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Abstract. Visual scene recognition is predominantly based on visual
textures representing an object’s material properties. However, the sin-
gle material texture varies in scale and illumination angles due to map-
ping an object’s shape. We present a comparative study of the color
histogram, Gabor, opponent Gabor, Local Binary Pattern (LBP), and
wide-sense Markovian textural features concerning their sensitivity to
simultaneous scale and illumination variations. Due to their application
dominance, these textural features are selected from more than 50 pub-
lished textural features. Markovian features are information preserving,
and we demonstrate their superior performance for scale and illumina-
tion variable observation conditions over the standard alternative textu-
ral features. We bound the scale variation by double size, and illumina-
tion variation includes illumination spectra, acquisition devices, and 35
illumination directions spanned above a sample.

Keywords: Markovian textural features · LBP · Gabor features ·
Scale sensitivity · Illumination sensitivity

1 Introduction

A human observer recognizes a visual scene using shape and material attributes.
Unfortunately, the surface material’s appearance vastly changes under variable
observation conditions, negatively affecting its automatic and reliable recog-
nition in numerous artificial intelligence applications. As a consequence, most
material recognition attempts apply unnaturally restricted observation condi-
tions [2,6,37]. Modeled Scale Invariant Feature Transform (SIFT) features using
Johnson distribution [18] allow features invariant in rotation, scale, and illu-
mination. Authors [29] proposed fractal dimension calculated in the Gaussian
scale-space texture representation. Fractal images combined with LBP images
using an indexing function to obtain scale-invariant features. Galois field-based
features in [31] were used for rotation and scale invariant texture classification.
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Rotation, scale, and illumination invariant features [39] use LBP and log-polar
energy-based descriptors in the dual-tree complex wavelet transform domain.
Another rotation, illumination, and scale invariance variant of LBP (IRSLBP)
was published in [38], where partial scale invariance authors achieved using
three different neighborhood radii. Although over 50 various textural features
were published [23,33], we restricted our comparison to the most effective and
thus dominant textural features. An ideal model for representing and classify-
ing materials should be capable of capturing fundamental perceptual materials
properties. A multi-dimensional visual texture is an appropriate paradigm for
such a surface reflectance function model. The best measurable representation is
the seven-dimensional Bidirectional Texture Function (BTF) [10]. BTF can be
simultaneously measured, even if it is not a trivial task, modeled using state-of-
the-art measurement devices and computers and the most advanced visual data
mathematical models. Features derived from such multi-dimensional data models
are information preserving because they can synthesize data spaces resembling
the original measurement data space. The authors have introduced a family of
fast multi-resolution Markov random field-based models. They have shown that
these models excel in robustness to illumination conditions [14].

This paper’s contribution is a joint test of scale and illumination variations to
simulate realistic visual scene recognition conditions and we present a compara-
tive analysis with several most common alternative textural features represent-
ing four alternatives most commonly used textural features. For this analysis,
we take advantage of the unique UTIA BTF visual material measurements [13].

2 Markovian Textural Features

The texture is factorized into K levels of the Gaussian down-sampled pyramid
and subsequently each pyramid level is modeled by a wide-sense Markovian type
of model - the Causal Auto-regressive Random (CAR) model. Let us assume that
each multispectral (color) texture is composed of C spectral planes (usually
C = 3), Yr = [Yr,1, . . . , Yr,C ]T is the multispectral pixel at location r. The mul-
tiindex r = (r1, r2) is composed of row index r1 and column index r2. The
spectral planes are mutually decorrelated by the Karhunen-Loéve transforma-
tion. The two-dimensional models assume that the j-th spectral plane of the
pixel at position r can be modeled as:

Yr,j = γjZr,j + εr , (1)

where Zr,j = [Yr−s,j : ∀s ∈ Ir]T is the η × 1 data vector, εr is Gaussian
white noise with constant but unknown variance, γj = [a1,j , . . . , aη,j ] is the
1× η unknown parameter vector. Some selected contextual causal or unilateral
neighbor index shift set is denoted Ir and η = cardinality(Ir) , see Fig. 1. The
texture is analyzed in a chosen direction, where multi-index t changes according
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to the movement on the image lattice I. Given the known CAR process history
Y (t−1),j = {Yt−1,j , Yt−2,j , . . . , Y1,j , Zt,j , Zt−1,j , . . . , Z1,j} , γ̂j can be estimated
using fast, numerically robust recursive statistics [9]:

Vt−1,j =
(∑t−1

u=1 Yu,jYu,j
T ∑t−1

u=1 Yu,jZu,j
T∑t−1

u=1 Zu,jYu,j
T ∑t−1

u=1 Zu,jZu,j
T

)
+ V0 =

(
Vy,j(t−1) V T

zy,j(t−1)

Vzy,j(t−1) Vz,j(t−1)

)
,(2)

γ̂T
t−1,j = V −1

z,j(t−1)Vzy,j(t−1) , (3)

λt−1,j = Vy,j(t−1) − V T
zy,j(t−1)V

−1
z,j(t−1)Vzy,j(t−1) , (4)

where the positive definite matrix V0 represents prior knowledge. Our textural
features are as,j ∀s ∈ Ir, j = 1, . . . , C which are color invariants and additional
color invariant features derived from this model in [15]. The spectral index is
excluded for simplification in (10)–(20) for all statistics in these invariants.

α3 =
√ ∑

∀r∈I

(Yr − γ̂tZr)
T

λ−1
t (Yr − γ̂tZr) , (5)

α4 =
√ ∑

∀r∈I

(Yr − μ)T λ−1
t (Yr − μ) } , (6)

β6 = ln

( ∑
∀r∈I

1
|I| p

(
Yr|Y (r−1)

) ∣∣Vy(t)

∣∣ 1
2

)
, (7)

β7 = ln
(
ln p

(
Y (t)|M

)
+ (ψ(t + 1) + 2) ln

∣∣Vy(t)

∣∣) , (8)

Fig. 1. Unilateral contextual neighborhood Ir of sixth-order used for CAR model. X
marks the current pixel, the bullets are pixels in the neighborhood, the arrow shows
movement direction, and the grey area indicates acceptable neighborhood pixels. (Color
figure online)
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Fig. 2. The appearance of patterns from the UEA database with varying illumination
spectra, acquisition devices (top row), and scale (bottom row).
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, (20)

where μ is the mean value of Yr and ψ(t) is a number of the pixel from
the beginning. p

(
Y (t)|M)

is the posterior probability of the model (1), and
p

(
Yr|Y (r−1)

)
is prediction probability, both defined in [9]. We used neigborhood

Ir of sixth order (see Fig. 1), where η = 14, r = 0 coresponding to prior, and
t equals to the last pixel in the image. All invariants (10)–(20) were computed
on all spectral planes and concatenated into the feature vector. The CAR model
and color invariant feature vector were computed on K = 5 Gaussian pyramid
levels and in 3 directions, and the features were again concatenated. Finally, the
feature vectors were compared with fuzzy contrast FC3 [30]. Downscaling on
the Gaussian pyramid is possible as the image provides sufficient resolution. It
may be needed for lower resolution images to use K = 4 levels of the Gaussian
pyramid, which was also tested. When the Karhunen-Loéve transformation pre-
ceded CAR features computation, they were denoted by the ‘-KL’ suffix. The
feature vector size is 1515 for K = 5 and 1212 for K = 4 pyramid levels.



Textural Features Sensitivity to Scale and Illumination Variations 241

3 Frequented Alternative Features

Hundreds of various textural features were published and to test all these features
on the extensive UTIA BTF wood database (426 465 wood images, 260 TB of
data) is infeasible. Hence, we compare the CAR features with the following
most frequented four alternatives, each compared with their author’s suggested
distance:

– Color histogram features computed as cumulative histogram [34] on each
spectral plane separately and concatenated, compared with L1 distance (384
features).

– Gabor features [7,16,21,25] computed on each spectral plane separately and
concatenated, compared with L1 distance normalized to standard deviation
of features (144 features).

– Opponent Gabor features [19] compared with L2 distance normalized to stan-
dard deviation of features (252 features).

– Local Binary Patterns LBP8,1+8,3 and LBPu
16,2 [27] computed either on

grayscale images or each spectral plane separately and concatenated, com-
pared with the Kullback Leibler divergence (1536 and 243 features). LBP
features exist in various modifications [1,5,17,20,22,26,40], but they have
similar behavior; hence we chose two of their variants as representatives of
the whole group as any comparison cannot be considered an exhaustive inves-
tigation without the LBP strategy.

The setup of listed features is described in more detail in [15]. The other tested
parameters were under-performing, namely histogram and Gabor features on
gray images. We excluded fashionable neural net features due to their uncom-
petitiveness on often restricted test data in practical applications. They are
little understood, wasteful, dependent on the net topology, and thus cannot be
regarded as well-defined textural features. Moreover, we use only between one
to six training images which are insufficient for neural net robust learning. The
MRF features outperformed deep CNN in the bark recognition problem even on
extensive training data, as demonstrated in [28]. This result is understandable
because MRF features are descriptive while neural net features are discrimina-
tive. Similar results were presented in the extensive comparison of the multilayer
NN marble textures classification with 17 variants of the LBP feature and three
types of key-point texture descriptors in [32]. In their results, the CNN features
never outperform all these alternatives. Another comparison where NN - Scat-
Net, PCANet, FV-AlexNet, and RandNet do not outperform LBP features on
Outex, CUReT, ALOT, and KTHTIPS data can be consulted in [24]. However,
it would be interesting to include tests with a low number of training samples
which would reveal the robustness of features to various conditions as in [3,36].

4 Experiments

We tested the scale sensitivity of the selected textural features on two databases:
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Fig. 3. The appearance of two veneers from the Wood UTIA BTF database in varying
illumination direction (upper two rows) and different scale (bottom row).

(i) University of East Anglia (UEA) Uncalibrated Image Database [4] consisting
of patterns under different illumination spectra and

(ii) wooden BTF measurements from the extensive UTIA BTF database [13]
composed of material images under varying illumination directions.

4.1 University of East Anglia Uncalibrated Image Database

The UEA dataset contains 28 textile designs, captured with six different de-
vices (4 color cameras and two color scanners), and images for cameras were
illuminated with three different illumination spectra, which sums up to 394
images in total (see examples in Fig. 2). UEA images are supposed to include
even non-linear relations of images caused by different processing in acquisition
devices (gamma correction) [4], no light calibration was performed. Since the
UEA database images include some scale variations, we have corrected this and
rescaled the images to have the same scale and resolution.

4.2 Wood UTIA BTF Database

This study’s Wood UTIA BTF database contains veneers from sixty-five varied
European, African, and American wood species. The UTIA BTF database1 was
measured using the high precision robotic gonioreflectometer [11], which consists
of independently controlled arms with a camera and light. Its parameters, such as
angular precision of 0.03◦, the spatial resolution of 1000 DPI, or selective spatial
measurement, classify this gonioreflectometer as a state-of-the-art device. They
1 http://btf.utia.cas.cz/.

http://btf.utia.cas.cz/
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measured each wood sample in 81 viewing positions times 81 illumination posi-
tions resulting in 6561 images per sample, 4 TB of data. Because of substantial
storage requirements, we took only images for one camera position (top view),
and we selected 35 from 81 illumination directions (1 image with the tilt of 0◦,
12 images with 30◦, ten images with 60◦, and 12 images with 75◦). The images
uniformly represent the space of possible illumination directions (examples in
Fig. 3).

4.3 Setup

In both experiments, all images were scaled down to 95%, 90%, 85%, . . . , 50%
of their original size, and regions with the same resolution were cropped. Con-
sequently, the image of scale 50% covers double the size of the original texture
image, but with half of the details than scale 100%. The training set contains
only images with original scales, and the classification accuracy was tested for
all scales separately. Training images per each material were randomly selected
from the training set, and the remaining images were classified using the Nearest
Neighbor (1-NN) classifier. The number of training images went from 1 to 6, and
the results averaged over 103 of random selections of training images. Even single
training samples were randomly selected, so they could have different illumina-
tion conditions for each material, making recognition more challenging. In total,
we used 4 312 images with 332 × 275 resolution for UEA and 25 025 images
with 816 × 802 resolution for Wood UTIA BTF.

Table 1. Classification accuracy [%] averaged over all scales and illumination angles
on the UEA/Wood UTIA BTF datasets. Columns display results for the increasing
number of training samples per class.

UEA Wood UTIA BTF
No. of training samples 1 3 6 1 3 6

Color histogram 15.3 23.2 32.6 10.6 19.7 28.6
Gabor 33.9 46.2 59.7 18.0 28.6 36.8
Opponent Gabor 44.0 61.0 70.1 24.0 36.4 44.3
LBPu

16,2, gray 18.4 35.0 45.8 7.2 11.0 13.3
LBP8,1+8,3, color 14.1 28.2 38.1 13.3 21.0 25.6
2D CAR-KL (K = 4) 43.1 58.2 67.0 39.9 55.7 64.3
2D CAR-KL 48.4 62.8 70.2 45.4 61.4 69.4
2D CAR 52.1 66.2 73.0 32.8 47.1 55.7

4.4 Results

Table 1 summarizes recognition accuracy for the best parameters of compared
features. The 2D CAR features are superior for all test numbers of random train-
ing images per material. The classification of the accuracy of 2D CAR-KL aver-
aged over all scale variations goes from 48.4%/45.4% (UEA/Wood UTIA BTF)
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for one training sample to 70.2%/69.4% for six training samples per class. The
standard deviation is less than 4 for one training sample, less than 3 for six train-
ing samples for UEA, and less the 2 for Wood UTIA BTF for all features. The 2D
CAR model achieved slightly better results without the Karhunen-Loève trans-
formation for UEA. However, we include 2D CAR-KL for more detailed analysis
since it has better classification accuracy for other experiments [14]. Also, the
2D CAR-KL model on K = 4, levels of the Gaussian pyramid achieved lower
accuracy than the standard K = 5 levels if the images have sufficient resolution
(Wood UTIA BTF). The only comparable features for UEA are opponent Gabor
features that achieved similar performance as 2D CAR-KL with slightly lower
accuracy for one training sample. Gabor features are also the best alternative
in Wood UTIA BTF, but their accuracy is more than 20% points lower than
2D CAR-KL. Color histograms suffer from their sensitivity to color changes,
which results in their low performance. Even though the color histograms are
robust to scale variation (because they do not describe spatial relations) they
are unable to recognize materials under different illumination spectra. LBP and
histogram features did not perform satisfactorily. The reason is that binarized
LBP micropatterns are sensitive to illumination direction [35]. They are also
very sensitive to even slight scale variations, as confirmed by [15].

Table 2. Classification accuracy [%] shown for different illumination tilt (declination
angle from the surface normal) without any scale variation (Wood UTIA BTF). The
training sample is illuminated from the surface normal direction.

Illumination tilt [deg] 30 60 75 Avg.

Opponent Gabor 50.1 26.1 14.9 30.8
LBP8,1+8,3, color 55.8 25.2 13.6 31.5
2D CAR-KL 83.3 62.9 42.1 62.8

University of East Anglia. Detailed comparison for UEA scale variation is
displayed in Fig. 4, where we can see classification accuracy significantly increases
if scales of training and test samples are closer to each other. The only exception
is color histogram features, which cannot recognize the same materials on the
same scale due to insufficient robustness to the illumination spectra changes.
These conclusions hold for one training sample and six random training samples
per class. The 2D CAR-KL features again achieved the best results, where clas-
sification accuracy for one training sample starts on 23.1% for half scale factor
and goes to 64.9% for the same scale (15% better than alternative features).
Opponent Gabor features were slightly better for the highest difference in the
scale factor. A similar situation holds for six training samples, where classifi-
cation accuracy goes from 36.9% to 90.0% for 2D CAR-KL features. However,
opponent Gabor features performed better with a significant difference in scale
factor (0.5 - 0.7).
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Fig. 4. The illustration of the classification accuracy [%] progresses with decreasing
scale differences among training and test sets (UEA). On the left for one training
sample and on the right for six training samples per class.

Fig. 5. Classification accuracy [%] progresses with decreasing scale differences among
training and test sets (Wood UTIA BTF). On the left for one training sample and on
the right for six training samples per class.

Wood UTIA BTF. The detailed comparison of scale variation on Wood UTIA
BTF is displayed in Fig. 5. The classification accuracy increases as scales of train-
ing and test samples are closer (except for histogram features). The best results
were again achieved by 2D CAR-KL features, where classification accuracy for
one training sample starts at 22.7% for half scale and goes to 60.9% for the same
scale. This improvement is more than 10% better than the opponent Gabor fea-
tures for all scale factors. A similar situation holds for six training samples, where
classification accuracy goes from 31.5% to 91.0% for 2D CAR-KL features, again
more than 10% better than opponent Gabor features.
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Fig. 6. The classification accuracy [%] for all combinations of scales among training
and test sets UEA (left)/Wood UTIA BTF (right), one training sample per class was
used.

Across Scales. Figure 6 shows classification accuracy across different training
and test scales combinations on UEA and Wood UTIA BTF, with a single train-
ing sample (averaged over 103 of random selections). As expected, classification
accuracy decreases with a more considerable difference in scale factors. It is
worth noting that the last rows of images in Fig. 6 correspond to the 2D CAR-
KL graphs on the left in Fig. 4 and Fig. 5. Interestingly, recognition accuracy
on the diagonal decreases from a scale factor of 0.5 to 1. This decrease may be
caused by the fact that images with a scale factor of 0.5 cover a larger area of the
original material (although being subsampled), so they contain comprehensive
information, and the extracted features can be more discriminative.

Illumination Tilt. The additional experiment utilizes different illumination
angles in Wood UTIA BTF and splits classification accuracy for different illu-
mination tilts. The single training sample was fixed to the illumination from
a normal surface direction (0-◦ tilt), and the remaining images were classified.
The classification accuracy is averaged for each illumination tilt: 30, 60, and
75◦ (12, 10, and 12 images). Training and test sets have the same scaling factor
1. The results are displayed in Table 2, where classification accuracy decreases
as illumination direction moves further from training sample illumination. The
last column’s average results roughly correspond to the left graph in Fig. 5 for
test scale factor 1. As the scale variation is not present, the results of LBP and
opponent Gabor features are comparable.

5 Conclusion

The results indicate that Markovian illumination invariant texture features (2D
CAR), based on the Markovian descriptive model, are the most robust tex-
tural features for realistic texture classification under the natural conditions
when learning and classifying textures differ in scale and illumination proper-
ties. The 2D CAR features outperformed alternative tested textural features,
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i.e., the Gabor, opponent Gabor, variants of LBP, or color histogram texture
features. 2D CAR statistical features are analytically derived from the underly-
ing descriptive textural model and can be efficiently, recursively, and adaptively
learned. Their additional advantage is their numerically robust estimation. The
method’s correct recognition accuracy improvements are between 27% and 44%,
compared to the LBP features and up to 25% compared to the opponent Gabor
features (the second-best alternative). The worst are color histograms with an
accuracy decrease between 35% and 43%. The color Markovian textural features
were also successfully applied elsewhere in recognition of wood veneers using a
smartphone camera [14], or tree taxonomy categorization based on bark or conif-
erous tree needles [28]. The presented results apply for recognition with bounded
scale variation. The full scale-invariant textural features should be considered for
extreme expected scale variation. However, fully invariant features usually lose
some discriminability. Thus, each application needs carefully balance invariance
to expected variability and discriminability.

References

1. Ahonen, T., Matas, J., He, C., Pietikainen, M.: Rotation invariant image descrip-
tion with local binary pattern histogram Fourier features. In: SCIA, pp. 61–70
(2009). https://doi.org/10.1007/978-3-642-02230-2_7

2. Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with
the materials in context database. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3479–3487 (2015)

3. Burghouts, G.J., Geusebroek, J.M.: Material-specific adaptation of color invariant
features. Patt. Recogn. Lett. 30, 306–313 (2009). https://doi.org/10.1016/j.patrec.
2008.10.005

4. Finlayson, G., Schaefer, G., Tian, G.: The UEA uncalibrated colour image
database. Technical Report SYS-C00, School of Information System, University
of East Anglia, Norwich, UK (2000)

5. Fu, X., Wei, W.: Centralized binary patterns embedded with image Euclidean dis-
tance for facial expression recognition. In: ICNC 2008. Fourth International Con-
ference on Natural Computation 2008, vol. 4, pp. 115–119, October 2008. https://
doi.org/10.1109/ICNC.2008.94

6. Gibert, X., Patel, V.M., Chellappa, R.: Material classification and semantic seg-
mentation of railway track images with deep convolutional neural networks. In:
2015 IEEE International Conference on Image Processing (ICIP), pp. 621–625.
IEEE (2015)

7. Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based
on Gabor filters. IEEE Trans. Image Process. 11(10), 1160–1167 (2002)

8. Haindl, M., Havlíček, V.: A multiscale colour texture model. In: Kasturi, R., Lau-
rendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on
Pattern Recognition, pp. 255–258. IEEE Computer Society, Los Alamitos, August
2002. https://doi.org/10.1109/ICPR.2002.1044676

9. Haindl, M.: Visual data recognition and modeling based on local Markovian mod-
els. In: Florack, L., Duits, R., Jongbloed, G., Lieshout, M.C., Davies, L. (eds.)
Mathematical Methods for Signal and Image Analysis and Representation, Com-
putational Imaging and Vision, vol. 41, chap. 14, pp. 241–259. Springer, London
(2012), https://doi.org/10.1007/978-1-4471-2353-8_14

https://doi.org/10.1007/978-3-642-02230-2_7
https://doi.org/10.1016/j.patrec.2008.10.005
https://doi.org/10.1016/j.patrec.2008.10.005
https://doi.org/10.1109/ICNC.2008.94
https://doi.org/10.1109/ICNC.2008.94
https://doi.org/10.1109/ICPR.2002.1044676
https://doi.org/10.1007/978-1-4471-2353-8_14


248 P. Vácha and M. Haindl

10. Haindl, M., Filip, J.: Visual Texture. Advances in Computer Vision and Pattern
Recognition, Springer-Verlag, London, London, January 2013. https://doi.org/10.
1007/978-1-4471-4902-6

11. Haindl, M., Filip, J., Vávra, R.: Digital material appearance: the curse of tera-
bytes. ERCIM News (90), 49–50 (2012). http://ercim-news.ercim.eu/en90/ri/
digital-material-appearance-the-curse-of-tera-bytes

12. Haindl, M., Havlíček, V.: A multiresolution causal colour texture model. Lecture
Notes in Computer Science, vol. 1876, pp. 114–122 (2000)

13. Haindl, M., Mikeš, S., Kudo, M.: Unsupervised surface reflectance field multi-
segmenter. In: Azzopardi, G., Petkov, N. (eds.) Computer Analysis of Images
and Patterns. Lecture Notes in Computer Science, vol. 9256, pp. 261–273.
Springer International Publishing, September 2015. https://doi.org/10.1007/978-
3-319-23192-1_22

14. Haindl, M., Vacha, P.: Wood veneer species recognition using Markovian textu-
ral features. In: Azzopardi, G., Petkov, N. (eds.) Computer Analysis of Images
and Patterns. Lecture Notes in Computer Science, vol. 9256, pp. 300–311.
Springer International Publishing, September 2015. https://doi.org/10.1007/978-
3-319-23192-1_25

15. Haindl, M., Vácha, P.: Scale sensitivity of textural features. In: Beltrán-Castañón,
C. et al. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications: 21st Iberoamerican Congress, CIARP 2016, Lima, Peru, 2016,
Proceedings. LNCS, vol. 10125, pp. 84–92. Springer International Publishing AG,
Gewerbestrasse 11, Cham, CH-6330, Switzerland, November 2017. https://doi.org/
10.1007/978-3-319-52277-7_11

16. Han, J., Ma, K.K.: Rotation-invariant and scale-invariant Gabor features for tex-
ture image retrieval. Image Vis. Comput. 25(9), 1474–1481 (2007)

17. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local
binary patterns. Pattern Recogn. 42(3), 425–436 (2009). https://doi.org/10.1016/
j.patcog.2008.08.014

18. Hlaing, C.S., Zaw, S.M.M.: Tomato plant diseases classification using statistical
texture feature and color feature. In: 2018 IEEE/ACIS 17th International Confer-
ence on Computer and Information Science (ICIS), pp. 439–444. IEEE (2018)

19. Jain, A.K., Healey, G.: A multiscale representation including opponent color fea-
tures for texture recognition. IEEE Trans. Image Process. 7(1), 124–128 (1998)

20. Khellah, F.: Texture classification using dominant neighborhood structure. IEEE
Trans. Image Process. 20(11), 3270–3279 (2011). https://doi.org/10.1109/TIP.
2011.2143422

21. Li, Z., Liu, G., Jiang, H., Qian, X.: Image copy detection using a robust Gabor
texture descriptor. In: Proceedings of the First ACM Workshop on Large-scale
Multimedia Retrieval and Mining, pp. 65–72. LS-MMRM 2009. ACM, New York,
NY, USA (2009). https://doi.org/10.1145/1631058.1631072

22. Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture
classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009). https://doi.
org/10.1109/TIP.2009.2015682

23. Liu, L., Chen, J., Fieguth, P., Zhao, G., Chellappa, R., Pietikainen, M.: A survey of
recent advances in texture representation. arXiv preprint arXiv:1801.10324 (2018)

24. Liu, L., Fieguth, P., Wang, X., Pietikäinen, M., Hu, D.: Evaluation of LBP and deep
texture descriptors with a new robustness benchmark. In: European Conference on
Computer Vision, pp. 69–86. Springer (2016). https://doi.org/10.1007/978-3-319-
46487-9_5

https://doi.org/10.1007/978-1-4471-4902-6
https://doi.org/10.1007/978-1-4471-4902-6
http://ercim-news.ercim.eu/en90/ri/digital-material-appearance-the-curse-of-tera-bytes
http://ercim-news.ercim.eu/en90/ri/digital-material-appearance-the-curse-of-tera-bytes
https://doi.org/10.1007/978-3-319-23192-1_22
https://doi.org/10.1007/978-3-319-23192-1_22
https://doi.org/10.1007/978-3-319-23192-1_25
https://doi.org/10.1007/978-3-319-23192-1_25
https://doi.org/10.1007/978-3-319-52277-7_11
https://doi.org/10.1007/978-3-319-52277-7_11
https://doi.org/10.1016/j.patcog.2008.08.014
https://doi.org/10.1016/j.patcog.2008.08.014
https://doi.org/10.1109/TIP.2011.2143422
https://doi.org/10.1109/TIP.2011.2143422
https://doi.org/10.1145/1631058.1631072
https://doi.org/10.1109/TIP.2009.2015682
https://doi.org/10.1109/TIP.2009.2015682
http://arxiv.org/abs/1801.10324
https://doi.org/10.1007/978-3-319-46487-9_5
https://doi.org/10.1007/978-3-319-46487-9_5


Textural Features Sensitivity to Scale and Illumination Variations 249

25. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image
data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996). https://doi.
org/10.1109/34.531803

26. Nanni, L., Lumini, A., Brahnam, S.: Survey on LBP based texture descriptors for
image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012). https://doi.org/
10.1016/j.eswa.2011.09.054

27. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. Pattern
Anal. Mach. Intell. 24(7), 971–987 (2002)

28. Remeš, V., Haindl, M.: Bark recognition using novel rotationally invariant multi-
spectral textural features. Pattern Recogn. Lett. 125, 612–617 (2019). https://doi.
org/10.1016/j.patrec.2019.06.027

29. Roy, S.K., Bhattacharya, N., Chanda, B., Chaudhuri, B.B., Ghosh, D.K.:
FWLBP: a scale invariant descriptor for texture classification. arXiv preprint
arXiv:1801.03228 (2018)

30. Santini, S., Jain, R.: Similarity measures. IEEE Trans. Patt. Anal. Mach. Intell.
21(9), 871–883 (1999)

31. Shivashankar, S., Kudari, M., Hiremath, P.S.: Galois field-based approach for rota-
tion and scale invariant texture classification. Int. J. Image, Graph. Signal Process.
(IJIGSP) 10(9), 56–64 (2018)

32. Sidiropoulos, G.K., Ouzounis, A.G., Papakostas, G.A., Sarafis, I.T., Stamkos, A.,
Solakis, G.: Texture analysis for machine learning based marble tiles sorting. In:
2021 IEEE 11th Annual Computing and Communication Workshop and Confer-
ence (CCWC), pp. 0045–0051. IEEE (2021)

33. Simon, P., Uma, V.: Review of texture descriptors for texture classification.
In: Data Engineering and Intelligent Computing, pp. 159–176. Springer (2018).
https://doi.org/10.1007/978-981-10-3223-3_15

34. Stricker, M.A., Orengo, M.: Similarity of color images, vol. 2420, pp. 381–392. SPIE
(1995). https://doi.org/10.1117/12.205308

35. Vácha, P., Haindl, M.: Texture recognition using robust Markovian features.
In: Salerno, E. et al. (eds.) Computational Intelligence for Multimedia Under-
standing, Lecture Notes in Computer Science, vol. 7252, pp. 126–137. Springer,
Berlin/Heidelberg (2012). https://doi.org/10.1007/978-3-642-32436-9_11

36. Vácha, P., Haindl, M., Suk, T.: Colour and rotation invariant textural features
based on Markov random fields. Pattern Recogn. Lett. 32(6), 771–779 (2011).
https://doi.org/10.1016/j.patrec.2011.01.002

37. Varma, M., Zisserman, A.: A statistical approach to material classification using
image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047
(2009). https://doi.org/10.1109/TPAMI.2008.182

38. Veerashetty, S., Patil, N.B.: Novel LBP based texture descriptor for rotation, illu-
mination and scale invariance for image texture analysis and classification using
multi-Kernel SVM. Multimedia Tools Appl. 79(15), 9935–9955 (2020)

39. Yang, P., Zhang, F., Yang, G.: Fusing DTCWT and LBP based features for rota-
tion, illumination and scale invariant texture classification. IEEE Access 6, 13336–
13349 (2018)

40. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary
pattern: face recognition with high-order local pattern descriptor. IEEE Trans.
Image Process. 19(2), 533–544 (2010)

https://doi.org/10.1109/34.531803
https://doi.org/10.1109/34.531803
https://doi.org/10.1016/j.eswa.2011.09.054
https://doi.org/10.1016/j.eswa.2011.09.054
https://doi.org/10.1016/j.patrec.2019.06.027
https://doi.org/10.1016/j.patrec.2019.06.027
http://arxiv.org/abs/1801.03228
https://doi.org/10.1007/978-981-10-3223-3_15
https://doi.org/10.1117/12.205308
https://doi.org/10.1007/978-3-642-32436-9_11
https://doi.org/10.1016/j.patrec.2011.01.002
https://doi.org/10.1109/TPAMI.2008.182

	Textural Features Sensitivity to Scale and Illumination Variations
	1 Introduction
	2 Markovian Textural Features
	3 Frequented Alternative Features
	4 Experiments
	4.1 University of East Anglia Uncalibrated Image Database
	4.2 Wood UTIA BTF Database
	4.3 Setup
	4.4 Results

	5 Conclusion
	References




