c) has been verified.

To show (c)⇒(d) we use Lemma 20; the condition (c) means, by notation from
Lemma 20, that ∆Z(S) 6= ∅ for empty Z = ∅. By inductive application of Lemma 20(ii)
we find Z ⊆ W with ΣZ(S) = ∆Z(S) 6= ∅; indeed, by Lemma 20(i) one has ΣW(S) = ∅,
which ensures that inductive enlarging of Z has to finish with some desired Z ⊂ W. Thus,
∅ 6= ext (ΣZ(S)) ⊆ ∆Z(S) for some Z ⊂ W. One can take some θ ∈ ext (ΣZ(S)) and,
by Lemma 20(iii), there exists E ∈ W such that θ ∈ Θ̃N

E . Hence, θ(W ) ≤ 0 for any
W ∈ W \ {E} while θ ∈ ∆(S) says θ(W ) ≥ 0 for any W ∈ W. That together means
θ(W ) = 0 for any W ∈ W \ {E} and θ(E) ≥ 0. One cannot have θ(E) = 0 for otherwise
θ ∈ ΣW(S) contradicts the claim in Lemma 20(i). Thus, necessarily θ(E) > 0; note also
that θ(S) ≤ 0 for any S ∈ S. The equality constraints

∑
L⊆N : i∈N θ(L) = 0 for any i ∈ N

and θ ∈ Θ̃N
E allow one to conclude that

∑
S∈S∪{E}−θ(S) · χS = θ(N) · χN is a semi-conic

combination yielding a constant vector in RN . Thus, by definition, E is exceptional in
S ∪ {E} and the condition (d) has been verified.

To show (d)⇒(e) assume that E ∈ W is exceptional within S ∪ {E}. This means that
there exists a linear combination

∑
S∈S∪{E} νS · χS yielding a constant vector in RN where

νE < 0 and νS ≥ 0 for S ∈ S. Observe that E is exceptional within a smaller set system
(S \ {T}) ∪ {E}. In case νT = 0 we are done. In case νT > 0 we apply Lemma 2(d) to S
which says that there exists (unique) affine combination

∑
S∈S λS · χS yielding a constant

vector in RN with both λT < 0 and λS > 0 for S ∈ S \ {T}. Then we put λE := 0 and

κS :=
νT

νT − λT
· λS +

−λT
νT − λT

· νS for S ∈ S ∪ {E}.

Hence,
∑

S∈S∪{E} κS · χS yields a constant vector in RN , κE < 0, and κT = 0. Thus,
(S \ {T}) ∪ {E} is a semi-balanced system on N and E is an exceptional set within it.

To show (e)⇒(f) we fix a semi-conic combination
∑

S∈S∪{E} κS ·χS yielding a constant

vector in RN with κE < 0 and κT = 0. In particular, one can choose a min-semi-balanced
system D ⊆ (S \{T})∪{E}. One has E ∈ D as otherwise D ⊂ S contradicts the minimality
of S. By Lemma 2(d), there exists (unique) affine combination

∑
S∈D σS · χS yielding a

constant vector in RN which is semi-conic and has all coefficients non-zero. Assume for a
contradiction that σE > 0. Then we put σS := 0 for S ∈ S \ D and

µS :=
σE

σE − κE
· κS +

−κE
σE − κE

· σS for S ∈ S ∪ {E}.

Hence,
∑

S∈S∪{E} µS · χS yields a constant vector in RN and µE = 0 = µT . Since it is a
semi-conic combination T := {S ∈ S : µS 6= 0} ⊂ S is a semi-balanced system on N ,
which contradicts the minimality of S. As σE 6= 0, one necessarily has σE < 0 and the set
E is exceptional within D. Thus, the condition (f) has been verified.

The implication (f)⇒(g) is evident.

To show (g)⇒(a) assume that D is the min-semi-balanced system with an exceptional
set E ∈ W such that D \ S = {E}. Note that, by (1), one has both θD(E) > 0 and
θD(W ) = 0 for any W ∈ W \ {E}. Then we put

θε := (1 + ε) · θS + (−ε) · θD = θS + ε · (θS − θD) for every ε ≥ 0.
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It makes no problem to observe that, for small ε > 0, one has θε ∈ Θ̃N
T ⊆ ∆. Because of

θS ∈ ]θD, θ
ε[ and θD ∈ Θ̃N

E ⊆ ∆ one gets θS 6∈ ext (∆) and (a) has been verified. �
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