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ABSTRACT
This contribution deals with a model of one-dimensional Bernoulli-
like random walk with the position of the walker controlled by vary-
ing transition probabilities. These probabilities depend explicitly on
the previous move of the walker and, therefore, implicitly on the
entire walk history. Hence, the walk is not Markov. The article follows
on the recent work of the authors, the models presented here
describe how the logits of transition probabilities are changing in
dependence on the last walk step. In the basic model this develop-
ment is controlled by parameters. In the more general setting these
parameters are allowed to be time-dependent. The contribution
focuses mainly on reliable estimation of model components via the
MLE procedures in the framework of the generalized linear models.
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1. Introduction

The contribution presents a model of discrete time Bernoulli-like random walk with
probabilities of the next step depending on the walk past. Namely, the steps of walk are
Xt ¼ 1 or 0, as a variant the walk with steps Xt ¼ 1, � 1 is considered. Probabilities are
Pt ¼ PðXt ¼ 1Þ, t ¼ 1, 2, :::, starting from certain P1. It is assumed that these probabil-
ities develop and depend on last walk steps making the walk a non-Markovian stochas-
tic process. A practical inspiration of such walk type with steps 1, �1 comes from
models of sport matches, for instance of tennis, and sequence of its games, or in finer
or rougher setting, its balls or its sets. Similarly, walk with steps 1, 0 can model a series
of events (e.g. failures, repairs) in a reliability study, the “step” 1 denoting an event occur-
rence, “step” 0 then means no event in time interval t. The latter case in fact corresponds
to the discrete time recurrent events counting process model, where both event occurrence
and absence changes future event probability. Thus, the models can be regarded as a simple
discrete variants of “self-exciting” point processes, cf. Hawkes (1971).
One set of studied random walk models, there with steps 1, �1, has been proposed

in Kou�rim and Volf (2020), application to tennis matches modeling and prediction was
presented already in Kou�rim (2019). For illustration, let us here recall the simplest form
of such a model. Two parameters, the initial probability P1 and change parameter k are
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given, both in (0, 1). The development of walk is described via the development of the
probability of step “1”:

Ptþ1 ¼ kPt þ 1� k
2

ð1� XtÞ: (1)

In such a model, after event “1” its probability in the next step is reduced by k, therefore
the model is called “success punishing.” A variant increasing Ptþ1 after the occurrence of
event “1,” the “success rewarding” model, has Ptþ1 ¼ kPt þ ð1� kÞ=2 � ð1þ XtÞ:
In the article of Kou�rim and Volf (2020) several more complicated model variants,

with more parameters, were introduced and the properties of models studied. Their lim-
iting properties were derived theoretically, while their behavior in small time horizon
was examined graphically, as it could be expected that in a typical applied task the data
would consist of a (sometimes quite large) set of not too long walks. Again, examples
include data from a number of sports matches or records on reliability history of several
technical devices during a limited time period. Notice also that from a sequence having
Xt ¼ 61 a simple transformation Yt ¼ ðXt þ 1Þ=2 leads to a sequence with val-
ues Yt ¼ 0, 1:
The models like (1) have an advantage that the impact of parameters k to probability

change is given rather explicitly. Further, the proofs of large sample properties (tenden-
cies, limits) of walks as well as of the sequences of probabilities are quite easy, at least
in the simplest model version, as shown in Kou�rim and Volf (2020). On the other
hand, the computation of likelihood is complicated and the estimation of parameters
difficult. In fact, the estimation procedures should use random search methods, approxi-
mate confidence intervals of parameters are then obtained by an intensive use of ran-
dom generator.
That is why the present article introduces slightly different model form, where instead

the transition probabilities directly their logits are changing. Thus, the model can be
viewed as a case of logistic model and solved by standard MLE approach, yielding sim-
ultaneously asymptotic confidence intervals of parameters. Therefore, we shall concen-
trate here to practical aspects of the model, that is, to aspects of model parameters
estimation as well as to model utilization. The question of easy and reliable estimation
will be even more important when we allow for time-dependent parameters.
There exists a number of recent articles dealing with discrete random walks and time

series. The article of Davis and Liu (2016) contains a rather broad definition of such a
process dynamics. Formally, our definition is covered as well, however, certain basic
assumptions, for example, the condition of contraction, are not fulfilled.
The monograph of Ch. Weiss (2018) offers a thorough overview of models for dis-

crete valued time series, focusing also on discrete count data and categorical processes.
Models are accompanied by a number of real examples. The problem of process predic-
tion and the test of model fit is discussed as well.
The term “self-excited” discrete valued process is used quite frequently today, how-

ever in a slightly different sense, see for instance Moeller (2016) dealing with discrete
valued ARMA processes and with their regime switching caused by the process develop-
ment (so called SETAR processes).
The rest of the article is organized as follows: Next section contains model formula-

tion. Further, the method of the ML estimation in the framework of logistic form of the
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general linear models will be described and broadened to the case of time-dependent
model parameters. Then the properties of obtained random sequences, not only of the
process of observations but also of the process of probability logits, will be discussed.
Model performance and its parameters estimation will be illustrated with the aid of ran-
domly generated examples. An example with time-varying parameters will be included,
too. Methods of both parametric and non-parametric estimation of these functional
parameters will be proposed and their performance checked. Finally, a simple real data
case, consisting of several series of recurrent events – failures and repairs, will be pre-
sented. The solution is accompanied by a graphical method of testing the model fit.

2. Model description

Let transition probabilities be expressed in a logistic form, namely Pt ¼ exp ðatÞ=
ð exp ðatÞ þ 1Þ, that is, at ¼ logitðPtÞ, t ¼ 1, 2, :::, and let their development be
described via the following development of at, starting from an initial a1:

1. In the case of steps Xt ¼ 1 or 0:

atþ1 ¼ at þ c1Xt þ c2ð1� XtÞ ¼ at þ c2 þ Xtðc1 � c2Þ: (2)

2. For the walk with steps Xt ¼ 1 or -1:

atþ1 ¼ at þ c1ð1þ XtÞ=2þ c2ð1� XtÞ=2 ¼ at þ ðc1 þ c2Þ=2þ Xtðc1 � c2Þ=2:
Parameters cj, j ¼ 1, 2 as well as a1 can attain all real values (though values far from zero
are not expected in real cases), hence it is quite natural to test whether they are significantly
different from zero, or whether they are positive (negative), whether c1 ¼ c2, and so on.
Notice also that c1 < 0 reduces the probability of success Ptþ1 ¼ PðXtþ1 ¼ 1Þ after Xt ¼ 1,
while the value of c2 shows the reaction of probabilities to the opposite result (0 or �1).
Further, it is observed that the model can be re-parametrized, in case 1. Using

parameters c2 and d ¼ c1 � c2, in case 2. with d1 ¼ ðc1 þ c2Þ=2, d2 ¼ ðc1 � c2Þ=2:

3. Log-likelihood and the MLE

1. For the case Xt ¼ 1, 0 and t ¼ 1, 2, :::,T:
The likelihood function for one process of length T equals

L ¼
YT
t¼1

PXt
t � ð1� PtÞð1�XtÞ ¼

YT
t¼1

exp atXt½ � � 1
exp ðatÞ þ 1

:

Further, atþ1 ¼ at þ c2 þ Xtd ¼ a1 þ tc2 þ d
Pt

j¼1 Xj: Again, except for a given (and
possibly unknown) starting a1 all other at are random.
As a rule we observe N processes, that is, their outcomes Xt, i, t ¼ 1, :::,T, i ¼
1, :::N: It is assumed that the parameters a1, c1, c2 are common, however at ¼ at, i
develop randomly for t> 1. Then the log-likelihood function equals

L ¼
XN
i¼1

XT
t¼1

fXt, iat, i � ln ð exp ðat, iÞ þ 1Þg,
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where atþ1, i ¼ a1 þ tc2 þ d
Pt

j¼1 Xj, i: Continuing, with notation Yt, i ¼
Pt

j¼1 Xj, i,
we get

L ¼
XN
i¼1

a1
XT
t¼1

Xt, i þ c2
XT�1

t¼1

tXtþ1, i þ d
XT�1

t¼1

Xtþ1, iYt, i �
XT
t¼1

ln ð exp ðat, iÞ þ 1Þ
( )

:

(3)

2. For the case Xt ¼ 1, � 1, t ¼ 1, 2, :::,T:
Now, for one process

L ¼
YT
t¼1

Pð1þXtÞ=2
t � ð1� PtÞð1�XtÞ=2 ¼

YT
t¼1

exp atð1þ XtÞ=2½ � � 1
exp ðatÞ þ 1

,

where atþ1 ¼ at þ d1 þ Xtd2 ¼ a1 þ d1t þ d2
Pt

j¼1 Xj: Hence, the full log-likelihood
equals

L ¼
XN
i¼1

XT
t¼1

1þ Xt, i

2
at, i � ln ð exp ðat, iÞ þ 1Þ

� �

¼
XN
i¼1

a1
XT
t¼1

1þ Xt, i

2
þ d1

XT�1

t¼1

t
1þ Xtþ1, i

2
þ d2

XT�1

t¼1

1þ Xtþ1, i

2
Yt, i �

XT
t¼1

ln ð exp ðat, iÞ þ 1Þ
( )

,

(4)

where again Yt, i ¼
Pt

j¼1 Xj, i:

In both variants the model can be treated in the framework of logistic regression
model. Then, both the 1-st and 2-nd derivatives of L are tractable and the MLE as well
as the asymptotic variance of estimates can be computed with the aid of a convenient
numerical procedure (e.g. the Newton–Raphson algorithm). In fact, these algorithms are
included standardly in data-analysis software packages, mostly as a part of methods for
generalized linear models. Numerical examples presented here will utilize the Matlab
function glmfit.m.
In the sequel we shall deal just with the first model type considering the random

walk with steps 1 or 0.

4. On properties of sequences at and Pt

In Kou�rim and Volf (2020) some interesting properties of model (1) have been derived.
It focused on the development of the random sequences of probabilities Pt as well as of

sums SðtÞ ¼ Pt
s¼1 Xs: Now, we shall discuss the behavior of random sequences of Pt

and their logits at of model (2). Let us summarize here some of its basic properties:

i) It is seen that atþ1 ¼ a1 þ k1 � c1 þ k2 � c2, where k1, k2 are (random) nonnegative
integers, k1 þ k2 ¼ t: Hence, the domain of values at is discrete and finite, being
larger and larger when time grows.

ii) at is a Markov sequence, as atþ1 ¼ at þ c1 with probability Pt determined by at, or
atþ1 ¼ at þ c2 with probability 1� Pt: Hence, transition from state a depends just
on this state. This Markov chain is thus homogeneous, as long as parameters cj
are constant.
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On the other side, the sequences Xt and St are not Markov, while the bi-variate
processes (Xt, at) and (St, at) have the Markov property.

iii) Further, from i) it follows that the return of at to some of previous values could
be impossible (for instance in the case of irrational c1, c2, c1 6¼ �c2). When the
return is possible, its period is at least 2; this case occurs when c1 ¼ �c2: Hence,
in general, the chain cannot have any stationary distribution.

iv) From i) it also follows that when both c1, c2 are positive (negative), at !
þ1 ð�1Þ a.s. Hence, the only interesting could be the case when c1, c2 have
different signs.

4.1. A model with one parameter

Let us mention here also a special case with unique parameter c ¼ c1 ¼ �c2: Then
atþ1 ¼ a1 þ k � c, k is a random integer from ½�t, t�: When c< 0, then the sequence
reduces the probability of repetition of preceding result, the model is then a variant of
the “success punishing” model (1). The opposite case occurs when c> 0. In Kou�rim and
Volf (2020) dealing with model (1), certain closed formulas for limit of expectations
and variances EðPtÞ, VarðPtÞ were derived. Though now the limit behavior seems to be
quite similar, we are not able to describe it precisely. On the other hand, it is easy to
compute transition matrices and then to follow the development of distributions of
both at and Pt for given c and initial a1.

4.1.1. Case with c< 0
Figure 1 shows an approximation of limit distributions of Pt ¼ PðXt ¼ 1Þ when t ! 1,
separately for even and odd t, in the case a1 ¼ 0:2, c ¼ �0:05: More precisely, the fig-
ure shows the distribution of Pt after 400 and 401 steps, respectively. In both cases, final
EPt¼0.500002, VarPt¼0.003087, the change of distributions in the last 2 steps was
already smaller than 10�7:

Thus, the figure indicates that both stationary distributions are centered around 0.5
(hence, corresponding limit distributions of at have centers around zero). Further, it was
revealed that the limit distribution does not depend on initial a1, however it depends on c:
though the mean still tends to 0.5, the limit variance is smaller for c closer to zero.

4.1.2. Case with c> 0
Figure 2 shows the limit behavior of distribution of Pt in the case of positive parameter
c. It is seen that now the picture is quite different, the figure indicates that the limit dis-
tribution is “unproper,” equal to a Bernoulli distribution with certain P such that
ProbðPt ! 1Þ ¼ P, while ProbðPt ! 0Þ ¼ 1� P: Notice that it corresponds to at tend-
ing to 61, with the same probabilities. Moreover, it was revealed that P depends on
both a1 and c. The upper subplot of Figure 2 shows the distribution of Pt in the process
starting from a1 ¼ 0:2 and with c¼ 0.05, after 1000 steps (the limit behavior of the
sequence with odd and even steps is comparable). In fact, as it is possible to work compu-
tationally just with finite matrices and domains of values, we set values a ¼ a16300 � c as
absorbing states. Regarding the domain of Pt, absorbing states were then Pmin �
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4 � 10�7, Pmax � 1� 3 � 10�7: Final distribution had EPt ¼ 0:814653 (in fact it is the esti-
mate of probability P), VarPt ¼ 0:1508043, while EPt � ð1� EPtÞ ¼ 0:1508045 (this could
be taken as an indication how close we are already to Bernoulli distribution).
The lower subplot of Figure 2 shows the same for the case with a1 ¼ �0:1, c ¼ 0:05:

Now, after 1000 steps and with absorbing states constructed as above, we obtained
EPt ¼ 0:327023, VarPt ¼ 0:2200786, while EPt � ð1� EPtÞ ¼ 0:2200789:

5. Time dependent parameters

In many instances the impact of walk history to its future steps could be changing during
observation period and therefore the time-dependent parameters c1 ¼ c1ðtÞ, c2 ¼ c2ðtÞ
should be considered. Then d ¼ c1 � c2 ¼ dðtÞ as well. It opens a question of their flexible
estimation. The problem is solved quite similarly as in other regression model cases: Either
the parameters-functions are approximated by certain functional types (polynomial, com-
bination of basic functions, and regression splines) or constructed by a smoothing method,
similar to moving window or kernel regression approach. The method described in
Murphy and Sen (1991) is of such a type and concerns the Cox regression model. All these
approaches can again be incorporated to the logistic model form, just the number of
parameters will be larger. For instance, in the following examples we shall use cubic poly-
nomials for both estimated “parameters” c2, d (hence c1 ¼ c2 þ d will also be a cubic poly-
nomial), each will be given by four parameters of cubic curve.

Figure 1. Approximate limit distribution of Pt when a1 ¼ 0:2, c ¼ �0:05:
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Further, in the last example the non-parametric moving window ML method was
used as well. The estimation procedure started from an initial estimate of parameter a1
(obtained e.g. from constant model or polynomial model described above). Then both
c2ðtÞ and d(t) were estimated like constant parameters, however with data weighted by
a Gauss kernel centered sequentially at M time points TðmÞ, m ¼ 1, 2, ::,M selected
inside ½1,T�: In such a way a preliminary rough estimates of values c2ðTðmÞÞ, dðTðmÞÞ
were obtained. After that, these rough estimates were smoothed secondary, again with a
Gauss kernel, to obtain smooth curves of c2ðtÞ, dðtÞ given at all t ¼ 1, 2, :::T: In the
end, the final ML estimate of a1 with c2ðtÞ, dðtÞ already fixed was computed. The pro-
cedure result depends on the choice of “window width” parameter, that is, the standard
deviation of Gauss density used as the kernel parameter. By the way, even the Matlab
function glmfit.m is able to work with different weights assigned to each data-point.
Another often used method dealing with time-dependent parameters is based on the

Bayes approach, it treats each such time-evolving parameter as a random dynamic
sequence with a prior model of its development (Gamerman and West 1987).

6. Numerical examples

The objective is, first, to study the behavior of processes, and, second, to examine how
well the MLE performs in the case of constant parameters as well as in the case when
they are time-evolving.

Figure 2. Approximate limit distribution of Pt: Above for a1 ¼ 0:2, c ¼ 0:05, below for a1 ¼
�0:1, c ¼ 0:05:
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6.1. Artificial data

In the first example the data were generated from the model with initial a1 ¼ 0:3 and con-
stant parameters c1 ¼ �0:7, c2 ¼ 0:5: Two cases were compared, in the first one just 20
walks of length 20 steps were generated. The MLE yielded the following estimates (their
standard errors based on approximate normality of the MLE are in parentheses):

a1 ¼ 0:3996ð0:2133Þ, c2 ¼ 0:5869ð0:0887Þ, d ¼ �1:4802ð0:2017Þ,
hence c1 ¼ c2 þ d ¼ �0:8214ð0:1116Þ:
It is seen that even for this case with small number of observations the estimates are

quite reasonable, except that the standard error for a1 is rather large (P-value of the test
of nullity of a1 equals 0.0610).
In the second attempt with the same model, 100 walks, each with 100 steps, were

generated. Now the results of the MLE are much more precise:

a1 ¼ 0:3007ð0:0454Þ, c2 ¼ 0:5057ð0:0151Þ, d ¼ �1:2173ð0:0362Þ,
c1 ¼ c2 þ d ¼ �0:7099ð0:0211Þ:

Figure 3 then shows the development of at and Pt, namely their averages and varian-
ces from generated 100 walks. It is seen that both stabilize rather quickly, as a conse-
quence of negative c1 and positive c2 reducing Ptþ1 after event Xt ¼ 1 and increasing it
after Xt ¼ 0.

Figure 3. Sample means and variances of at and Pt.
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6.2. Parameters as functions of time

In the next simulated example functional “parameters” were considered. Namely, walks

had again length 100 steps, a1 ¼ �0:2, the first c1ðtÞ ¼ �0:7 � ð0:25Þðt=100Þ was increas-

ing exponential curve, the second c2ðtÞ ¼ 0:8 � ð0:25Þðt=100Þ2 was decreasing S-curve.
Again, 100 such walks were generated. Functions c1ðtÞ and dðtÞ ¼ c1ðtÞ � c2ðtÞ were
estimated as cubic polynomials, in the logistic model framework. Results, a sufficiently
good approximation to real curves, are seen from Figure 4. Initial a1 was estimated as
�0.1464, with P-value of its nullity test 0.1468 (hence, its nullity cannot be rejected).
These results, however, correspond to the full model, some parameters of both cubic
curves were not significant, therefore a sequential reduction of the model was per-
formed. Namely, at each reduction step one of the components with non-significant
parameters (i.e. the one with the largest p-value of the test based on the MLE asymp-
totic normality) was removed from the model. Thus, the final model, with all compo-
nents significant, had functions c2ðtÞ ¼ a0 þ a2t2 þ a3t3 and dðtÞ ¼ b0 þ b1t: The values
of estimates were a1 ¼ �0:1553 (p-value ¼ 0.0283), further a0 ¼ 0, 7640, a2 ¼
�0, 00011, a3 ¼ 4, 8e� 07, b0 ¼ �1, 4560, b1 ¼ 0, 0111, all corresponding p-values were
already quite negligible. Figure 5 shows the results of this last model.

6.3. Real data case

The following data are taken from Exercise 16.1 of Meeker and Escobar (1998). The
data are records of problems (failures, troubles) with 10 computers, each followed for

Figure 4. Functional parameters (thick lines, from above c2ðtÞ, c1ðtÞ, dðtÞ ¼ c1ðtÞ � c2ðtÞ) and their
estimates with complete cubic functions (circles).
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105 days. The table displays the computer number and then days of reported and
repaired troubles.

401: 18, 22, 45, 52, 74, 76, 91, 98, 100, 103.
402: 11, 17, 19, 26, 27, 38, 47, 48, 53, 86, 88.
403: 2, 9, 18, 43, 69, 79, 87, 87, 95, 103, 105.
404: 3, 23, 47, 61, 80, 90.
501: 19, 43, 51, 62, 72, 73, 91, 93, 104, 104, 105.
502: 7, 36, 40, 51, 64, 70, 73, 88, 93, 99, 100, 102.
503: 28, 40, 82, 85, 89, 89, 95, 97, 104.
504: 4, 20, 31, 45, 55, 68, 69, 99, 101, 104.
601: 7, 34, 34, 79, 82, 85, 101.
602: 9, 47, 78, 84.

Thus, from our point of view, 10 walks, each of length 105 time units, were observed.
Steps Xt ¼ 1, representing the events¼ reported troubles, were rather sparse, just 91, in
the rest of days Xt ¼ 0, that is, nothing has occurred. Nevertheless, it could be expected
that the wear of devices was increasing.
First, the model with constant parameters was fitted. The results were the following

(again with asymptotic standard deviations in parentheses):

a1 ¼ �3:0368ð0:2578Þ, c2 ¼ 0:0122ð0:0062Þ, d ¼ �0:0145ð0:0640Þ,
hence c1 ¼ c2 þ d ¼ �0:0022ð0:0592Þ:
It is seen that c1 < 0, though non-significantly, which means that after a failure and

repair the probability of further failure decreased slightly. On the other hand, positive c2
means that the probability of failure increases in time, linearly in the framework of model
with constant parameters. Achieved maximal log-likelihood value equaled �295.54.

Figure 5. Functional parameters (thick) and their estimates via reduced cubic model (circles).
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In the next attempt, the model allowing cubic dependence of both c1ðtÞ, c2ðtÞ on
time was applied. Its maximum likelihood estimate was obtained, however the most of
the parameters were not statistically significant, that is, they were close to zero and cor-
responding normal tests of their nullity had large p-values. Again, the model was then
reduced sequentially, at each step the parameter with the largest (and larger than 0.1) p-
value was eliminated. Quite astonishingly, this procedure lead to a rather plain model
with c2ðtÞ ¼ b � t2 and function d(t) omitted, namely a1 ¼ �2:7797, b ¼ 3:2931e� 06,
corresponding p-values were 3e� 63, 0:0003: It means that in fact c1ðtÞ ¼ c2ðtÞ, an
interpretation is that the influence of events Xt ¼ 1 is rather negligible and the prob-
ability of such events is increasing (slightly, but significantly) in time. In fact, its logit
a(t) increases cubically, as from expression (2) we have now that atþ1 ¼ a1 þ b

Pt
s¼1 s

2:

On the other side, while the maximum likelihood corresponding to the full cubic model
was �292.49, the value achieved by the reduced model was slightly smaller, �293.86.
Finally, the moving window method was utilized, too. Figure 6 shows both the full

cubic model in its upper subplot and the mowing window estimates, in lower subplot.
It is seen that they are quite comparable. Final estimate of parameter a1 ¼ �2:7189, the
maximum of log-likelihood was �293.42. It is seen that the results of all these models,
including the model with constant parameters, were quite comparable in terms of max-
imal log-likelihood. On the other side, certain differences of their fit can be traced from
the following graphical analysis.
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Figure 6. Estimates of model functions. Above: full cubic model, below: moving window estimates.
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6.4. Graphical test of model fit

In general, the objective of goodness-of-fit tests is to decide whether the model corre-
sponds to observed data. There are several possibilities, consisting mostly of the com-
parison of certain characteristics of observed data with the same characteristics derived
from the model. We decided to consider, as the characteristics suitable for graphical
comparison, the cumulated processes of steps of all walks together. In our case it equals

NðtÞ ¼ PN
i¼1

P
s�t XiðsÞ, which is in fact the process counting observed events, the dis-

crete-time counting process.
A good model should be able to generate comparable sequences of events. Therefore,

when new walks (the same number and length) are generated from the model, their
aggregated counting process should be similar to process observed. When such a gener-
ation is done many times, a “cloud” of counting processes is obtained. In the graphical
test form, this cloud of processes generated from the model should be around the pro-
cess obtained from data. It is illustrated on the next Figure 7. All three models pre-
sented above were compared with real data. It is seen that the constant model (upper
plot) underestimates (from the beginning) and overestimates (for larger times) the real
process development. The other two models perform better, the full cubic model’s fit
(middle plot) does not seem to be worse than the non-parametric model in the
lower plot.
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Figure 7. Thick curve¼ real observed counting process of failures. Clouds of dotted curves¼ counting
processes generated from estimated models. Top: constant model, middle plot: full cubic model, bot-
tom: model from mowing window estimates.
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7. Concluding remarks

Standard non-parametric estimator in the count data setting is the Nelson-Aalen estima-
tor of the cumulative hazard function. In the case of our real data example it is given
by observed counting process NðtÞ divided by the number of objects, as all objects are
“at risk” during the whole observation period. However, such an estimator does not
take into account possible dependence of future risk on objects history. It could be
incorporated via a regression model modeling the hazard rate change after occurred
event. Hence, hazard function is in fact a random function.
Models proposed in the present article offer an explicit description of such an

impact of process history to actual count probabilities. A generalization may consist
of considering a longer memory, we have explored just models with memory 1.
Further generalization could include an influence of covariates to probability logits.
The model’s form makes it easy to model using logistic regression. On the other
hand, from this point of view certain observable events from the process history could
be taken as covariates, too. In models studied here, this role is played by the last pre-
ceding process value.
Statistical analysis of processes of recurrent events has, moreover, to take into account

possible heterogeneity of studied objects, in particular when dealing with medical,
demographic or also with economic data (see e.g. Winkelmann 2008, Ch. 4). In such a
case, an additional random effect variable (called also the frailty variable) should be
added to the logit model. Procedure of estimation then uses an alternation of two steps
estimating frailty values and the rest of model, respectively. Thus, the concept of hetero-
geneity offers another way how the models studied in the present article could
be enriched.
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