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Jǐŕı Vomlel vomlel@utia.cas.cz

Institute of Information Theory and Automation, Czech Academy of Sciences

Abstract

Bayesian networks for real-world problems typically satisfy the property of positive
monotonicity (in the context of educational testing, it is commonly assumed that answering
correctly a question A increases the probability of answering correctly another question B).
In this paper, we focus on the study of relations between positive monotonic influences on
three-variable patterns and a family of 2×2×2 tensors. In this study, we use the Kruskal
polynomial, well-known in the psychometrics community, which is equivalent to Cayley’s
hyperdeterminant (homogeneous polynomial of degree 4 in the 8 entries of a 2×2×2 tensor).
It is known that when the Kruskal polynomial is positive, the rank of the tensor is two.
We show that when a probability table associated with three random variables obeys the
positive monotonicity property, its corresponding 2×2×2 tensor has rank two. Moreover,
it can be decomposed using only nonnegative tensors, which can each be given a statistical
interpretation. We study two concepts of monotonicity in sets of three random variables,
strong monotonicity (any two variables have a positive influence on the third one), and
weak monotonicity (just one pair of variables that have a positive influence on the third
one), and we give an example to show they do not coincide. Furthermore, we proved
that the strong monotonicity property implies that the tensor rank is at most two. We
also performed experiments with real data to test the monotonicity properties. The real
datasets were formed by information from the Czech high school final exam from the years
2016 to 2022. These datasets are representative since the sample size (number of students)
for each year is very large (N > 10000) and information comes from students of all regions
of the Czech Republic. In this datasets, we observed that almost all 2×2×2 tensors are
monotone and all their corresponding 2×2×2 tensors have nonnegative decomposition.

Keywords: Tensor rank; Conditional probability tables; Monotonicity; Educational test-
ing.

1. Introduction

Tensors and their decompositions are applied in many domains, like statistics, data science,
and machine learning. In this paper, we focus on the study of relations between a family
of 2×2×2 tensors and some qualitative (monotonic) influences on three-variable patterns.
The rest of this paper is organized as follows. In the next section we present the definition
of tensor and tensor rank, explaining in particular our interest on probability tensors of
order three. In Section 3 we briefly review the concept of monotonicity properties in the
context of Bayesian networks, and we described this properties in detail for two and three
variables. For the case of three variables, we proved that the strong monotonicity property
implies the tensor rank is at most two. In Section 4 we first describe the origin and details
of the datasets used in our experiment, in a second moment, we describe the steps of our
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analysis, contrasting the results obtained from real data with randomly generated data. We
end in Section 5 with some concluding remarks.

2. Tensor Rank

A tensor is a mapping X : I → A, where A = R or A = C, I = I1 × . . .× Ik, k is a natural
number called the order of tensor X, and Ij , j = 1, . . . , k are index sets. Typically, Ij are
sets of integers of cardinality nj . Then we can say that tensor X has dimensions n1, . . . , nk.
In this paper all index sets will be {0, 1} and all considered tensors will be real valued and
will have order three.

Tensor X : {0, 1}3 → R has rank one if it can be written as an outer product of vectors:

X = a⊗ b⊗ c .

The outer product is defined for all (i, j, k) ∈ {0, 1}3 as

Xi,j,k = ai · bj · ck ,

where a = (a0, a1), b = (b0, b1), and c = (c0, c1), are real valued vectors. Each tensor can
be decomposed as a linear combination of rank-one tensors:

X =
R∑

r=1

ar ⊗ br ⊗ cr ,

where for r = 1, . . . , R ar = (ar0, a
r
1), b

r = (br0, b
r
1), and cr = (cr0, c

r
1), are real valued vectors.

The rank of a tensor X, denoted rank(X), is the minimal R over all such decomposi-
tions (Kruskal, 1989).

Kruskal proved that typical ranks for 2×2×2 tensors are two and three, and performed
numerical simulations to obtain the approximate values 0.79 and 0.21 for the probability of
ranks two and three respectively. Bergqvist (Bergqvist, 2013) provided exact values, for a
2×2×2 tensor with elements from a standard normal distribution, the probability to be of
rank two is π/4, and the probability to be of rank three is 1− π/4.

Ten Berge (Berge, 1991) showed that a necessary and sufficient condition for a 2×2×2
tensor having rank two is that the Kruskal’s polynomial must be positive. Kruskal polyno-
mial, well-known in the psychometrics community, is equivalent to Cayley’s hyperdetermi-
nant:

∆222 = x2000x
2
111 + x2010x

2
101 + x2001x

2
110 + x2011x

2
100

+4 (x000x011x101x110 + x001x010x100x111)

−2

 x000x001x110x111 + x000x010x101x111
+x000x011x100x111 + x001x010x101x110
+x001x011x100x110 + x010x011x100x101

 .

Probability tables can be understood as tensors with their values being from [0, 1]. We
performed a numerical experiment, in which we created randomly one million of 2×2×2
tensors with elements drawn from a uniform distribution on [0, 1]. We identified that rank
two and rank three are also typical in this context, the probabilities for a tensor to have
rank two or three are approximately 0.84 and 0.16, respectively.
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3. Monotonicity

In the context of Bayesian networks the concept of monotonicity properties has been dis-
cussed in the literature for a long time (Wellman, 1990) and (Druzdzel and Henrion, 1993).
More recent papers in this topic are (Restificar and Dietterich, 2013), (Masegosa et al.,
2016) and (Plajner and Vomlel, 2020).

A Bayesian network models the probabilistic influences between its variables. The con-
cept of qualitative influence has been designed to describe these influences in a qualitative
way (Wellman, 1990). A qualitative influence between two variables expresses how observing
a value for the one variable affects the probability distribution for the other variable.

A positive qualitative influence of a variable B on a variable A along an arc B → A
in the network means that the occurrence of B increases the probability of A occurring,
assuming that the values of the other parents of A remain the same. It means that

P (A = 1|B = 1, c) ≥ P (A = 1|B = 0, c)

for any combination of values c for the set of parents of A other than B (Masegosa et al.,
2016). The definition of negative influence between B and A along the arc B → A is
analogous.

In the context of educational testing, a positive influence is commonly assumed since
answering correctly a question A increases the probability of answering correctly another
question B. In this manuscript we will refer to the positive influence (also called the positive
monotonic influence).

We start our analysis in the simplest case (using patterns with two variables).

Definition 1 (Pairwise monotonicity) Let X be a set of two binary random variables A
and B. We say that X has the pairwise monotonicity property if B has a positive qualitative
influence on A, and A has a positive qualitative influence on B, i.e., if

P (A = 0|B = 0) ≥ P (A = 0|B = 1) (1)

P (B = 0|A = 0) ≥ P (B = 0|A = 1) . (2)

A B

(a) Influence of B on A

BA

(b) Influence of A on B

Figure 1: Influence patterns on A and B

Remark 2 Inequalities (1) and (2) are equivalent. To show this, it is enough to construct
the joint probability table of A and B (see Table 1), substitute these values into the inequal-
ities, and compute the conditional probabilities:

P (A = 0|B = 0) ≥ P (A = 0|B = 1) ⇔ x00
x00 + x10

≥ x01
x01 + x11

⇔ x00x11 ≥ x01x10

P (B = 0|A = 0) ≥ P (B = 0|A = 1) ⇔ x00
x00 + x01

≥ x10
x10 + x11

⇔ x00x11 ≥ x01x10 .
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A B P (A,B)

0 0 x00
0 1 x01
1 0 x10
1 1 x11

Table 1: Probability table of A and B.

Then, a simple way to check whether X satisfies the pairwise monotonicity property
is to rearrange its probability table in a 2 × 2 matrix and test whether its corresponding
determinant is nonnegative:∣∣∣∣x00 x01

x10 x11

∣∣∣∣ = x00x11 − x01x10 ≥ 0 .

This is equivalent to test whether x00x11/x01x10 is greater than 1. This ratio is known as
cross-product ratio or odds ratio and is a well-known measure of association in 2×2 tables.
Note that if we create a random 2×2 matrix with each entry element drawn from a uniform
distribution on [0, 1] then the probability of having the pairwise monotonicity property
(equivalent to nonnegative determinant) is only 0.5.

Now, we continue our analysis using patterns with three variables.

Definition 3 (Strong three-wise monotonicity) Let X be a set of three random vari-
ables: A, B and C. We say that X satisfies the strong three-wise monotonicity property if
any two variables have a positive influence on the third one, i.e. if

P (A = 0|B,C = 0) ≥ P (A = 0|B,C = 1)

P (A = 0|B = 0, C) ≥ P (A = 0|B = 1, C)

P (B = 0|A,C = 0) ≥ P (B = 0|A,C = 1)

P (B = 0|A = 0, C) ≥ P (B = 0|A = 1, C)

P (C = 0|B = 0, A) ≥ P (C = 0|B = 1, A)

P (C = 0|B,A = 0) ≥ P (C = 0|B,A = 1) .

Considering that all variables are binary, these conditions translate to 12 inequalities.
Analogously to the pairwise monotonicity, we can construct the joint probability table of
A, B, and C (Table 2), substitute these values into the inequalities, and compute the
conditional probabilities:

P (A = 0|B = 0, C = 0) ≥ P (A = 0|B = 1, C = 0) ⇔ x000x110 ≥ x010x100 (3)

P (A = 0|B = 0, C = 1) ≥ P (A = 0|B = 1, C = 1) ⇔ x001x111 ≥ x011x101 (4)

P (A = 0|B = 0, C = 0) ≥ P (A = 0|B = 0, C = 1) ⇔ x000x101 ≥ x001x100 (5)

P (A = 0|B = 1, C = 0) ≥ P (A = 0|B = 1, C = 1) ⇔ x010x111 ≥ x011x110 (6)
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A

B C

(a) Influence of B and C on A

B

C

A

(b) Influence of A and C on B

C

A

B

(c) Influence of A and B on C

Figure 2: Influence patterns between A, B and C

A B C P (A,B,C)

0 0 0 x000
0 0 1 x001
0 1 0 x010
0 1 1 x011
1 0 0 x100
1 0 1 x101
1 1 0 x110
1 1 1 x111

Table 2: Probability table of A, B and C.
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P (B = 0|A = 0, C = 0) ≥ P (B = 0|A = 1, C = 0) ⇔ x000x110 ≥ x010x100 (7)

P (B = 0|A = 0, C = 1) ≥ P (B = 0|A = 1, C = 1) ⇔ x001x111 ≥ x011x101 (8)

P (B = 0|A = 0, C = 0) ≥ P (B = 0|A = 0, C = 1) ⇔ x000x011 ≥ x001x010 (9)

P (B = 0|A = 1, C = 0) ≥ P (B = 0|A = 1, C = 1) ⇔ x100x111 ≥ x101x110 (10)

P (C = 0|B = 0, A = 0) ≥ P (C = 0|B = 1, A = 0) ⇔ x000x011 ≥ x001x010 (11)

P (C = 0|B = 0, A = 1) ≥ P (C = 0|B = 1, A = 1) ⇔ x100x111 ≥ x101x110 (12)

P (C = 0|B = 0, A = 0) ≥ P (C = 0|B = 0, A = 1) ⇔ x000x101 ≥ x001x100 (13)

P (C = 0|B = 1, A = 0) ≥ P (C = 0|B = 1, A = 1) ⇔ x010x111 ≥ x011x110 . (14)

It can be seen that the right inequalities come in pairs ((3) ≡ (7), (4) ≡ (8), (5) ≡ (13),
(6) ≡ (14), (9) ≡ (11), and (10) ≡ (12)). Then, to test if X has the strong three-wise
monotonicity property, it is enough to check only the next six inequalities:

x000x110 ≥ x010x100 (15)

x001x111 ≥ x011x101 (16)

x000x101 ≥ x001x100 (17)

x010x111 ≥ x011x110 (18)

x000x011 ≥ x001x010 (19)

x100x111 ≥ x101x110 . (20)

From the pairs of inequalities {(15),(18)}, {(17),(20)} and {(19),(16)} We can derive
another three inequalities:

x000x111 ≥ x011x100 (21)

x000x111 ≥ x001x110 (22)

x000x111 ≥ x010x101 . (23)

These nine binomial inequalities (15) - (23) satisfy the supermodularity property de-
scribed in the next definition based on (Allman et al., 2015).

Definition 4 Let P be a 2×2×2 tensor. Then P is π-supermodular if

pi1i2i3 · pj1j2j3 ≤ pk1k2k3 · pl1l2l3

whenever {ir, jr} = {kr, lr} and πr(kr) ≤ πr(lr) holds for r = 1, 2, 3. We call a tensor P
supermodular if it is π-supermodular for some π = (π1, π2, π3) where πi is a permutation of
(1, 2, 3).

Then, the 2×2×2 tensor formed from Table 2 that satisfies the nine monotonic inequal-
ities is supermodular (using π = (id, id, id) where id stands for the identity permutation).
The following lemma holds.
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Lemma 5 Let X be a set of three binary random variables. If X has the strong three-wise
monotonicity property, then the nonnegative rank of the corresponding 2×2×2 tensor is at
most two.

The proof is immediate from

Proposition 6 (Allman et al. (2015)) Let P be a nonnegative 2×2×2 tensor. Then P
has nonnegative rank ≤ 2 if and only if P is supermodular.

It is important to stress that the strong three-wise monotonicity property can be too
restrictive for some applications. A relaxed definition we present next may be more appro-
priate for some situations.

Definition 7 (Weak three-wise monotonicity) Let X be a set of three random vari-
ables: A, B and C. We say that X has the weak three-wise monotonicity property if there
is just one pair of variables that have a positive influence on the third one.

IfX satisfies the weak three-wise monotonicity property, then one set of four inequalities
(from the three sets of four inequalities presented above) is satisfied. From these twelve
possible inequalities the following lemma is derived.

Lemma 8 Let X be a set of three random variables: A, B and C. If X has the weak
three-wise monotonicity property for two different configurations of variables, then X has
the strong three-wise monotonicity property.

This result comes from the fact that the union of any two sets of four inequalities
equals the six inequalities required for the strong three-wise monotonicity property. Next
we present an example of three variables with weak monotonicity property.

Example 1 Consider the probability distribution of three variables A, B, and C presented
in table 3.

A B C P (A,B,C)

0 0 0 x000 = 0.20
0 0 1 x001 = 0.15
0 1 0 x010 = 0.05
0 1 1 x011 = 0.10
1 0 0 x100 = 0.10
1 0 1 x101 = 0.05
1 1 0 x110 = 0.20
1 1 1 x111 = 0.15

Table 3: Probability distribution of A, B and C.

Inequalities (15), (16), (19) and (20) are satisfied, while the inequalities (17) and (18)
are not, direct substitutions leads to

0.20 · 0.05 < 0.15 · 0.10 and

0.05 · 0.15 < 0.10 · 0.20 .
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Then X = {A,B,C} satisfies the weak three-wise monotonicity property because A and
C have a positive influence on B, but it does not have the strong three-wise monotonicity
property because there is no positive influence between A and C (when B is fixed). Graphical
representation of this example is in Figure 2b.

We performed a numerical experiment by creating randomly one million of 2×2×2 ten-
sors with each tensor element drawn randomly from a uniform distribution on [0, 1]. We
tested different monotonicity properties for the whole sample. Most tensors do not satisfy
any monotonicity property (around 77.7%), about 21% satisfies the weak monotonicity, and
just around 1.3% satisfy the strong monotonicity property.

4. A real data experiment

4.1 CERMAT datasets

The Ministry of Education, Youth and Sports of the Czech Republic, have established an
experimental verification of knowledge and skills in secondary school mathematics according
to the catalogue of requirements for the optional selective examination in mathematics.
Complete information about the examination is published on the website of the Center for
the Determination of Educational Results (CERMAT): maturita.cermat.cz.

The catalogue of requirements for the Mathematics exam contains nine main topics,
their corresponding representation is specified by CERMAT. The percentages of subjects
representation do not refer to the number of questions, but represent the proportion of
points that can be obtained in the questions for the nine topics. (Numerical sets, Alge-
braic expressions, Equations and inequalities, Functions, Sequences and series, Planimetry,
Stereometry, Analytic geometry, and Combinatorics, probability and statistics).

The tests consists of about 30 questions (open and closed). A maximum of 50 points
can be obtained in the test, half of which are for the open and half for the closed questions.

The datasets used in this study are publicly available on the statistical section of the
CERMAT website: vysledky.cermat.cz/statistika. There are two evaluation periods: Spring
and Autumn.

4.2 Experiment description

We are interested in analysis of the monotonic properties and tensor ranks studied in previ-
ous sections on real datasets. Our expectation was that the monotonic properties are more
common in real contexts.

In this experiment we use all publicly available CERMAT datasets (2016-2022) cor-
responding to Spring periods because they are considerably bigger than Autumn peri-
ods. These datasets are representative since the sample size for each year is very large
(N > 10000) and information comes from students of all regions of the Czech Republic. We
binarized all the responses before performing our analysis, so the value 1 means that the
question was answered correctly, and 0 means that the answer was incorrect. The data are
described in Table 4.

First, we test pairwise monotonicity on all pairs of variables in each dataset, and found
that all pairs have this property. As we mentioned before, creating a random model of two
variables, the probability to have pairwise monotonicity property is just 0.5.
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Year N Variables Triplets NND NNND P(NND) SMonot WMonot

2016 19695 29 3654 3649 5 0.9986 3649 5
2017 18545 29 3654 3650 4 0.9989 3650 4
2018 16957 30 4060 4018 42 0.9897 4018 42
2019 15702 30 4060 4029 31 0.9924 4029 30
2020 15020 29 3654 3653 1 0.9997 3653 1
2021 14456 28 3276 3265 11 0.9966 3265 11
2022 12709 30 4060 4041 19 0.9953 4041 19

Table 4: Czech high school final exam. We use the following abbreviations: N: Number
of students, NND: Nonnegative Decomposition, NNND: No Nonnegative Decomposition,
P(NND): Probability of NND, SMonot: Strong Monotonicity, WMonot: Weak Monotonic-
ity.

Second, we compute the Kruskal polynomial for each 2×2×2 tensor generated by each
possible triplet (in each dataset), and found that it was always positive, this implies that
all of these tensors have rank two (Kruskal, 1989). As mentioned in section 2, we made a
numerical experiment with one million of 2×2×2 tensors (elements drawn from a uniform
distribution [0,1]) and found that around 84% of them were positive.

Third, due to the fact that all 2×2×2 tensors generated by each possible triplet have
rank two, we use the algorithm proposed by (Berge, 1991) to decompose and analyze them in
detail. Almost all of these tensors have nonnegative decomposition (99.57%), and moreover,
all these tensors satisfy the strong monotonicity property (Columns NND and SMonot of
Table 4, respectively). As we mentioned before, when 2×2×2 tensors were created randomly,
just 1.3% of them satisfied the strong monotonicity property.

Fourth, regarding the tensors that do not have a nonnegative decomposition (0.43% of
the whole sample), all except one of them satisfy the weak monotonicity property (Columns
NNND andWMonot of Table 4, respectively). The exceptional case was found in the dataset
corresponding to the year 2019, while 31 tensors are NNND, just 30 of them satisfy the weak
monotonicity property. This case is described in detail in the next subsection.

4.3 An exceptional case

Among all possible triplets generated in our experiment (they add up 26418 in the seven
years), just one triplet does not have any monotonicity property. This case corresponds to
the triplet generated by questions (or tasks) q9, q10 and q28 in the dataset of year 2019.
In this test, q9 and q10 are theoretically related in the test, they belong to the same task
and are related with topic called Functions:

q9. Compute the coordinate a2 of the point A(4, a2) of the function graph y = log2 x.

q10. Compute the coordinate b1 of the point B(b1,−1) of the function graph y = log2 x.

On the other hand, question q28 belongs to topic Algebraic expressions:

q28. The expression 12(a−2)2

12−6a with real variable a is given. Which statement is true?
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• For a = 1018 the expression is positive.

• For a = 2, the value of the expression is 0.

• The value of the expression can never be zero.

• For all a ̸= 1
6 the expression is equal to (a−2)2

1−6a .

• For some a, the expression is equal to 2(a− 2).

The following array summarizes the data we obtained[
u000 u001 u100 u101
u010 u011 u110 u111

]
=

[
2579 966 978 359
172 57 5601 4990

]
while its corresponding probability distribution is presented in table 5.

q9 q10 q28 P (q9, q10, q28)

0 0 0 x000 = 0.1642
0 0 1 x001 = 0.0615
0 1 0 x010 = 0.0110
0 1 1 x011 = 0.0036
1 0 0 x100 = 0.0623
1 0 1 x101 = 0.0229
1 1 0 x110 = 0.3567
1 1 1 x111 = 0.3178

Table 5: Probability distribution of q9, q10 and q28.

When we evaluate the six inequalities to test monotonicity property for the triplet (q9,
q10, q28 ), we see that inequality (17) and (19) are not satisfied, direct computation shows
that

0.1642 · 0.0229 = 0.00376 < 0.00383 = 0.0615 · 0.0623

that contradicts inequality (17), x000x101 ≥ x001x100, and

0.1642 · 0.0036 = 0.00059 < 0.00067 = 0.0615 · 0.0110

that contradicts inequality (19), x000x011 ≥ x001x010. Inequality (17) is required to have
weak monotonicity on A (Figure 2a) and C (Figure 2c), while inequality (19) is required to
have weak monotonicity on B (Figure 2b) and C (Figure 2c).

Analyzing the values that affect the inequalities that were not fulfilled to satisfy mono-
tonicity conditions, we noticed that the differences between these values are relatively small,
for this reason, we decided to slightly manipulate some values just to know “how far” this
triplet is from fulfilling monotonicity conditions.

If we transfer 7 cases from state u001 to state u011, inequality (19) is satisfied (without
altering others), i.e., the triplet fulfills weak monotonicity. And if we also transfer 10
cases from state u100 to state u000, inequality (17) is also satisfied, and in general all the
inequalities to satisfy the conditions of strong monotonicity.
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q9′ q10′ q28′ P (q9′, q10′, q28′)

0 0 0 x000 = 0.1649
0 0 1 x001 = 0.0611
0 1 0 x010 = 0.0110
0 1 1 x011 = 0.0041
1 0 0 x100 = 0.0616
1 0 1 x101 = 0.0229
1 1 0 x110 = 0.3567
1 1 1 x111 = 0.3178

Table 6: Probability distribution of q9′, q10′ and q28′.

The probability distribution of this slight manipulation is presented in Table 6.

It can be noted that the values are almost the same as the original distribution presented
in Table 5 (since only 17 cases were moved out of the 15702 that make up the dataset of
year 2019), however this modified distribution meets strong monotonicity conditions.

In summary, the exceptional case found, indeed, does not meet monotonicity conditions
(neither weak nor strong), but it is “not far” from it.

5. Concluding Remarks

In the context of 2×2×2 tensors, we proved that if a triplet has the strong monotonicity
property, then the nonnegative rank of its corresponding tensor is at most two (Lemma 5).

In our experiment, we compute the value of the Kruskal polynomial for each 2×2×2
tensor generated by each possible triplet, and found that all of them were positive, this
implies that all of these tensors have rank two.

We realized that all tensors with nonnegative decompositions correspond to triplets that
have the strong monotonicity property. We performed numerical experiments to contrast
our observation, we create randomly one million of 2×2×2 tensor (tensor elements drawn
from a uniform distribution [0,1]), and decompose all of them that satisfied strong mono-
tonicity property (around 1.3%). The same result was obtained, all of these decompositions
were nonnegative. This observation allowed us to conjecture that if a 2×2×2 tensor is as-
sociated to a triplet that has the strong monotonicity property, then it has a nonnegative
decomposition.

Finally, we showed that pairwise monotonicity property does not imply any type of
three-wise monotonicity, the exceptional case described in section 4.3 works as an example
due to all pairs in all datasets have the monotonicity property, particularly in the three
possible pairs generated by the questions q9, q10, and q28, however, this triplet does not
have any three-wise monotonicity property.
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