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Abstract. An equilibrium of a linear elastic body subject to loading
and satisfying the friction and contact conditions can be described by
a variational inequality of the second kind and the respective discrete
model attains the form of a generalized equation. To its numerical solu-
tion we apply the semismooth* Newton method by Gfrerer and Outrata
(2019) in which, in contrast to most available Newton-type methods
for inclusions, one approximates not only the single-valued but also the
multi-valued part. This is performed on the basis of limiting (Mordu-
chovich) coderivative. In our case of the Tresca friction, the multi-valued
part amounts to the subdifferential of a convex function generated by
the friction and contact conditions. The full 3D discrete problem is then
reduced to the contact boundary. Implementation details of the semis-
mooth* Newton method are provided and numerical tests demonstrate
its superlinear convergence and mesh independence.

Keywords: Contact problems - Tresca friction - Semismooth* Newton
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1 Introduction

In [3] the authors developed a new, so-called semismooth* Newton-type method
for the numerical solution of an inclusion

0€ F(z), (1)
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where F' : R® = R” is a closed-graph multifunction. In contrast to existing
Newton-type method F' is approximated on the basis of the limiting (Mor-
dukhovich) normal cone to the graph of F', computed at the respective point.
Under appropriate assumptions, this method exhibits local superlinear conver-
gence and, so far, it has been successfully implemented to the solution of a class
of variational inequalities (VIs) of the first and second kind, cf. [3] and [4]. This
contribution is devoted to the application of the semismooth* method to the dis-
crete 3D contact problem with Tresca friction which is modelled as a VI of the
second kind. Therefore the implementation can be conducted along the lines of
[4]. The paper has the following structure: In Sect. 2 we describe briefly the main
conceptual iterative scheme of the method. Section 3 deals with the considered
discrete contact problem and Sect. 4 concerns the suggested implementation and
one computational benchmark.

We employ the following notation. For a cone K, K stands for its (negative)
polar and for a multifunction F': R™ = R", dom F' and gph F' denote its domain

)

and its graph, respectively. The symbol «47 means the convergence within the
set A, | B||r denotes the Frobenius norm of a matrix B and Bs(z) signifies the
d0— ball around z.

2 The Semismooth* Newton Method

For the reader’s convenience we recall fist the definition of the tangent cone and
the limiting (Mordukhovich) normal cone.

Definition 1. Let A C R" be closed and & € A. Then,

(i) the cone Tx(Z) := {u € R"|Fty, \, 0,ur — u such that T + tyuy € AVE} is
called the (Bouligand) tangent cone to A at T;

(i) The cone Nu(Z) = {a* € R"|Tzy 4, z,xy — o* suchthatz] €
(Ta(r))° VE} is called the limiting (Mordukhovich) normal cone to A at z.

The latter cone will be extensively used in the sequel. Let us assign to a pair
(Z,9) € gph F two [n x n| matrices A, B such that their ith rows, say u}, v,
fulfill the condition

(ui, —v}) € Ngpn r(Z,7), i1=1,2,...,n. (2)
Moreover, let AF(Z,3) be the set of matrices A, B satisfying (2) and
AregF(2,9) .= {(A,B) € AF(Z,7)| A is non-singular}.

The general conceptual iterative scheme of the semismooth* Newton method
is stated in Algorithm 1 below.
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Algorithm 1. Semismooth* Newton-type method for generalized equations

1: Choose a starting point °z, set the iteration counter k := 0.
2: If 0 € F(*z), stop the algorithm.
3: Approximation step: compute (#,7) € gphF close to (*2,0) such that

AregF(£7y) 7é (Z)
4: Newton step: select (A, B) € A, F(Z,7) and compute the new iterate

kly =4 — A7'By.

5: Set k:=k+ 1 and go to 2.

Let Z be a (local) solution of (1). Since *z need not to belong to dom F or 0
need not to be close to F(*z) even if ¥z is close to Z; one performs in step 3 an
approximate projection of (*z,0) onto gph F. Therefore the step 3 is called the
approzimation step. The Newton step 4 is related to the following fundamental
property, according to which the method has been named.

Definition 2 [3]. Let (%,9) € gph F. We say that F is semismooth* at (Z,9)
provided that for every e > 0 there is some 6 > 0 such that the inequality

("2 —2) + (" y — o) < ell(z,y) — (@, 9)] Iz, y7) 3)
is valid for all (z,y) € Bs(&,g) and for all (z*,y*) € Ngph r(z,y).
If we assume that F' is semismooth* at (Z,0), then it follows from (3) that for

every € > 0 there is some § > 0 such that for every (z,y) € gph F N B;s(Z,0) and
every pair (A, B) € AygF(x,y) one has

Iz — A7 By) = zl| < el AT (A B)l|r ll(2,9) — (&, 0)]

cf. [3, Proposition 4.3]. This is the background for the Newton step in
Algorithm 1.

Finally, concerning the convergence, assume that F' is semismooth* at (z,0)
and there are positive reals L, k such that for every x ¢ F~1(0) sufficiently close
to T the set of quadruples (&, 9, A, B), satisfying the conditions

1@ —z,9)|l < Lljz -z, (4)
(4, B) € AwegF(2,79), (5)
A (A B)llr < & (6)

is nonempty. Then it follows from [3, Theorem 4.4], that Algorithm 1 either
terminates at T after a finite number of steps or converges superlinearly to &
whenever °z is sufficiently close to Z.

The application of the semismooth* Newton methods to a concrete problem
of type (1) requires thus the construction of an approximation step and the
Newton step which fulfill conditions (4)—(6).
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Fig. 1. The left picture depicts an undeformed elastic prism occupying domain {2 with
the left (blue) face attached (Dirichlet condition) and some surface tractions applied
to the right and top faces (depicted in green). They press the contact face I'c against
the (red) rigid plane foundation. Example of the resulting deformed body is depicted
in the right picture. Front faces are not visualized. (Color figure online)

3 The Used Model

The fundamental results concerning unilateral contact problems with Coulomb
friction have been established in [8]. The infinite-dimensional model of the con-
tact problem with Tresca friction in form of a variational inequality of the second
kind can be found, e.g., in [5,10]. These friction models can be used, for instance,
in the numerical simulation of technological processes in metal forming [6]. Other
related friction-type contact problems are described, e.g., in [9].

We assume that an elastic prism occupying domain {2 is pressed against a
rigid plane foundation (cf. Fig. 1). The full three-dimensional domain (2 is dis-
cretized by a mesh of brick elements and consists of n nodes (vertices). The finite
element method using trilinear basis functions is then applied to approximate a
displacement field vector u € R3" in each mesh node. Entries of u are ordered in
such a way that u = (u',u?,...,u™) and the jth node is associated with the pair
w = (ul,ul) € R? x R of its tangential and normal displacements, respectively.

A sparse stiffness matrix K € R3"*3" and the loading (column) vector
I € R3" are first assembled and then both condensed to incorporate zero dis-
placements in Dirichlet nodes corresponding to the (blue) Dirichlet boundary.
Secondly, all nodes not lying in the (bottom) contact face I'c are eliminated by
the Schur complement technique and the Cholesky factorization resulting in a
dense matrix A € R332 and a vector b € R3, where p < n is the number of
I'c nodes excluding Dirichlet boundary nodes.

At last, all local 3 x 3 blocks of A and all 3 x 1 blocks of b are expanded
to 4 x 4 blocks and 4 x 1 blocks, respectively, in order to incorporate the non-
penetrability condition

0 € ul, + Ng, (\"),
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where \* € R, is the Lagrange multiplier associated with non-penetrability

constraint. Here and in the following, we assume that ¢ = 1,...,p. In this way,

we obtain a dense regular matrix A € R**4P and a (column) vector b € R*.
Finally, let us simplify the notation via

xie = (27, 25) = u; € R7, xry =u, €R, zg=X€eR

to define a vector of unknowns z = (x!,22,... 2P) € R*.
Following the development in [1], our model attains the form of generalized
equation (GE)
0€ f(z)+Q(z), (7)
where the single-valued function f : R* — R is given by f(x) = Az — b and
the multifunction Q : R* = R* by

_ po o —¢ 0|zt
Q)= X Q')  with Q'(a") = 0
- N, (7%)

with ¢ > 0 being the friction coefficient. GEs of the type (7) have been studied
in [4] and so all theoretical results derived there are applicable. For our approach
it is also important that the Jacobian V f(Z) is positive definite.

4 Implementation of the Semismooth* Method

In order to facilitate the approximation step we will solve, instead of GE (7),

the enhanced system B
0 Flad) = [f @)+ 3@] (8)

x

in variables (z,d) € R* x R*. Clearly, 7 is a solution of (7) if and only if (z, 7)
is a solution of (8).

In the approximation step we suggest to solve for all ¢ consecutively the next
three low-dimensional strictly convex optimization problems:

. NP | ; ;
() minimize 2 (0,0) + (Fio(“2),) + 9l "ty + ol

. o] ;
(ii) minimize §<v,v> + fi(kx) v,

(iii)  minimize = (v,v) + F2% - v,
kai+v>0

obtaining thus their unique solutions 9,, 9%, 9}, respectively. These solutions can
be ordered in vectors ¢! = (di,, 05, 9) € R* and all together in a vector

o= (01,0%,...,0P) € R,

)
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Thereafter we compute the outcome of the approximation step via
& ="rg, d=*z+06,  §=(-b,—0).

Clearly (2,d,) € gphF and, using the theory [4, Section 4], it is possible to
show that condition (4) is fulfilled.
In the Newton step we put

A=1, B = [é g] DY where D = {Vfl(“%) _GH} : (9)

In (9), I is an identity matrix and block diagonal matrices G, H attain the form
G = diag(G*,G?,...,GP), H = diag(H', H?,..., H?),
where the diagonal blocks G, H* € R**# have the structure
- [G [
Gi = . omi=
Gy H;

and submatrices G¢, H! € R?>*? and scalar entries G}, Hi € R are computed in
dependence on values d¢, € R? and d’ € R as follows:

e If di, = 0 (sticking), we put G} = 0, Hi = I, otherwise we put

- 0 [@)2 —ciidi}
Gt =1, Hi = — 2/ T2
' P |diglp L—didh (d})?

o If Cif; = 0 (no contact or weak contact), we put G = 0, Hi = 1, otherwise we
put G4 =1,H; = 0.

This choice ensures that matrices (I, B) with B given by (9) fulfill conditions
(5), (6) with F replaced by F.

Stopping Rule. It is possible to show (even for more general Coulomb friction
model [1]) that there is a Lipschitz constant ¢z, > 0 such that, ||(&,d) — (z,Z)|| <
cr||g||, whenever the output of the approximation step lies in a sufficiently small
neighborhood of (@, u,0). It follows that, with a sufficiently small positive ¢, the
condition

ol <e, (10)

tested after the approximation step, may serve as a simple yet efficient stopping
rule.
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Computational Benchmark. We assume that the domain 2 = (0,2) % (0,1) x
(0.1,1) is described by elastic parameters E = 2.1 - 10° (Young’s modulus),
v = 0.277 (Poisson’s ratio) and subject to surface tractions

f=(-5-10%0,0) on the right-side face, (11)
f=1(0,0,—1-10%) on the top face. (12)

and the friction coefficient ¢ = 1. The domain is uniformly divided into e, - ey -e.
hexahedra (bricks), where e, = [4-2¢/2] e, = [2:2%/%] e, = [2:2¢/2] are numbers
of hexahedra along with coordinate axis, £ denotes the mesh level of refinement
and [-] the ceiling function. Consequently the number of 2 nodes n and the
number of I'c nodes p read

n(l) =(ex +1)-(ey +1)-(ex +1),  pl) =ex-(ey + 1),

respectively. Table 1 reports on the performance of the whole method for various
meshes assuming zero initial approximation °z = 0 and the stopping criterion
e = 107%. We can clearly see that the number of iterations of the semismooth*

:..'.

Fig. 2. The left picture depicts the deformed contact boundary and the right figure
shows the corresponding deformed elastic prism, both pictures together with the (red)
rigid plane foundation. (Color figure online)

Table 1. Performance of the MATLAB solver.

Level (¢) | Nodes | Assembly |Cholesky & |nodes (p) | Semismooth* | Solver
(n) of K (s) Schur (s) time (s) items

2 225 0.031 0.003 40 0.017 6

3 637 0.094 0.021 84 0.047 6

4 1377 0.141 0.092 144 0.101 6

5 4056 0.516 0.701 299 0.507 7

6 9537 1.297 3.968 544 1.928 7

7 27072 3.156 32.110 1104 9.734 7

8 70785 18.672 1242.211 2112 48.275 8
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Newton method (displayed in the last column) only slightly increase with the
mesh size. This behaviour shows that the method is mesh-independent.

Figure 2 visualizes a deformed contact boundary together with a deformation
of the full domain {2 obtained by post-processing. Displacements of non-contact
boundary nodes are then obtained from a linear system of equations with the
matrix K and the vector [. All pictures and running times were produced by our
MATLAB code available for downloading and testing at

https://www.mathworks.com/matlabcentral /fileexchange /91005.

It is based on original codes of [1] and its performance is further enhanced by a
vectorized assembly of K using [2].

Remark 1. To a similar 3D contact problem with Tresca friction, a special vari-
ant of the classical semismooth Newton method has been applied in [7].

Concluding Remarks and Further Perspectives. The choice (9) of matri-
ces A, B in the Newton step of the method is not unique and may be used to
simplify the linear system in the Newton step. The convergence may be further
accelerated by an appropriate scaling in the approximation step.

Acknowledgment. Authors are grateful to Petr Beremlijski (TU Ostrava) for pro-
viding original Matlab codes of [1] and discussions leading to various improvements of
our implementation.
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