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Abstract. This paper studies the consequences of imperfect information for the precision of stochastic
optimization. In particular, it is assumed that the stochastic characteristics of an optimization problem
depend on unknown parameters estimated from available data. First, a theoretical result is presented,
showing that consistent parameters estimation leads to consistent optimization. Further, a type of
the studied models is specified; it is assumed that the random variables present in the optimization
problem are influenced by covariates. This influence is expressed via a parametric regression model,
whose parameters have to be estimated and used instead of the unknown correct parameters values.
The objective is then to explore, with the aid of simulations, the imprecision of the optimization based
on these estimates. Several types of regression models are recalled, the variability of estimates and
the related precision of sub-optimal solutions is studied in detail on an example dealing with optimal
maintenance. The impact of random right-censoring on the deterioration of precision is studied as well.
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1. Introduction

This paper studies the impact of incomplete information, namely the consequence of statisti-
cally estimating model parameters, to the precision of stochastic optimization. The standard
formulation of a stochastic optimization problem is given as a search for solution to

inf
v
ϕF (v) = inf

v
EFφ(Y, v), (1)

where φ is a cost function, v are input (control) variables from certain feasibility set V , EF

stands for the expectation under distribution function F , and, finally, Y is a random variable
(or vector) possessing this distribution function. An alternative formulation may ask for the
optimization of a certain quantile of random criterion φ(Y, v) instead of its expectation. A
combination of several criteria may also be considered, which would lead to a multi-objective
problem.

When the distribution function F is not known, it has to be estimated from observed data.
This estimate is random (based on available data), hence the obtained solution based on an
estimated distribution instead of the correct one is random as well. Either a parametric form of
the underlying distribution can be assumed, or a non-parametric estimator is used. Both these
instances were, for example, analyzed in [9] and [10], where the case of incomplete (censored)
data has also been explored. In fact, the impact of using an empirical distribution instead of
the exact one has been studied for a long time; see, e.g., [4].
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This contribution considers just the parametric case. In Section 2, several assumptions
concerning both the cost function φ and the distribution of Y are formulated in order to prove
the proposition asserting the consistency of solutions based on consistent parameters estimates.
This proposition provides a theoretical framework guaranteeing a successful use of the estimates
instead of the unknown correct values of parameters.

In subsequent sections, we then focus on a related task, namely, what the precision of a
solution is when the estimates are obtained from a finite data sample. In other words, we
intend to explore the speed of convergence by comparing several data designs. Moreover, in the
same setting of parametric models for the distribution of Y , it is assumed that Y depends on a
set of covariates via a convenient parametric regression model. It means that the corresponding
regression parameters should be estimated as well, which contributes to additional variability
of the problem solution.

The contribution of this paper is thus two-fold: A theoretical result relating the convergence
of parameters estimates to the convergence of related optimization problem solutions, and
empirical exploration of this convergence speed.

The second problem is solved in the setting of regression models. Therefore, several types
of parametric regression models are recalled in Section 3; for instance, a standard linear model,
its transformation, and the Cox regression model, which is typically used in lifetime studies.
In all of the presented instances, the consistent parameters estimates are available, and the
convergence of the obtained sub-optimal solutions to the optimal results is therefore granted
by Theorem 1. What remains is thus exploring the precision of solutions based on estimates
from finite data samples. This is done in Section 4, which presents an example dealing with an
optimal maintenance problem depending on a covariate (e.g. a load) via the log-linear regression
model. A simulation study shows the behavior of sub-optimal solutions based on data samples
of small and medium size. The last section then compares the results of the optimization based
on censored data with the results obtained without censoring.

2. Consistency of optimum

Let us assume that the distribution function F = F (y, θ) is parameterized (by a parameter θ
from a set Θ ⊂ Rm) and is of continuous type, with a density function f(y, θ). The following
statement on the consistency of optimal decision as a consequence of the consistency of the
estimate of parameter θ is in fact a variant of well-known results (see again [4] or [7]), which are
mostly based on the uniform convergence of estimated distribution functions. It will be shown
that, in a parametric case, the convergence of parameter estimates is sufficient. Naturally,
under appropriate assumptions. Let us first introduce some notation:

ϕ(v, θ) =

∫ ∞

−∞
φ(y, v)f(y, θ)dy, ϕN (v) = ϕ(v, θ̂N ), ϕF (v) = ϕ(v, θ0),

v∗F = argmin
v

ϕF (v), ϕ∗
F = ϕF (v

∗
F ), v∗N = argmin

v
ϕ(v, θ̂N ), ϕ∗

N = ϕ(v∗N , θ̂N ). (2)

Here, as in (1), φ is a cost function, ϕ(v, θ) its expectation for the given values of control

variable v and parameter θ. Further, θ0 denotes the ‘true’ value of the parameter, while θ̂N its
statistical estimate from data of size N . Then v∗F , ϕ

∗
F are optimal solutions with respect to θ0,

while v∗N , ϕ∗
N are optimal with respect to θ̂N .

Let us further assume that there exists a sequence of estimates θ̂N converging in probability

to θ0. If we use the Taylor expansion at θ0, denoting f ′(y, θ) = ∂f(y,θ)
∂θ , we obtain that

ϕ(v, θ̂N )− ϕ(v, θ0) =

∫ ∞

−∞
φ(y, v)f(y, θ̂N )dy −

∫ ∞

−∞
φ(y, v)f(y, θ0)dy =
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=

∫ ∞

−∞
φ(y, v)f ′(y, θN )dy · (θ̂N − θ0), (3)

where, for sufficiently large N , θN , lying between θ0 and θ̂N , is arbitrarily close to θ0 (in the
sense of convergence in probability).

Let us formulate several assumptions; first three concern general properties of the optimiza-
tion criterion, they were already formulated in [7] in order to ensure the closeness of the solutions
for sufficiently close (in the sense of L1 norm) distribution functions. The other assumptions
are inspired by (3).

A1. Values of variable v are from V , where V is a compact subset in R1.

A2. Functions φ(y, v) are continuous in v on V , uniformly with respect to y ∈ R1.

A3. EFφ(Y, v) are finite for all v ∈ V .

A4. The distribution of r.v. Y is continuous, with density function f(y; θ) and its derivative
f ′(y, θ) = ∂f(y, θ)/∂θ existing on Θ.

A5. There exists a compact neighborhood O of θ0 and a positive number K < ∞ such that
|ϕ′(v, θ)| = |

∫∞
−∞ φ(y, v)f ′(y, θ)dy| ≤ K, for each v ∈ V and θ ∈ O.

Theorem 1. Let θ̂N be a sequence of estimates of θ0 consistent in probability. Further, let
assumptions A1 through A5 hold. Then, for N → ∞,

1. lim ϕ∗
N = ϕ∗

F in probability,

2. There exists a sub-sequence v∗N,k ⊂ {v∗N}, k = 1, 2, ... such that it converges (even a.s.)
when k → ∞, lim v∗N,k = v∗0 , and v∗0 ∈ {argminϕF (v)}.

Proof: Let us divide the proof into several steps:

i) For a sequence of consistent estimates θ̂N it holds that each ϕ∗
N ≤ ϕN (v∗) and that also

|ϕN (v∗)− ϕ∗
F | → 0 in P (due to A5). Then both lim inf ϕ∗

N ≤ ϕ∗
F and lim sup ϕ∗

N ≤ ϕ∗
F ;

this assertion must hold a.s. Denote ϕ = lim inf ϕ∗
N . We want to prove that ϕ = ϕ∗

F a.s.
(notice that ϕ is random, defined a.s., while ϕ∗

F is a constant).

ii) As each sequence converging in probability has a sub-sequence converging a.s. (see e.g.
[5], Th. 3.4), there exists a sub-sequence of indices {N1} ⊂ {1, 2, ...} such that ϕ =
limN1→∞ ϕ∗

N1 a.s., with the corresponding sub-sequence of solutions v∗N1. Then, due to
the compactness of V , there is another sub-sequence with indices {N2} ⊂ {N1} such that
limN2→∞ v∗N2 = v ∈ V exists a.s. Both ϕ and v are defined a.s., to show this existence of
theirs is the substance of this point.

iii) From A2 and ii) it follows that also limN2→∞ ϕN2(v) = ϕ, a.s. It follows that ϕ cannot be
smaller than the optimal value ϕ∗

F ,

iv) Now we wish to prove that (at least in probability) limN→∞ ϕN (v) = ϕF (v). This fact
follows directly from (3) and assumption A5.

v) When combining iii) and iv), we can see that ϕF (v) = ϕ a.s. Simultaneously, ϕ ≤ ϕ∗
F holds

true. It follows that ϕ = ϕ∗
F and v is also a solution, i.e., v ∈ {argmin ϕF (v)} a.s. If the

set {argmin ϕF (v)} contains just one point then v coincides with it a.s.
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Theorem 1 concerns the case when the estimated parameters are used instead of the correct
parameters values. It shows that ϕ∗

N,k = ϕ(v∗N,k, θ̂N,k) → ϕ∗
F in probability. However, in

practice, we derive v∗N optimal with respect to estimated parameter θ̂N and then we use it in
the setting governed by the underlying (unknown) correct distribution F . That is why the result
is in fact ϕ(v∗N , θ0). The next proposition therefore proves the convergence of these sub-optimal
solutions to the optimum.

Corollary. Under the assumptions and with the notation of Theorem 1,

lim
k→∞

ϕ(v∗N,k, θ0) = ϕ∗
F .

holds in probability.

Proof: From (3) and A5 it follows that |ϕ(v∗N,k, θ̂N,k| − ϕ(v∗N,k, θ0)) ≤ K · |θ̂N,k − θ0|. As A5

holds uniformly for each v ∈ V and θ̂N,k → θ0 in probability, Theorem 1 simultaneously claims

that ϕ(v∗N,k, θ̂N,k) → ϕ∗
F as well, the proposition is proved.

We will assume below that the optimization problem depends on a set of covariates. Let
us denote the space of covariates Z ⊂ Rk, and their values z ∈ Z. The impact of covariates
is then expressed via a convenient regression model. Such a case may correspond to a number
of real problems. The final part of this paper deals with one of them, namely the problem of
optimal maintenance depending on the load affecting the maintained device.

In the derivation of the main result above, the value of covariate z was not included. In the
context of the following setting dealing with (parametric) regression models, we can imagine
that the covariate is taken as fixed. Nevertheless, the regression parameters are also subject to
statistical estimation. In other words, the statements hold for any consistent sequence of model
parameters estimates θ̂N and for such z ∈ Z that the assumptions listed above are fulfilled.

3. Examples of regression models and their parameters

A parametric regression model means that the type of distribution F (y; z, θ) of random variable
Y for the given value of covariate z is known, while the parameters θ are unknown; their values
lie in a set Θ ⊂ Rm, containing both the parameters of a “baseline” distribution and the
parameters characterizing the regression. Let us mention here several examples often used in
practice:

1. Standard linear regression model, in which

Y = α+ β · z + ε, ε ∼ N(0, σ2). (4)

Here the “baseline” parameters are α, σ, all parameters are θ = (α, σ, β).

Details on the analysis of the linear regression model and the corresponding confidence
intervals and bands can be found elsewhere, e.g. in Lehmann and Romano [8], Ch. 7 and
9.

2. Let us consider Example 1 described above, however, with a transformation T = exp(Y ) =
exp(β · z) · ϵ, where the random variable ϵ now has the lognormal distribution with pa-
rameters (α, σ). Let us denote the distribution function of ϵ by Fe(.). The distribution
function of T , for given covariate z, then equals

FT (t; z) = P (T ≤ t; z) = P (ϵ ≤ exp(−β · z) · t) = Fe(exp(−β · z) · t). (5)
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We can see that this instance leads to the so-called Accelerated Failure Time (AFT)
regression model, which is often used in statistical reliability analysis to describe the
consequences of a load or degradation (expressed via covariates) to the lifetime of a
device. For more information see, e.g., [1].

3. Let the baseline distribution be the Weibull one, with distribution function F0(y) =
1 − exp{−(y/a)b} defined for y > 0, and with parameters, both positive, a, b. The
dependence on a covariate z can be described via the Cox (proportional hazard) regression
model (cf. [6]):

F (y; z) = 1− exp{−(y/a)b · exp(β z)} = 1− exp{−(
y

a(z)
)b}, (6)

where a(z) = a · exp{−β z/b}. The scale parameter a(z) thus depends on the covariate,
while the shape parameter remains b. We can formally write that θ = (a, b, β) is the set
of the parameters we wish to estimate.

Parameters θ are estimated, as a rule, with the aid of the maximum likelihood estimation
(MLE) method. Good properties of the MLE stem out of the so-called regularity conditions
concerning the distributions F (y; z, θ). The formulation of these conditions can be found in
statistical textbooks, for instance in [3], Ch. 7.3. If they are fulfilled then there exists a

consistent sequence of the estimates, i.e. such that θ̂N → θ0 in probability when the data size
N → ∞. Here, θ0 again denotes the ‘true’ value of the parameter. Further, the estimates are
asymptotically normal, which means that the distribution of

√
N(θ̂N − θ0) converges to the

normal distribution with zero mean and finite variance given by the inversion of the Fisher
information matrix, I−1(θ0). In practice, the MLE is based on the data {yi, zi}, i = 1, ..., N
and maximizes the log-likelihood function

LN (θ) =

N∑
i=1

ln f(yi; zi, θ)) (7)

over Θ. A consistent estimate of the Fisher information is then obtained as

IN (θ) = − 1

N

(
d(LN (θ))2

d2θ

)
. (8)

In the preceding part, it has been shown that the consistency of an estimate of θ ensures
the consistency of the solutions computed as optimal with respect to this estimate. However,
the estimates of parameters are in reality computed from a limited data sample {yi, zi, i =
1, ..., N} providing just limited and random information for the identification of the system to
be optimized. That is why we will now study the precision of the estimates and, consequently,
of the solutions based on these estimates. We will proceed with the aid of randomly generated
data from a selected type of the regression model.

The setting outlined above can also be interpreted as the regression parameter being an
additional parameter; estimating it increases the uncertainty of the solution. It should be
mentioned here that the confidence of the estimates depends also on the covariate design, not
only on the data size. The impact of the covariate design has already been explored sufficiently
elsewhere, cf. again remarks on the design of experiments in [8].

4. Example

Let us consider the following rather simple example of a stochastic optimization problem:
A component of a machine has its time to failure T given (modeled) by a continuous-type proba-
bility distribution with distribution function, density, and survival function F, f, F̄ = 1−F , re-
spectively. The cost of repair after failure is C1, the cost of preventive repair is C2, 0 < C2 < C1.
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Figure 1: Functions ϕN (τ) and their maximal values at optimal τ∗, for z = 0 (above) and
z = 3 (below).

For the sake of simplicity, we assume that only complete repairs, ’renewals’, are provided, i.e.
after each repair the component is new (exchanged) or as new. Let τ be the time from renewal
to preventive repair. Further, let us consider the proportion of time of component availability
to the unit of cost as a random criterion function,

φ(T, τ) =
T

C1
if T ≤ τ, φ(T, τ) =

τ

C2
if T > τ. (9)

Our task is to find optimal τ from a reasonable closed interval T , i.e. to maximize

ϕF (τ) = EFφ(T, τ) =

∫ τ

0

t

C1
dF (t) +

τ

C2
F (τ). (10)

Note that this formulation corresponds to scheme (1) with control variable τ , our goal here is
to reach the maximum of (10).

In this example, the optimal solution τ∗ can be found by solving the equation dϕF (τ)/dτ =
0. Namely, we solve

dϕF (τ)

dτ
=

τ

C1
f(τ) +

1

C2

(
F (τ)− τf(τ)

)
= 0. (11)

After some re-computation, we obtain the optimal τ∗, which fulfills

τ∗ h(τ∗) =
C1

C1 − C2
, (12)

where h(t) = f(t)/F (t) denotes the hazard rate of random variable T . We can see that the
right-hand side in (12) does not depend on the covariate. Let us also recall that, in the case of
Cox regression model the hazard rate equals h(t; z) = h(t; 0) · exp(β z), while in the AFT model
it equals h(t; z) = h(t · exp(β z); 0) · exp(β z).

4.1. Example specification

The lifetime distribution will be specified below and we will compare the deterministic solution,
in which all of the parameters are known, with the variability of ’sub-solutions’, for which the
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Figure 3: Values of τ and ϕ achieved for parameters estimated from data of size N = 50,
repeated 100 times.

parameters are estimated. Namely, let us consider a case outlined in Example 2 of Section 3:
Let the distribution of T be lognormal, fulfilling the relation

lnT = α+ β · z + ε, ε ∼ N(0, σ2), (13)

with parameters α = 4.5, β = −0.1, σ = 0.4. Further, let a 1-dimensional covariate z have its
values distributed uniformly in (−5, 5). For z = 0 we have the “baseline” lognormal distribution
with parameters α, σ; the approximate value of its expectation ET0 = 97.51, the standard
deviation stdT0 = 40.62,. For instance, when z = 3, these characteristics are ET3 = 72.24,
stdT3 = 30.09.

Further, let the costs be C1 = 10 and C2 = 1. When all parameters are known, optimal
values of the inter-maintenance time τ and the achieved maximum of ϕ(τ) are τ∗0 = 69.95, ϕ∗

0 =
52.94 and τ∗3 = 51.82, ϕ∗

3 = 39.22 for z = 0, z = 3, respectively. These solutions have been
obtained from (10) and (11) and are shown in Figure 1.

The data of a size N=50 are then generated from the correct model, i.e., first the values of
covariate zi, i = 1, ..., N, are generated uniformly in (−5, 5) and then one value of Ti is generated
from (13) for each zi. The parameters are now estimated from this data. Finally, we select
one value of the covariate (namely, we put z = 3 to have a comparison with the corresponding
correct τ∗3 and ϕ∗

3 from above) and compute the optimal values of τ3 according to (11), taking
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Figure 4: Values of τ and ϕ achieved for parameters estimated from data of size N = 200,
repeated 100 times.

the estimated parameters instead of the ‘true’ ones. These sub-optimal τ values are inserted
into (10) together with the correct F , i.e. given by the correct values of the parameters. The
result is, naturally, smaller than the maximal possible value of ϕ∗. This procedure has been
repeated 100 times in order to obtain a representation of the parameter estimates (this is shown
in Figure 2) and the corresponding sub-optimal solutions, shown in Figure 3. It is seen how these
values copy the curve from Figure 1 (for z = 3) and are more or less close to the optimal point.

The same procedure has been then performed for a larger data size, N=200. Table 1 lists the
observed characteristics of the estimated parameters (from their 100 repetitions), for all of the
instances reported here. We can see that the uncertainty of estimates (characterized by their
standard deviations) for the case N=200 (second row of Table 1) is smaller than for N=50,
i.e. the estimated values are closer to the correct values and, consequently, the sub-optimal
solutions based on these estimates are closer to the correct solution. This observation follows
from Figure 4 and its comparison with Figure 3.

Case N α̂: mean std β̂: mean std σ̂: mean std
noncens. 50 4.5015 0.0539 -0.1038 0.0219 0.4019 0.0465
noncens. 200 4.5001 0.0264 -0.1002 0.0108 0.4014 0.0205
fixed z=3 50 µ̂=4.2051 0.0565 NA NA 0.4089 0.0395
censored 200 4.4969 0.0383 -0.0991 0.0126 0.3953 0.0242

Table 1: Sample means and standard deviations from 100 times repeated estimation of
parameters.

4.2. Comparison with the case without covariates

To show an increase in the uncertainty of the solution caused by the presence of an unknown
regression parameter, let us compare the instances studied above with a case in which all the
data are related to just one covariate value, for instance, again to z = 3. Namely, let us have
N = 50 realizations of times Ti from a simple model

Yi = ln Ti = µ+ εi, (14)

where again εi are the i.i.d. random variables from N(0, σ2) distribution, µ = α + β · 3 and
the values of the parameters are the same as above. Therefore, µ is estimated as the mean and
σ as the standard deviation from the values of Yi (while α, β are not identifiable). The ’true’
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value is µ0 = 4.2, and Figure 5 again shows 100 sub-optimal solutions obtained on the basis of
100 repetitions of randomly generating such data, with a data size N = 50. Notice that the
variability of the optimal results is really smaller than in the preceding case, in which the values
of the covariate varied and, therefore, additional estimation of the regression parameter β was
necessary.

45 50 55 60
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38.8

39

39.2

39.4

τ

φ

Figure 5: Values of τ and ϕ achieved for parameters estimated from data of size N = 50, with
fixed z = 3, repeated 100 times.

5. Linear model with censoring

The phenomenon of censored data, a special case of incomplete data observation, is encountered
quite often in lifetime data studies. Let us again consider model (4),

Yi = α+ β · zi + εi, i = 1, ..., N.

The random right-censoring means that there exists a random variable C, say, independent of
Y and not providing us any information on the model parameters (the so-called ’uninformative
censoring’). Then the variable Y ∗ = min(Y,C) is observed instead of Y . As a rule, it is known
whether Y ≤ C or Y > C; this is denoted by an indicator δi = 1 if Y ≤ C, δi = 0 if Y > C.

One of the first methods of analyzing the linear regression model with right-censoring has
been proposed in Buckley and James [2]. However, a practical application of their iterative
procedure is, in fact, not much effective; the slope is overestimated as a rule. There are some
other, more direct options. Let us recall that the log-likelihood for right-censored data has the
following form:

LN (θ) =

N∑
i=1

[δi · ln(f(Y ∗
i , z, θ)) + (1− δi) · ln(1− F (Y ∗

i , z, θ))]. (15)

The MLE, via solving equation dLN (θ)/dθ = 0, can easily be found (e.g. by the Newton-
Raphson algorithm), for instance, for the Weibull distribution, while the case of the normal
distribution has to be solved numerically, by a convenient search procedure. Such a method
has also been used in the present paper. Hence, the solution is then just an approximation of
the exact solution, however with an arbitrarily high precision level. Therefore this approach
yields estimates which are still consistent in probability.

5.1. Example – continuation

Let us consider the same specification as above, in (13) in Subsection 4.1. Moreover, let the
output values Y = lnT be censored from the right-hand side by realizations of random variable
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C ∼ N(µC = α, σC = 3 ·σ). The rate of the censoring is then about 50%. N = 200 values have
been generated, and again, the experiment has been repeated 100 times to obtain 100 estimates
and, from them, 100 sub-optimal solutions to the optimal maintenance period problem. The
results are shown in Figure 6, the characteristics of the estimated parameters are again listed
in Table 1.

46 48 50 52 54 56 58 60
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φ

Figure 6: Values of τ and ϕ achieved for parameters estimated from censored data of size
N = 200, again repeated 100 times.

As expected, the variation of the estimates as well as of the sub-optimal solutions is higher
than those achieved in the case without censoring and the same N .

6. Concluding remarks

We have studied the impact of the variability of statistical estimates on the precision of solutions
in a stochastic optimization problem. First, in the setting of parametric models with consistent
estimates of parameters, the consistency of corresponding solutions of optimization has been
proved. Further, the influence of empirical estimates on optimal solutions has been studied
with the aid of randomly generated examples. This study has been performed in a situation
when the random element of the optimization problem depends on covariates, via a parametric
regression model. Finally, the analysis has been extended to the case of randomly right-censored
data. Another extension to semi-parametric regression models, where the baseline distribution
is not specified, should be a further step. Such a generalization may concern both the Cox and
AFT models mentioned in the present paper.

As regards the example presented in Section 4, dealing with the optimal maintenance prob-
lem, another interesting point is worth exploring, namely, the proportion of failures allowed by
optimal renewal interval. It theoretically equals P (Tz ≤ τ∗z ) = Fz(τ

∗
z ). It can be shown, and it

also follows from (12), that in the AFT model this proportion does not depend on z because
the accelerating term exp(β · z) just changes the scale of time. An equality τ∗z = τ∗0 · exp(β z)
also holds true. Naturally, this proportion in general depends on covariates as well. It simulta-
neously depends on costs C1, C2 because the optimal value of τ∗ also depends on them.

Under the specification given in (13), the proportion of admissible failures equals P (Tz ≤
τ∗z ) = P (Yz < ln τ∗z ), where Yz has normal distribution N(µ = α+ β · z, σ2). For instance, this
proportion equals 0.264 for costs C1 = 10, C2 = 1; however, when the costs are C1 = 5, C2 = 2,
then for instance the optimal value is τ∗0 = 82.62, ϕ∗

0 = 29.42 for z = 0, and the proportion
P (Tz ≤ τ∗z ) changes to 0.415.
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[4] Dupacová, J. and Wets, R. (1988). Asymptotic behaviour of statistical estimates and

optimal solutions of stochastic optimization problems. Ann. Statist., 16, 1517-1549.
doi:10.1214/aos/1176351052

[5] Gut, A. (2005). Probability: A graduate course. New York: Springer.
[6] Kalbfleisch, J.D. and Prentice, R.L. (2002). The Statistical Analysis of Failure Time Data (2nd

edition). Hoboken, NJ: Wiley Series in Probability and Statistics.
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