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Double Nonstationarity: Blind Extraction of
Independent Nonstationary Vector/Component From

Nonstationary Mixtures—Algorithms
Zbyněk Koldovský , Senior Member, IEEE, Václav Kautský , and Petr Tichavský , Senior Member, IEEE

Abstract—In this article, nonstationary mixing and source mod-
els are combined for developing new fast and accurate algorithms
for Independent Component or Vector Extraction (ICE/IVE), one
of which stands for a new extension of the well-known FastICA.
This model allows for a moving source-of-interest (SOI) whose dis-
tribution on short intervals can be (non-)circular (non-)Gaussian. A
particular Gaussian source model assuming tridiagonal covariance
matrix structures is proposed. It is shown to be beneficial in the
frequency-domain speaker extraction problem. The algorithms are
verified in simulations. In comparison to the state-of-the-art algo-
rithms, they show superior performance in terms of convergence
speed and extraction accuracy.

Index Terms—Blind source extraction, blind source separation,
dynamic models, independent component analysis, independent
vector analysis, moving sources.

I. INTRODUCTION

A. Topic

Blind Source Separation (BSS) aims at recovering unobserved
signals, called sources, from their mixture without additional
knowledge [1]. This area has been vital in the signal processing
and machine learning communities over the last three decades.
It is pertinent to situations where particular information about
the sources is missing and only general assumptions can be
stated. When the sources are statistically independent, BSS can
be solved through Independent Component Analysis (ICA) [2].
Blind Source Extraction (BSE) is a related problem in which
the goal is to extract a particular source of interest (SOI).
BSE is motivated by the fact that targeting the SOI may often
be considerably more cost-effective than separating all of the
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sources. A BSE counterpart to ICA is Independent Component
Extraction (ICE).

It is also possible to consider multiple mixtures (data-sets) and
separate them jointly. Joint BSS (jBSS) is advantageous over
BSS in situations when relations/dependencies exist among the
sources from different data-sets. Processing one SOI extraction
from each mixture jointly, we speak about joint BSE (jBSE).
The extension of ICA to jBSS is known as Independent Vector
Analysis (IVA); the jBSE counterpart of IVA is Independent
Vector Extraction (IVE). This article builds on and contributes
to ICE and IVE.

B. State-of-The-Art

The existing ICA/IVA/ICE/IVE algorithms can be catego-
rized based on the statistical model of the sources, referred
to as source model, which is used for their development. In
general, their goal is to capture various signal features as much as
possible. However, mathematical tractability and computational
costs must also be taken into account.

In this overview, we focus on two major source models
because the key idea of this paper builds on their combination;
a survey of BSS methods beyond these classes can be found,
e.g., in [3]. 1) The non-Gaussian model considers each source
as a sequence of independently and identically distributed (i.i.d.)
non-Gaussian random variables. 2) The nonstationary model al-
lows for varying variance and, typically, assumes that sources are
sequences of independent Gaussian variables whose variances
are changing from interval to interval. The combination of these
models occurs when non-Gaussianity is taken into account in
the nonstationary model, so sources are assumed to be i.i.d.
Gaussian or non-Gaussian within the intervals.

Non-Gaussianity-based ICA methods represent algorithms
based on mutual information minimization [2], maximum likeli-
hood estimation (MLE) [4], neural network-like approaches [5],
[6], etc.; they were shown to be more or less related with
MLE [7]. More advanced methods adapt the source model by
matching parametric [8] or non-parametric [9] non-Gaussian
distributions to the separated sources. The methods also differ
in the optimization approach. For example, there are gradient
methods [10], auxiliary-function-based methods [11] or fixed-
point algorithms [12].

Non-Gaussianity-based BSE can be accomplished by mini-
mizing the output signal entropy [12]. ICE is based on a reduced
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mixing model parameterization, in which one source is treated
as the SOI and the others, which are not subject to separation, as
background sources [13]. ICE has been shown equivalent with
the minimum entropy approach when the background model is
multivariate Gaussian [14] and with ICA when it is multivariate
non-Gaussian [15], [16].

In contrast to the non-Gaussian model, the nonstationarity-
based one can be identified using second-order statistics (SOS)
only [17], [18]. Numerous methods are based on the Joint
Approximate Diagonalization (JAD) of sample covariance
matrices computed on intervals (blocks) of data [18], [19], [20].
For BSE, JAD can be replaced by Joint Block Diagonalization
(JBD) where the SOI is represented by one-dimensional
subspace that is separated from a hyperplane representing the
background [21], [22], [23].

Similarly, the source models have been applied in jBSS and
jBSE to model vector sources, where a vector source consists
of corresponding scalar sources, one source per mixture (data-
set). In IVA and IVE, this approach entails using multivariate
non-Gaussian model distributions that capture internal depen-
dencies among the scalar sources [13], [24], [25], [26], [27]. The
nonstationary model can be effectively used for jBSS when the
elements of vector sources are correlated [28], [29]; see also [23].

The non-Gaussian and nonstationary source models have
been successfully combined in ICA [30], [31], [32] as well as
in IVA [33]. The recent extensions of IVA known under the
umbrella of Independent Low Rank Matrix Analysis (ILRMA)
can also be considered as extensions of this kind [34], [35], [36].

Another classification of BSS methods is based on the as-
sumed model of source mixing, that is, the mixing model. In the
vast majority of BSS literature, the instantaneous linear mixing
model is assumed [1], [2], [37], [38]. The other intensively
studied convolutive model is also linear. It is often considered
in the Fourier transform domain where it is translated to a set
of instantaneous mixtures, which can be treated as the jBSS
problem [39], [40], [41]. Some specific nonlinear mixing models
have been studied, e.g., in [42], [43].

Similarly to source models, nonstationarity can be brought
into the mixing models1. The goal is to capture the time-
variant mixing conditions caused, e.g., by source movements
or similar changes. Typically, estimation methods for the static
linear mixing are turned into adaptive algorithms [44], [45].
The nonstationary mixing process is less frequently described
by a more specific parameterization such as that used in [46],
[47]. Recently, semi-time-variant models denoted as CMV and
CSV (Constant Mixing/Separating Vector) have been considered
in [14], [16], [48]. CMV and CSV are designed for BSE/jBSE
in which the SOI is static or moving, respectively, on a dynamic
background. The nonstationarity is arranged through allowing
specific parameters to be changing from interval to interval.
In [14], the well-known FastICA algorithm [12] has been ex-
tended for CSV and named as FastDIVA (Fast Dynamic IVA).

C. Contribution

Although FastDIVA builds on the non-Gaussian model, it
partly allows for source nonstationarity. This is because the

1Nonstationary mixing models are sometimes termed as “dynamic models”
[14].

variance of the SOI is allowed to change over the intervals
of the CSV mixing model. However, the performance analysis
of FastDIVA in [14] as well as the Cramér-Rao bound in [16]
have shown that the SOI is not identifiable when its distribution
is Gaussian. Dividing data into more (shorter) intervals does
not seem very effective since the number of mixing parameters
proportionally grows, and, moreover, the Gaussian SOI remains
unidentifiable.

This is the main motivation behind the novel extension pro-
vided in this article: We propose to combine the nonstationary
CSV mixing model with the nonstationary source model, en-
abling Gaussian and/or non-Gaussian moving SOI. Two second-
order algorithms are derived, one of which stands for a new
extension of FastDIVA (resp. FastICA and FastIVA). Special
attention is given to the Gaussian source model, for which dis-
tinguished SOS-based variants of the algorithms are derived. The
latter can also efficiently benefit from the SOI non-circularity.
Moreover, a particular Gaussian source model for the SOI, which
assumes tridiagonal covariance matrix structures, is proposed.
This model is efficiently implemented within the proposed algo-
rithms, and it shows promising results in the frequency-domain
speaker extraction problem where theK-dimension (the number
of frequencies/mixtures/data-sets) can take value in the order of
hundreds. These methods are verified by extensive numerical
studies. In comparison to state-of-the-art algorithms, they show
superior performance in terms of convergence speed and extrac-
tion accuracy.

The paper is organized as follows. Technical description of the
problem is formulated in Section II. In Section III, the second-
order algorithms are derived. Section IV is devoted to special
variants of the algorithms based on the Gaussian source model.
Experimental validation is provided in Section V; and Section VI
concludes the paper.

D. Nomenclature and conventions

Plain, bold, and bold capital letters denote scalars, vectors, and
matrices, respectively. Upper index ·T , ·H , or ·∗ denotes, respec-
tively, transposition, conjugate transpose, or complex conjugate.
The Matlab convention for matrix/vector concatenation will be
used, e.g., [1; g] = [1, gT ]T . E[·] stands for the expectation
value of the argument, and Ê[·] is the average value of the
argument taken over all of its available samples. Throughout this
article, the index of a data-set, block, and sub-block, will always
be denoted, respectively, by k = 1, . . . ,K, t = 1, . . . , T , and
� = 1, . . . , L. {·}k is a short notation of the argument with all
values of index k, e.g., {wk}k means w1, . . . ,wK . The average
value of at taken over all available blocks, i.e., 1

T

∑T
t=1 at, is

denoted by < at >t; similarly, < a� >� denotes the average
taken over all sub-blocks, i.e., 1

L

∑L
�=1 a�.

II. PROBLEM FORMULATION

We consider measurements of length N in K data-sets,
each one obtained by d sensors, i.e., of dimension d. Each
measurement is divided into T non-overlapping intervals of
length Nb, hereafter called blocks, and each block is divided
into L sub-blocks of length Ns. For simplicity, the blocks (and
sub-blocks) have the same length, although different lengths
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could be considered as well. Hence,N = T ·Nb,Nb = L ·Ns,
and N = T · L ·Ns. All signals and parameters are, in general,
complex-valued.

A. Semi-Time-Variant Mixing Model

The nth sample of the measured data, n = 1, . . . , Ns, within
the �th sub-block of the tth block and in the kth data-set is
modeled as linear instantaneous mixture

xk,t,�(n) = Ak,tuk,t,�(n), (1)

where Ak,t is the d× d mixing matrix. The signal samples
will be assumed i.i.d. within the sub-blocks; therefore, the
argument n can be omitted; uk,t,� = [sk,t,�; zk,t,�] is the vector
of the source components sk,t,� and zk,t,� representing, respec-
tively, the SOI and background. The fundamental assumption
of ICE/IVE is that sk,t,� and zk,t,� are independent random
variables; let their mean value be zero.

Since the last d− 1 columns of the mixing matrix are irrele-
vant to the SOI extraction problem (only their implied subspace
is relevant), we can consider a parameterization ofAk,t in which
its last d− 1 columns span the same subspace. It was shown
in [13] that Ak,t can be thus parameterized as2

Ak,t =
(
ak,t Qk,t

)
=

(
γk,t hH

k

gk,t
1

γk,t
(gk,th

H
k − Id−1)

)
.

(2)
ak,t is called the mixing vector (the first column of Ak,t)
corresponding to the SOI; Id denotes the d× d identity matrix.
Note that (1) can also be written in the form

xk,t,� = ak,tsk,t,� + yk,t,�, (3)

whereyk,t,� = Qk,tzk,t,� play the role of the background signals
as they are observed by the sensors.

Equivalently to (1), the de-mixing model reads

uk,t,� = Wk,txk,t,�, (4)

where

Wk,t =

(
wH

k

Bk,t

)
=

(
β∗k hH

k

gk,t −γk,tId−1

)
, (5)

where wk = [βk;hk] is the separating vector that satisfies the
distortionless constraint wH

k ak,t = 1, t = 1, . . . , T . Under this
constraint, the reader can easily verify that Wk,t in (5) is
the inverse matrix of Ak,t in (2). It holds that detWk,t =
(−1)d−1γd−2k,t ; see Eq. (15) in [13]. Bk,t = [gk,t − γk,tId−1],
which depends purely on the mixing vector ak,t, is called the
blocking matrix.

Note that the separating vectorswk are chosen as independent
of t while the mixing vectors ak,t depend on it. This param-
eterization corresponds to the semi-time-variant CSV mixing
model advocated in [14], [16]. The varyingak,t entail a changing

2In (2), γk,t appears in a denominator, which calls for rows permutation in
case that γk,t = 0. We therefore assume that γk,t �= 0, nevertheless, as will be
seen later in the article, γk,t does not appear in a denominator within the update
rules of the derived algorithms. So this assumption does not bring any practical
restriction.

location of the SOI (i.e., movements), while the constant wk

ensures the existence of a beamformer that extracts the SOI
from all the locations; see [48] for the application of this model
in the moving speaker extraction problem.

In the sequel, st,� = (s1,t,�, . . . , sK,t,�)
T will refer to the vec-

tor component of the SOI; sk,t,� and zk,t,� will be, respectively,
called the kth component of the SOI and of the background.

B. Source Model

It is worth pointing out that the mixing parameters remain
constant within the blocks while the source model is i.i.d.
(stationary) only within the sub-blocks. This means that signals
are allowed to be more dynamic than the changes in the mixing
process; this approach finds application in many real situations.

As for the SOI, s1,t,�, . . . , sK,t,� are modeled jointly, and
their the joint probability density function (pdf) is denoted by
pt,�(st,�). The idea of joint statistical modeling is adopted from
IVA. It allows for mutual dependencies among the components
of the SOI, which helps in solving the permutation problem [49].
Our extension here is that the pdf is allowed to vary across blocks
and sub-blocks (dependent on t and �). Since pt,�(st,�) is not
known, it was proposed in [14] that an appropriate surrogate is

pt,�(st,�) ≈ f
({

sk,t,�
σ̂k,t,�

}
k

)( K∏
k=1

σ̂k,t,�

)−2
, (6)

where f(·) is a suitable normalized multivariate pdf3, and σ̂2
k,t,�

is the sample-based variance of the estimate of sk,t,�.
For the background probabilistic model we assume that all

background signals zk,t,� are jointly circular Gaussian, with
zk,t,� ∼ CN (0,Ck,t,�

z ) where Ck,t,�
z is an unknown covariance

matrix. The background signals from different data-sets are
assumed uncorrelated (hence, owing to the Gaussianity, also
independent).

The fact that the non-Gaussianity, non-circularity, and the
dependencies among the components of the background signals
are not assumed, brings about important simplifications into
algorithms and bounds derivations. As it has been observed
with similar problems, the probability model mismatch does not
usually cause algorithm malfunction. Typically, the price for
the simplification is a suboptimality in terms of the theoretical
achievable extraction accuracy [13], [15].

C. Contrast Function

The contrast function is a function of the mixing parameters
whose optimum points provide their consistent estimates. The
function is derived from the likelihood function by replacing
unknown pdfs and nuisance parameters; it is sometimes referred
to as the quasi-likelihood function [4], [29].

By comparing the mixing and source models with the one
in [14], the model presented here differs only in that σ2

k,t,� and

3The model density f(·) could have been considered as dependent on t and �.
However, since there is typically lack of information about the pdf of the SOI,
we find it more practical when f(·) is constant and the variability of the pdf is
captured only by the time-varying variance σ̂2

k,t,�.
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Ck,t,�
z are allowed to be changing over the sub-blocks. This

allows us to obtain the contrast function by straightforward
modifications of Eq. (12) in [14].

Namely, the signals and their parameters become dependent
on the sub-block index �. Therefore, the sample-average operator
denoted by Ê[·] computes the average only over the samples
in the sub-block (not over the block as in [14]). The mixing
parameters remain the same, i.e., independent of �. Finally, the
whole formula must be averaged over the sub-blocks. Therefore,
the contrast function takes on the form

C ({wk,ak,t}k,t) =
〈〈

Ê

[
log f

({
ŝk,t,�
σ̂k,t,�

}
k

)]

−
K∑

k=1

log σ̂2
k,t,� −

K∑
k=1

Ê
[
ẑHk,t,�

(
Ck,t,�

z

)−1
ẑk,t,�

]〉
�

+(d− 2)

K∑
k=1

log |γk,t|2
〉

t

, (7)

where ŝk,t,� = wH
k xk,t,� is the estimate of the SOI, ẑk,t,� =

Bk,txk,t,� is the estimated background, and σ̂2
k,t,� denotes

the sample-based variance of ŝk,t,�. The operators < · >t and
< · >� denote averaging over the index t and �, respectively.

D. Indeterminacies

In the (j)BSE, there are two major inherent indeterminacies of
the SOI. First, the scales of sk,t,� and ofak,t are ambiguous in the
sense that they can be replaced, respectively, by αk,tsk,t,� and
α−1k,tak,t whereαk,t �= 0. The scaling ambiguity is, in fact, taken
into account in (6) through the consideration of the normalized
pdf. Practical issues due to the scaling ambiguity can be solved
through the reconstruction of the SOI’s contributions on sensors
(so-called images); see [50], [51].

Second, more importantly, there is the fact that the role of
the SOI is interchangeable with any independent source in the
mixture. Therefore, the contrast function (7) is, in general, not
convex/concave and can have several local extremes, one of
which corresponds to the SOI. There is no way to distinguish
the SOI from the other sources without additional information,
which is unavailable in the blind setting considered in this work.
Therefore, throughout the article, we assume (in theoretical
developments and in simulations) that a given algorithm is
initialized in the domain of attraction of the SOI. The problem
of controlling BSE as well as other source extraction algorithms
to converge to the desired source(s) has been an important topic
in various applications; see e.g. [52], [53], [54].

III. PROPOSED ALGORITHMS

In this section, we derive second-order derivative-based al-
gorithms seeking for the desired optimum point of the contrast
function (7). For their development, we make use of the fact that
the terms in (7) are mostly separated. Therefore, we simplify the
exposition as if K = 1 and T = 1; so the indices k and t can be
dropped. The extension to K > 1 and T > 1 will be discussed
later.

For K = 1 and T = 1, we have the time-invariant instan-
taneous one-mixture problem studied under the umbrella of
ICE [13]. The contrast function is simplified to

C1 (w,a) =
〈
Ê

[
log f

(
ŝ�

σ̂�

)]
− log σ̂2

� − Ê
[
ẑH� R�ẑ�

]〉
�

+ (d− 2) log |γ|2, (8)

where we have introduced auxiliary matrices R�, whose ideal
value is R� = (C�

z)
−1. Since C�

z are not known, we select the
value of R� later in Lemma 1.

A. Orthogonal Constraint

The parameter vectors w and a are almost free, linked only
through the distortionless constraint wHa = 1. Since the con-
trast function has many spurious extremes where w and a do
not correspond to the same source, it is helpful to link w and a
more tightly using the orthogonal constraint (OGC).

By definition, the OGC requires that the sample correlations
of the estimated SOI and background be zero. When imposing
the OGC for each sub-block, that is,

Ê[ŝ∗�ẑ�] = 0, � = 1, . . . , L, (9)

we have L(d− 1) conditions, which, together with the dis-
tortionless constraint wHa = 1, provides L(d− 1) + 1 linear
conditions on a (or w) in total. They cannot in general be
satisfied all simultaneously unless L = 1.

Since the case L > 1 is of particular interest in this work, we
propose to replace (9) by a weaker condition〈

Ê [ŝ∗�ẑ�]
〉
�
= 0, (10)

which imposes orthogonality over the whole block of signals
(ignoring sub-blocks).4 When a is treated as the dependent
variable, we can apply the formula derived in Appendix A
in [13], and the solution of (10) satisfying wHa = 1 is

a =
Ĉw

wHĈw
, (11)

where Ĉ =
〈
Ĉ�

〉
�

and Ĉ� = Ê[x�x
H
� ] is the sample covariance

matrix of x�.

B. Gradient

The first step for deriving the algorithms is to compute the
gradient of (8) with respect to wH when a is dependent through
(11). We summarize the result in the following Lemma.

Lemma 1: Let, after computing the derivatives, the matrices
R� be put equal to R� =< Ĉ�

z >
−1
� where Ĉ�

z = Ê[ẑ�ẑ
H
� ] is the

sample-based covariance matrix of z�. It then holds that

∂

∂wH
C1
(
w,

Ĉw

wHĈw

)
=

a−
〈
Ê

[
φ

(
ŝ�
σ̂�

)
x�

σ̂�

]
+ �(ν̂�)a� − a�

〉
�

, (12)

4A reviewer of this article rightly noted that an appropriately weighted
alternative to the mean could be considered in the future.
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where �(·) denotes the real part of the argument,

φ(s) = − ∂

∂s
log f(s) (13)

is the score function of the model density f(s), ν̂� is the sample-
based estimate of

ν� = E

[
φ

(
s�
σ�

)
s�
σ�

]
, (14)

and

a� =
Ĉ�w

wHĈ�w
. (15)

Proof: See Appendix A. �
We now need to make an adjustment of the model density

f(·) for the sake of consistency. The problem is revealed by the
following Lemma. Hereafter, w� will denote the true separating
vector such that (w�)Hx� = s�, � = 1, . . . , L.

Lemma 2: Let w = w� andN → +∞. Then, the right-hand
side of (12) converges to

(2− 〈� (ν�) + ν�〉�) a. (16)

Proof: ForN → +∞, it holds that a� → a, ν̂� → ν�, and by
(3) and using the fact that s� and y� are independent,

Ê

[
φ

(
s�
σ̂�

)
x�

σ̂�

]
N→+∞−→ E

[
φ

(
s�
σ�

)
as� + y�

σ�

]
= ν�a. (17)

The assertion of the lemma follows. �
To make the stationary point of the contrast function a con-

sistent estimate of w, (16) must be equal to zero when w = w�

and N → +∞. As observed in previous works [13], [14], this
problem appears due to the arbitrarily chosen model density
f(·). It can easily be solved by considering a suitable sub-block-
dependent modification of f(·). This step is performed through
the substitution φ(·)→ ν̂−1� φ(·). Consequently, the gradient
(12) turns to

∇ = a−
〈
ν̂−1� Ê

[
φ

(
ŝ�
σ̂�

)
x�

σ̂�

]〉
�

. (18)

The reader can verify that, for w = w� and N → +∞, ∇ = 0
holds, which ensures consistency.

C. Hessian

The Hessian matrices of the real-valued contrast function
defined using the Wirtinger calculus are given by [55]

Hexpl
1 =

∂2C1
∂wT∂w

=
∂∇H

∂w
, (19)

Hexpl
2 =

∂2C1
∂wH∂w

=
∂∇T

∂w
. (20)

The superscript expl is used to distinguish the explicit Hessian
matrices from their counterparts that are finally used in the
algorithms. These are obtained by considering the analytical
shapes of Hexpl

1 and Hexpl
2 when w = w� and N → +∞.

We consider two approaches: the derivatives of (18) are con-
sidered with and without the imposed OGC on a, respectively.

In both computations, the ν̂�s variables are treated as constants.
The results are summarized in the following two Lemmas.

Lemma 3: Let w = w�, N → +∞, ν̂� be constants, and a
depend on w through (11). It then holds that Hexpl

1 → H1 and
Hexpl

2 → H2, where

H∗1 =
〈
ν−1�

(τ�
2
a� − (ν� + η�)a

)〉
�
aT , (21)

H2 =
〈C∗�〉�
〈σ2

� 〉�
−
〈
ρ�C

∗
�

ν�σ2
�

〉
�

−
〈
ν−1�

(
ω�a

∗ − τ�
2
a∗�
)〉

�
aT ,

(22)

where τ� = η� + ξ� + ν� and ω� = ξ� + ν� − ρ�, and

ρ� = E

[
∂φ( s�σ�

)

∂s∗

]
, (23)

ξ� = E

[
∂φ( s�σ�

)

∂s∗
|s�|2
σ2
�

]
, (24)

η� = E

[
∂φ( s�σ�

)

∂s

s2�
σ2
�

]
. (25)

Proof: See Appendix B. �
Lemma 4: Let w = w�, N → +∞, and ν̂� and a be con-

stants. It then holds that Hexpl
1 → H1 and Hexpl

2 → H2, where

H∗1 =
〈
ν−1�

(τ�
2
a� − η�a

)〉
�
aT , (26)

H2 = −
〈
ρ�C

∗
�

ν�σ2
�

〈�−〉 ν−1�

(
(ξ� − ρ�)a∗ − τ�

2
a∗�
)〉

�

aT .

(27)

Proof: See Appendix B. �

D. Learning Rule

The learning rule in the proposed algorithms is inspired by the
exact Newton-Raphson (NR) update derived in [55]. An iteration
of the exact NR algorithm is given by

wnew = w −H−13 (∇− (Hexpl
1 )∗(Hexpl

2 )−1∇∗), (28)

where H3 = (Hexpl
2 )∗ − (Hexpl

1 )∗(Hexpl
2 )−1Hexpl

1 . We employ
this update with the following two modifications:

1) Hexpl
1 and Hexpl

2 are replaced, respectively, by H1 and
H2, in which the unknown signal statistics ν�, ρ�, ...are
replaced by their sample-based estimates using samples
of the current estimate of the SOI, and

2) the rank-one terms in H1 and H2 are neglected, hence,
the entire H1 is put equal to zero.

After these modifications, the update rule (28) is simplified to

wnew = w −H−1∇, (29)

where ∇ is computed the same as in (18) and

H =

〈
Ĉ�

〉
�

〈σ̂2
� 〉�
−
〈
ρ̂�Ĉ�

ν̂∗� σ̂
2
�

〉
�

(30)
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for the first proposed algorithm based on Lemma 3, and

H = −
〈
ρ̂�Ĉ�

ν̂∗� σ̂
2
�

〉
�

(31)

for the second proposed algorithm based on Lemma 4. Both
algorithms are iterated according to the scheme given by
Algorithm III-D until convergence prevails, where the same
stopping rule (line 6 in Algorithm III-D) is used as that in [12].
For the sake of consistency with our previous works [14], [56],
the algorithms will be referred to as FastDIVA and QuickIVE,
respectively.

Our neglecting the rank-1 terms in H1 and H2 is justified by
the fact that, in our experiments, we did not observe any practical
improvement when these terms were kept. Similar simplification
has been used in [14] when L = T = 1, where it is justified by
Proposition 2 (of [14]) in a mathematically rigorous way.

E. Extension to T > 1 and K > 1

We now can get back to the original notation with all three
indices k, t, and � (data-set, block, and sub-block) and admit
that T > 1 and K > 1. The extension of the results derived
in Sections III-B and III-C to T > 1 is straightforward. The
gradient and the Hessian matrices are averaged over t due to the
averaging operator in (7).

For the extension toK > 1, we use the fact that the parameters
in (7) with different k are separated (depend only on the param-
eters with the same k) up to the first term involving f(·), which
is a function of the entire vector component of the SOI, hence,
of all the separating vectors w1, . . . ,wK . Here, we simplify
the algorithm development by ignoring mixed second-order
derivatives5, i.e., the derivatives by wk1

and wk2
, k1 �= k2.

This is equivalent to assuming that the Hessian matrices related
to the concatenated parameter vector w = [w1; . . . ;wK ] are
block-diagonal withK ×K blocks on the main diagonal where
the kth block corresponds to the second order derivatives bywk.

Consequently, the algorithm derivations done in the previous
sections apply separately to each k = 1, . . . ,K, and we only
need to extend the definitions (14), (23)-(25) as follows. Let the

5By neglecting the mixed second-order derivatives of (7), the developed algo-
rithms are substantially simplified because the update rules become decoupled
in k.

kth score function related to f(·) be defined as

φk(st,�) = − ∂

∂sk
log f(st,�), (32)

where the partial derivative is taken over the kth argument
denoted by sk. We can now continue with the new definitions

νk,t,� = E

[
φk

({
sk,t,�
σk,t,�

}
k

)
sk,t,�
σk,t,�

]
, (33)

ρk,t,� = E

⎡⎣∂φk
({

sk,t,�

σk,t,�

}
k

)
∂s∗k

⎤⎦ , (34)

ξk,t,� = E

⎡⎣∂φk
({

sk,t,�

σk,t,�

}
k

)
∂s∗k

|sk,t,�|2
σ2
k,t,�

⎤⎦ , (35)

ηk,t,� = E

⎡⎣∂φk
({

sk,t,�

σk,t,�

}
k

)
∂sk

s2k,t,�
σ2
k,t,�

⎤⎦ . (36)

The update rules for K > 1 and T > 1 are given by

wnew
k = wk −H−1k ∇k, k = 1, . . . ,K, (37)

where

∇k =

〈
ak,t −

〈
ν̂−1k,t,�Ê

[
φk

({
ŝk,t,�
σ̂k,t,�

}
k

)
xk,t,�

σ̂k,t,�

]〉
�

〉
t

,

(38)

ak,t =

〈
Ĉk,t,�

〉
�
wk

wH
k

〈
Ĉk,t,�

〉
�
wk

, (39)

and

Hk =

〈〈
Ĉk,t,�

〉
�〈

σ̂2
k,t,�

〉
�

−
〈
ρ̂k,t,�Ĉk,t,�

ν̂∗k,t,�σ̂
2
k,t,�

〉
�

〉
t

, (40)

Hk = −
〈〈

ρ̂k,t,�Ĉk,t,�

ν̂∗k,t,�σ̂
2
k,t,�

〉
�

〉
t

, (41)

for FastDIVA and QuickIVE, respectively.

F. Relation to Previous Methods

For L = 1, the update rule (37) with (38) and (40) is readily
simplified to 45 in [14]. It means that FastDIVA proposed in this
paper is an extension of the previous method for L > 1. It also
follows that the proposed algorithm is the successor of FastICA
from [12] (only L = T = K = 1) and of FastIVA from [57]
(only L = T = 1).

Similarly, the proposed QuickIVE is the extension of the
method from [56] for L > 1. QuickIVE provides an alternative
to FastDIVA. It is an algorithm whose convergence is slightly
slower than that of FastDIVA; nevertheless, this algorithm some-
times appears to be more stable, as will be shown in Section V;
see also [56] where QuickIVE is shown to take an advantage
over FastDIVA in continuous on-line source extraction.

Authorized licensed use limited to: UTIA. Downloaded on December 01,2022 at 08:08:12 UTC from IEEE Xplore.  Restrictions apply. 



5108 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

IV. EXTENSIONS

The current section is devoted to the Gaussian SOI source
model, which comes into play when L > 1 (unlike for L = 1,
the Gaussian SOI can be identified when L > 1). The Gaussian
source model brings two important advantages. First, its analytic
form leads to simplifications of both mathematical expressions
and algorithms, which then operate purely with the second-order
statistics: covariance (and pseudo-covariance) matrices. This is
useful for capturing non-circularity and dependencies among
the components of SOI whenK > 1. Second, in situations with
a critical lack of data due to very short sub-blocks, e.g., when
K � Ns, an efficient source model can be designed based on
an appropriate model of the SOI covariance matrix.

A. Gaussian Score Function

Let the distribution of st,� be Gaussian with covariance
matrix Σt,� = E[st,�s

H
t,�] and pseudo-covariance matrix Γt,� =

E[st,�s
T
t,�]. From now on, we omit the indices k and t to sim-

plify our notation, keeping in mind that the signals and their
parameters are always block- and sub-block-dependent.

The log-density of the Gaussian SOI, represented by the
vector s, can be written in the form

log f(s|Σ,Γ) = −sHP−∗s+ �{sTMTP−∗s
}
+ const.,

(42)
where P = Σ∗ − ΓHΣ−1Γ, and M = ΓHΣ−1 [58]; P−∗ is a
short notation for matrix inverse and conjugate value. Note that
since Σ = ΣH and Γ = ΓT , it holds that P = PH .

Let ψ(s|Σ,Γ) denote the vector score function of s, whose
kth element is the kth score function of s, i.e., ψk(s) =
eHk ψ(s|Σ,Γ); ek is the kth column of IK . By definition, it
holds that

ψ (s|Σ,Γ) = − ∂ log f(s)

∂s

= P−1s∗ − 1

2

(
MTP−∗ +P−1M

)
s. (43)

Let us consider the following well-known special cases.
� For the circular case, Γ = M = 0 holds and the vector

score function takes on a simple form ψ(s) = (Σ−1s)∗.
� Let us consider the scalar case K = 1, Σ = σ2 = 1, and

let us denote δ = Γ. It then holds that |δ| ≤ 1. The score
function takes on the form

ψ(s) =
1

1− |δ|2 (s
∗ − δ∗s). (44)

The following Lemma will be useful for incorporating the
Gaussian source model into the algorithms presented in the
previous section.

Lemma 5: Let s be the K-dimensional Gaussian vector ran-
dom variable with zero mean, covariance Σ, pseudo-covariance
Γ, and score function ψ(s|Σ,Γ). By the transformation theo-
rem,φ(s) = ψ(s|ΛΣΛ,ΛΓΛ) is the score function of the nor-
malized variable Λs where Λ = diag[σ−11 , . . . , σ−1K ]; diag(·)
denotes the diagonal matrix with the values of the argument on
its main diagonal. By definitions of (33) and (34), it holds that,

for k = 1, . . . ,K,

νk = 1, (45)

ρk = σ2
k(P

−1)kk. (46)

Next, whenΣ,Γ, andΛ are estimated, respectively, by Σ̃, Γ̃, and
Λ̃, φ(s) = ψ(s|Λ̃Σ̃Λ̃, Λ̃Γ̃Λ̃) is then used as the model score
function for the available samples of s and for k = 1, . . . ,K,

ν̂k = 1, (47)

ρ̂k = σ̂2
k

(
P̃−1

)
kk
, (48)

where P̃ = Σ̃
∗ − Γ̃

H
Σ̃
−1
Γ̃.

Proof: See Appendix C. �
FastDIVA and QuickIVE based on the Gaussian source model

are obtained when (43), (47), and (48) are used in (38), (40),
and (41). The following three subsections consider particular
variants of these algorithms.

B. Scalar Gaussian SOI

Here, we consider the special case corresponding to the
fundamental static BSE problem when K = T = 1 with the
nonstationary Gaussian source model, i.e., L > 1. We discuss
the properties of stationary points of the contrast function,
the simplified learning rules of FastDIVA and QuickIVE, and
compare the circular and non-circular cases.

Let us consider the circular case first, where the score function
isψ(s) = s∗; it follows from (44) when δ = 0. The gradient (18)
is then obtained in the form

∇ = a−
〈
Ê [ŝ∗�x�]

σ̂2
�

〉
�

= a− 〈a�〉� , (49)

where we used the definitions of (11) and (15). By putting
(49) equal to zero, and using that σ̂2

� = wHĈ�w, we obtain
an elegant form of the condition for the stationary point of the
contrast function (8)〈

Ĉ�

〉
�
w〈

wHĈ�w
〉
�

=

〈
Ĉ�w

wHĈ�w

〉
�

. (50)

By considering N → +∞, it is seen that the SOI cannot be
extracted when its variance σ2

� is constant over �, because any w
satisfies this condition. This observation is in agreement with the
identifiability condition of the corresponding BSE problem [18],
[31].

In the circular case, the learning rule of FastDIVA resp.
QuickIVE is simplified to

wnew = w −H−1 (a− 〈a�〉�) , (51)

where

H =

〈
Ĉ�

〉
�

〈σ̂2
� 〉�
−
〈
Ĉ�

σ̂2
�

〉
�

resp. H = −
〈
Ĉ�

σ̂2
�

〉
�

. (52)

It is seen that, when σ̂2
� tends to be constant over �, the Hessian

matrix of FastDIVA is close to zero, so the algorithm will have
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unstable behavior in the vicinity of the SOI. By taking into
account non-circularity, the above-mentioned learning rule is
changed to

wnew = w −H−1
(
a−

〈
1

1− |δ̂�|2

(
a� − δ̂∗�

D̂�w
∗

σ̂2
�

)〉
�

)
,

(53)
where D̂� = Ê[x�x

T
� ] is the sample pseudo-covariance matrix

of x�, and δ̂� = wHD̂�w
∗σ̂2

� is the normalized circularity coef-
ficient of the SOI satisfying |δ̂�| ≤ 1, and

H =

〈
Ĉ�

〉
�

〈σ̂2
� 〉�
−
〈

Ĉ�

(1− |δ̂�|2)σ̂2
�

〉
�

, (54)

and

H = −
〈

Ĉ�

(1− |δ̂�|2)σ̂2
�

〉
�

, (55)

for FastDIVA and QuickIVE, respectively.
We can see that, for δ̂� = 0, � = 1, . . . , L, the algorithms given

by (51) and (53) coincide. However, in experiments, we have
observed that the latter update rule appears to be numerically
more stable than the former one, because δ̂�s are never exactly
equal to zero even when the SOI is circular.

The above-described algorithms can be easily extended to the
nonstationary mixing conditions when T > 1 by replacing the
gradient and Hessian matrix by their averages over the blocks,
as follows from the general formulas (38) and (40).

C. Vector Gaussian SOI: General Covariance Structure

In the case of K ≥ 1, the Gaussian source model can be
directly applied to derive the update rules of FastDIVA and
QuickIVE by considering the Gaussian model score function
given by (43). This approach is reasonable when no prior knowl-
edge about Σ or Γ is available. The sample-based estimates
Σ̂ = Ê[̂sŝH ] and Γ̂ = Ê[̂sŝT ] can be used where s stands for
the current estimate of the SOI. We can then apply (47) and
(48) in Lemma 5 with Σ̃ = Σ̂ and Γ̃ = Γ̂; subsequently we can
replace the unknown matrices in (48) by their estimates, and put
them into (38), (40), and (41).

However, two practical issues occur when K gets “larger”.
First, this approach tends to be stable and accurate until a
critical number of samples within sub-blocks is available. The
problem arises when K ≈ Ns because of the rank deficiency of
Σ̂. Obviously, Σ̂ is singular whenK > Ns. It can be avoided by
adding a regularizing term to Σ̂ such as a multiple of the identity
matrix, that is,

Σ̃ = Ê[̂sŝH ] + μIK . (56)

Here, the parameter μ ≥ 0 provides a trade-off between the
source modeling accuracy and algorithm stability.

The second issue is that the computational complexity steeply

grows with K due to the computations of Σ̃
−1

and P̃−1.
Although these matrices are Hermitian and positive definite,
the computations still take at least O(K3) operations. This
brings about a prohibitively large computational burden in some

Fig. 1. Example of a typical covariance matrix of normalized STFT channels
of speech; a clear male speech sampled at 16 kHz; FFT length of 256 samples;
window shift of 128 samples; the Hamming analysis window used; average
taken over 50 frames.

applications, such as in the frequency-domain audio source sep-
aration where K corresponds to the frequency resolution (e.g.,
K ≥ 128). Moreover, no significant algebraic simplifications
in (38) are possible unless these matrices have any favourable
structure. Altogether, the approach discussed in this subsection
is recommended only for “small” enough values of K.

D. Vector Gaussian SOI: Tridiagonal Covariance Matrix

There are situations when Σ̃ and Γ̃ are structured, which can
be used to alleviate the shortcomings of the previous approach.
In this subsection, we consider the special case in which Σ̃ is
tridiagonal and Γ̃ = 0 (non-circularity is not taken into account).
Without any loss of generality, we will consider Σ̃ when all SOI
components are normalized to have unit sample variance, so the
assumed structure is given by

Σ̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 f1

f ∗1 1 f2

f ∗2
. . .

. . .
. . .

. . . fK−1
f ∗K−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (57)

This structure means that adjacent components of the SOI are
correlated. It is motivated by the situation that appears, e.g., in
speech extraction in the short-term Frequency domain (STFT).
Fig. 1 shows a typical sample covariance matrix of normalized
STFT channels of speech. There are significant correlations of
adjacent frequency bands caused by their overlap; the other
correlations appear to be less significant.

By taking the advantage of this structure, the close-form for-

mula from [59] can now be used to compute Σ̃
−1

, which reduces
the main computational burden needed for the evaluation of (48)
and (43). We have that

(Σ̃
−1
)ij =

⎧⎪⎨⎪⎩
(−1)i+jfi . . . fj−1θi−1ξj+1/θK i < j

θi−1ξj+1/θK i = j

(−1)i+jf ∗j . . . f
∗
i−1θj−1ξi+1/θK j < i

(58)
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for i, j = 1, . . . ,K, and

θi = θi−1 − |fi−1|2θi−2, i = 2, 3, . . . ,K, (59)

with initial conditions θ0 = θ1 = 1, and

ξi = ξi+1 − |fi|2ξi+2, i = K − 1, . . . , 1, (60)

with initial conditions ξK+1 = ξK = 1. Using this, the compu-

tational burden due to Σ̃
−1

is substantially reduced to almost
linear complexity as follows.

Since |fi| < 1, (58) means that the off-diagonal entries of Σ̃
−1

are exponentially decreasing with the growing distance from the

main diagonal. We can therefore neglect the elements of Σ̃
−1

on

thekth diagonal for |k| > kmax. The evaluation of Σ̃
−1

then only
takesO(kmaxK) operations. Also, the multiplication by P̃−1 in
(43), which otherwise costs O(K2), is reduced to O(kmaxK).

Another issue is that the positive definiteness of Σ̃ must be
ensured for stability of the algorithms. Here, we propose to
constrain the off-diagonal entries of Σ̃ as

fk =

{
f̂k |f̂k| ≤ 0.4

0.4 · f̂k
|f̂k| |f̂k| > 0.4

, (61)

where f̂k = Ê[ŝkŝ
∗
k+1]; k = 1, . . . ,K − 1. The threshold for

limiting the magnitude of f̂k by 0.4 is inspired by the analytic
value of the eigenvalues of tridiagonal matrices where fks are
all constant and equal to f . Their eigenvalues are

1 + 2|f | cos
(

kπ

K + 1

)
, k = 1, . . . ,K. (62)

In that case, the limit 0.4 hence ensures that all eigenvalues of
Σ̃ are sufficiently larger than zero.

V. EXPERIMENTAL VALIDATION

A. Simulations

The proposed algorithms are validated in simulated exper-
iments and compared with other state-of-the-art algorithms.
Their performance is assessed in terms of the interference-
to-signal ratio (ISR) measured on the extracted signal(s). The
1% trimmed mean is used for averaging over Monte Carlo
repetitions in order to avoid trials where the given algorithm
extracts a different independent source than the SOI. Owing to
the ambiguity of the BSE task, these cases do not necessarily
mean failures.

In a simulation trial, the SOI(s) samples are drawn indepen-
dently according to the complex Generalized Gaussian law [60]
with zero mean, (normalized) circularity coefficient |δ| ≤ 1,
and the shape parameter c > 0 (c = 1 means Gaussian, c < 1
super-Gaussian, and c > 1 sub-Gaussian). The nonstationarity
of the SOI is driven through its variance, which is, on the tth
block and �th subblock, equal to

σ2
t,� =

[
sin

(
tπ

T + 1

)
sin

(
�π

L+ 1

)]α
. (63)

The SOI is stationary for α = 0, moderately dynamical for
α ≈ 1, and transient-like when α� 1; see the example shown

Fig. 2. Example of variance profiles of the SOI according to (63) whenT = 3,
L = 5, Ns = 100.

in Fig. 2. The background sources are generated as stationary
uncorrelated circular Gaussian.

The signals are mixed, in each block, by a random mixing
matrix. The mixing matrices are generated as suggested in [13],
i.e., their inverse matrices are generated from the complex-
valued uniform distribution on [1,2] (real and imaginary values);
for T > 1, the CSV mixing model is ensured by making the
first rows of the inverse matrices constant over t. The initial
signal-to-interference ratio on input channels is chosen to be
approximately constant [13]. The algorithms are initialized by
the separating vectors wini

k = w�
k + εk where εk is a random

vector orthogonal to w�
k such that ‖εk‖2 = 0.01.

1) Static Independent Component Extraction: The standard
ICE problem withT = K = 1 is considered here whereL = 20,
d = 6, and N = 5000, i.e., Ns = 250. The SOI distribution is
generated with c = 1 and δ = 0.5 (non-circular Gaussian); the
case when c = 0.5 (non-circular Laplacean) is provided in the
supplementary material of this article.

We have compared eight algorithms. BOGIVEw [48], [61],
FastDIVA from [14], and CSV-AuxIVE [48] represent non-
Gaussianity-based methods that inherently work with the
hypothesis that L = 1. In BOGIVEw and FastDIVA, the ratio-
nal nonlinearity φ(s) = s∗

1+|s|2 denoted as “rati” is used; CSV-
AuxIVE utilizes the standard nonlinearity for super-Gaussian
sources [25]. As for a method assuming Gaussianity and non-
circularity and allowing for nonstationarity, we compare LLJBD
from [20]. The extended versions of FastDIVA and QuickIVE
proposed in this article stand for the methods allowing for the
non-Gaussianity and/or nonstationarity. They are tested with
L = 20 and with the nonlinearities “rati” or “gauss,” where
the latter corresponds to (44), i.e., the Gaussian score allowing
for non-circularity. From here, short abbreviations algorithm–
nonlinearity-L will be used for the variants of FastDIVA and
QuickIVE, e.g., FastDIVA–rati–20.

Fig. 3 shows the results when c = 1 for 1,000 trials. For
α = 0.1, the algorithms yield poor ISR (> −15dB) since the
SOI is almost stationary and Gaussian, up to FastDIVA–gauss–
20 and QuickIVE–gauss–20 that benefit from the non-circularity
of the SOI. With growing α, all algorithms are improving
as the SOI becomes more nonstationary, including the non-
Gaussianity-based FastDIVA–rati–1 and BOGIVEw. However,
BOGIVEw fails to achieve the same performance as FastDIVA
due to its slow convergence (it is limited by the maximum
number of 1,000 iterations).
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Fig. 3. Resulting ISR as a function of α, the parameter controlling the
nonstationarity of the SOI according to (63). The pdf of the SOI is Gaussian
as c = 1 with circularity coefficient δ = 0.5; “initialization” corresponds to the
do-nothing approach and reflects the ISR given by the initialization.

Fig. 4. ISR as a function ofN when c = 1 and δ = 0.5 (Gaussian non-circular
SOI), T = 3 (nonstationary CSV mixing model), and L = 5 and α = 2 (non-
stationary source model). N ranges from 150 through 15,000; the length of
sub-blocks Ns thus ranges from 15 through 1,000.

The performance is better for algorithms capturing the non-
stationarity considering L = 20; especially, for α > 1. The
superior performance is achieved by FastDIVA–gauss–20 and
QuickIVE–gauss–20, whose performance characteristics coin-
cide in this case. The superiority is achieved due to the accurate
source modelling including non-circularity. These methods yield
lower performance with the “rati” nonlinearity (assuming circu-
larity); FastDIVA–rati–20 shows less stable convergence than
QuickIVE–rati–20 for the values of α > 1.

LLJBD is also improving with growing α; however, the
median ISR has to be shown here due to unstable convergence.
Surprising results are obtained by CSV-AuxIVE since it shows
improvement with growing α similarly to the methods employ-
ing nonstationarity. This is in contrast with the fact that the
method comes from the optimization of non-Gaussianity-based
source model [25], [48]. The theoretical explanation of this
behavior goes beyond the scope this paper.

Fig. 5. ISR as a function of m, where m is the number of sub-blocks assumed
within the proposed algorithms; c = 1, δ = 0.5 (Gaussian non-circular SOI),
T = 3 (nonstationary CSV mixing model),L = 5,α = 2 (nonstationary source
model), N = 1, 800; m ranges from 2 through 60; Ns thus ranges from 300
through 10.

Fig. 6. Mean convergence of algorithms performing separate (ICE) and joint
(IVE) blind extraction: ISR as a function of iteration index. The parameters of
the experiment are α = 2, c = 0.5, δ = 0.5, L = 10 (nonstationary Laplacean
non-circular SOI), d = 10, T = 1 (static mixtures), K = 5 (five jointly depen-
dent mixtures per trial), and N = 500.

2) Dynamic Independent Component Extraction: We now
turn toT = 3,K = 1, d = 6, and where the SOI is nonstationary
and non-circular Gaussian withL = 5,α = 2 and δ = 0.5. Since
T > 1, we compare only the methods that allow for the CSV
mixing model. QuickIVE is not presented here since it has
provided the same results as FastDIVA.

Fig. 4 shows the average ISR achieved after 1,000 trials
as a function of the length of data N . The values of N are
selected so that Ns ranges from the extremely small value
of Ns = 15 through Ns = 1, 000. With growing N , all meth-
ods are improving, including BOGIVEw, CSV-AuxIVE, and
FastDIVA–rati–1, which do not exploit the nonstationarity of
the SOI on the sub-blocks. The extended FastDIVA (allowing for
L = 5) shows better performance than with L = 1. Moreover,
FastDIVA–gauss–20 takes the advantage of non-circularity and
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Fig. 7. Results of the simulated frequency-domain speech extraction. Row 1: median ISR taken over 100 trials; the average ISR (line); the range from the
minimum through the maximum value of ISR over all frequencies (area). Row 2: the ISR of all frequencies in trial 1.

achieves a useful accuracy level (of ≈ −11 dB) even in the ex-
treme case of Ns = 25 (resp. N = 150). The experiment when
the SOI is Laplacean is shown in the supplementary material.

Next, we examine the sensitivity of the algorithms to the
assumed value of L. The setup is the same as in the previous
experiment with N = 1, 800. The true number of sub-blocks
is L = 5 while the proposed algorithms are run with L = m
wherem ranges between 2 and 60; the number of samples within
sub-blocksNs thus ranges from 300 through 10. Fig. 5 compares
three variant of FastDIVA. FastDIVA–rati–1 is independent of
m, so its performance only fluctuates between −8 and −12 dB
of mean ISR. FastDIVA–rati–m shows quite stable performance
until m ≤ 15 (Ns ≥ 40), and its performance is deteriorating
for m > 15. FastDIVA–gauss–m shows a stable performance;
it only slightly deteriorates when m ≥ 50 (critically low Ns ≤
12). In conclusion, the results show that the algorithms are robust
enough in the model parameter L until Ns is sufficiently high.

3) Independent Vector Extraction: Here, we considerK = 5
mixtures of dimension d = 10 involving jointly dependent com-
ponents of the SOI. These components are generated as fol-
lows: First, five signals are generated independently withα = 2,
c = 0.5, δ = 0.5,L = 10 (nonstationary Laplacean non-circular
sources). Second, these signals are multiplied by a random
K ×K matrix drawn from CN (0, 1), which yields dependent
and correlated SOI components. K mixtures with T = 1 are
generated, so the data obeys the standard IVE mixing model.
The number of samples is N = 500; Ns is 50. The compared
algorithms are tested in two regimes: the K mixtures are pro-
cessed (ICE) separately and (IVE) jointly.

Fig. 6 shows ISR averaged over the mixtures and 1,000
trials as a function of iteration index. In the ICE regime, these
methods show significantly slower convergence than in the
IVE regime (e.g., CSV-AuxIVE or FastDIVA–rati–1) and also
lower accuracy levels because the dependencies among the SOI
components are not used. This shows that proper source mod-
eling influences not only the algorithms’ accuracy but also their
convergence. FastDIVA is shown to be mostly the fastest method
among the compared ones; QuickIVE provides its slightly de-
celerated (and sometimes more stable) variant.

B. Frequency-Domain Blind Speech Extraction

The typical application of IVE includes speech extraction in
the short time frequency domain. The mixture of speech and
background are convolutive in the time domain and can be
approximated as instantaneous in the frequency domain; hence
the instantaneous complex-valued ICE and IVE mixing models
can be applied. Compared to ICE, IVE tries to secure that
the SOI is extracted in each frequency band (the permutation
problem) by using dependencies [24]. However, it is generally
known that this solution through IVE is not definite. For ex-
ample, the extracted frequency components can form groups
corresponding to different independent sources, so, finally, the
complete extraction is not achieved. The experiment proposed
here aims at a detailed investigation of the convergence issues
of the compared algorithms in this application. Also, the vari-
ants of FastDIVA/QuickIVE for Gaussian SOI with tridiagonal
covariance matrix proposed in Section IV-D are employed here
(denoted with the “gausstri” nonlinearity).

In a trial, a short interval of clean speech is transformed by
the Short-Time Fourier Transform (STFT) with the FFT/window
and shift length, respectively, equal to 2K + 1 and K samples;
we consider K = 128; the number of the STFT frames corre-
sponds to N = 375. Then, K mixtures, one per each frequency
band 1, . . . ,K (the zero frequency band is not included), obey-
ing the CSV model with d = 10 (simulating 10 microphones)
and T = 3 (a moving speaker) are generated. The speech fre-
quency components play the role of the SOI components; the
background is generated from d− 1 independent Laplacean
signals.

The results of five algorithms are evaluated in Fig. 7, where
the ISR is shown as a function of iteration index. The graphs in
the first row show median ISR taken over 100 trials; the lines
show the average ISR taken over all K frequencies while the
transparent areas show the range from the minimum through the
maximum ISR over the frequencies. For more insight, the charts
in the second row illustrate the results of trial 1.

The example shows that all algorithms tend to extract most
of the frequency components of the speech. This is indicated by
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the average median ISR whose value goes significantly below
0 dB. However, the ISR of some frequencies is sometimes
growing, which seems to happen more often for CSV-AuxIVE
and FastDIVA–rati–1. FastDIVA–gauss–5 (Section IV-C) ap-
pears to yield a more stable convergence in all frequencies;
however, it is significantly slower than the other methods and is
computationally very expensive due toK = 128. The fastest and
most reliable convergence is observed in FastDIVA–gausstri–5
and QuickIVE–gausstri–5. The average median ISR by these
methods achieves values below −20 dB after less than 10
iterations, which is the superior extraction accuracy among the
compared methods.

VI. CONCLUSION

The BSE model, combining non-Gaussianity and nonstation-
arity in the source model and nonstationarity in the mixing
models, makes the set of identifiable sources broader. We have
derived extended variants of FastDIVA and QuickIVE, which
show faster convergence and higher accuracy than the state-of-
the-art methods. We have shown that these algorithms can be
used with the Gaussian score function, which makes them purely
based on second-order statistics. In complex-valued problems,
they can efficiently exploit non-circularity. The special variant,
assuming jointly Gaussian SOIs with tridiagonal covariance
matrix, shows promising results for frequency-domain blind
speaker extraction.

APPENDIX A
PROOF OF LEMMA 1

The gradient of the first two terms in (8), here denoted as∇12,
readily gives that
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∂
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where a� is defined by (15), and where we used identities
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We continue by showing that the gradient of the last two terms
in (8), denoted as∇34, reads

∇34 =
∂
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(68)
To this end, note that the two terms inside the averaging operator
< · >� in (8) have the same analytic shape as the last two terms
in 26 in [13]. Therefore, we can employ the result given by
27 in [13], taking into account the linearity of the operator
< · >� and the dependency of the signals and their statistics on

�. By considering substitutions z→ z�, Ĉz → Ĉ�
z, R→ R�,

we obtain that
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where tr(·) denotes the trace; E = [0 Id−1]; e1 denotes the
first column of Id. Now, we put R� =< Ĉ�
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the Lemma, (69) turns to
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Ĉe1

)
+ (γ∗)−1(d− 2)

(
wHĈw
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where we have used that Ê[z�ŝ∗�] = 0, which follows from (10).
Hence,
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(72)
By putting (72) into (71) and using (11), (69) follows. The
assertion of the Lemma follows by summing (64) and (68).

APPENDIX B
PROOF OF LEMMA 3 AND 4

The proof follows analogous steps to those in Appendix A
in [14]. ForN → +∞, the sample-based estimates are replaced
by the expectation values, and, by definition,
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The dependent variables on w are s� = wHx� and σ2
� =

wHC�w; ν� are treated as constants. For proving both of the
Lemmas, the following identities will be used:
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where φ� is a short notation of φ( s�σ�
). Considering the expec-

tation values of the latter two expressions, and the fact that
x� = as� + y� where s� and y� are independent, we obtain
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T
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are the covariance and pseudo-covariance of y�, respectively.
Owing to the assumption stated in Section II-B that the back-
ground signals are circular Gaussian,P�

y = 0. Next, it holds that
C� = aaHσ2

� +C�
y. By making these substitutions in (77) and

(78), we obtain
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By inserting (79) and (80), respectively, into (73) and (74),
the assertion of Lemma 4 follows.

What is left to compute for the proof of Lemma 3 are the
derivatives ofaT in (73) and (74) when the OGC (11) is imposed:
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= −aaT , (81)

∂aT
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− a∗aT , (82)

whereσ2 = 〈σ2
� 〉�. By inserting (79) and (81) into (73), and (80)

and (81) into (74), the assertion of Lemma 3 follows.

APPENDIX C
PROOF OF LEMMA 5

By definition, P = Σ∗ − ΓHΣ−1Γ and M = ΓHΣ−1. Us-
ing the matrix inverse lemma, it can be shown that
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)
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We will use this identity for proving (45).
By considering the substitutions Σ← ΛΣΛ and Γ← ΛΓΛ

and (43), the score function of the normalized s reads
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We can now use this formula to express the following matrix:
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where we have used (83). Now, (45) follows sinceμk = eHk Ξek.
It is easily seen that, when Σ, Γ, and Λ are replaced, respec-

tively, by their estimates Σ̃, Γ̃, and Λ̃ (assuming that Σ̃
−1

and
P̃−1 exist), we can follow the same steps to prove (47). Provided
that Ê[s∗sT ] is in (85) replaced by Σ̃

∗
and Ê[ssT ] is replaced by

Γ̃, the assertion that ν̂k = 1 follows.
Finally, (46) and (48) readily follow by considering the

Wirtinger derivative of (84) by s∗.
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