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Abstract—The almost linear form that is state and feedback
equivalent to the dynamics of the so-called three-link (aka biped
with torso) is derived and proved here. This result is then applied
to the walking design with downward torso movement imitating
balancing role of a hand. This motivates a challenging idea:
the balancing role of hands in two-dimensional walking consists
in synchronizing the hand angle with the hip angle in such a
way that the resulting restricted dynamics is exact feedback
linearizable. Results are demonstrated by the simulations of a
single step including walking animations.

Index Terms—mechanical systems, feedback linearization.

I. INTRODUCTION

Planar underactuated walking, being a part of a more general
study of the so-called underactuated mechanical systems [1],
has been broadly and deeply studied during several decades.
Please refer to [2], [3] and references within there for a brief
and relatively recent picture, or [4] for systematic description
of the area including one of the main tools of the walking
design - the so-called virtual holonomic constraints (VHC).
The VHC used in [4] always include some absolute orientation
angle and their number is equal to the number of independent
actuators. In such a way, constrained dynamics is uncontrolled
and VHC should be designed in such a way that constrained
dynamics (called hybrid zero dynamics) contains hybrid cyclic
stable trajectory.

In contrast to that, the so-called collocated VHC (CVHC)
were studied in [5], [6] and further used in [7], [3] and
some other references quoted there. CVHC include directly
actuated angles only and their number is typically equal to
the actuators’ number minus one. Due to that, the CVHC
restricted dynamics conserves the unactuated cyclic variable
property, it has four states and one input and it is state and
feedback equivalent to almost linear normal form presented
by Olfati-Saber in [8] for some systems with two degrees
of freedom and one actuator. Recall, that the mechanical
system variable (i.e. the component of generalized coordinates)
is called cyclic if the respective kinetic energy does not
depend on that variable. The only nonlinearity in the Olfati-
Saber normal form is due to (1,1) entry of the inertia (aka
mass) matrix. Natural idea is therefore to consider designing
CVHC in such a way, that the mentioned entry is constant on
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the restricted submanifold thereby converting the respective
restricted dynamics into an exact feedback linearizable one.
Such an idea was first introduced in [7] and used in [3]
to design the multi-step walking of the so-called three-link
(TL) (aka biped with torso, or Compass Gait Walker with
torso). These works, nevertheless, did use a certain two step
procedure, first, enforcing the constraints using the torso
torque, then controlling the restricted system using the hip
torque simultaneously compensating any effect of the torso
torque. It resulted in series of feedbacks and their regularity
was difficult to asses.

The theoretical contribution of this paper is the derivation
and the full proof of the state and feedback transformation
taking TL to an almost linear form that becomes completely
linear along conveniently designed CVHC. Moreover, CVHC
in new coordinates becomes flat and dynamics of the deviation
from that CVHC is the chain of two integrators. Restricted
dynamics is then state and feedback equivalent to the chain of
four integrators. Both chains are controlled by two independent
virtual inputs decoupled by the feedback transformation from
real inputs (torques) and invertibility of this feedback is
explicitly characterized. Further novelty here is the design of
the convenient CVHC around the downward position of the
torso, while [7], [3] considered torso movement around the
upward position only, see Fig. 1. Downward torso position
provides more rich collection of the desired CVHC but it
triggered yet another original novelty, due to its complex
movement, a general type of CVHC is needed where neither
of mutually constrained coordinates has the leading role.

These results are demonstrated by a single step walking
desing and respective simulations. Note, that for the walking
design, the chain of two integrators has to be stabilized to zero
state, nevertheless, the chain of four integrators has to be stably
steered from some initial state to some terminal state. Steering
the integrators chain seems to be theoretically well understood
and straightforward, yet, it is quite complex when practically
viable solutions are needed, [9]–[11]. Respective design in
this paper is therefore rather straightforward and may results
e.g. in unrealistic torques, yet, it demonstrates a potential of
the paper’s theoretical results if a more sophisticated steering
design is applied.

The downward torso may actually imitate the role of the
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hands during the walking. Unlike the design of VHC e.g. for
the knees it is not so clear what should do the torso and/or
hands during the step. In this context, the exact linearizable
restricted dynamics appeared to be a challenging option.

The rest of the paper is organized as follows. Some defi-
nitions and known, or straightforward, results are repeated in
the next section. Section III presents the main result, Section
IV discusses the walking design including some simulations,
while the final section presents some research outlooks.

Notations. For a smooth function φ(q), q ∈Rn, differential
dφ = ∂φ(q)/∂q is the row vector of the partial derivatives,
conveniently expressed by the well-known “nabla” operator
∇ := [ ∂

∂q1
, . . . , ∂

∂q1
] as ∇φ . In the same vein, the Hessian of φ

can be expressed as ∇⊤∇φ . Finally, 0m×p, m, p ∈Z, stands for
(m× p) zero matrix, Im for (m×m) the identity matrix, COM
stands for the centre of mass, MI for the moment of inertia
and DOF for the degree(s) of freedom.

II. DEFINITIONS AND PRELIMINARY RESULTS

Consider the underactuated [1] Lagrangian system (LS):

d
dt

[
∂L

∂ q̇

]⊤
−
[

∂L

∂q

]⊤
= [0k,uk+1, . . . ,un]

⊤ , (1)

L (q, q̇) = K(q, q̇)−V (q), K(q, q̇) =
1
2

q̇T D(q)q̇, (2)

having n DOF, namely q = (q1, . . . ,qn)
⊤, q̇ = (q̇1, . . . , q̇n)

⊤ are
the generalized coordinates and velocities, D(q) = D(q)⊤ > 0
is the inertia (aka mass) matrix, while K, V are the system
kinetic and potential energy. Coordinate qi is called cyclic
variable if D does not depend on qi. Integer k ≥ 1 is called
as the degree of the underactuation, while uk+1, . . . ,uk are the
input actuators (control inputs). The coordinates qk+1, . . . ,qn
are called (directly) actuated while q1, . . . ,qk unactuated.
The equations (1), (2) give

D(q)q̈+C(q, q̇)q̇+G(q) = [0k,uk+1, . . . ,un]
⊤ , (3)

G⊤ =
∂V (q)

∂q
, C(q, q̇)q̇ =

[
n

∑
i=1

∂D(q)
∂qi

q̇i

]
q̇−Cs(q, q̇), (4)

C⊤
s (q, q̇) = [Cs1(q, q̇), . . . ,Csn(q, q̇)] =

∂K(q, q̇)
∂q

, (5)

Csi(q, q̇) =
1
2

q̇⊤
[

∂D(q)
∂qi

]
q̇, i = 1, . . . ,n. (6)

Here, G(q) is the gravity vector while the Coriolis terms
C(q, q̇)q̇ are expressed in (4)-(6) in a less usual way without
introducing Coriolis matrix like e.g. in [12].

The following lemma establishes the important property of
the unactuated cyclic variable, e.g. used by Olfati-Saber to
derive normal forms of some underactuated systems [8].

Lemma 1: Consider (1)-(6) and its generalized momenta

σi :=
∂L

∂ q̇i
=

1
2

∂ q̇⊤D(q)q̇
∂ q̇i

= [0i−1,1,0n−i]D(q)q̇,

i ∈ {1, . . .n}. If qi is unactuated cyclic then σ̇i =−Gi(q).

Proof: Since (3)-(6) stem from (1), (2) it holds that

0 =
d
dt

∂L

∂ q̇i
− ∂L

∂qi
= σ̇i −

∂ [K(q, q̇)−V (q)]
∂qi

= σ̇i +Gi(q).

Here, the first equality is by qi being unactuated (i.e. i ∈
{1, . . .k}), while the last one is by (4) and qi being cyclic
(i.e. ∂K(q, q̇)(∂qi)≡ 0).

Planar “three-link” (TL) depicted in Fig. 1 is the under-
actuation degree 1 underactuated mechanical system having 3
degrees of freedom and 2 actuators. It mimics the pair of legs
without knees and torso mounted at their hips. The i-th link
(i= 1,2,3) is actually a thin homogeneous rod of mass µi with
attached point mass Mi. It is equivalently modelled by a virtual
one-dimensional mass-less rigid segment carrying the overall
mass mi = µi+Mi at its COM located at the black bold point.
The virtual mass-less link moment of inertia Ii with respect to
COM can be computed from li,µi,Mi.

l3

lc3

q1

q3

q2
l1

lc1

l2

lc2

m1
m2

m3

stance
leg swing

leg

torso

Fig. 1. The “three-link” with upward torso position.

Coordinates q1,q2,q3 are the angles shown in Fig. 1 where
the red circle locates two independent actuators providing
torques u2,u3 acting on directly actuated angles q2,q3, re-
spectively. Angle q1 at the pivot point is the unactuated one.
Computing properly K,V , equations (1), (2) give

D(q)q̈+C(q, q̇)q̇+G(q) =

 0
u2
u3

 , q :=

 q1
q2
q3

 , (7)

D = [di j], i, j = 1,2,3, D⊤ = D > 0, G = [G1,G2,G3]
⊤,

d11 = I1 + I2 + I3 + l2
1m2 + l2

1m3 + l2
c1m1+

l2
c2m2 + l2

c3m3 +2l1lc2m2 cosq2 +2l1lc3m3 cosq3,

d12 = m2l2
c2 + l1m2 cosq2lc2 + I2

d13 = m3l2
c3 + l1m3 cosq3lc3 + I3, d23 = 0,

d22 = m2l2
c2 + I2, d33(q2,q3) = m3l2

c3 + I3,

G1 =−g [l1m2 sinq1 + l1m3 sinq1 + lc1m1 sinq1+

lc2m2 sin(q1 +q2)+ lc3m3 sin(q1 +q3)] , G2 =
−glc2m2 sin(q1 +q2), G3 =−glc3m3 sin(q1 +q3).

(8)

Coriolis terms C(q, q̇)q̇ are straightforwardly determined by
general expresion (6) taking n = 3 and D(q) in (7), (8).
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Later on, the dependence of d11(q2,q3) on q2,q3 will be
thoroughly studied using a more convenient expression

d11 = ∑
3
i=1 Ii + l2

1m2 + l2
1m3 + l2

c1m1 + l2
c2m2 + l2

c3m3

+2l1lc3m3
[
β cosq2 + cosq3

]
, β := lc2m2/(lc3m3),

(9)

where β ∈ R will be called the balancing factor.
Definition 2: VHC for the system (1-7) are given by

ϕi(q) = 0, [dϕi(q)]q̇ = 0, i = 1, . . . , l, (10)

where ϕ1, . . . ,ϕl are smooth functions of the generalized co-
ordinates having ∀q ∈Rn satisfying (10) linearly independent
differentials dϕi(q), i = 1, . . . , l. The VHC are called global
if the functions ϕi(q), i = 1, . . . , l in (10) can be completed
to a diffeomorphism of Rn. Furthermore, the VHC are called
locally regular for (1-7) at some q0, if it holds

rank

[
∂ϕ1

∂q

⊤
, . . .

∂ϕl

∂q

⊤
]⊤

(q0)D−1(q0)

[
0k×n
In−k

]
= l. (11)

The global VHC are called globally regular on some subset
of Rn if they are locally regular at each its point. The VHC
are called flat if there ∃ l mutually distinct integers j1, . . . , jl ∈
{1, . . . ,n} with ϕ1 ≡ q j1 , . . . ,ϕl ≡ q jl . The VHC (10) are called
collocated VHC (CVHC) if they depend only on directly
actuated coordinates and the respective velocities.

III. MAIN RESULT

Theorem 3: Let q0 ∈ R3 be such that detD(q0) ̸= 0,

D(q) =

[
∂G1
∂q2

− d12
d11

∂G1
∂q1

∂G1
∂q3

− d13
d11

∂G1
∂q1

β sinq2 sinq3

]
. (12)

Then there exists a neighbourhood of q0 denoted as Nq0

such that the mapping (q1,q2,q3, q̇1, q̇2, q̇3,u2,u3)
⊤ ∈ R8 7→

(ξ1,ξ2,ξ3,ξ4,ξ5,ξ6,w2,w3)
⊤ ∈ R8 given by

ξ1 := d11(q0
2,q

0
3)q1 +(m2l2

c2 + I2)q2 + l1lc2m2 sinq2

+(m3l2
c3 + I3)q3 + l1lc3m3 sinq3,

ξ2 := d11(q2,q3)q̇1 +d12(q2,q3)q̇2 +d13(q2,q3)q̇3,

ξ3 =−G1(q), ξ4 :=−∇G1(q)q̇,

ξ5 := cosq3 +β cosq2 − cosq0
3 −β cosq0

2,

ξ6 :=−q̇3 sinq3 −β q̇2 sinq2,

w2 :=−∇G1D(q)−1[[0,u2,u3]
⊤−C(q, q̇)q̇−G(q)]

− q̇⊤∇⊤∇G1(q)q̇,

w3 :=
[

0,−β sinq2,−sinq3

]
D(q)−1

[
[0,u2,u3]

⊤

−C(q, q̇)q̇−G(q)
]
− q̇2

3 cosq3 −β q̇2
2 cosq2.

(13)

is smooth and one-to-one on the set Nq0 ×R5 and transforms
(7)-(8) into the following system

ξ̇1 = ξ2 −2l1lc3m3q̇1ξ5, ξ̇2 = ξ3, ξ̇3 = ξ4, ξ̇4 = w2,

ξ̇5 = ξ6, ξ̇6 = w3.
(14)

Proof: First, check that (13) implies (14). Using (9) and
definition of ξ1,ξ2,ξ5 in (13) one has

ξ̇1 = d11(q0
2,q

0
3)q̇1 +d12(q2,q3)q̇2 +d13(q2,q3)

= [d11(q0
2,q

0
3)−d11(q2,q3)]q̇1 +ξ2

= 2l1lc3m3[β cosq0
2 + cosq0

3 −β cosq2 − cosq3]q̇1

+ξ2 = ξ2 −2l1lc3m3q̇1ξ5,

which proves the first equality in (14). Next, to prove that
ξ̇2 = ξ3, realize that ξ2 = σ1 as in Lemma 1 and ξ3 =−G1(q)
by definition of ξ3 in (13), so that by Lemma 1 it holds ξ̇2 =
σ̇ =−G1(q) = ξ3. Equality ξ̇3 = ξ4 is straightforward due to
definition of ξ4 :=−∇G1(q)q̇ in (13). Moreover

ξ̇4 =−∇G1q̈− q̇⊤∇
⊤

∇G1(q)q̇

and by definition of w2 in (13) and q̈ = D(q)−1
[
[0,u2,u3]

⊤−
C(q, q̇)q̇−G(q)

]
obtained from (7) ξ̇4 =w2 holds. Finally, one

has by definitions of ξ5,ξ6,w3 in (13) and by (7)

ξ̇5 =−q̇3 sinq3 −β q̇2 sinq2 = ξ6,

ξ̇6 =−q̈3 sinq3 −β q̈2 sinq2 − q̇2
3 cosq3 −β q̇2

2 cosq2 = w3.

Secondly, to conclude the proof, one has to prove that
(13) defines the mapping (q1,q2,q3, q̇1, q̇2, q̇3,u2,u3)

⊤ ∈R8 7→
(ξ1,ξ3,ξ5,ξ2,ξ4,ξ6,w2,w3)

⊤ ∈ R8 which is smoothly invert-
ible around a given q0 and any q̇,u2,u3. Its Jacobian is

J (q0, q̇) =

 D(q0) 03×3 03×2
∗ D(q0) 03×2

∗ ∗ D̃(q0)

 , D̃(q) = (15)

[
∂G1
∂q1

∂G1
∂q2

∂G1
∂q3

0 β sinq2 sinq3

]
D(q)−1

 0 0
1 0
0 1

 , (16)

D(q0) =

 d11(q0) d12(q0) d13(q0)
∂G1
∂q1

(q0) ∂G1
∂q2

(q0) ∂G1
∂q3

(q0)

0 β sinq0
2 sinq0

3

 . (17)

Here, J , D and D̃ are (8×8), (3×3) and (2×2) matrices,
respectively. Row elimination of (2,1) entry of D gives

detD(q0) = d11(q0)detD(q0). (18)

Let S be (2×2) Schur complement of (3×3) D in (7)

S =

[
d22 d23
d32 d33

]
− 1

d11

[
d21d12 d21d13
d31d12 d31d13

]
, (19)

D = D⊤ > 0 ⇒ S = S ⊤ > 0 ⇒ detS > 0. (20)

Straightforward multiplication gives d11 d12 d13
d21 d22 d23
d31 d32 d33

 −d−1
11 d12 −d−1

11 d13
1 0
0 1

=
 0 0

1 0
0 1

S

and therefore it holds (recall D in (7)) that

D−1

 0 0
1 0
0 1

=

 −d−1
11 d12 −d−1

11 d13
1 0
0 1

S −1. (21)
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Using (21) the definition of D̃ in (15), (16) gives

D̃(q) = D(q)S −1 ⇒ detD̃(q) = detD(q)/detS . (22)

Now, by (15), (18), (20), (22) and d11(q0)> 0 one has

detJ (q0, q̇) = [d11(q0)]2[detD(q0)]3/detS ̸= 0

due to theorem assumption detD(q0) ̸= 0. Using Inverse
Function Theorem [13] one concludes that the mapping (13)
is a local diffeomorphism around the point in R8 given by q0

considered in theorem formulation and any q̇,u2,u3.
Remark 4: Note a theoretically remarkable, while practically

quite a useful, feature that the local smooth invertibility of (13)
depends only on the generalized coordinate q0 while velocities
and input values may be arbitrary. Moreover, respective regu-
larity condition is reduced to detS (q0) ̸= 0 requiring to check
(2× 2) matrix only. Furthermore, (14) becomes completely
linear for ξ5 = 0 and ξ5 has a simple linear dynamics with re-
spect to virtual input w3 and this input can be straightforwardly
used to enforce the equality ξ5 = 0 exponentially (or even
in finite-time using [14]). The relation ξ5 = ξ6 = 0 actually
defines general local CVHC as of Definition (2) where none of
q2,q3 has a dominant role. The practically peculiar issue here
is establishing that they are globally regular CVHC as well.
Indeed, the basic assumption detS (q0) ̸= 0 of Theorem (3)
is equivalent to those CVHC being locally regular at q0 only.
The global regularity is unrealistic, but for practical application
regularity on the selected constrained set is sufficient.

IV. WALKING DESIGN AND SIMULATIONS

A. Finding upward versus downward torso constraints

As already noted, downward torso case provides more rich
collection of the desired CVHC. To be more specific, denote
by q0

1,q
0
2,q

0
3 and q f

1 ,q
f
2 ,q

f
3 the double support stance configura-

tion at the beginning and the end of the step, respectively. By a
simple triangularization it holds q0

3 = q0
2/2−π/2,q0

2 ∈ (π,2π),
q f

3 = q f
2/2 − π/2,q f

2 ∈ (0,π) for the upward torso, while
q0

3 = q0
2/2+ π/2,q0

2 ∈ (π,2π), q f
3 = q f

2/2+ π/2,q f
2 ∈ (0,π)

for the downward torso. Furthermore, q2 = π when the legs
are passing by each other.

In such a way, the above desired collocated VHC is given by
some level curve shown in Fig. 2 having intersection with blue
(red) line for upward (downward) torso at some q0

2 ∈ (π,2π)

and some q f
2 ∈ (0,π).

For the upward torso position q3 ∈ (−π/2,π/2), after
fixing the balancing factor β , there is an unique level curve
satisfying the above requirements, as illustrated by Fig. 2.
Reason is that the blue line passes through the configuration
q2 = π,q3 = 0 which is the saddle stationary point of the func-
tion cosq3+β cosq2 and therefore there is a unique connected
curve going from some q0

2 ∈ (π,2π) to some q f
2 ∈ (0,π).

Changing the balancing factor β modifies the shapes of the
level curves and their intersections with blue line change,
yet there is unique one-to-one correspondence between β and
q0

2 ∈ (π,2π),q f
2 ∈ (0,π), i.e. for a fixed chosen β there is only

one possible angle between legs at the initial double support

stance position, and vice-verse (provided β is from some
reasonable range). Due to that limited choice, only specific
mechanical and geometric parameters, laboriously computed
in [3] via numerical optimization procedure, were capable to
provide a rather special multi-step, hybrid-cyclic walking-like
trajectory.

For the downward torso position q3 ∈ (π/2,3π/2) the
configurations q0

2 ∈ (π,2π), q f
2 ∈ (0,π), should be intersections

of the red line and a level curve in Fig. 2. Red line passes
through q3 = π,q2 = π which is the local minimum stationary
point of cosq3+β cosq2, so there is continuum family of level
curves circling that minimum. So, there is always a level curve
passing through any q0

2 ∈ (π,2π), q f
2 ∈ (0,π) and the VHC

design is much more flexible.
On the other hand, the unique and difficult to find CVHC

for the upward torso can be always expressed as q2 = φ(q3)
with φ being smooth and smoothly invertible. On the contrary,
for the downward torso case, as it can be seen in Fig. 2, any
of rich family of possible CVHC should stay in the general
form ϕ(q2,q3) = 0, moreover, it is difficult to make it regular
along all q2,q3 satisfying CVHC.

Fig. 2. Level curves (black, yellow, green) of the function cosq3 +β cosq2
plotted in (q2,q3) plane for β = 0.2506 used in [3]. Furthermore, the blue
line is the plot of (q2,q2/2−π/2) while the red one of (q2,q2/2+π/2).

B. Sample single step simulations

To demonstrate both the potential and the peculiarities of
the downward torso constrains used for the walking design,
the simple design of the single step was performed using the
chain of four integrators. It is the so-called pseudo-passive
step where the virtual input w2 = 0. This means that COM
of the TL moves with constant velocity and the respective
initial angular velocities are relatively easy to compute, while
initial and terminal angles are given by selected double support
configurations.

Two cases were simulated corresponding to different values
of the balancing parameter β . All mechanical TL parameters
are omitted for the space reason, besides, they are not so
important to demonstrate the above mentioned pros and cons
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of the downward torso position. Both cases are in a sense dual
each to other, one of them starts with swinging torso back
and swing leg forward, while another one swing leg back and
torso forward. Notably, neither of them reaches exactly the
final double support position due to possible presence of the
singularity where detD = 0. Red bold circles in Figs. 3 and 5
correspond to double support positions at the beginning and
the end of the step, the blue line is the constrained set in
(q2,q3)-plane along which TL is moving.

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6

q
2

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

q
3

Fig. 3. The curves of (q2,q3) plane for β = 1.9757.

t=0.000 0.006 0.015 0.046 0.095

0.159 0.246 0.288 0.296 0.300

Fig. 4. Animation of the 3-link movement during one step for β = 1.9757.
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Fig. 5. The curves of (q2,q3) plane for β = 1.3286.
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Fig. 6. Animation of the 3-link movement during one step for β = 1.3286.

V. CONCLUSIONS AND OUTLOOKS

The ongoing and future research is focused to considering
a pair of downward torsa, so that mimicking the role of hands
would be more adequate. Moreover, this seems to solve the
singularity problem as the pair of “hands” need not to go along
such a “curved” CVHC as in Figs. 3 and 5.
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