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Abstract
The article introduces multivariate quantiles (or ref-
erence regions) that have both overall and directional
probability interpretation and need not be necessarily
convex. They are defined by means of univariate condi-
tional quantiles along the rays starting at a suitable cen-
tral point. Their basic properties are investigated, their
sample estimators and regression extensions are pro-
posed, and their use is illustrated with both simulated
and real data.
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1 INTRODUCTION

Univariate quantiles have already become important pillars of modern statistical theory. Unfortu-
nately, none of their numerous multivariate extensions has become similarly useful, widespread,
and universally acceptable due to the lack of natural ordering in vector spaces. The most fruitful
multivariate quantile generalizations are usually based on statistical data depth, norm minimiza-
tion or M-estimation, functional inversions, gradients, or generalized quantile processes and their
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properties; see Serfling (2002) for a partial survey. The various directional multivariate quan-
tile concepts are especially appealing because they typically generalize to the multidimensional
case not only the (inter)quantile intervals as quantile regions, but also the univariate quan-
tiles themselves (usually as multidimensional points, vectors, or hyperplanes); see, for example,
Chaudhuri (1996), Koltchinskii (1997), Chakraborty (2001), Cheng and De Gooijer (2007),
Wei (2008), Hallin et al. (2010a,b), Paindaveine and Šiman (2011), Kong and Mizera (2012) and
Hallin et al. (2015). Although these directional quantiles are often equipped with some direct
probability interpretation related to their quantile level, such an interpretation of the resulting
quantile regions is usually unclear and distribution-dependent. The only exceptions in this regard
can probably be found in the two works closely related to this one, namely in Wei (2008) and
Petersen (2003). They therefore deserve further attention.

Assume a standardized random vector X ∈ Rp and a quantile level 𝜏 ∈ (0, 1). Wei (2008)
considers all unit directions u ∈ Rp, ||u|| = 1, and corresponding lines a(u) = {tu, t ∈ R}
containing the origin. Each of them determines the closed directional 𝜏-quantile inter-
val, say [l

𝜏

(u),u
𝜏

(u)], which by definition consists of all points x ∈ a(u) satisfying
both

P
(

u′X ≤ u′x|X ∈ a(u)
)
≤

1 + 𝜏

2

and

P
(

u′X ≤ u′x|X ∈ a(u)
)
≥

1 − 𝜏

2
.

These intervals are then used to define the 𝜏-quantile region W
X (𝜏) of X,


W
X (𝜏) =

⋃

||u||=1
[l
𝜏

(u),u
𝜏

(u)],

that has its coverage probability P(X ∈ W
X (𝜏)) equal to 𝜏. Of course, ||⋅|| symbolizes the Euclidean

norm.
If X = (X1, … ,Xp)′ ∈ Rp is a general random vector with location parameter 𝝁 and scale

diagonal matrix S, then the 𝜏-quantile region W
X (𝜏) of X can be obtained as follows:


W
X (𝜏) = 𝝁 + S W

S−1(X−𝝁)(𝜏) =
{

𝝁 + Sx ∶ x ∈ W
S−1(X−𝝁)(𝜏)

}

.

Wei (2008) uses vector 𝝁 = (med(X1), … ,med(Xp))′ of componentwise medians and diagonal
matrix S = diag(MAD(X1), … ,MAD(Xp)) created from componentwise median absolute devia-
tions, for example.

The article of Wei (2008) also discusses the inclusion of covariates and an application to the
construction of growth charts. Unfortunately, the theory presented there lacks important details.
Furthermore, the resulting population multivariate quantile regions are not fully affine equivari-
ant due to the particular choice of 𝝁 and S functionals. On top of that, they need not have star
shapes and well-behaving boundaries, see figure B.1 of Wei (2008). What is worse, the problem-
atic and strange contour behavior crucially depends on the point used for centering and cannot
be escaped in case of asymmetric distributions for small quantile levels 𝜏. It is because that con-
tour behavior can be observed whenever the directional interval [l

𝜏

(u),u
𝜏

(u)] does not contain
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the origin for some direction u. Needless to say that the recommended estimation algorithm then
fails.

The multivariate quantile concept presented here is similar to that of Wei (2008), but it avoids
the normalization of X and uses a different definition of the directional 𝜏-quantile intervals (based
on rays, i.e., half-lines) to construct quantile regions around any predetermined center point 𝝁
that need not be related to any distributional symmetry or to X at all. Therefore, it might be better
to speak about reference regions, but the whole article calls even such sets as quantiles for the
sake of simplicity and brevity.

The difference between rays (half-lines) and lines in the definition of the directional 𝜏-quantile
intervals is subtle but very important because it ensures that they always contain the origin, which
excludes the strange or problematic behavior of the resulting quantile contours for any continuous
distribution, any quantile level, and any center point in the interior of the distributional support.
And it produces star-shaped quantile regions with continuous quantile contours having many
good properties, including equivariance with respect to affine and many other transformations;
see Theorems 1, 3, and 4. Recall that a set is called star-shaped (also star domain, star-convex, or
radially convex) if it contains a center point such that all the line segments linking it to other points
of the set also lie in the set. Such sets conveniently generalize the convex ones while remaining
connected.

Furthermore, the approach presented here uses a different (and simpler) estimation method
and a different (and simpler) regression generalization, both based on locally polynomial quantile
regression.

As for Petersen (2003), it considers the same ray-based population quantile regions as this
paper, mentions their right overall coverage probability, and suggests their locally constant/linear
estimation, but all that only in the bivariate location case and with 𝝁 taken as a center of the dis-
tribution. This article thus extends the proposal of Petersen (2003) to a general multidimensional
and regression setting with an arbitrary center point 𝝁 and provides a rigorous theoretical analysis
of the extension.

It is also worth mentioning that the quantile regions discussed here need not be necessar-
ily convex, which distinguishes them from the large majority of other multivariate quantiles
described in the literature. Nonconvex quantile regions have been growing popular only recently,
see, for example, the proposals of Chen et al. (2009), Hlubinka et al. (2010), Agostinelli and
Romanazzi (2011), Paindaveine and Van Bever (2013), Chernozhukov et al. (2016), and Carlier
et al. (2016). The population concept presented here seems to outperform all those nonconvex
proposals in terms of probability interpretation (having both overall and directional meaning)
and equivariance properties (going far beyond full affine equivariance and certain monotone
equivariance; see Theorem 3).

2 PRELIMINARY CONSIDERATIONS

Assume a univariate continuous random variable X with distribution function F, quantile
function

F−1(𝜏) = inf{x ∶ F(x) ≥ 𝜏}, 0 < 𝜏 < 1,

and a center point 𝜇 that can then be used to define two conditional functions Fl and Fr associated
with the only two unit directions available in the univariate case, namely −1 and 1 (or, left and
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right):

Fl(x) = P(X > x|X ≤ 𝜇) = (F(𝜇) − F(x))∕F(𝜇) for x ≤ 𝜇,

Fl(x) = 0 for x > 𝜇,

Fr(x) = P(X ≤ x|X > 𝜇) = (F(x) − F(𝜇))∕(1 − F(𝜇)) for x > 𝜇,

Fr(x) = 0 for x ≤ 𝜇.

Consequently,

F−1
l (𝜏) = F−1 (F(𝜇) − 𝜏F(𝜇)) and F−1

r (𝜏) = F−1(F(𝜇) + 𝜏 − 𝜏F(𝜇)),

and the intervals [F−1
l (𝜏),F−1

r (𝜏)] have their coverage probability equal to 𝜏 regardless of 𝜇:

P
(

F−1
l (𝜏) ≤ X ≤ F−1

r (𝜏)
)
= 𝜏, 𝜏 ∈ (0, 1).

In contrast, Wei (2008) would result in univariate intervals

[F−1(1∕2 − 𝜏∕2),F−1(1∕2 + 𝜏∕2)]

(regardless of 𝜇 and also with the coverage probability 𝜏) that coincide with [F−1
l (𝜏),F−1

r (𝜏)] only
if 𝜇 = F−1(1∕2).

The multivariate quantiles presented here attempt to generalize intervals [F−1
l (𝜏),F−1

r (𝜏)]
to the general multivariate case where a random vector X = (X1, … ,Xp)′ ∈ Rp, p ≥ 2, fol-
lows a continuous probability distribution with a center point 𝝁(X) = 𝝁 = (𝜇1, … , 𝜇p)′
∈ Rp.

The only problem to be solved lies in the fact that P(X ∈ {𝝁 + tu, t ≥ 0}) is zero for any
direction u ∈ Rp. Fortunately, this issue can be overcome in an elegant way by means of the
hyperspherical coordinate system centered at 𝝁(X) where X can be expressed by means of the
hyperspherical coordinates vector (R,U′)′, resp. (R,𝜱′)′ ≡ (R, (𝛷1, … , 𝛷p−1)′)′, where R ∈ [0,∞)
denotes the Euclidean distance between X and 𝝁(X), U ∈ p−1 = {u ∈ Rp ∶ ||u|| = 1} stands for
the unit vector from 𝝁(X) in the direction of X, and𝜱 = (𝛷1, … , 𝛷p−1)′ ∈ Ω is the angular vector
uniquely describing the unit vector U. Here,Ω = [0, 𝜋]p−2 × [0, 2𝜋) + 𝝎 is used for parametrizing
p−1 where often 𝝎 = 0 by convention but any other 𝝎 = (0, … , 0, 𝜔)′, 𝜔 ∈ R, could be used as
well.

Each of the two parametrizations, by unit directions and by angles, has its own appeal. On
the one hand, the use of (manifold-valued) unit vectors is very intuitive and straightforward.
On the other hand, the angles are usually easy to handle mathematically. Consequently, both
parametrizations are used when appropriate.

As far as 𝝁(X) is concerned, its knowledge is still required. As the location functional 𝝁 is
naturally assumed to be shift equivariant, 𝝁(X) is considered zero without any loss of generality
hereinafter. (Otherwise, one would have to use the observations centered with 𝝁.)

Needless to say that there are plenty of shift-equivariant location functionals 𝝁 includ-
ing the mode, mean, or various medians (Small, 1990) of the multivariate distribution. For
example, the mean and the medians induced by the simplicial, halfspace, and projection depths
(Serfling & Zuo, 2000) are all fully affine equivariant, and their regression modifications are
already available to be used in the regression extensions mentioned below; see, for example, Hallin
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and Šiman (2017) for a review of some available options, and also Šiman (2011) and Boček and
Šiman (2017) with the references therein.

The particular choice of 𝝁may depend on further distributional assumptions and take robust-
ness and computational aspects into consideration. Alternatively, the center point 𝝁 may be
known in advance or given by external circumstances, and the task may be to construct a safe/just
set around it with a given probability coverage where the safety/justice is interpreted in terms of
the same conditional directional probabilities in all directions from 𝝁. It should be stressed that 𝝁
is called a center point only because it (in a sense) lies in the center of all the quantile regions (not
necessarily in the center of the distribution). Its choice influences robustness and some equivari-
ance properties of the presented quantile regions and is itself quite a separate problem. It may also
follow from the practical applications. For example, it may also be the position of the observer,
the source, the reference point, or the target/ideal point, depending on the particular context.

The transformation 𝜓 ∶ (r,𝝋) → x = (x1, … , xp)′ from the hyperspherical coordinates to the
Cartesian ones is continuous and straightforward:

x1 = ru1 = r sin𝜑1 sin𝜑2 … sin𝜑p−2 sin𝜑p−1,

x2 = ru2 = r sin𝜑1 sin𝜑2 … sin𝜑p−2 cos𝜑p−1,

…
xp−1 = rup−1 = r sin𝜑1 cos𝜑2,

xp = rup = r cos𝜑1.

The Jacobian determinant J(r,𝝋) corresponding to 𝜓 is

J(r,𝝋) = rp−1sinp−2(𝜑1) … sin(𝜑p−2).

The inverse transformation 𝜓

−1 ∶ Rp → [0,∞] × Ω is unique except for some special border cases
with zero probability to occur. In other words, it is unique for x = 𝜓(r,𝝓) for some (r,𝝓) ∈ (0,∞) ×
Ω◦ where Ω◦ denotes the interior of Ω.

The hyperspherical coordinates describe the distance from 𝝁(X) = 0 by r and the directions
u by 𝝋. The joint density p(r,𝝋) of R and 𝜱 as well as the marginal density s(𝝋) of 𝜱 and the
conditional density q(r|𝝋) of R given 𝜱 = 𝝋 can then be expressed as follows:

p(r,𝝋) = f (𝜓(r,𝝋)) |J(r,𝝋)| = f (𝜓(r,𝝋)) rp−1sinp−2(𝜑1) … sin(𝜑p−2),

s(𝝋) =
∫

+∞

0
p(𝜌,𝝋) d𝜌,

I(𝝋) =
∫

∞

0
f (𝜓(𝜌,𝝋)) 𝜌p−1 d𝜌,

q(r|𝝋) =
⎧
⎪
⎨
⎪
⎩

p(r,𝝋)
s(𝝋)

= f (𝜓(r,𝝋))rp−1

I(𝝋)
if s(𝝋) ∈ (0,∞),

f (𝜓(r,𝝋))rp−1

I(𝝋)
if s(𝝋) = 0 and I(𝝋) ∈ (0,∞),

0 in the other cases.

The introduction of I(𝝋)makes it possible to continuously extend the definition of q(r|𝝋) to those
𝝋’s where s(𝝋) is zero only due to J(r,𝝋) = 0.

After this spadework, the following definition of multivariate directional quantiles must
appear very straightforward because it only reduces to finding conditional quantiles of R given𝜱.
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3 THEORY

In this section, assume a random vector X = (X1, … ,Xp)′ ∈ Rp, p ≥ 2, with 𝝁(X) = 0 and with
a continuous density f (x) positive on an open set , and write (R,𝜱′)′ for the hyperspherical
coordinates of the random vector X.

Definition 1. Consider the conditional distribution function Q(r|𝝋) and the conditional quantile
function Q−1(𝜏|𝝋) of the radius R given 𝜱 = 𝝋 for any 𝝋 ∈ Ω with I(𝝋) ∈ (0,∞) as follows:

Q(r|𝝋) = P(R ≤ r|𝜱 = 𝝋) =
∫

r

0
q(𝜌|𝝋) d𝜌, r ∈ [0,∞),

and

Q−1(𝜏|𝝋) = inf{r ≥ 0 ∶ Q(r|𝝋) ≥ 𝜏}, 𝜏 ∈ (0, 1).

Then the directional 𝜏-quantile 𝜃
𝜏

(𝝋) (or 𝜃
𝜏

(u) for the direction u ∈ p−1 described by 𝝋) is
defined as

𝜃
𝜏

(𝝋) = 𝜓

(
Q−1(𝜏|𝝋),𝝋

)
, 𝜏 ∈ (0, 1).

In other words, 𝜃
𝜏

(𝝋) is the point that lies in the distance of Q−1(𝜏|𝝋) from the origin in the
direction determined by the angle 𝝋.

In fact, analogous directional quantile approximations can be defined directly in the Cartesian
coordinates if the rays and their beginning parts are respectively replaced with the cones 𝛿(u)
and their bounded versions 𝛿(u, r) having vertex 0, aperture 2𝛿 > 0 and the axis of symmetry
parallel with the direction u ∈ p−1:


𝛿(u) = {x ∈ R

p ∶ ∡ (x,u) ≤ 𝛿} and


𝛿(u, r) = {x ∈ R
p ∶ ∡ (x,u) ≤ 𝛿, ||x|| ≤ r},

where ∡ (v1, v2) ∈ [0, 𝜋] stands for the angle between two p-dimensional vectors v1 and v2,
cos(∡ (v1, v2)) = ⟨v1, v2⟩∕(||v1||||v2||).

Definition 2. Consider

F
𝛿

(r|u) = P
(

X ∈ 𝛿(u, r) | X ∈ 𝛿(u)
)

and corresponding inverse function F−1
𝛿

(𝜏|u), 𝜏 ∈ (0, 1). Then the directional 𝜏-quantile approx-
imation Θ𝛿

𝜏

(u) can be defined for any 𝜏 ∈ (0, 1) and in any unit direction u ∈ Rp as
follows:

Θ𝛿

𝜏

(u) = F−1
𝛿

(𝜏|u) ⋅ u.

The lim sup
𝛿→0+Θ

𝛿

𝜏

(u) is so important that it deserves a special symbol, say Θ
𝜏

(u).

For mutually corresponding𝝋 and u, lim sup
𝛿→0+F

𝛿

(r|u) should intuitively play the same role
as Q(r|𝝋) and, therefore, 𝜃

𝜏

(𝝋) should have the same meaning asΘ
𝜏

(u). Indeed, these directional
quantiles often coincide according to the next theorem.
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Theorem 1. Suppose that the random vector X has a probability distribution with a continuous
and bounded density f satisfying

lim
r→+∞

sup
||u||=1∫

+∞

r
𝜌

p−1f (𝜌u) d𝜌 = 0, (1)

that is positive on a set , 𝝁(X) = 0 ∈ int(). Then always 𝜃
𝜏

(𝝋) = Θ
𝜏

(u) for corresponding 𝝋 ∈
Ω◦ and u ∈ p−1.

Proof. Arbitrarily fix r ∈ [0,∞) and 𝝋 ∈ Ω◦ without any loss of generality. Furthermore, define
U

𝛿

≡ U
𝛿

(𝝋) by 𝜓(1,U
𝛿

) = 𝛿(u) ∩ p−1 and set S
𝛿

∶= ∫U
𝛿

1 d𝜼.
Continuous f implies continuous p and bounded f implies bounded p on any compact set. Note

also that s(𝝋) <∞ thanks to (1) and that s(𝝋) > 0 because 0 ∈ int() and𝝋 ∈ Ω◦. Obviously, s(𝝋)
is absolutely integrable (as every density function).

In fact, s(𝝋)must be continuous in𝝋, which easily results from Heine’s definition of continu-
ity. That is to say that, for any 𝜀 > 0, there exists r0 > 0 such that

|
|
|
|
|

sup
𝝋 ∫

+∞

r0

p(𝜌,𝝋) d𝜌
|
|
|
|
|

≤ sup
𝝋 ∫

+∞

r0

𝜌

p−1f (𝜓(𝜌,𝝋)) d𝜌 < 𝜀

thanks to (1). Consequently, for any sequence {𝝋n}n converging to 𝝋, there exists n0 such that
n > n0 implies

|s(𝝋n) − s(𝝋)| ≤
|
|
|
|∫

r0

0
p(𝜌,𝝋n) d𝜌 −

∫

r0

0
p(𝜌,𝝋) d𝜌

|
|
|
|

+
|
|
|
|
|
∫

+∞

r0

p(𝜌,𝝋n) d𝜌
|
|
|
|
|

+
|
|
|
|
|
∫

+∞

r0

p(𝜌,𝝋) d𝜌
|
|
|
|
|

< 3𝜀,

and thus s(𝝋n)
n→+∞
−−−−−→ s(𝝋).

If 𝛿 → 0, then 𝜼 ∈ U
𝛿

→ 𝝋, p(𝜌, 𝜼)→ p(𝜌,𝝋) for any 𝜌 ∈ [0,∞) thanks to the continuity of p,
and

s(𝜼)
s(𝝋)

→ 1, 1
S
𝛿

∫U
𝛿

s(𝝃)
s(𝝋)

d𝝃 → 1,
∫U

𝛿

1
∫U

𝛿

s(𝝃) d𝝃
d𝜼→ 1

s(𝝋)
∈ (0,∞).

Therefore,

∫

r

0

[

p(𝜌, 𝜼) − p(𝜌,𝝋) 1
S
𝛿

∫U
𝛿

s(𝜼)
s(𝝋)

d𝜼
]

d𝜌
𝛿→0

−−−−−→ 0.

Consequently,

P (R ≤ r|𝚽 ∈ U
𝛿

(𝝋)) − P (R ≤ r|𝚽 = 𝝋)

=
∫U

𝛿

∫
r

0 p(𝜌, 𝜼) d𝜌 d𝜼

∫U
𝛿

s(𝝃) d𝝃
−
∫U

𝛿

∫
r

0 p(𝜌,𝝋) d𝜌 d𝜼

∫U
𝛿

s(𝝋) d𝝃
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=
∫U

𝛿

1
∫U

𝛿

s(𝝃) d𝝃

(

∫

r

0

[

p(𝜌, 𝜼) − p(𝜌,𝝋) 1
S
𝛿

∫U
𝛿

s(𝝃)
s(𝝋)

d𝝃
]

d𝜌
)

d𝜼

𝛿→0
−−−−−→ 0

thanks to the preceding considerations, which completes the proof. ▪

The assumption (1) can be replaced with a stronger condition that may be easier to check:

Theorem 2. If

∃𝛾 > 0 ∶ sup
||u||=1∫

+∞

0
𝜌

p−1+𝛾 f (𝜌u) d𝜌 < +∞, (2)

then (1) holds.

Proof. If (2) holds for some 𝛾 > 0, then

sup
||u||=1∫

+∞

r
𝜌

p−1f (𝜌u) d𝜌 ≤ 1
r𝛾

sup
||u||=1∫

+∞

0
𝜌

p−1+𝛾 f (𝜌u) d𝜌
r→+∞
−−−−−→ 0.

▪

Although (2) need not hold even for X with a continuous distribution having all moments
finite, it is satisfied for many common distributions including all the elliptical distributions with
probability density f (x) ∝ g(x′𝚺−1x) such that 𝚺 is a positive definite matrix, g ∶ [0,∞)→ [0,∞),
and ∫ +∞0 𝜌

p−1+𝛾g(𝜌2) d𝜌 < ∞ for some 𝛾 > 0, for example, for the multivariate normal distribution
with zero mean vector and covariance matrix 𝚺.

Theorem 1 also guarantees that 𝜃
𝜏

(𝝋) is always correctly defined because its assumptions
imply I(𝝋) ∈ (0,∞) for any𝝋 ∈ Ω. Unfortunately, the condition (1) cannot be ignored or omitted
entirely even in a simple bivariate case:

Example 1. Assume a bivariate random vector X with independent marginals and with the
(bounded and continuous) probability density f (x1, x2) = h(x1)h(x2) centrally symmetric around
0 where

h(t) =

{
1

4t2 if |t| > 1,
1
4

if |t| ≤ 1.

The center of symmetry 0 can be naturally considered as the central point 𝝁(X). Then (1) is vio-
lated, I(u) = ∞ for 𝝋 corresponding to u = (±1, 0)′ or u = (0,±1)′, and, therefore, 𝜃

𝜏

(u) cannot
be correctly defined for those directions.

The directional quantiles also induce multivariate quantile regions and contours:

Definition 3. Consider random vector X ∈ Rp with directional 𝜏-quantiles 𝜃
𝜏

(u), 𝜏 ∈ (0, 1), u ∈
p−1. Then the multivariate 𝜏-quantile regions X(𝜏) of X can be defined in the following way:

X(𝜏) = {𝜌u ∶ 0 ≤ 𝜌 ≤ ||𝜃
𝜏

(u)||, u ∈ p−1}.

Their borders 𝜕X(𝜏) are called 𝜏-quantile contours.
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These 𝜏-quantile regions and contours have some favorable properties:

Theorem 3. Let X ∈ Rp be a random vector satisfying the assumptions of Theorem 1. Then

(i) P (X ∈ X(𝜏)) = 𝜏 ∀𝜏 ∈ (0, 1),
(ii) X(𝜏1) ⊆ X(𝜏2) if 0 < 𝜏1 ≤ 𝜏2 < 1,

(iii) c+X(𝜏) = c + X(𝜏) for any c ∈ Rp if 𝝁(c + X) = c + 𝝁(X),
(iv) AX(𝜏) = AX(𝜏) for any invertible matrix A ∈ Rp×p if 𝝁(AX) = A𝝁(X),
(v) Tr(X)(𝜏) = Tr(X(𝜏)) for any map Tr ∶ x = 𝜓(r,𝝋) → 𝜓(tr(r,𝝋),𝝋) such that 𝝁(Tr(X)) =

Tr(𝝁(X)), tr(0, ⋅) = 0, and tr(r,𝝋) is continuous and strictly increasing in the first coordinate,
(vi) T

𝝋
(X)(𝜏) = T𝝋(X(𝜏)) for any map T𝝋 ∶ x = 𝜓(r,𝝋) → 𝜓(r, t𝝋(𝝋)) such that 𝝁(T𝝋(X)) =

T𝝋(𝝁(X)) and t𝝋 ∶ Ω→ Ω is an arbitrary continuous bijection, and
(vii) if X contains 𝜇(X) in the interior of its support, then any CX(𝜏), 𝜏 ∈ (0, 1), also contains 𝜇(X)

in its interior and is star-shaped about it.

Proof. The properties (ii), (iii), (iv), (vi), and (vii) follow directly from the definition while (v) also
relies on the monotone equivariance of univariate quantiles. As for (i),

P (X ∈ X(𝜏)) =
∫

2𝜋

0 ∫

𝜋

0
…
∫

𝜋

0 ∫

Q−1(𝜏|𝝋)

0
q(r|𝝋)s(𝝋) dr d𝜑1 … d𝜑p−1

= 𝜏

∫

2𝜋

0 ∫

𝜋

0
…
∫

𝜋

0
s(𝝋) d𝜑1 … d𝜑p−1 = 𝜏.

▪

In other words, the coverage probability of 𝜏-quantile regions is truly equal to 𝜏. Furthermore,
the quantile regions are always nested with increasing 𝜏 and inherit the equivariance properties
from the functional 𝝁. Of course, (iii)–(vi) may be combined or applied repeatedly.

The directional 𝜏-quantiles often continuously depend on the direction for any 𝜏 ∈ (0, 1):

Theorem 4. Assume a random vector X ∈ Rp satisfying the assumptions of Theorem 1. Then the
function u → 𝜃

𝜏

(u) is continuous on p−1 for any 𝜏 ∈ (0, 1).

Proof. Fix 𝜏 ∈ (0, 1) and u0 ∈ p−1 corresponding to 𝝋0. As 𝜃
𝜏

(𝝋) = 𝜓

(
Q−1(𝜏|𝝋),𝝋

)
, it is

enough to prove that Q−1(𝜏|𝝋n)
n→+∞
−−−−−→ Q−1(𝜏|𝝋0) whenever 𝝋n

n→+∞
−−−−−→ 𝝋0, which holds if

Q(r|𝝋n)
n→+∞
−−−−−→ Q(r|𝝋0) for any such sequence {𝝋n} according to lemma 8.3.1 of Resnick (1999).

But

Q(r|𝝋n) =
∫

r

0
q(𝜌|𝝋n) d𝜌

n→+∞
−−−−−→

∫

r

0
q(𝜌|𝝋0) d𝜌 = Q(r|𝝋0)

because q(𝜌|𝝋) is continuous in 𝝋 and bounded on compact sets. ▪

4 ESTIMATION

Consider a random sample X1, … ,Xn of size n that comes from a continuous distribution with
a center point 0 (without any loss of generality). For example, the distribution may have zero
expectation or be centrally or angularly symmetric around the origin. Alternatively, the origin
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may be the point around which the desired quantile or tolerance region should be constructed.
Furthermore, Ri and𝚽i denote the corresponding hyperspherical coordinates of Xi, i = 1, … ,n.

Definition 3 suggests that the sample multivariate 𝜏-quantile region ̂X(𝜏) can be obtained as

̂X(𝜏) = {𝜌u ∶ 0 ≤ 𝜌 ≤ ||̂𝜃
𝜏

(u)||, u ∈ p−1},

where ||̂𝜃
𝜏

(u)|| = ||̂𝜃
𝜏

(𝝋)|| = ̂Q−1(𝜏|𝝋) where ̂Q−1(𝜏|𝝋) is a positive estimator of the positive con-
ditional 𝜏-quantile of R given 𝚽 = 𝝋 (where 𝝋 corresponds to u). If, as usual, there is no apriori
knowledge about the dependence of R on 𝚽, then the conditional quantile should be estimated
nonparametrically. And the standard way to do that is to use a nonparametric quantile regression
technique in hyperspherical coordinates with angular regressors.

In principle, any such method could be used in a straightforward way, and each of them has
its own advantages and disadvantages. In fact, Wei (2008) has already used the estimation based
on splines in a very similar context. Nevertheless, something different is suggested and explored
here, namely the locally polynomial quantile regression of (Yu & Jones, 1997; Yu & Jones, 1998).
It is mainly because of its simplicity, easy incorporation of trend regressors (in Section 6), and
elimination of the boundary effect thanks to the centering trick for the bivariate case described
below. It is also the choice of Petersen (2003). The literature generally recommends to employ
only locally constant or linear trends. The method works with special n-dependent kernel weights
wi = wi,n,𝜏,𝝋0,K,H defined for any angle 𝝋0 as

wi = wi(𝚽i) = det (Hn)−1K
(
H
−1
n (𝚽i − 𝝋0)

)
,

where Hn is a symmetric positive definite (p − 1) × (p − 1) n-dependent bandwidth matrix, pos-
sibly also dependent on 𝜏, 𝝋0, and K, and K stands for a (p − 1)-variate kernel density function,
for example, for the Gaussian kernel KG or the Epanechnikov kernel KE:

KG(𝝍) ∝ exp
(
−𝝍 ′

𝝍∕2
)

and KE(𝝍) ∝ (1 − 𝝍 ′
𝝍)I[𝝍 ′𝝍≤1].

Usually, Hn is considered to be a diagonal matrix composed of marginal bandwidths hi
n, i =

1, … , p − 1.
Assume any 𝜏 ∈ (0, 1) and consider the 𝜏-quantile check function 𝜚

𝜏

(t) = t(𝜏 − I(t < 0)) =
max{(𝜏 − 1)t, 𝜏t}. Then the locally constant estimator ̂Q−1

0 (𝜏|𝝋0) = â
𝜏

of Q−1(𝜏|𝝋0)minimizes, by
definition,

Ψ0
𝜏,w(a) =

1
n

n∑

i=1
wi𝜚𝜏(Ri − a),

and the locally linear estimator of the same quantity is defined as ̂Q−1
1 (𝜏|𝝋0) = â

𝜏

where (â
𝜏

,

̂b
′
𝜏

)′
minimizes

Ψ1
𝜏,w(a,b) = 1

n

n∑

i=1
wi𝜚𝜏

(
Ri − a − b′(𝚽i − 𝝋0)

)
.

Then ̂b
𝜏

often contains the information about the first derivatives of Q−1(𝜏|𝝋) (as a function of𝝋)
at 𝝋0.
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The only problem may be with the estimation for 𝝋0 close to the border of Ω. Then one may
employ special tools such as asymmetric kernels. Fortunately, there also exists an elegant solu-
tion to this problem in the bivariate case with scalar 𝜑0 that uses Ω = [𝜑0 − 𝜋, 𝜑0 + 𝜋) for the
parametrization in the polar coordinates. This possibility is mentioned in Section 2, uses the
information from neighboring data points in full, and improves the estimation results in finite
samples considerably. If the bandwidth is not too large (and ideally also if the kernel function
has a bounded support), that is, if the weights wi are close to zero at the boundary of Ω, then the
boundary effect is not an issue at all. The effect is often cited as the main reason why the locally
linear quantile regression variant should be favored over the locally constant one; see Yu and
Jones (1997). The latter option, therefore, seems as a viable and recommended choice, especially
if R does not change with the direction too wildly.

This trick can be partly applied even in Rp, p > 2, with 𝝋0 = (𝜑1,0, … , 𝜑p−1,0)′ when Ω =
[0, 𝜋]p−2 × [𝜑p−1,0 − 𝜋, 𝜑p−1,0 + 𝜋) may be used for the parametrization which, however, does not
eliminate problems with all border points. The rest might be dealt with by renaming (i.e., chang-
ing the order of) the coordinates before the parametrization but this is, admittedly, neither elegant
nor practical.

The asymptotic theory for the locally constant and linear estimators described above is already
available, see, for example, Bhattacharya and Gangopadhyay (1990), Chaudhuri (1991a), Koenker
and Zhao (1996), Yu and Jones (1998), Honda (2000), Gannoun et al. (2003), Ioannides (2004),
Yu and Lu (2004), Zhou and Wu (2009), Kong et al. (2010), Guerre and Sabbah (2012) or Qu and
Yoon (2015). The same holds for the rules how to choose the bandwidth matrix; see, for example,
Yu and Jones (1998), Yu and Lu (2004), and Gannoun et al. (2003). Of course, one could also
choose it via cross-validation or select it subjectively. All the results can be applied directly, with
response variable R and vector regressor𝚽.

Recall that quantile crossing is absent in the locally constant case (Koenker, 2005, section
2.5). Therefore, the estimated locally constant 𝜏-quantile regions are still nested with decreasing
𝜏 ∈ (0, 1). They are consistent estimators of their population counterparts under mild conditions
permitting even weakly dependent data, and their asymptotic overall and directional coverage
probabilities are then equal to 𝜏.

Unfortunately, real observations need not always be centered around the origin (or another
known point 𝝁). Nevertheless, the whole concept could be used even if 𝝁 were replaced with
a consistent estimator. Note also that the bandwidth may be chosen u-dependent without any
problem, which may be convenient, for example, when 𝝁 does not lie in the central area of the
underlying distribution.

5 CONVERGENCE OF THE ESTIMATED CONTOURS

The consistency of the aforementioned locally constant and locally linear estimators follows
directly from the theory already available in the literature on uniform convergence of the locally
polynomial regression quantile estimators, without the need to prove anything new. In particu-
lar, the results presented here are special cases of corollary 1 of Guerre and Sabbah (2012). They
use the notation introduced so far and the following assumptions.

Assumption 1. The probability density function s(𝝋) of𝜱 exists and is strictly positive and con-
tinuously differentiable over its compact support, sayΩ1, which contains in its interior a compact
subset Ω0.
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Assumption 1 is quite standard for the uniform consistency (in 𝝋) of the locally polyno-
mial estimators. Local uniform consistency would require only local strict positivity and local
continuous differentiability.

Assumption 2. The probability density function q(r|𝝋) of R given 𝜱 = 𝝋 exists and is continu-
ous and strictly positive for any r ≥ 0 and any 𝝋 ∈ Ω1. The partial derivative 𝜕Q(r|𝝋)∕𝜕𝝋 of the
conditional cumulative distribution function Q(r|𝝋) is continuous over [0,∞) × Ω1. Furthermore,
there exists some L0 > 0 such that the conditional density q(r|𝝋) is Lipschitz continuous in both
arguments:

|q(r1|𝝋1) − q(r2|𝝋2)| ≤ L0||(r1,𝝋
′
1)
′ − (r2,𝝋

′
2)
′||,

for all r1, r2 ∈ [0,∞), and all 𝝋1,𝝋2 ∈ Ω1.

Assumption 2 ensures that Q−1(𝜏|𝝋) and 𝜃
𝜏

(𝝋) are uniquely defined for any 𝜏 ∈ (0, 1). The
strict positivity of q(r|𝝋)may be relaxed to q(r|𝝋) > 0 for 0 ≤ r < b(𝝋) and q(r|𝝋) = 0 for r ≥ b(𝝋)
where b(𝝋) is a smooth function. The Lipschitz continuity of the conditional density q(r|𝝋) holds,
for example, if both the joint density function p(r,𝝋) and the (marginal) density function s(𝝋)
are bounded and Lipschitz continuous and simultaneously s(𝝋) is uniformly bounded away from
zero.

Assumption 3. The non-negative kernel function K is Lipschitz continuous over Rp−1, has a
compact support , integrates exactly to one: ∫ K(𝝋) d𝝋 = 1, and satisfies K ≥ k0 > 0 for some
k0 > 0 on an open unit ball centered at 0.

Assumption 3 is also standard and quite general.
For notational simplicity, consider v = (v1, … , vp−1)′ ∈ Np−1, write |v| for

∑p−1
i=1 vi, and

define

bv(𝜏|𝝋) =
𝜕

|v|Q−1(𝜏|𝝋)
𝜕𝜑

v1
1 × · · · × 𝜕𝜑

vp−1
p−1

.

Furthermore, write ⌊t⌋ for the integer part of t > 0.

Definition 4. Consider 𝜏 ∈ (0, 1). It is said that Q−1(𝜏|𝝋) is in class (t) iff

1. the mapping 𝝋 → Q−1(𝜏|𝝋) is continuously differentiable of order ⌊t⌋ over Ω1, that
is, bv(𝜏|𝝋) exists and is continuous there for all v ∈ Np−1 such that |v| ≤ ⌊t⌋. Quite
naturally, the partial derivatives are considered one-sided if 𝝋 lies in the border
of Ω1.

2. there exists some L > 0 such that it holds for all v ∈ Np−1 with |v| = ⌊t⌋ and for all𝝋1,𝝋2 ∈ Ω1
that

|bv(𝜏|𝝋1) − bv(𝜏|𝝋2)| ≤ L||𝝋1 − 𝝋2||
t−⌊t⌋

.

Let ̂Q−1
c (𝜏|𝝋) be the local polynomial estimator of Q−1(𝜏|𝝋) by the polynomial function of

order c ∈ {0, 1}. In other words, c = 0 and c = 1 lead to the locally constant and locally lin-
ear estimators introduced in the previous section. Corollary 1 of Guerre and Sabbah (2012)
results in
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Proposition 1. Suppose that Assumptions 1, 2 and 3 hold, c ∈ {0, 1}, the assumptions of Theorem
1 are satisfied and Q−1(𝜏|𝝋) is in the class (t) for some t > 0 with ⌊t⌋ ≤ c. Then

sup𝝋∈Ω0

|
|
|
̂Q−1

c (𝜏|𝝋) − Q−1(𝜏|𝝋)||
|
= OP

(
log n

n

)t∕(2t+p−1)

if hn is asymptotically proportional to
(
log(n)∕n

)1∕(2t+p−1) and if the bandwidth matrix Hn = hnI

is the (p − 1) × (p − 1) diagonal matrix with hn on the diagonal. Then also

sup
𝝋∈Ω0

|
|
|
̂

𝜃

c
𝜏

(𝝋) − 𝜃
𝜏

(𝝋)||
|

P
−−→ 0,

for ̂

𝜃

c
𝜏

(𝝋) ∶= 𝜓(̂Q−1
c (𝜏|𝝋),𝝋) thanks to the continuity of 𝜓 .

Consider a distribution spherically symmetric around the origin, with probability density
function f (x) = g(x′x) where g is Lipschitz continuous, continuously differentiable and strictly
positive on [0, a) for some a ∈ R ∪ {∞} and zero elsewhere. Then I(𝝋) ∈ (0,∞) is a finite posi-
tive constant thanks to Theorem 1, q(r|𝝋) is continuous, and the Lipschitz continuity of q(r|𝝋) is
equivalent to the Lipschitz continuity of g(r2)rp−1. The spherical shape of the population quantile
contours also implies that Q−1(𝜏|𝝋) is constant in 𝝋. Note that it is possible to extend such rea-
soning to nondegenerate elliptical distributions because of the continuous linear transformation
behind such a distributional change. Unfortunately, sometimes s(𝝋) = 0 if p > 2, and then Propo-
sition 1 technically does not directly guarantee the uniform convergence of ̂Q−1

c (𝜏|𝝋), c = 0, 1, on
the whole unit sphere, that is, the convergence of the locally constant or linear quantile contour
estimate ̂X(𝜏) to its population counterpart in the Hausdorff distance. Nevertheless, s(𝝋) = 0 is
then only an unfortunate by-product of the angular parametrization of the unit sphere that can be
eliminated for any particular 𝝋 by parametrizing the unit sphere differently. Therefore, one can
then still combine the consistency results obtained for a finite number of such reparametrizations
to obtain the desired global convergence.

6 REGRESSION EXTENSIONS

Consider n regression observations (X′1,Z′1)′, … , (X′n,Z′n)′ with the corresponding population
conditional distribution (X|Z) and a center point 𝝁(X|Z). Then one can use the approach
described in the previous section to estimate the quantile regions of (X|Z = z) simply by
extending the regressor space and considering regressors (𝚽i,Zi), which, however, decreases
the consistency rate of the resulting kernel estimators (and thus permits only low-dimensional
regressor vectors in practical applications). See Figure 3 for such an application.

There is sometimes a natural and known candidate for 𝝁(X|Z), such as in the very important
case of financial return time series that are often assumed to be martingale difference sequences
with zero mean conditional distributions due to the efficient market hypothesis; see, for example,
section III of LeRoy (1989). In the other cases, the concept can still be used with a consistent
estimator of 𝝁(X|Z), for example, for an advanced residual analysis in general regression or time
series models.

Of course, it is also possible to combine the locally constant regression in 𝚽 with the locally
linear regression in Z or vice versa. And if the dependence of R on 𝚽 or Z is known, then the
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F I G U R E 1 Modeling complicated distributions. The figure illustrates the population (thick solid light
gray) quantiles X(𝜏), 𝜏 = 0.25 and 𝜏 = 0.75, of zero-centered X = (R cos(Φ),R sin(Φ))′ where
(Φ) =  (0, 2𝜋), (R|Φ = 𝜑) = 1 + 2cos2(k𝜑) + (−1, 1) is independent of (Φ), and (a) k = 3∕2, (b) k = 2, (c)
k = 3, and (d) k = 5. The population 𝜏-quantiles are closely mimicked by their locally constant (thin solid black)
and locally linear (dashed dark gray) estimates obtained from n = 999 observations with the Gaussian kernel and
bandwidth (a) h

𝜑

= 0.12, (b) h
𝜑

= 0.11, (c) h
𝜑

= 0.10, and (d) h
𝜑

= 0.08

variables can enter the regression parametrically (without influencing the weights) in the correct
trend parametrization like in the partially linear quantile regression models (see, e.g., Lee, 2003),
which may break their curse of dimensionality.

Although the estimated conditional quantile regions are hard to display visually for p > 2,
especially for several 𝜏’s at once, their approximate volumes, surface areas, and inner points can
still be determined, which is what usually matters most. Furthermore, the evolution of the sample
conditional quantiles of(X|Z = z)with z may provide much valuable information about the tails
or heteroscedasticity.
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F I G U R E 2 Dependence on the center point. The figure shows estimated quantiles ̂X(0.1) of four bivariate
distributions of X with the same independent marginals: (a) 6Beta(1, 1) − 3, (b) 6Beta(2, 2) − 3, (c) 6Beta(1, 2) − 3,
(d) 6Beta(2, 3) − 3, obtained from n = 999 observations by means of the locally constant (solid) and locally linear
(dashed) regression with the Epanechnikov kernel and bandwidth h

𝜑

= 𝜋∕4 for four different center points:
𝝁 = (0, 0)′ (black), 𝝁 = (−1,−1)′ (dark gray), 𝝁 = (−1, 1) (gray) and 𝝁 = (

√
2, 0)′ (light gray)

7 ILLUSTRATIONS

Figure 1 demonstrates that the new multivariate quantiles can naturally describe even various
population distributions with nonconvex support. It also shows that both their locally constant
and locally linear estimates may perform very well, at least in case of n = 999 independent bivari-
ate zero-centered observations Xi ∼ (Ri cos(Φi),Ri sin(Φi))′, i = 1, … ,n, where(Φi) =  (0, 2𝜋)
and (Ri|Φi) = 1 + 2 cos2(kΦi) + (−1, 1) are independent, and k = 3∕2, 2, 3, or 5. The estima-
tion was done with the Gaussian kernel for several bandwidths from a dense grid, and only the
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F I G U R E 3 Joint modeling of Forex exchange rates. The figure presents n = 6,145 one-minute log-returns
of FX rates EUR/CAD (x1) and AUD/CAD (x2) from 02/11/2014 17:00 to 06/11/2014 23:25 where the time is
shifted and rescaled to the [0,1] interval for the sake of simplicity. The pictures show the locally constant (thick)
and locally linear (thin) 𝜏-quantiles of the log-returns, 𝜏

.

= 0.203, 0.560, and 0.853, obtained for times t1 = 0.50
(black) and t2 = 0.85 (dark gray) with the Gaussian kernel and the diagonal bandwidth matrix described by
marginal bandwidths ht = 0.04 and (a) h

𝜑

= 0.25 or (b) h
𝜑

= 0.50. Obviously, h
𝜑

controls the smoothness of the
resulting quantile contours. The conditional distributions of the two log-returns at t1 and t2 apparently differ not
only in the scale, but also in the correlation structure

visually most attractive results are reported, for h
𝜑

= 0.12, (b) h
𝜑

= 0.11, (c) h
𝜑

= 0.10, and (d)
h
𝜑

= 0.08 decreasing with k. The same approach to the choice of bandwidth was adopted even in
the following examples.

Figure 2 shows that the quantile shapes remain reasonable regardless the choice of the
quantile center point 𝝁. It employs four bivariate distributions on [−3, 3]2 with the same inde-
pendent marginals generated by means of the beta distribution: 6Beta(1, 1) − 3, 6Beta(2, 2) − 3,
6Beta(1, 2) − 3, and 6Beta(2, 3) − 3, and four different center points: 𝝁 = (0, 0)′, 𝝁 = (−1,−1)′,
𝝁 = (−1, 1), and 𝝁 = (

√
2, 0)′ to estimate the quantiles from n = 999 observations by means of the

locally constant and locally linear regression with the Epanechnikov kernel and ad hoc bandwidth
h
𝜑

= 𝜋∕4.
Figure 3 illustrates the new multivariate regression quantiles and their application to mod-

eling conditional heteroscedasticity of financial time series, namely of n = 6,145 one-minute
log-returns of FX rates EUR/CAD and AUD/CAD from 02/11/2014 17:00 to 06/11/2014 23:25
where the single regressor, time, is considered shifted and rescaled to the [0,1] interval for the
sake of simplicity. The locally constant and locally linear conditional zero-centered 𝜏-quantile
estimates, 𝜏

.

= 0.203, 0.560, and 0.853, behave similarly and jointly confirm that the conditional
bivariate return distributions at t1 = 0.50 and t2 = 0.85 are dramatically different regarding the
scale and correlation structure. The peculiar quantile levels are used for easy comparison with the
empirical conditional halfspace depth contours of the same data in Boček and Šiman (2017). The
figure also illuminates how the choice of bandwidth can influence the smoothness and precision
of the resulting quantile contour estimates.
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8 CONCLUDING REMARKS

This article generalizes the bivariate location quantile concept of Petersen (2003) to general
multidimensional regression quantiles (or reference regions) with an arbitrary center point and
theoretically investigates the new proposal (and thus also the original one as a special case).

The extended quantile concept seems very successful in modeling certain simulated and
real data, and it has quite a few favorable properties: equivariance, simplicity, shape flexibility,
excellent probability interpretation, star-shaped quantile regions with smooth contours under
mild conditions, and their simple estimation based on the well-established theory and prac-
tice of (single-response) quantile regression in the most important bivariate case. The proposed
estimation procedure becomes complicated in spaces beyond dimension two for some points
with angular coordinates close to the border of the set Ω used for parametrization. Working
directly with unit vectors as regressors might circumvent the problem at the cost of introducing
manifold-valued regressors and related complications.

Unfortunately, the nonparametric estimation methods deteriorate with the dimension of
(regressor) observations in terms of both the computational time and the consistency rate of the
resulting estimators. Furthermore, the new method works with respect to a center point, which
may be viewed as its advantage or drawback, depending on the context.

The presented quantile concept can be recommended to practitioners if they have enough
observations of two-to-three dimensional responses and a clear idea of how to choose or estimate
the center point of their interest. If the regression dependence of responses is assumed signifi-
cant and nonparametric, then the number of regressors should also be very small such as one or
two. The scope of possible applications is thus somewhat limited, as is the case of nonparametric
regression methods in general. Nevertheless, it includes three important cases, namely residual
analysis and modeling conditional heteroscedasticity in financial return time series (where the
natural center point is zero) and the theory of multivariate process capability indices (where the
natural center point is the target); see Kotz and Lovelace (1998) or Pearn and Kotz (2006). There
they could serve, for example, for defining new process capability indices as in Šiman (2014a,b).

Fully or partially parametric specifications for the quantile shapes and center points may
break the curse of dimensionality, allow for the estimation of the center point, and make the
method generally applicable in multidimensional spaces. Such extensions will hopefully be
addressed elsewhere because they require quite a different approach and come up with different
problems to be solved.
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