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ABSTRACT A synchronization algorithm of nonlinear complex networks composed of nonlinear nodes
is designed. The main idea is to apply the exact feedback linearization of every node first, then applying
methods for synchronization of linear complex networks. The nodes need not admit full exact feedback
linearization, however, they are supposed to be minimum-phase systems. To achieve the synchronization of
the observable parts of the nodes, an algorithm based on the convex optimization (to be specific, on linear
matrix inequalities) is proposed. Then, it is demonstrated that, using the minimum-phase assumption, the
non-observable part of the nodes is synchronized aswell. The algorithm for synchronization of the observable
parts of the nodes can be used to design a control law that is capable of maintaining stability in presence
of certain variations of the control gain. Uncertainties in the parameters are also taken into account. Two
examples illustrate the control design.

INDEX TERMS Complex networks, nonlinear systems, linear matrix inequalities, robust control.

I. INTRODUCTION
A. STATE OF THE ART
Many natural as well as artificial systems in the real world
can be represented as complex networks with a large number
of interconnected units [1]. Examples of complex networks
includeWorldWideWeb, Internet, food webs, metabolic net-
works, biological neural networks, collaboration networks,
social networks, electric power grids, etc. A complex network
may be represented by a graph composed of nodes connected
by links. Due to the nature of the different complex networks,
the interconnection between nodes have many different
topological forms like ring, star, tree, etc. [2], [3].

Synchronization appears to be one of significant types
of interconnected systems’ collective dynamics. It is a
fundamental mechanism in nature that relates to different
phenomena in physical, chemical, and biological systems [4].
Extensive research of the identical (complete, full) synchro-
nization of chaotic coupled systems was started by [5]. It was
demonstrated that the necessary condition for synchroniza-
tion is the presence of a spanning tree in the topological
graph of the complex network [2], [6], [7]. In the identical
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synchronization, the state variables of every system converge
towards each other [2], [8].

The problem of synchronization with different kinds of
perturbation like irregular communication delays [9], [10],
packets dropouts [11], quantization [12], [13], communica-
tion link failures [14], nonconstant interconnection topolo-
gies [15] are widely discussed by the control engineering
community. Synchronization problem is also known as
consensus problem in the recent terminology of control
theory, see e.g., [9], [16], [17]. A related problem is the
problem of handling large data sets in large-scale distributed
learning algorithms, see [18].

Mostly the mathematical models of the complex networks
demonstrate the nonlinear behavior. Several approaches
based on replacing the nonlinearity by some uncertain terms
that are subsequently estimated via the Young’s inequality
were proposed, [19]. An alternative approach to nonlinear
systems is the exact feedback linearization, see [20]. There
are many examples of implementing this method in the
control of the complex systems. Exact feedback linearization-
based control of vehicle platoons can be found in [21].
In [22] authors present a control algorithm of identical affine-
in-control systems. Adaptive control laws have also been
developed; let us mention an adaptive consensus output
regulation designed for a strict-feedback form of nonlinear
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systems in [23], [24]. The same problem of second-order
nonlinear systems is treated in [25]. The consensus of
nonlinear nodes using static output feedback is solved
in [26]. Synchronization of complex networks with nontrivial
zero dynamics, however, without taking uncertainties into
account, was presented in [27]. This approach was applied
to the synchronization of complex networks with nonlinear
nodes with time delays in [28]. Since the Hindmarsh-Rose
neuron is a minimum-phase system, the ideas from the
aforementioned papers were applied to the design of the
synchronization algorithm for a network composed of these
neurons in [29]. Let us also mention the problem of
multi-agent synchronization with non-constant topologies,
studied e.g. in [15] where a resilient consensus is achieved
under sampled signals.

The theory of large-scale systems is related to the problem
of the synchronization of the complex network. The control
algorithms for linear systems, where ‘‘every subsystem
is connected with every other’’ (so-called symmetrically
interconnected systems), can be found e.g. in [30], even for
systems with delays in the control loop. The control of linear
interconnected systems with a more general interconnection
topology is presented in [31] while the control of nonlinear
large-scale systems based on exact feedback linearizationwas
studied in [32]. Some ideas of this paper are adopted here for
the problem of the synchronization of complex networks.

A common advantage of the approaches developed in these
papers is the independence of the control design complexity
of the number of subsystems. To be specific, the control law
is designed using a set of linear matrix inequalities (LMIs) so
that complexity of this problem (measured as the dimension
of the matrices involved) does not depend on the number
of subsystems. This algorithm is based on the methods for
the robust control of an uncertain linear system which is
often solved using LMIs. Recently, the so-called descriptor
approach was used for the solution of the robust control
problem of linear systems with time delay, see e.g. [33], [34].
However, as pointed out in [35], the performance of this
method is superior to the ‘‘classical’’ one, even in the case
of delay-free systems. This approach is used in this paper.

In various control tasks, one cannot assume a precise
value of the controller parameters due to implementation
imprecision, changes in time, etc. Therefore, the non-fragile
control was developed. Here, the control gain is designed
so that stabilization of the controlled system is guaranteed
even in the presence of the control gain variations. They
can be caused e.g. by degradation in time, dependencies
of the actuators or the controllers on temperature or other
parameters of the environment etc. As such phenomena
cannot be avoided, the control law must be designed so that it
can guarantee the desired performance even in presence of
these changes. These perturbations of the control gain can
be additive or multiplicative - the latter case is considered
in [36], [37] and also in this paper. The non-fragile networked
systems control, with both additive as well as multiplicative
variations of the control gain, is presented in [38].

B. PURPOSE AND OUTLINE OF THE PAPER
Nonlinear complex networks are often encountered in
practice. The purpose of the paper is to find an efficient
synchronizing control for these systems. To be specific:
• To present an algorithm for synchronizing a complex
network with identical nonlinear nodes based on the
exact feedback linearization. As this procedure precisely
matches the nonlinear terms in the node’s description,
the resulting algorithm will have performance superior
to those algorithms based on approximative linearization
of the node dynamics.

• Networks with nodes that have a nontrivial minimum-
phase zero dynamics are investigated, synchronization
of this part is also proved. This is important since
in practice, many networks are composed of devices
described by systems with nontrivial zero dynamics.

• The synchronization is guaranteed even in the presence
of perturbations of the control gain (non-fragile control
design). Note that, from the practical point of view, these
changes may encompass also changes in the actuators.

The results are achieved by combining the exact lineariza-
tion with robust control methods. It is demonstrated that the
zero synchronization error cannot be achieved in the presence
of the disturbances. However, the norm of the error can be
estimated. We believe this problem has not been studied in
this setting so far.

Outline of the paper: in Section II, basic notions from the
graph theory are repeated, while Section III describes the
application of the exact linearization to the nodes and defines
the uncertainties that can occur in the node description. The
synchronization of the observable part using robust control
methods is presented in the fourth section. The non-fragile
controller design guaranteeing synchronization (up to an
error due to uncertainties) is described in the fifth section. The
sixth section contains proof of the synchronization of the non-
observable part. The Example section and conclusions follow.
Some technical lemmas are concentrated in the Appendix.

C. NOTATION
1) If P is a symmetric square matrix, then the inequality

P > 0 means matrix P is positive definite;
2) In matrices, the zero blocks are denoted by 0;

dimensions of these blocks will be clear from the
context;

3) The symbol Im denotes the m-dimensional identity
matrix; for brevity, N -dimensional identity matrix is
denoted by I , for definition of N , see below;

4) The symbol diag(. . . ) denotes a diagonal matrix
composed of blocks in parentheses: diag(A,B) =(
A 0
0 B

)
;

5) The symbol Lf (h) denotes the following Lie derivative
Lf h(x): Lf h(x) = ∇h(x).f (x).

II. GRAPH THEORY
Let us analyze a complex network which is composed of N
identical nodes. Let f , g : Rr

→ Rr , h : Rr
→ R be
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sufficiently smooth functions, f (0) = 0, h(0) = 0, g(0) 6=
0 and N be a positive integer. Then, the ith node is defined by

ẋi = f (xi)+ g(xi)ui, xi(0) = xi,0,

yi = h(xi), (1)

for all i = 1, . . . ,N . Further assumptions about these
functions are introduced in Section III.

In the sequel, only the most essential facts from the graph
theory used for the analysis of complex networks is presented;
more details can be found in [17].

The nodes are denoted by integers from the set N =
{1, . . . ,N }. Let the set E ⊂ N × N be defined as follows:
(i, j) ∈ E if and only if the node i sends information to the
node j. It is assumed that (i, i) 6∈ E. The directed graph (or
digraph) describing the topology of the node network is then
defined as G = (N,E). It contains no loops. An undirected
graph is a directed graph satisfying the condition: for every
i, j ∈ N holds: if (i, j) ∈ E then (j, i) ∈ E.
In the sequel, only undirected graphs will be considered.
For any i ∈ N define the set of neighbors of the node i

(denoted by Ni) by Ni = {j ∈ N | (j, i) ∈ E}.
The N × N -dimensional adjacency matrix J = (eij) is

defined as Jij = 1 if and only if (i, j) ∈ E, otherwise
Jij = 0. Let us also define the Laplacian matrix L by L =
diag(

∑N
j=1 J1j, . . . ,

∑N
j=1 JNj)− J .

The graphG is said to contain a spanning tree if, for every
i, j ∈ N, there exists a directed path from the node i to j.
The following result can be found in [39]:
Lemma 1: If the undirected graph G contains a spanning

tree, then 0 is a simple eigenvalue of the Laplacian matrix
L corresponding to the eigenvector e = (1, . . . , 1)T ∈ RN .
Moreover, there exist an orthogonal matrix T and a diagonal
matrix 1 such that

T TLT = 1. (2)

Let e = (1, . . . , 1)T ∈ RN . Then the following corollary
holds:
Corollary 1: Under the assumptions of Lemma 1, one has

Le = 0. (3)

Without loss of generality, it is possible to assume that1 =
diag(0, d1, . . . , dN−1) where di are constants satisfying 0 <
d1 ≤ · · · ≤ dN−1.

Let x̄ = 1
N

∑N
i=1 xi. The solution of the synchronization

problem means finding a control ui guaranteeing

lim
t→∞

N∑
i=1

‖xi(t)− x̄(t)‖ = 0. (4)

Unfortunately, it is difficult to achieve this goal in the pre-
sence of uncertainties. Instead, the goal to achieve is defined
as follows: we aim to find control signals ui so that there
exist a class-K function β1 and a class-KL function β2 so
that

N∑
i=1

‖xi(t)− x̄(t)‖ ≤ β2(‖x(0)‖, t)+ β1(x̄). (5)

The most important constraint is that the control signal ui
is computed from the ith node’s state and the states of its
neighbors

III. EXACT FEEDBACK LINEARIZATION
The details about the exact feedback linearization and
definition of the relative degree and zero dynamics are
extensively covered by [20].
Assumption 1: System (1) has relative degree n ≤ r.

Thus, there exists an integer n ≤ r satisfying
1) LgL

n−1
f h(x)(0) 6= 0,

2) for all j = 1, . . . , n− 2 holds LgL
j
f h(x)(0) = 0.

The ith node is transformed by the nonlinear state transfor-
mation T : Rr

→ Rr by T (xi) = ξ ′i where

ξ ′i,1 = h(xi), (6)

ξ ′i,2 = Lf h(xi), (7)
...

ξ ′i,n = LgL
n−1
f h(xi)ui − Lnf h(xi), (8)

ξ ′i,m = xi,m, m = n+ 1, . . . , r . (9)

Let us also define vectors ξ ′′, η′′

ξ ′′i = (ξ ′i,1, . . . , ξ
′
i,n)

T , η′′i = (ξ ′i,n+1, . . . , ξ
′
i,r )

T ,

φ(ξ ′i , η
′
i, vi) = (fn+1(xi, ui), . . . , fr (xi, ui))T .

The vector ξ ′′i is called the observable part. The remaining
states η′′i are called non-observable part.

In the next step, the following transformation of the control
is defined as

vi = LgL
n−1
f h(xi)ui − (Lnf h(xi)− L

n
f h(xi)(0)). (10)

We define functions 9 : Rn
→ R, 81 : Rn

→ R, 8 : Rn
→

R and matrices A ∈ Rn×n, B ∈ Rn×1 as

9(ξ ′′i , η
′′
i ) = LgL

n−1
f h(T −1(ξ ′′i )), (11)

81(ξ ′′i , η
′′
i ) = Lnf h(T

−1(ξ ′′i )), (12)

8(ξ ′′i , η
′′
i ) = 81(ξ ′′i , η

′′
i )−81(0)ξ ′′i , (13)

A =


0 1 . . . 0
...
...
. . .

...

0 0 . . . 1
81(0)

 , B =


0
...

0
1

 .
This implies that the ith node obeys the equation

ξ̇ ′i =

(
ξ̇ ′′i
η̇′′i

)
=

(
Aξ ′′ + Bvi
φ(ξ ′′, η′′i , vi).

)
(14)

Relation (10) can be expressed as

ui =
1

9(ξ ′′i , η
′′
i )

(
vi + (8(ξ ′′i , η

′′
i )−8(0)ξ

′)
)

(15)

where function vi – the control signal in the transformed co-
ordinates – is designed in the sequel. It will be shown that this
control signal depends on ξ ′i and ξ

′
j for all neighboring nodes.

The control law (15) is implemented. Note, however,
that the nonlinear terms in (15) should exactly match the
corresponding terms in (8). However, this might not always
be the case as this typically requires precise knowledge of
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system’s parameters. Hence an uncertainty in the function 8
can appear.

In particular, function 8 is decomposed as 8 = 8n + 8̃

where 8n is the ‘‘nominal part’’ - this function is known,
it is used to compute the controller etc. On the other
hand, 8̃ is the unmodeled dynamics that will be treated as
uncertainty. The function 9 is decomposed analogously as
9 = 9n + 9̃.
Due to the presence of uncertainties, the control applied to

the system is not the one given by (15) but

ui,n =
1

9n(ξ ′′i , η
′′
i )

(
vi + (8n(ξ ′′i , η

′′
i )−8n(0)ξ ′i )

)
. (16)

Then the observable part of the transformed system
reads

ξ̇ ′′i = Aξ ′′i +9(ξ ′′i , η
′′
i )ui,n − (8(ξ ′′i , η

′′
i )−8(0)ξ

′
i ). (17)

Substituting (16) into this equation yields

ξ̇ ′′i = Aξ ′′i + B
( 9(ξ ′′i , η

′′
i )

9n(ξ ′′i , η
′′
i )
vi +

9(ξ ′′i , η
′′
i )

9n(ξ ′′i , η
′′
i )
(8n(ξ ′′i , η

′′
i )

− (8(ξ ′′i , η
′′
i ))−

9(ξ ′′i , η
′′
i )

9n(ξ ′′i , η
′′
i )
8n(0)ξ ′i−8(0)ξ

′
i )
)
. (18)

Denote 9̃(ξ ′′i , η
′′
i ) = 9(ξ ′′i , η

′′
i ) − 9n(ξ ′′i , η

′′
i ), 8̃(ξ

′′
i , η
′′
i ) =

8(ξ ′′i , η
′′
i )−8n(ξ ′′i , η

′′
i ). Then (18) reads

ξ̇ ′′i = Aξ ′′i + Bvi

+B
9̃(ξ ′′i , η

′′
i )

9n(ξ ′′i , η
′′
i )
vi + B

( 9̃(ξ ′′i , η
′′
i )

9n(ξ ′′i , η
′′
i )
8n(ξ ′′, η′′)

+ (1+
9̃(ξ ′′i , η

′′
i )

9n(ξ ′′i , η
′′
i )
)8̃(ξ ′′i , η

′′
i )

−
9̃(ξ ′′i , η

′′
i )

9n(ξ ′′i , η
′′
i )
8n(0)ξ ′ − (1+

9̃(ξ ′′i , η
′′
i )

9n(ξ ′′i , η
′′
i )
)8̃(0)ξ ′

)
.

(19)

The terms containing 9̃ and 8̃ can be regarded as uncertainty.
It is assumed that there exist n × n-dimensional matrices
D1,E1,D2,E2,D3,E3 and, for every i = 1, . . . ,N
measurable matrix-valued functions F1,i, F2,i, F3,i defined
on [0,∞) such that ‖Fj,i(t)‖ ≤ 1 for all t ∈ [0,∞), all
j = 1, 2, 3 and all i = 1, . . . ,N and, moreover, the following
holds:

D1F1,i(t)E1ξ ′′ + D3F3,i(t)E3η′′

= B
( 9̃(ξ ′′i , η

′′
i )

9n(ξ ′′i , η
′′
i )
8n(ξ ′′, η′′)

+ (1+
9̃(ξ ′′i , η

′′
i )

9n(ξ ′′i , η
′′
i )
)8̃(ξ ′′i , η

′′
i ),

−
9̃(ξ ′′i , η

′′
i )

9n(ξ ′′i , η
′′
i )
8n(0)ξ ′ − (1+

9̃(ξ ′′i , η
′′
i )

9n(ξ ′′i , η
′′
i )
)8̃(0)ξ ′

)
D2F2,i(t)E2 = B

9̃(ξ ′′i , η
′′
i )

9n(ξ ′′i , η
′′
i )
.

The, Eq. (17) reads

ξ̇i
′′
= Aξi′′ + Bvi + D1F1,i(t)E1ξi′′

+D2F2,i(t)E2vi + D3F3,i(t)E3ηi′′ (20)

and, if the control of the ith subsystem is vi = Kξ ′′i for some
matrix K , the overall system can be written in form

ξ̇ ′′ = (I ⊗ A)ξ ′′ + (L ⊗ BK )ξ ′′

+ (I ⊗ D1)diag(F11(t), . . . ,F1N (t))(I ⊗ E1)ξ ′′

+ (I ⊗ D2)diag(F21(t), . . . ,F2N (t))(L ⊗ E2K )ξ ′′

+ (I ⊗ D3)diag(F31(t), . . . ,F3N (t))(I ⊗ E3)η′′. (21)

Remark 1: Denote ξ̄ = e⊗ 1
N

∑N
i=1 ξ

′′
i . With (3), one can

rewrite Eq. (21) as

ξ̇ ′′ = (I ⊗ A)ξ ′′ + (L ⊗ BK )(ξ ′′ − 1⊗ ξ̄ )

+ (I ⊗ D1)diag(F11(t), . . . ,F1N (t))(I ⊗ E1)ξ ′′

+ (I ⊗ D2)diag(F21(t), . . . ,F2N (t))(L ⊗ E2K )

× (ξ ′′ − e⊗ ξ̄ )

+ (I ⊗ D3)diag(F31(t), . . . ,F3N (t))(I ⊗ E3)η′′. (22)

IV. SYNCHRONIZATION IN THE OBSERVABLE PART
A. AVERAGE DYNAMICS
The uncertainties are not supposed, in general, to be equal
for all nodes. Hence symmetry in the complex network is
violated. This, in turn, is reflected into a steady error whose
magnitude depends on the dynamics of the nodes’ average.

Due to Corollary 1, matrix L has a simple eigenvalue 0, its
corresponding eigenvector is e. DefineM = I− 1

N ee
T . Then,

the vector ξ defined as

ξ = (M ⊗ In)ξ ′′ (23)

is called disagreement dynamics.
For k = 1, 2, 3 denote

F̃k (t) =
1
N
e⊗ (Fk1(t), . . . ,FkN (t)),

F̄k (t) = I ⊗
1
N

N∑
j=1

Fkj(t),

F̂ ′k (t) = diag(Fk1(t), . . . ,FkN (t)),

F̂k (t) = F̂ ′k (t)− F̃k (t).

Note that, if Fk1(t) = · · · = FkN (t) for some k , then
F̂k (t) = 0.

Using these functions, one can derive differential equations
that govern the dynamics of ξ̄ and ξ . First, let us introduce the
following notation.

ω1 = −

(
I ⊗ D1F̄1(t)E1

)
(e⊗ ξ̄ ′′)−

(
I ⊗ D2F̄2(t)

)
× (L ⊗ E2K )(e⊗ ξ̄ ′′)−

(
I ⊗ D3F̄3(t)E3

)
(e⊗ η̄′′)

= −

(
I ⊗ D1F̄1(t)E1

)
(e⊗ ξ̄ ′′)

−

(
I ⊗ D3F̄3(t)E3

)
(e⊗ η̄′′),

ω2 =

(
I ⊗ D1)F̂ ′1(t)(I ⊗ E1)

)
(e⊗ ξ̄ ′′)+

(
I ⊗ D2)F̂ ′2(t)

× (L ⊗ E2K )
)
e⊗ ξ̄ ′′

+

(
I ⊗ D3)F̂ ′3(t)(I ⊗ E3)

)
(e⊗ η̄′′)
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=

(
I ⊗ D1)F̂ ′1(t)(I ⊗ E1)

)
(e⊗ ξ̄ ′′)

+

(
I ⊗ D3)F̂ ′3(t)(I ⊗ E3)

)
(e⊗ η̄′′),

ω = ω1 + ω2.

The second and fourth equalities are due to (3).
Remark 2: If F11(t) = · · · = F1N (t) and F31(t) = · · · =

F3N (t) then ω(t) = 0.
Then, from Eq. (21) can be inferred

ξ̇i = ξ̇
′′
i − e⊗ ˙̄ξ ′′, (24)

˙̄ξ ′′ = (I ⊗ A+ L ⊗ BK )e⊗ ξ̄ ′′ + (I ⊗ D1)F̃1(t) (25)

× (I ⊗ E1)ξ + (I ⊗ D2)F̃2(t)(L ⊗ E2K )ξ

+ (I ⊗ D3)F̃3(t)(I ⊗ E3)η +
(
I ⊗ D1F̄1(t)E1

)
× (e⊗ ξ̄ ′′)+

(
I ⊗ D2F̄2(t)

)
(L ⊗ E2K )(e⊗ ξ̄ ′′)

+

(
I ⊗ D3F̄3(t)E3

)
(e⊗ η̄′′),

ξ̇ = (I ⊗ A+ L ⊗ BK )ξ + (I ⊗ D1)F̂1(t)(I ⊗ E1)ξ

+ (I ⊗ D2)F̂2(t)(L ⊗ E2K )ξ

+ (I ⊗ D3)F̂3(t)(I ⊗ E3)η + ω. (26)

Due to the last three terms in (26), one cannot expect full
synchronization.

B. CONTROL FOR UNCERTAIN COMPLEX NETWORKS
Let us introduce an LMI problem whose solution can be used
to guarantee the approximate synchronization of the original
system.
Consider system (26).
Let α > 0 be a scalar. Consider matrices P̄,Q ∈ Rn×n,

Y ∈ Rm×n, P̄ = P̄T , P̄ > 0, Q nonsingular, and positive
scalars γi (i = 1, . . . , 5) and ε. With these matrices, define
matrices σij (i, j = 1, 2) by

σ11 = AQ+ BY + QTAT + Y TBT + γ1D1DT1 + γ2D2DT2 ,

σ12 = P̄− Q+ ε(QTAT + Y TBT ),

σ22 = ε(−Q− QT + γ3D1DT1 + γ4D2DT2 ),

and matrix 6 by

6(A,B,D1,E1,D2,E2,D3,Y , P̄,Q, γ1, γ2, γ3, γ4, γ5, ε)

=



σ11 σ12 ET Y T ĒT ET Y T ĒT D3 In 0 0 QT
∗ σ22 0 0 0 0 0 0 D3 In 0
∗ ∗ −γ1In 0 0 0 0 0 0 0 0
∗ ∗ ∗ −γ2In 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ −γ3In 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −γ4In 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ5In 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ5In 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ5In 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ5In 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −

1
α
In


.

(27)

Lemma 2: Consider system (26) and a scalar α > 0.
Assume there exist matrices P̄, Q, Y as described above and
positive scalars γi (i = 1, . . . , 5) and ε so that LMIs

0 > 6(A,B,D1,E1,D2,E2,D3, d1 Y , P̄,Q, γ1, γ2, γ3, γ4, γ5, ε),

0 > 6(A,B,D1,E1,D2,E2,D3, dN−1Y , P̄,Q, γ1, γ2, γ3, γ4, γ5, ε)

hold. Let K = YQ−1. Then there exist constants c1 > 0,
c2 > 0, c3 > 0 such that, for the derivative of functional

Vξ (ξ ) = ξT (I ⊗ P̄)ξ along trajectories of (26) holds

V̇ξ ≤ −c1Vξ (ξ )+ c2‖η‖2 + c3‖ω‖2. (28)

For the proof, see Appendix, part B, Lemma 53.

V. NON-FRAGILE CONTROL
The results of the previous section were derived for the
uncertainties after applying the exact feedback linearization.
Even though the structure of many systems, e.g., in robotics,
allows exact feedback linearization so that the uncertain terms
appear in the last step only, and therefore the definition of the
uncertainties 8̃ and 9̃ is straightforward. The application of
this method on general uncertain systems is connected with
problems. However, the above considerations can be applied
to the non-fragile synchronization of the complex network.

In many cases, the control gain can also be affected by
fluctuations. In this case, it is natural to design the control law
so that the control performs adequately even in the presence
of these fluctuations. In the case of complex networks, the
‘‘nominal’’ control gain is equal for all nodes. However, the
fluctuations differ.

The above considerations lead to the design of the so-called
non-fragile control. For the ith node, the control vi is defined
as

vi =
(
(In +1K ,i(t))K

) N∑
j=1

lijξ ′′j (29)

where K is the control gain to be defined,1K ,i(t) is its multi-
plicative perturbation. It is assumed that the perturbations can
be expressed as

1K ,i = DKFK ,i(t)EK , (30)

where DK , EK are known matrices of appropriate dimen-
sion, equal for every node, and FK ,i(t) are measurable
matrix-valued functions so that ‖FK ,i‖ ≤ 1.

For the simplicity, we assume 8̃ = 0 as well as 9̃ = 0.
Then

ξ̇ ′′ = Aξ ′′ + B(In + DKFK ,i(t)EK )K
N∑
j=1

lijξ ′′j (31)

hence the dynamics of the complex network obeys the
following equation

ξ̇ ′′ =
(
I ⊗ A+ L ⊗ BK + (IN ⊗ BDK )

× diag(FK ,1(t), . . . ,FK ,N (t))(L ⊗ EKK )
)
ξ ′′ (32)

and, finally, it has the same form as (22) whereD1 = 0, E1 =
0, D2 = DK , E2 = EK , D3 = 0, E3 = 0, F1,i(t) = 0,
F2,i(t) = FK ,i(t), F3,i(t) = 0 for all i = 1, . . . ,N and all
t ≥ 0.
If we define F̄K (t) = 1

N

∑N
j=1 FK ,j(t),

F̃K (t) = 1
N e⊗ (FK ,1(t), . . . ,FK ,N (t)),

F̂K ,k (t) = diag(FK ,1(t), . . . ,FK ,N (t))− F̃K (t).
Then ω = −

(
I ⊗ D2)F̂ ′2(t)(L ⊗ E2K )

)
ξ̄ ′′. Note that, if all

variations of K are equal (FK ,1(t) = · · · = FK ,N (t) for all
i = 1, . . . ,N and all t ≥ 0), then ω = 0.
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VI. CONVERGENCE IN THE NON-OBSERVABLE PART
The synchronization of the observable part has been studied
so far. This section demonstrates that synchronization is also
achieved for the non-observable parts of the nodes.

First, note that the zero dynamics reads
η̇ = φ(0, η, 0) (33)

with a continuous function φ satisfying φ(0, 0, 0) =

0. As assumed, nodes are exponentially minimum-phase
systems, thus (33) is exponentially stable. Denote U =
∂φ
∂η
(0, 0, 0); for the triple (ζ, η, v) define function 1η(ζ, η, v)

by 1η(ζ, η, v) =
∂φ
∂η
(ζ, η, v) − U . Since φ(0, 0, 0) = 0,

one has 1η(0, 0, 0) = 0. Moreover, for any a > 0 there
exists a neighborhood Ua of the origin enjoying the following
property: for any (ζ, η, v) ∈ Ua holds ‖1η(ζ, η, v)‖ ≤ a.
Define also η̄ = 1

N

∑N
i=1 ηi.

Lemma 3: Assume matrix R > 0 and scalar αη > 0
satisfy

RU + UTR = −αηI , (34)

Let a positive scalar µ satisfy µ‖P‖ ∈ (0, αη) and let the
relation

‖1η(ζk (t), ηk (t), vk (t))‖ ≤ µ (35)

hold for all t > 0 and k ∈ {1, . . . ,N }. Moreover, assume
existence of a scalar κ > 0 such that for all (ζ ′, η, v′) ∈ Uµ,
(ζ ′′, η, v′′) ∈ Uµ:
‖φ(ζ ′, η, v′)− φ(ζ ′′, η, v′′)‖ ≤ κ(‖ζ ′ − ζ ′′‖ + ‖v′ − v′′‖).

(36)

Then, there exist constants c′1 > 0, c′2 > 0 such that, for
the functional Vη defined by Vη =

∑N
i=1(ηi − η̄)

TR(ηi − η̄)
holds

V̇η ≤ −c′1Vη(η)+ c
′

2Vξ (ξ ). (37)

Proof: For the derivative of Vη holds

V̇η =
N∑
i=1

(ηi − η̄)TR
(
φ(ζi, ηi, vi)− φ(ζ̄ , η̄, v̄)

)
=

N∑
i=1

(ηi − η̄)TR
(
φ(ζi, ηi, vi)− φ(ζi, η̄, vi)

)
+ (ηi − η̄)TR

(
φ(ζi, η̄, vi)− φ(ζ̄ , η̄, v̄)

)
. (38)

First, an estimate of the term (ηi − η̄)TR
(
φ(ζi, ηi, vi) −

φ(ζi, η̄, vi)
)
is derived. To proceed, note that

(ηi − η̄)TR
(
φ(ζi, ηi, vi)− φ(ζi, η̄, vi)

)
= (ηi − η̄)TR

∂φ

∂η
(ζ̃ , η̃, ṽ)(ηi − η̄) (39)

with some (unknown) values ζ̃i, η̃i, ṽi. Due to the assumption,
∂φ

∂η
(ζ̃i, η̃i, ṽi)(ηi − η̄) = U (ηi − η̄)+1η(ζ̃ , η̃, ṽ)(ηi − η̄)

and thus, thanks to (34) and (35), one has

(ηi − η̄)TR
(
φ(ζi, ηi, vi)−φ(ζi, η̄, vi)

)
≤−(αη−µ)‖ηi−η̄‖2.

To estimate the last term in (38), the Young’s inequality is
used. With β > 0 holds

|(ηi − η̄)TR
(
φ(ζi, η̄, vi)− φ(ζ̄ , η̄, v̄)

)
|

≤ β‖ηi − η̄‖
2
+

1
β

(
φ(ζi, η̄, vi)− φ(ζ̄ , η̄, v̄)

)2
. (40)

The multivariate mean value theorem yields that (36) attains
the form

|(ηi − η̄)TR
(
φ(ζi, η̄, vi)− φ(ζ̄ , η̄, v̄)

)
|

≤ β‖ηi − η̄‖
2
+
κ2

β

(
‖ζi − ζ̄‖ + ‖vi − v̄‖

)2
. (41)

Summarizing the previous results, (39) and (41) imply

V̇η ≤ −(αη − β − µ)

×

N∑
i=1

(
‖ηi−η̄‖

2
+
κ2

β
(‖ζi − ζ̄‖ + ‖vi − v̄‖)2

)
(42)

and, consequently, there exist constants c′1 > 0, c′2 > 0 such
that (37) holds. �
Theorem 1: Let assumptions of Lemma 3 hold, moreover,

let c1 > c′2, c
′

1 > c̄′2. Then there exist a class-K function
β1 and a class-KL function β2 such that the following
inequality holds

‖ξ‖ + ‖η‖ ≤ β2(‖ξ (0)‖ + ‖η(0)‖, t)+ β1(‖ω‖). (43)

Proof: Moreover, from (28) follows that there exists a
constant c̄′2 > 0 such that

V̇ξ ≤ −c1Vξ (ξ )+ c̄′2Vη(η)+ c̄3‖ω‖
2. (44)

The sum of inequalities (44) and (37) yields

V̇ξ + V̇η ≤ −(c1 − c′2)Vξ (ξ )− (c′1 − c̄
′

2)Vη(η)+ c̄3‖ω‖
2.

(45)

As assumed, min(c1 − c′2, c
′

1 − c̄
′

2) > 0. As a consequence,
there exist a class-K function β1 and a class-KL function
β2 so that (43) holds. �
As shown in the following corollary, the case of non-fragile

control in the absence of further uncertainties leads to (exact)
synchronization of the complex network.
Corollary 2: If D1 = 0, E1 = 0, D3 = 0, E3 = 0 and

F̂2(t) = 0 for all t ≥ 0 then the complex network is
synchronized.

Proof: In this case, ω = 0, hence V̇ξ + V̇η ≤ −(c1 −
c′2)Vξ (ξ )− (c′1 − c̄

′

2)Vη(η), thus η→ 0 as well as ξ → 0. �
From the definition of the exact feedback linearization

follows that there exists a matrix T such that (ξ ′′T , η′′T )T =
T ξ ′. Then ω = (I ⊗D1)(F̂ ′1(t)− F̄1(t))(I ⊗ E1)(e⊗ (T ξ ′) =
(I ⊗ D1)(F̂ ′1(t)− F̄1(t))(I ⊗ E1)(e⊗ (TT (x)).
Theorem 2: Let assumptions of Theorem 1 hold. Then

there exists a pair of functions β ′1, β
′

2 so that β
′

1 is a class-K
function, β ′2 is a class-KL function and for all i = 1, . . . ,N
holds

‖xi − x̄‖ ≤ β ′2(‖x(0)‖, t)+ β
′

1(‖ω
′
‖). (46)

Proof: Since transformation T is a diffeomorphism,
inequality (46) is a direct consequence of inequality (43). �
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FIGURE 1. Ring topology of the directed complex network consist of ten
nodes. Example 1.

VII. EXAMPLES
A. EXAMPLE 1 - NON FRAGILE CONTROL
The non-fragile control synchronizes the following complex
network composed of 10 nodes. These equations describe
each node (i = 1, . . . , 10)

ẋi,1 = (sin2 xi,1 + xi,2)

ẋi,2 = 1− cos xi,1 + ui,

ẋi,3 = − sin xi,3 + xi,1,

y = x1.

The interconnection of nodes is depicted in Figure 1. Thus
the Laplacian matrix has maximal eigenvalue λM = 4 and
the minimal nonzero eigenvalue λm = 0.382.
The feedback linearization of each node in the nominal

case yields

ξ̇ ′′i,1 = ξ
′′

i,2,

ξ̇ ′′i,2 = vi,

η̇′′i = − sin η′′i + ξ
′′

i,1.

The zero dynamics is η̇ = − sin η, hence it is asymptotically
stable around the origin. The system is also a minimum-phase
system. Moreover, the observable part of the nominal system
is ξ̇ ′ =

(
0 1
0 0

)
ξ +

(
0
1

)
v.

To define the multiplicative uncertainty 1K ,i, assume
existence of measurable real-valued functions δi : [0,∞)→
[−1; 1].

The goal is to find matrix K with the following property: if
the control of the ith node attains the form vi =

∑N
j=1 JijK (1+

0.1δi(t))(ξ ′j − ξ
′
i ) for j denoting the neighboring nodes of

i, then the approximate synchronization of the complex
network is achieved in the presence of any multiplicative
uncertainty given in terms of the function δ.

Using the inverse transformation, one obtains that, in the
nominal case,

ui = K
∑
j

(
(xj,1 − xi,1, sin2 xj,1 + xj,2)

− sin2 xi,1 − xi,2)
)T
−2 sin xi,1 cos xi,1 − (1−cos xi,1).

However, applying this control to the perturbed system yields
a discrepancy: the closed-loop reads

ẋi,1 = (sin2 xi,1 + xi,2),

ẋi,2 = δi(t)(2 sin xi,1 cos xi,1 + 1− cos xi,1)

+ (1+ δi(t))K
∑
j

((xj,1, sin2 xj,1 + xj,2),

ẋi,3 = − sin xi,3 + xi,1.

FIGURE 2. States x1,1, x4,1 and x7,1.

In the transformed coordinates, the observable part obeys the
equation

ξ̇ ′′i,1 = ξ
′′

i,2,

ξ̇ ′′i,2 =
∑
j

K (ξ ′′j − ξ
′′
i )+ δi(t)

∑
j

K (ξ ′′j − ξ
′′
i )

+ δ(t)(2 sin ξ ′′i,1 cos ξ
′′

i,1 + 1− cos ξ ′′i,1).

Note that |2 sin s cos s + 1 − cos s| ≤ 3s. If one chooses
matrices D, E as D = (0, 1)T , E = (0.3, 0) and Fi(t) =
δ(t)(2 sin ξ ′i,1 cos ξ

′

i,1 + 1− cos ξ ′i,1), one has, with the above
bounds on the uncertainty δi, ‖Fi(t)‖ ≤ 1. Similarly, choosing
Dk = (0, 2)T and Ek = 0.2 and Fk,i(t) = δi(t), one has
‖(L ⊗ I )Fk (t)‖ ≤ 1.

The algorithm from Sec. IV yields

K = (−20.9456,−16.7688).

The system was simulated, the control gain was perturbed
- it was multiplied with a random signal with uniform
distribution in the interval [−0.1, 0.1].
Fig. 2 shows the state x1,1 (the blue line), x4,1 (the red

line) and x7,1 (the green line). For the sake of clarity of the
figure, the state of the remaining nodes were not plotted here.
Moreover, Fig. 3 and Fig. 4 illustrates the states x1,2, x4,2 and
x7,2 and x1,3, x4,3 and x7,3. The meaning of the line colors
is as in Fig. 2. Finally, the norm of the synchronization error
(the norm of the disagreement vector) is depicted in Fig. 5. In
this simulations, we can see that this norm decreases in time.
This, in turn, means the behavior of all nodes of the complex
network is identical. To sum up, despite the perturbations in
the control gain, the system is synchronized.

B. EXAMPLE 2 - ROBUST CONTROL OF A NETWORK OF
UNDERACTUATED SYSTEMS
The network of 6 interconnected underactuated systems -
each of them is a pendulum on a cart - is studied here. The
system is thoroughly described in [40]. Hence the description
is kept relatively brief here.

The interconnection of the nodes is shown in Fig. 6.
After application of the exact feedback linearization,

we can see that the ith node is governed by the following
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FIGURE 3. States x1,2, x4,2 and x7,2.

FIGURE 4. States x1,3, x4,3 and x7,3.

FIGURE 5. Norm of the Synchronization Error.

FIGURE 6. Ring topology of the directed complex network consisting of
six nodes. Example 2.

equations

ẍi = ui, (47)

FIGURE 7. States x1, x3 and x5.

FIGURE 8. States θ1, θ3 and θ5.

FIGURE 9. Norm of the synchronization error.

θ̈i =
g
l
sin θi −

1
l
cos θui (48)

where xi is the position of the cart of the ith node, θi is the
angle of the pendulum, l is the length of the pendulum, g is
the gravity acceleration (these parameters are equal for all
nodes), and ui is the control input.
To find the control, define the output as

yi = xi + k1 sin θi (49)
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FIGURE 10. States x1, x3 and x5.

FIGURE 11. States θ1, θ3 and θ5.

FIGURE 12. Norm of the synchronization error.

with k1 = 2 in our example (this parameter being identical
for all nodes). To achieve the minimum-phase property, [40]
shows that the term

ui = k2
θ̇i cos θi

k1
l cos2 θi − 1

(50)

can be added, in our case, k2 = 20 was chosen (again,
this parameter is equal for all nodes). The relation between
the control signal ui that is fed into the system and the

transformed control input vi is

ui =
1

k1
l cos2 θi − 1

×

(
vi + k1 sin θi(

g
l
cos θi − θ̇2i )+ k2θ̇i cos θi

)
. (51)

The signal vi is obtained by

vi = k3(ẋi + k1θ̇i cos θi + k2 sin θi)

+ k4(xi + k1 sin θi + k2

∫ t

0
sin θi(s)ds.

The algorithm presented here gives k3 = 7.27, k4 = 13.07.
This control enables to stabilize the vertical position of the
pendulum and the position of the cart.

In the numerical simulations, a sinusoidal signal acting as
a disturbance was added to the first node.

Figures 7 and 8 show the behavior of the network if all
nodes are equal. In Fig. 7, the blue, red, and green lines
illustrate the position of the cart of the first, third, and fifth
nodes, respectively. Analogous meaning of the line colors is
used in Fig. 8 where the angle of the pendulum θ is shown.
The norm of the synchronization error in the entire network
is depicted in Fig. 9.

Another set of experiments was conducted with a network
consisting of 6 nodes where the first, third, and sixth nodes
were perturbed - their length was reduced to one-half. The
results are shown in Figs. 10-12, showing the position
of the cart, the angle of the pendulum, and the overall
synchronization error of the first, third and fifth node again.
The synchronizing control designed using the robust control
tools is still capable of achieving synchronization. However,
one can see that the error is significantly larger here.

VIII. CONCLUSION
An algorithm for synchronization of a complex network
with nonlinear identical nodes was derived. The proposed
control law is robust against uncertainties in the nodes and
non-fragile - it can tolerate certain changes of the control
gain. The algorithm for the design of this control can be
separated into two parts: the exact feedback linearization
of the nodes with subsequent design of a robust control
for the linearized system. If the nodes are not admitting
the full exact feedback linearization but are minimum-phase
systems, the proposed approach is also applicable to these
systems, yielding synchronization of all states of all nodes.
Two examples illustrate the results.

APPENDIX A
DESCRIPTOR APPROACH FOR UNCERTAIN SYSTEMS
This part investigates properties of the descriptor approach
based control design for uncertain systems. The structure
of the auxiliary system is tailored to fit the structure of the
complex network investigated in the previous part of the
paper. Consider the ν-dimensional system

ẋ ′ = (A′ + B′K + D′F ′(t)E ′ + D̄′F̄ ′(t)Ē ′K ′)x

+
¯̄D′ ¯̄F ′(t) ¯̄E ′w′ + w′′, x ′(0) = x ′0. (52)
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where F ′, F̄ ′, ¯̄F ′ are measurable matrix-valued functions
defined on [0,∞) such that for all t ∈ [0,∞) holds ‖F ′(t)‖ ≤
1, ‖F̄ ′(t)‖ ≤ 1, ‖ ¯̄F ′(t)‖ ≤ 1 and w′,w′′ are disturbances.

In the following lemma, it is demonstrated how negative
definiteness of matrix 6 defined in (27) allows finding
bounds on the solution in the presence of disturbances.
Lemma 4: Consider system (52), let α > 0 be given.

Assume there exist matrices P̄ = P̄T ,P̄ > 0, Q nonsingular
and Y and positive scalars γj, j = 1, . . . , 5 and ε such that
6(A′,B′,D′,E ′, D̄′, Ē ′, ¯̄D′,Y , P̄,Q, γ1, γ2, γ3, γ4, γ5, ε) <

0. Then, if V = x ′T P̄x ′, one has V̇ ≤ −α‖x ′‖2 + γ5(1 +
ε)(w′T ¯̄E ′T ¯̄E ′w′ + w′′Tw′′).

Proof: First, define matrix � as

� =

(
ω11 ω12
∗ ω22

)
with

ω11 = W T (A′ + B′K ′)+ (A′ + B′K ′)TW

+ γ1W TD′D′TW +
1
γ1
E ′TE ′ + γ2W T D̄′D̄′TW

+
1
γ2
K ′T Ē ′T Ē ′K ′ +

ε

γ3
E ′TE ′ +

ε

γ4
K ′T Ē ′T Ē ′K ′

+
1
γ5
W T ¯̄D′ ¯̄D′TW +

1
γ5
W TW + αIn,

ω12 = P−W T
+ ε(A′ + B′K ′)TW ,

ω22 = ε(−W −W T
+ γ3W TD′D′TW + γ4W T D̄′D̄′TW

+
1
γ5
W T ¯̄D′ ¯̄D′TW +

1
γ5
W TW ).

The descriptor approach is used. This yields, using the
Young’s inequality, for positive scalars γi

V̇ = 2ẋ ′TPx ′ + (x ′TW T
+ εẋ ′TW T )

× (−ẋ ′ + (A′ + B′K ′ + D′F ′(t)E ′ + D̄′F̄ ′(t)Ē ′K ′)x

+
¯̄D′ ¯̄F ′(t) ¯̄E ′w′ + w′′) ≤ 2ẋ ′TPx ′

+ (x ′TW T
+ εẋ ′TW T )(−ẋ ′ + (A′ + B′K ′)x ′)

+ x ′T (γ1W TD′D′TW +
1
γ1
E ′TE ′ + γ2W T D̄′D̄′TW

+
1
γ2
K ′T Ē ′T Ē ′K ′ +

ε

γ3
E ′TE ′ +

ε

γ4
K ′T Ē ′T Ē ′K ′

+
1
γ5
W T ¯̄D′ ¯̄D′TW +W TW )x ′ + εẋ ′T (γ3W TD′D′TW

+ γ4W T D̄′D̄′TW +
1
γ5
W T ¯̄D′ ¯̄D′TW +W TW )ẋ

+ γ5(1+ε)(w′T ¯̄E ′T ¯̄E ′w′+w′′Tw′′) ≤ (x ′T , ẋ ′T )�
(
x ′

ẋ ′

)
−α‖x ′‖2 + γ5(1+ ε)(w′T ¯̄E ′T ¯̄E ′w′ + w′′Tw′′).

Since matrix W is assumed to be nonsingular, one can
define matries Q = W−1, Y = K ′Q, P̄ =

QTPQ and 6′ = diag(QT ,QT )�diag(Q,Q). Apparently,
� < 0 if and only if 6′ < 0. Then, applying
Schur complement seven times, one yields matrix 6(A′,
B′,D′,E ′, D̄′, Ē ′, ¯̄D′,Y , P̄,Q, γ1, γ2, γ3, γ4, γ5, ε). Due to
the properties of the Schur complement, 6(A′,B′,D′,

E ′, D̄′, Ē ′, ¯̄D′,Y , P̄,Q, γ1, γ2, γ3, γ4, γ5, ε) < 0 if and only
if 6′ < 0. This completes the proof. �

APPENDIX B
PRACTICAL SYNCHRONIZATION OF A COMPLEX
NETWORK SYSTEM COMPOSED OF IDENTICAL NODES
Consider the disagreement dynamics (26).

To state the final result of the appendix, the following
notation will be helpful.

6i = 6(A,B,D1,E1,D2, Ē,D3, diY , P̄,Q,

γ1, γ2, γ3, γ4, γ5, ε),

61 = 6(I ⊗ A, I ⊗ B, I ⊗ D1, I ⊗ E1, I ⊗ D2, I ⊗ Ē,

I ⊗ D3,1⊗ Y , I ⊗ P̄, I ⊗ Q, γ1, γ2, γ3, γ4, γ5, ε),

6L = 6(I ⊗ A, I ⊗ B, I ⊗ D1, I ⊗ E1, I ⊗ D2, I ⊗ Ē,

I ⊗ D3,L ⊗ Y , I ⊗ P̄, I ⊗ Q, γ1, γ2, γ3, γ4, γ5, ε),

Lemma 5: Let there exist matrices P̄ > 0, Q nonsingular
and Y and positive scalars α, γj, j = 1, . . . , 5 and ε so that
61 < 0 and 6N−1 < 0. Then, with K = YQ−1, there exist
constants q1 > 0, q2 > 0 such that

V̇ (ξ ) ≤ −α‖ξ‖2 + q1‖η‖2 + q2‖ω‖2. (53)

Proof: Obviously, LMIs 61 < 0 and 6N−1 < 0 imply
6k < 0 for all k = 1, . . . ,N − 1. Let also dN = 0. Then,
there exists a permutation matrix5 such that

6D = 5
T diag(61, . . . , 6N−1)5.

Clearly, this implies61 < 0; hence also, thanks to properties
of the Kronecker product,

6L = diag(I ⊗ T , I ⊗ T , I )diag(61, 6N )

× diag(I ⊗ T T , IN ⊗ T T , I ) < 0

If the functional V is defined as V (ξ ) = ξT (I⊗Q−T P̄Q−1)ξ ,
then according to the Lemma 4, V̇ (ξ ) ≤ −α‖ξ‖2 + γ5(1 +
ε)(ηT (I ⊗ ET3 E3)η + ω

Tω). Then, set q1 = γ5(1 + ε)‖(I ⊗
ET3 E3‖ and q2 = γ5(1+ ε). �
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