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a b s t r a c t 

In this paper, we introduce new rotation moment invariants, which are composed of non-separable Appell 

moments. We prove that Appell polynomials behave under rotation as monomials, which enables easy 

construction of the invariants. We show by extensive tests that non-separable moments may outperform 

the separable ones in terms of recognition power and robustness thanks to a better distribution of their 

zero curves over the image space. 
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. Introduction 

Moments and moment invariants have established a popular 

nd widely-used category of “handcrafted” features for object de- 

cription and recognition (see Flusser et al. [1] for a comprehensive 

urvey). From the mathematical point of view, the moments are 

rojections of the image function onto a basis formed by polyno- 

ials. Although all polynomial bases of the same degree are the- 

retically equivalent in the sense that they all generate the same 

ubspace, hundreds of experiments performed in the last 60 years 

ave shown that their performance in object recognition experi- 

ents is different. The differences are caused mostly by the way 

ow individual polynomials are evaluated, by numerical stability of 

hese algorithms, by test objects, and also by the overall setup of 

he experiment. Although the results of some papers are not very 

onvincing or even contradict other reported results, one can trace 

 few trends and conclusions that the majority of the authors have 

greed on. 

A “globally optimal” polynomial basis that would always out- 

erform the others apparently does not exist. Among other rea- 

ons, this is because the recognition power depends not only on 

he chosen features (moments) but also on the data themselves. 

ost authors tend towards using orthogonal polynomials (OP) be- 
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ause they provide on average a better recognition rate than non- 

rthogonal ones thanks to efficient and stable recurrent algorithms 

or their computation and low correlation between individual poly- 

omials. When dealing with 2D images, all authors have used sepa- 

able 2D polynomials that are a straightforward but rather limiting 

xtension of 1D ones. 

However, separable polynomials have certain intrinsic limita- 

ions in their recognition power, as is analyzed later in the paper. 

The reason why non-separable polynomials and moments have 

ot been tested for pattern recognition purposes is probably 

wofold. First, no moment invariants to image rotation constructed 

rom non-separable moments have been published yet. Since rota- 

ion invariance (along with translation and scale invariance) is re- 

uired in almost all practical situations, this has been in our opin- 

on the main obstacle. Second, only a few non-separable polyno- 

ials can be efficiently calculated in a fast and stable way. 

To expose our hypothesis why non-separable moments could 

utperform the separable ones, let us recall the main factors that 

etermine the ability of polynomials to represent an image func- 

ion. The number of zeros should be as high as possible and the 

eros should be evenly distributed over the image plane (the zeros 

hould not be concentrated in any subarea of the image and the 

egion size between the zeros should be small and constant). The 

ange of values of the polynomial between any two zeros should 

e approximately the same, which leads to locally constant rep- 

esentation ability no image subarea is preferred/suppressed). Al- 

eady in the 1980s, Mostafa and Psaltis [2] studied these properties 

f separable complex monomials and showed how they affect the 
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epresentation ability. However, nobody has tested them for non- 

eparable polynomials. Yet another aspect that may influence the 

ecognition ability is the following. Zero curves of separable poly- 

omials always have to follow the raster, either Cartesian or po- 

ar. Hence, they represent better the image structures in the raster 

irections than in the “diagonal” directions. Our hypothesis is that 

roperly chosen non-separable polynomials may exhibit zero-curve 

atterns, which are in the above-mentioned sense better for image 

epresentation than those of any separable polynomials. 

In this paper, we introduce for the first time rotation invari- 

nts composed of non-separable bi-orthogonal moments. That is 

he main theoretical result of the paper. To reduce the computing 

omplexity and maintain numerical stability, we present recursive 

ormulae for their efficient evaluation. We show by extensive tests 

n noise-free and noisy images that non-separable moments may 

utperform the separable ones in recognition power and robust- 

ess. 

. Separable and non-separable polynomials 

Bivariate polynomial πpq (x, y ) of degree p + q is called separable 

f it can be factorized as πpq (x, y ) = βp (x ) γq (y ) , where βp (x ) and

q (y ) are univariate polynomials of degree p and q , respectively. 

ny polynomial πpq (x, y ) , regardless of its (non-)separability, gen- 

rates moment M pq (x, y ) of image f (x, y ) 

 pq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

πpq (x, y ) f (x, y ) d x d y (1) 

provided that the integral converges) that can be understood as 

 projection of f (x, y ) onto πpq (x, y ) . 

All 2D polynomials, that have been used in pattern recognition 

o generate moments as object features, are separable. The sepa- 

ability is either in the Cartesian domain, such as pure monomi- 

ls [3] , Legendre moments [4–6] , Chebyshev moments [7–9] , Her- 

ite and Gaussian–Hermite moments [10–13] , Krawtchouk mo- 

ents [14] , and Gegenbauer moments [15] , or in polar coordinates 

s in the cases of Zernike moments [16–18] , pseudo-Zernike mo- 

ents [19] , Fourier–Mellin moments [20,21] , Jacobi–Fourier mo- 

ents [22] , and Chebyshev–Fourier moments [23] . 

On the one hand, separable polynomials are attractive to work 

ith because they are easy to express and calculate (many sophis- 

icated computing algorithms have been published recently, see for 

nstance [24–26] ). On the other hand, a common drawback is their 

onstrained distribution of zeros. The zeros always fill a (gener- 

lly irregular) rectangular grid. When these polynomials are used 

s basis functions, they provide better resolution in the grid direc- 

ion, which means in the direction of the coordinates. The resolu- 

ion in close-to-diagonal directions is worse. Although this effect is 

ot significant if a sufficiently high degree is used, it still may lead 

o the drop of discriminability if characteristic object structures ex- 

ibit a diagonal-like orientation. Recently, some authors have tried 

o compensate for this effect by using polar harmonic or exponen- 

ial basis functions instead of polynomials [27] and by introducing 

ractional-order moments [28–30] but all these have led to a slight 

mprovement only since the limitation imposed by the separabil- 

ty of the basis has not been removed. Non-separable polynomials, 

 distribution of zeros of which may be almost arbitrary, do not 

uffer from this drawback. 

. Quasi-monomials and rotation invariants 

Rotation (x, y ) �→ (x ′ , y ′ ) by angle θ is given as 

 

′ = x cos θ − y sin θ, 

 

′ = x sin θ + y cos θ . (2) 
2 
he monomials x m y n are transformed under rotation as 

x ′ ) m (y ′ ) n = 

m ∑ 

i =0 

n ∑ 

j=0 

(−1) i 
(

m 

i 

)(
n 

j 

)
( cos θ ) m −i + j ( sin θ ) n − j+ i x m + n −i − j y i + j . 

(3) 

rouping the variables of the same power together, Eq. (3) can be 

ewritten into the form 

x ′ ) m (y ′ ) n = 

m + n ∑ 

r=0 

k (r, m, n, θ ) x m + n −r y r , (4)

here k (r, m, n, θ ) is a coefficient given as a linear combination of

ertain powers of sin θ and cos θ (see Yang et al. [12] for explicit 

orms of k (r, m, n, θ ) ). 

Flusser [31] proposed a general theory that allows constructing 

 complete and independent set of rotation invariants of arbitrary 

rder (see also Bedratyuk [32] for a group-theoretical viewpoint 

f the same problem). It was originally developed for monomials 

nd corresponding geometric moments but it can be applied to any 

olynomials and their moments which are transformed under ro- 

ation in the same way as the monomials. Such polynomials are 

alled quasi-monomials and play an important role in the theory 

nd practice of rotation invariants. 

efinition. Polynomial family { B m,n (x, y ) } is called quasi- 

onomial (QM) family if it is transformed under rotation (2) as 

 m,n (x ′ , y ′ ) = 

m + n ∑ 

r=0 

k (r, m, n, θ ) B m + n −r,r (x, y ) , (5)

here the coefficients k (r, m, n, θ ) are the same as those in (4) . 

This idea was used by Yang et al., who proved that Hermite 

olynomials are quasi-monomials [12,13] and derived formulas for 

ermite rotation invariants of arbitrary orders [33] . Later on, the 

ame authors proved that Hermite polynomials (up to scaling and 

odulation) are the only existing quasi-monomials among all sep- 

rable orthogonal polynomials [34] . 

In the next section, we prove the existence of non-separable 

uasi-monomials, which allows us to adopt the theory from Flusser 

31] and to use these polynomials as a basis for designing rotation 

nvariants. 

. Appell bi-orthogonal polynomials 

First, we formulate a necessary and sufficient condition for 

 polynomial to be a quasi-monomial. Then we introduce Appell 

olynomials , prove they are quasi-monomials, and present recur- 

ive relations for their computation. 

The following theorem presents a simple criterion for the quasi- 

onomiality of a polynomial family in terms of its generating 

unction. 

heorem 1. The polynomial family { B m,n (x, y ) } defined by generating 

unction 

 (x, y, u, v ) = 

∞ ∑ 

m,n =0 

B m,n (x, y ) 
u 

m 

m ! 

v n 

n ! 

s a quasi-monomial if and only if G is a function of ux + v y, x 2 + y 2 

nd u 2 + v 2 only. 

See Appendix A for the proof. 

The QM property might be lost if the polynomials have been 

caled by multiplicative constants, which is often applied to keep 

he range of values reasonably bounded. The following theorem ex- 

lores what kind of scaling preserves the QM property. 
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heorem 2. Let { B m,n (x, y ) } be a quasi-monomial family. The poly-

omial family 
{˜ B m,n (x, y ) 

}
, where 

 

 m,n (x, y ) = αm,n B m,n (x, y ) , 

s a quasi-monomial if and only if each coefficient αm,n is a function 

f m + n only. 

See Appendix B for the proof. 

Let us consider two polynomial families { V m,n (x, y ) } and 

 U m,n (x, y ) } defined by generating functions 

1 

1 − 2 ( ux + vy ) + u 2 + v 2 
= 

∞ ∑ 

m,n =0 

V m,n ( x, y ) 
u m 

m ! 

v n 

n ! 
, 

1 [
( 1 − ( ux + vy ) ) 

2 −
(
u 2 + v 2 

)(
x 2 + y 2 − 1 

)] 1 
2 

= 

∞ ∑ 

m,n =0 

U m,n ( x, y ) 
u m 

m ! 

v n 

n ! 
. 

hese polynomials are known as Appell polynomials (AP). 1 They are 

on-separable both in Cartesian as well as polar domains. As fol- 

ows directly from Theorem 1 , AP’s are quasi-monomials. 

Appell polynomials can be expressed explicitly as 

 m,n (x, y ) = m ! n ! 2 

m + n 
� m 2 � ∑ 

i =0 

� n 2 � ∑ 

j=0 

(−1) i + j 

(m + n − i − j)! 

i ! j!(m − 2 i )!(n − 2 j)!2 

2(i + j) x 
m −2 i y n −2 j , 

U m,n (x, y ) = 

m ! n ! 

2 

m + n 

m + � n 2 � ∑ 

k =0 

k ∑ 

j= 	 m 2 
 
(−1) j−k 

(
m + n 

k 

)
(

k 

j 

)(
2 j 

m 

)(
2 m + 2 n − 2 k 

n 

)
· x 2 j−m y 2(m −k )+ n , 

here the brackets � a � and 	 a 
 stand for integer “floor” and “ceil- 

ng” of a , respectively. 

Appell polynomials U and V form a bi-orthogonal system on 

he unit disc B = { (x, y ) | x 2 + y 2 ≤ 1 } , where the relation of bi-

rthogonality is 
 ∫ 

B 

V m,n (x, y ) U p,q (x, y ) d x d y = 

π(m + n )! m ! n ! 

m + n + 1 

δmp δnq (6)

see Didon [35] for the proof). 

When calculating the Appell polynomials numerically using the 

xplicit formulae, we may face precision loss due to floating-point 

verflow and/or underflow. This phenomenon is well known from 

any 1D orthogonal polynomials, where it is overcome thanks to 

hree-term recurrent relations (we refer to Favard’s Theorem [36] ). 

lthough Favard’s Theorem generally does not hold for 2D bi- 

rthogonal polynomials, in the case of Appell polynomials the fol- 

owing recurrences can be used for their efficient and stable com- 

utation. 

heorem 3. Polynomials V m,n (x, y ) satisfy the four-term recurrence 

elations 

(1 + m + n ) xV m,n (x, y ) = V m +1 ,n (x, y ) − n (n − 1) V m +1 ,n −2 (x, y ) 

+ m (m + 2 n + 1) V m −1 ,n (x, y ) , (7) 

(1 + m + n ) yV m,n (x, y ) = V m,n +1 (x, y ) − m (m − 1) V m −2 ,n +1 (x, y ) 

+ n (n + 2 m + 1) V m,n −1 (x, y ) , (8) 
1 Named after P.E. Appell, a French mathematician (1855–1930). The name “Ap- 

ell polynomials” has been commonly used for similar and more general polyno- 

ial families. The ones we use in this paper are sometimes referred to also as Di- 

on or Didon–Hermite polynomials. 

r

d

�

3 
ith the initial condition V 0 , 0 (x, y ) = 1 and adopting the convention

hat if m or n is/are negative, then V m,n is considered zero. 

See Appendix C for the proof. 

heorem 4. Polynomials U m,n (x, y ) satisfy the five-term recurrence 

elations 

 m +1 ,n (x, y ) = (n + 2 m + 1) xU m,n (x, y ) + mnxyU m,n −1 (x, y ) 

− mn (m + n − 1) yU m −1 ,n −1 (x, y ) 

+ m 

[(
y 2 − 1 

)
m + n 

(
2 y 2 − 1 

)]
U m −1 ,n (x, y ) , (9) 

 m,n +1 (x, y ) = (m + 2 n + 1) yU m,n (x, y ) + mnxyU m −1 ,n (x, y ) 

− mn (m + n − 1) xU m −1 ,n −1 (x, y ) 

+ n 

[(
x 2 − 1 

)
n + m 

(
2 x 2 − 1 

)]
U m,n −1 (x, y ) , (10) 

ith the initial condition U 0 , 0 (x, y ) = 1 and adopting the convention

hat if m or n is/are negative, then U m,n is considered zero. 

See Appendix D for the proof. 

The graphs of Appell polynomials U and V up to the degree 10 

re shown in Figs. 1 and 2 . One may observe two important prop-

rties. Individual polynomials have distinct “preferred directions”

ontrolled by the indices m and n . This differentiates the AP’s 

rom separable polynomials that always prefer the raster direction. 

hen comparing U and V , we can see that the V -polynomials ex- 

ibit high values and big fluctuations near the boundary of the unit 

isc and are relatively flat inside it, so there is a big information 

uppression in the central area and a preference of the boundary 

rea. On the contrary, the U-polynomials do not exhibit such big 

ifferences and do not systematically emphasize any subarea. This 

s why we expect U to be more discriminative and also more ro- 

ust to noise than V . 

Finally, we investigated the zero-curve patterns of U and V and 

ompared them with two well-established kinds of separable poly- 

omials – Gaussian–Hermite (GH) [13] and Zernike (Z) [16] . In each 

ase, we calculated the first 30 polynomials and plotted their zero 

urves, see Fig. 3 . It is apparent that the zero curves of separa-

le GH and Z polynomials always follow the raster (GH in the 

artesian domain and Z in the polar domain). Zero curves of U

nd V may take arbitrary directions, which creates a kind of “ran- 

om” patterns. The zeros of U and V partition the image domain 

ore uniformly. To evaluate the distribution quantitatively, we cal- 

ulated the size of each area and computed the mean and standard 

eviation. The results in the form of (mean; std) are the follow- 

ng: U ∼ (0 . 01 ; 0 . 05) , V ∼ (0 . 02 ; 0 . 06) , Z ∼ (0 . 27 ; 0 . 64) , and GH

(0 . 33 ; 0 . 96) (the numbers are in % of the unit circle in case of

, V and Z and in % of the unit square in case of the GH poly-

omials). Both the mean and the standard deviation are minimal 

or the U polynomials (and more than ten times lower than those 

f GH and Z ), which clearly supports our hypothesis formulated in 

he introduction. 

. Appell rotation invariants 

Thanks to the fact that the AP’s are quasi-monomials, we are 

eady to adapt the theory of rotation invariants [31] and construct 

nvariants from the Appell moments. This is very easy and elegant 

we just take the formula for invariants from geometric moments 

i.e. for moments of monomials x p y q ) and replace the geometric 

oments with the corresponding Appell moments A pq (either with 

espect to polynomials U or V , both versions work). Doing so, we 

esign the Appell rotation invariants 

pq = 

( 

q 0 ∑ 

k =0 

p 0 ∑ 

j=0 

(
q 0 
k 

)(
p 0 
j 

)
(−1) p 0 − j i p 0 + q 0 −k − j A k + j,p 0 + q 0 −k − j 

) p−q 
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Fig. 1. Appell polynomials U up to the 10th degree. 

Fig. 2. Appell polynomials V up to the 10th degree. 
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·
p ∑ 

k =0 

q ∑ 

j=0 

(
p 

k 

)(
q 

j 

)
(−1) q − j i p+ q −k − j A k + j,p+ q −k − j (11) 

here p ≥ q and p 0 , q 0 are fixed user-defined indices (preferably 

ery low ones) such that p 0 − q 0 = 1 (see Flusser [31] for a de-

ailed derivation of this formula for geometric moments and [1] for 

 deeper insight and the links to other approaches). As follows 

rom Flusser [31] , the set of invariants { �pq } is independent and 

omplete because the Appell polynomials form a basis of the im- 

ge space. 

Appell invariants (11) are automatically invariant also to trans- 

ation and scaling. Unlike most of the other moments, where a spe- 

ial normalization must be introduced, this is achieved as a by- 

roduct of the algorithm how the Appell moments are calculated. 

ince the area of bi-orthogonality is the unit disc B , we map the 

mage onto B such that its centroid coincides with (0 , 0) and B cir-

umscribes the image. This mapping is scale and shift-invariant. 

To keep the dynamic range of the AP’s in a reasonable inter- 

al, it is desirable to normalize their values. However, such a nor- 

alization must preserve the QM property of the polynomials (see 

heorem 2 ). We recommend using the following normalization, 

hich has been found heuristically and evaluated as the best one 
4 
 

 m,n (x, y ) = 

m + n + 1 √ 

π [( m + n )!] 3 / 2 	
(

m + n 
2 

+ 1 

)V m,n ( x, y ) , (12) 

 

 m,n (x, y ) = 

1 √ 

π [(m + n )!] 3 / 2 	
(

m + n 
2 

+ 1 

)U m,n ( x, y ) . (13) 

he recurrent relations must be modified accordingly, see 

ppendix E . 

. Experiments 

We have carried out two kinds of experiments, both aimed at 

esting the recognition power of the Appell invariants in compar- 

son with traditional separable invariants from Gaussian–Hermite 

oments [33] , Zernike moments [17] , and Chebyshev–Fourier (Ch- 

) moments [37] . All computations were implemented using effi- 

ient recurrent formulae to make the comparison fair. Particularly, 

ppell moments were calculated using the recurrences given in 

ppendix E , GH moments by the method from [33] , Z moments by 

intner’s algorithm [38] , and Ch-F moments by the method taken 

rom Li et al. [39] . 
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Fig. 3. Zero curves of Appell polynomials U (top left), V (top right), Gaussian–Hermite polynomials (bottom left), and Zernike polynomials (bottom right). 

3

v

r

d

t

a

m

6

t

1  

a  

n

f

m

m

p

u

t  

i

w

t

s

a

t

s

u

n

t

3

o

e

t

a

i

o

f

i

m

i

w

o  

a

t

t

r

s

The first experiment is performed on a benchmark dataset of 

D objects rotated artificially to keep the rotation model exactly 

alid and generate enough samples to get statistically significant 

esults. The second experiment uses real photographs of an in- 

oor scene, where the image rotation is introduced by the rota- 

ion of the camera. All codes used in this section are publicly avail- 

ble in a user-friendly form via Gitlab at https://gitlab.com/kostkjit/ 

oment-invariants . 

.1. Recognition of ALOI images 

This experiment was performed on publicly available Ams- 

erdam Library of Object Images (ALOI) [40] . We downloaded 

0 0 0 images of distinct objects (90 samples are shown in Fig. 4 )

nd rotated each of them 35 times with the step 10 ◦. We used the

earest neighbor interpolation to resample the images (see Fig. 5 

or the rotated versions of the test object No. 155). The objects are 

asked, so the background is zero and does not influence the mo- 

ent values. 

To calculate the invariants of Zernike, Chebyshev–Fourier, Ap- 

ell V and Appell U moments, the image was mapped onto the 

nit circle. For Gaussian–Hermite moments, we used the modula- 

ion parameter σ = 0 . 3 (see Yang et al. [33] for details). In all cases,

nvariants up to the fourth and fifth orders were applied. 

To eliminate random errors and to get a higher significance, 

e applied a multiple cross-validation. In the first run, we used 

he original images as the templates and classified all rotated ver- 
5 
ions. In the second run, the images rotated by 10 ◦ were used 

s the templates, and all others were classified. The classifica- 

ion was performed by a simple minimum-distance rule in the 

pace of the invariants. We repeated this process for all rotations 

p to 80 ◦ (incorporating rotations beyond the first quadrant does 

ot make sense because the results were identical). In this way, 

he final success rate of each invariant type was calculated from 

5 × 10 0 0 × 9 = 315 , 0 0 0 trials. 

The results are summarized in Fig. 6 . As one can expect, the 

verall success rate of all invariants is relatively high (the worst 

rror rate is about 0.2%) because the only source of misclassifica- 

ions is numerical errors of the polynomials and sensitivity to im- 

ge resampling. Nevertheless, we can identify certain differences 

n performance. Appell U invariants work without any error, they 

utperform all the others. Appell V ’s are the second-best to the 

ourth order. When increasing the order to five, Gaussian–Hermite 

nvariants become the second-best ones. 

The differences between individual polynomial families become 

ore apparent when we are supposed to classify noisy images. To 

llustrate that, we repeated the entire experiment but this time 

e corrupted each image with an additive white Gaussian noise 

f SNR = 15 dB. As can be seen from Fig. 7 , the Appell U moments

re again the best performing ones. Noise robustness is a property 

hat is difficult to analyze rigorously, but generally, it depends on 

he shape of the polynomials. Smooth polynomials should be more 

obust than those with high fluctuations, which corresponds to the 

hape of Appell U polynomials (see Fig. 1 ). The superior robustness 

https://gitlab.com/kostkjit/moment-invariants
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Fig. 4. Sample images of the ALOI dataset used in our experiment. 

Fig. 5. 36 rotated instances of the test object No. 155 (badminton shuttlecock). 

6 
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Fig. 6. ALOI experiment: The error rate in % achieved in 9 × 35 0 0 0 trials. Rotation invariants up to the 4th order (left) and 5th order (right) were used. Zernike (Z), 

Gaussian–Hermite (GH), Chebyshev–Fourier (Ch-F), Appell V (V) and Appell U (U) moments were applied, respectively. 

Fig. 7. The same ALOI experiment as in Fig. 6 but all images were corrupted by noise of SNR = 15 dB. 
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6

f the Appell U appeared consistently over several runs and vari- 

us noise instances. 

To provide the readers with deeper insight, we measured the 

oise robustness also in a different way. For 35,0 0 0 noisy im- 

ges, we evaluated the mean relative error (MRE) of Zernike and 

ppell U moments, which characterizes the moment vulnerabil- 

ty. While MRE of Zernike moments was about 1 . 6% , MRE of Ap-

ell U moments was approximately 0 . 7% . We tested the same on 

wo other noise levels (SNR = 10 dB and SNR = 20 dB) and discov-

red that the MRE of Zernike moments is always more than double 

he MRE of the Appell U . 

We can conclude this series of experiments as follows. The Ap- 

ell U invariants have exhibited the best performance among all 

oments tested, both on noise-free and noisy data. The supe- 

ior performance in the noisy case has been achieved thanks to 

he high robustness of the Appell moments and also due to the 

act, that Appell U invariants separate the classes in a noise-free 

ase better than the others. Hence, if the moment values are cor- 

upted because of the noise, the impact on the recognition results 

s smaller than in the case of the other moments. 

.2. Template matching 

Unlike the previous experiment, this one was performed on 

eal photographs of an indoor scene and physical camera rotations 

long its optical axis to test the behavior of the invariants under 

eal-life conditions. We tried to avoid any other image distortion 

uch as perspective projection, scaling and camera shake blur. 2 

We captured a sequence of nine images of a bookcase with 

 camera rotation ranging approximately from −90 ◦ to +90 ◦. We 

onverted RGB to IHS and worked with the intensity only. The 
rame with “natural” camera orientation served as a reference. 

2 From the mathematical point of view, the invariants are normalized to scaling 

hanks to the mapping, but in practice, if scaling is unknown, we do not know what 

s the correct template size. 

A

p

n

e

7 
n the reference frame, we randomly selected 61 non-overlapping 

emplates with a radius 127 pixels, see Fig. 8 , and extracted the 

ame set in all frames. Then we matched the templates from the 

otated frames with the reference templates. We also adopted the 

cenario with cross-validation. We run the experiment nine times 

uch that each of our nine images served just once as the refer- 

nce frame. Likewise the previous experiment, we compared the 

atching performance of five moment sets - Zernike, Gaussian–

ermite, Chebyshev–Fourier, Appell V , and Appell U , respectively. 

e repeated the entire experiment four times, changing the max- 

mum moment order from 7 to 10. 

The results are summarized in Fig. 9 , where the number of 

ismatched templates (in %) is shown for each case. Note that 

n each setting (i.e. for a single method and the given moment 

rder) we matched 61 × 8 × 9 = 4392 templates. We can see the 

est results were achieved by the Gaussian–Hermite and Appell U

oments (both are comparable, yielding about 1% error rate). The 

ther three moment sets performed worse. This is consistent with 

he previous experiment on ALOI images. 

In the case of real photographs, the main source of errors 

s JPEG compression artifacts, which obviously depend on the 

amera-to-scene orientation. This is also the reason why the er- 

or rate is here almost independent of the maximum moment or- 

er (i.e., on the number of the invariants used). Higher-order mo- 

ents, which theoretically should improve the matching rate since 

hey capture fine details of the templates, are more sensitive to 

odel violations (i.e. to JPEG artifacts and noise) and actually do 

ot contribute to the performance of the invariants. 

.3. Computing complexity 

In this section, we investigate the computing complexity of the 

ppell moments. There is a common concern that non-separable 

olynomials are computationally expensive. We show that this is 

ot generally true and that the Appell moments can be computed 

fficiently. 
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Fig. 8. The reference frame of the sequence with the selected templates. The image size is 3968 × 2976 , the template radius is 127 pixels. 

Fig. 9. The error rate (in % of 4392 trials) of various methods for maximum mo- 

ment orders from 7 to 10. The errors of Appell V range from 16% to 26% and do not 

fit into the graph. 
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Theoretical complexity is not very informative. If we compute 

ampled polynomials on m × n array, we need O(mn (p + q )) oper-

tions for separable polynomials and O(mnpq ) operations for non- 

eparable polynomials. As soon as the polynomials have been pre- 

alculated, the complexity of a single moment is always O(mn ) 

egardless of the (non)separability. So, seemingly pq grows much 

aster than p + q , but the constants control the actual speed. 

Since the experiments presented in the previous sections use 

nly low-order moments, the differences in the runtimes are in- 

ignificant and cannot be measured reliably. So, we performed an- 

ther experiment devoted solely to the time measurement. We 

ook Lena image 256 × 256 and calculated all its moments up to 

he order 100. The total runtime for individual moment types is 

.99 s for Appell U , 2.89 s for Appell V , 8.29 s for Zernike, 8.87 s
8 
or Chebyshev-Fourier, and 0.10 s for Gaussian–Hermite moments, 

espectively. The times include all pre-calculations of the polyno- 

ials. The experiment was run in Matlab on a HP Pavillion Laptop 

ith Intel Core i7 2.60 GHz. 

A detailed analysis showed that the bottleneck of Z and Ch-F is 

he evaluation of the angular exponential function. GH moments 

re the fastest because they are separable and do not contain any 

xponential terms. However, Appell moments are slower by one 

rder only and faster than Z and Ch-F moments. 

If we applied the moments repeatedly to many images/patches, 

e would pre-calculate the polynomials off-line and store their 

alues. Then the moment computation would consist of element- 

ise matrix multiplication only, and its complexity would not de- 

end on the polynomial basis. 

. Conclusion 

We introduced new rotation moment invariants, which are 

omposed of non-separable Appell moments. To our best knowl- 

dge, this is the first application of 2D non-separable polynomi- 

ls in object recognition. The design of the invariants was pos- 

ible thanks to our proof that the Appell polynomials are quasi- 

onomials. This is the major theoretical result of the paper. Fur- 

hermore, we proposed recursive formulae for their fast and stable 

omputation. 

To show the performance of the new Appell invariants in prac- 

ice, we performed a huge number of recognition tests. The main 

onclusion is the following. The Appell invariants perform slightly 

etter than Gaussian–Hermite invariants and significantly better 

han Zernike and Chebyshev–Fourier ones on both noise-free as 

ell as noisy images. This is mainly due to more even distribution 

f zeros of the Appell polynomials over the image space, which 

eads to a better representation ability of the Appell moments, es- 

ecially if only low-order features are used. 
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ppendix A. Proof of Theorem 1 

We prove the forward implication first. We start with formulat- 

ng an auxiliary lemma, that we later use to prove the statement 

f Theorem 1 . 

emma. Let { B m,n (x, y ) } be a quasi-monomial family. Then the fol-

owing identity holds 

 

∂B m,n (x, y ) 

∂y 
− y 

∂B m,n (x, y ) 

∂x 
= nB m +1 ,n −1 (x, y ) − mB m −1 ,n +1 (x, y ) . 

(A.1) 

roof. The identity follows immediately from differentiation of the 

elation 

 m,n (x ′ , y ′ ) ≡ B m,n (x cos θ − y sin θ, x sin θ + y cos θ ) = 

= 

m ∑ 

i =0 

n ∑ 

j=0 

(−1) i 
(

m 

i 

)(
n 

j 

)
( cos θ ) n −i + j ( sin θ ) n − j+ i B m + n −i − j,i + j (x, y ) 

ith respect to θ at θ = 0 . After a simplification, we ob- 

ain (A.1) . �

We use the Lemma to investigate the derivatives of the gener- 

ting function G 

 

∂G 

∂y 
− y 

∂G 

∂x 
= 

∞ ∑ 

m,n =0 

(
x 
∂B m,n (x, y ) 

∂y 
− y 

∂B m,n (x, y ) 

∂x 

)
u 

m 

m ! 

v n 

n ! 
= 

= 

∞ ∑ 

m,n =0 

(nB m +1 ,n −1 (x, y ) − mB m −1 ,n +1 (x, y )) 
u 

m 

m ! 

v n 

n ! 
= 

= v 
∞ ∑ 

m,n =0 

B m +1 ,n −1 (x, y ) 
u 

m 

m ! 

v n −1 

(n − 1)! 
−

u 

∞ ∑ 

m,n =0 

B m −1 ,n +1 (x, y ) 
u 

m −1 

(m − 1)! 

v n 

n ! 
= v 

∂G 

∂u 

− u 

∂G 

∂v 
. 

hus, G satisfies the partial differential equation 

 

∂G 

∂y 
− y 

∂G 

∂x 
= v 

∂G 

∂u 

− u 

∂G 

∂v 
. (A.2) 

ifferential equation that contains a function of four variables 

annot have more than three functionally independent solutions. 

owever, x 2 + y 2 , u 2 + v 2 , and xu + y v are obviously its solutions

nd are independent. Hence, G must be a function of x 2 + y 2 , u 2 +
 

2 , and xu + y v only. 

Now let us prove the reverse implication. Let 

 (x, y, u, v ) = G (xu + y v , x 2 + y 2 , u 

2 + v 2 ) . 

e have to prove that { B m,n (x, y ) } is a quasi-monomial family. 

Under the above assumption, G satisfies the identity G (x ′ , y ′ , u ,
 ) = G (x , y , u , v ) , where (x ′ , y ′ ) are rotated coordinates by θ (see

q. (2) ) and 

 = u cos θ + v sin θ , 

v = v cos θ − u sin θ . 

o see that, it is sufficient to realize that x ′ u + y ′ v = x u + y v , x ′ 2 +
 

′ 2 = x 2 + y 2 and u 2 + v 2 = u 2 + v 2 . 
9 
Now we have, on the one hand, 

 (x ′ , y ′ , u, v ) = 

∞ ∑ 

m,n =0 

B m,n (x ′ , y ′ ) u 

m 

m ! 

v n 

n ! 
, 

nd on the other hand we get 

 (x, y, u , v ) = 

∞ ∑ 

m,n =0 

B m,n (x, y ) 
u 

m 

m ! 

v n 

n ! 
. 

omparing the right-hand sides and substituting for u and v , we 

btain 

∞ ∑ 

,n =0 

B m,n (x ′ , y ′ ) u 

m 

m ! 

v n 

n ! 
= 

∞ ∑ 

m,n =0 

B m,n (x, y ) 
(u cos θ + v sin θ ) m 

m ! 
·

· (v cos θ − u sin θ ) n 

n ! 
. 

y equating the coefficients of the same powers of u and v we get 

 m,n (x ′ , y ′ ) = 

m ∑ 

i =0 

n ∑ 

j=0 

(−1) i 
(

m 

i 

)(
n 

j 

)
( cos θ ) m −i + j ( sin θ ) n − j+ i ·

· B m + n −i − j,i + j (x, y ) , 

hich exactly matches Eq. (3) . Therefore, { B m,n (x, y ) } is a quasi-

onomial family. 

ppendix B. Proof of Theorem 2 

If ˜ B m,n (x, y ) = αm,n B m,n (x, y ) is a quasi-monomial then it satis-

es the identity (A.1) 

 

∂ ̃  B m,n 

∂y 
− y 

∂ ̃  B m,n 

∂x 
= n ̃

 B m +1 ,n −1 − m ̃

 B m −1 ,n +1 

hich can be rewritten into the form 

 

∂B m,n 

∂y 
− y 

∂B m,n 

∂x 
= n 

αm +1 ,n −1 

αm,n 
B m +1 ,n −1 − m 

αm −1 ,n +1 

αm,n 
B m −1 ,n +1 

we dropped the argument (x, y ) for simplicity). We obtain a sys- 

em of recurrent equations 

m +1 ,n −1 = αm,n , 

m −1 ,n +1 = αm,n . 

t is easily seen that a solution of the system is αm,n = φ(m + n )

here φ is an arbitrary function. 

Now let us prove the reverse implication. If αm,n = φ(m + n ) for

ome φ, then obviously 

m +1 ,n −1 = αm,n , 

m −1 ,n +1 = αm,n 

nd we get the following sequence of equalities 

 

∂ ̃  B m,n 

∂y 
− y 

∂ ̃  B m,n 

∂x 
= αm,n 

(
x 
∂B m,n 

∂y 
− y 

∂B m,n 

∂x 

)
= αm,n ( nB m +1 ,n −1 − mB m −1 ,n +1 ) 

= n ̃

 B m +1 ,n −1 − m ̃

 B m −1 ,n +1 . 

ence, we have just proved that 
{˜ B m,n 

}
satisfies the identity (A.1) . 

he generating function 

˜ 

 (x, y, u, v ) = 

∞ ∑ 

m,n =0 ̃

 B m,n (x, y ) 
u 

m 

m ! 

v n 

n ! 

ulfills the differential Eq. (A.2) . According to Theorem 1 , 
{˜ B m,n 

}
ust be a quasi-monomial family. 

https://doi.org/10.13039/501100007684
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ppendix C. Proof of Theorem 3 

The generating function 

 (x, y, u, v ) = 

1 

1 − 2(xu + y v ) + u 

2 + v 2 

atisfies the following first-order differential equations 

x − u ) 
∂G 

∂x 
− u 

∂G 

∂u 

= 0 , (y − v ) 
∂G 

∂y 
− v 

∂G 

∂v 
= 0 , 

v − y ) 
∂G 

∂x 
+ u 

∂G 

∂v 
= 0 , v 

∂G 

∂x 
− x 

∂G 

∂y 
+ v 

∂G 

∂u 

= 0 . 

ach of these differential equations implies certain differential 

ecurrence relation for V m,n (x, y ) . For example, the first equa- 

ion yields 

∞ ∑ 

,n =0 

(
(x − u ) 

∂V m,n (x, y ) 

∂x 

)
u 

m 

m ! 

v n 

n ! 
−

∞ ∑ 

m,n =0 

mV m,n (x, y ) 
u 

m 

m ! 

v n 

n ! 
= 0 , 

nd 

∞ ∑ 

,n =0 

(
x 
∂V m,n (x, y ) 

∂x 
− ∂V m −1 ,n (x, y ) 

∂x 
− mV m,n (x, y ) 

)
u 

m 

m ! 

v n 

n ! 
= 0 , 

hich leads to the identity 

 

∂V m,n (x, y ) 

∂x 
= mV m,n (x, y ) + m 

∂V m −1 ,n (x, y ) 

∂x 
. (C.1) 

n a similar way, we find the following three differential recurrence 

quations 

 

∂V m,n (x, y ) 

∂x 
= n 

∂V m,n −1 (x, y ) 

∂x 
+ mV m −1 ,n +1 (x, y ) , (C.2) 

 

∂V m,n (x, y ) 

∂y 
= m 

∂V m −1 ,n (x, y ) 

∂y 
+ nV m +1 ,n −1 (x, y ) , (C.3) 

 

∂V m,n (x, y ) 

∂y 
= nV m,n (x, y ) + n 

∂V m,n −1 (x, y ) 

∂y 
. (C.4) 

et us derive two more auxiliary recurrences. We have 

 = 

[
1 − 2(xu + y v ) + u 

2 + v 2 
] ∞ ∑ 

m,n =0 

V m,n (x, y ) 
u 

m 

m ! 

v n 

n ! 
= 

= 

∞ ∑ 

m,n =0 

[
1 − 2(xu + y v ) + u 

2 + v 2 
]
V m,n (x, y ) 

u 

m 

m ! 

v n 

n ! 
. 

ith the same considerations as for (C.1) and after the index shift- 

ng m �→ m + 1 we get 

2(1 + m ) xV m,n (x, y ) + 2 nyV m +1 ,n −1 (x, y ) = V m +1 ,n (x, y ) 

+ m (m + 1) V m −1 ,n (x, y ) + n (n − 1) V m +1 ,n −2 (x, y ) . (C.5) 

e derive another auxiliary recurrence 

V m,n (x, y ) − yV m +1 ,n −1 (x, y ) = mV m −1 ,n (x, y ) − (n − 1) V m +1 ,n −2 (x, y ) . 

(C.6) 

hen shifting the indices m �→ m + 1 and n �→ n − 1 in (C.2) and

ubtracting the result from (C.1) , we obtain 

V m,n (x, y ) + x 
∂V m,n (x, y ) 

∂x 
− y 

∂V m +1 ,n −1 (x, y ) 

∂x 

= m 

∂V m −1 ,n (x, y ) 

∂x 
− (n − 1) 

∂V m +1 ,n −2 (x, y ) 

∂x 
. 

his equation can be equivalently rewritten into the form 

∂ 

∂x 
(xV m,n (x, y ) − yV m +1 ,n −1 (x, y )) 

= 

∂ 
(mV m −1 ,n (x, y ) − (n − 1) V m +1 ,n −2 (x, y )) . 
∂x 

10 
y integrating this we get 

xV m,n (x, y ) − yV m +1 ,n −1 (x, y ) = mV m −1 ,n (x, y ) 

−(n − 1) V m +1 ,n −2 (x, y ) + C m,n (y ) , (C.7) 

here C m,n (y ) is a function of single variable y . Similarly, differ-

ntiating (C.7) with respect to y and taking (C.3) and (C.4) into 

ccount, we get that C ′ m,n (y ) = 0 . Thus, C m,n (y ) is a constant C m,n .

ubstituting x = y = 0 into (C.7) we obtain that C m,n = 0 . 

Multiplying now (C.6) by 2 n and then adding it to (C.5) we ob-

ain 

2(1 + m + n ) xV m,n (x, y ) = V m +1 ,n (x, y ) − n (n − 1) V m +1 ,n −2 (x, y ) 

+ m (m + 2 n + 1) V m −1 ,n (x, y ) , 

s required. 

In the same way we prove the second recurrence relation (8) . 

ppendix D. Proof of Theorem 4 

By a direct calculation one may show that the generating func- 

ion 

 (x, y, u, v ) = 

1 

[ (1 − (ux + v y )) 2 − (u 

2 + v 2 )(x 2 + y 2 − 1) ] 
1 
2 

atisfies the following two first-order differential equations 

 

(
2 u 

∂G 

∂u 

+ v 
∂G 

∂v 
+ G 

)
+ yu 

∂G 

∂v 
= 

∂(u 

2 G ) 

∂u 

+ v 
∂uG 

∂v 
− uG + 

∂G 

∂u 

, 

y 

(
2 v 

∂G 

∂v 
+ u 

∂G 

∂u 

+ G 

)
+ x v 

∂G 

∂u 

= 

∂(v 2 G ) 

∂v 
+ v u 

∂G 

∂u 

− v G + 

∂G 

∂v 
. 

hese equations imply the recurrences 

(n + 2 m + 1) xU m,n (x, y ) + myU m −1 ,n +1 (x, y ) 

= m (m + n ) U m −1 ,n (x, y ) + U m +1 ,n (x, y ) , 

(m + 2 n + 1) yU m,n (x, y ) + nxU m +1 ,n −1 (x, y ) 

= n (m + n ) U m,n −1 (x, y ) + U m,n +1 (x, y ) . (D.2) 

hen shifting the index m �→ m − 1 in (D.2) 

(m + 2 n ) yU m −1 ,n (x, y ) + nxU m,n −1 (x, y ) 

= n (m + n − 1) U m −1 ,n −1 (x, y ) + U m −1 ,n +1 (x, y ) , 

e eliminate U m −1 ,n +1 (x, y ) from (D.1) and obtain 

 m +1 ,n (x, y ) = (n + 2 m + 1) xU m,n + mnxyU m,n −1 

− mn (m + n − 1) yU m −1 ,n −1 

+ m 

[
(y 2 − 1) m + n (2 y 2 − 1) 

]
U m −1 ,n 

s required. In a similar way, we prove that 

 m,n +1 (x, y ) = (m + 2 n + 1) yU m,n + mnxyU m −1 ,n 

− mn (m + n − 1) xU m −1 ,n −1 

+ n 

[
(x 2 − 1) n + m (2 x 2 − 1) 

]
U m,n −1 . 

ppendix E. Recurrent relations for the normalized AP’s 

Recurrence for the V -family 

˜ V m,m 

= 

√ 

	( m + 0 . 5 ) 

	( m + 1 ) 

2 m + 1 

(2 m ) 3 / 4 

[
x ̃  V m −1 ,m 

+ y ̃  V m,m −1 

]
− (m − 1)(2 m + 1) 

(8 m ) 1 / 4 (2 m − 1) 7 / 4 

[˜ V m −2 ,m 

+ ̃

 V m,m −2 

]
, 

 

 m,n +1 = 2 
m + n + 2 

(m + n + 1) 7 / 4 

√ 

	
(

m + n +2 
2 

)
	
(

m + n +3 
2 

) [
mx ̃  V m −1 ,n +1 + (n + 1) y ̃  V m,n 

]
−
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(m + n ) 7 / 4 (m + n + 1) 5 / 4 [
n (n + 1) ̃  V m,n −1 + m (m − 1) ̃  V m −2 ,n +1 

]
. 

ecurrence for the U-family 

˜ U m,m 

= x 

[ √ 

	(m + 0 . 5) 

	(m + 1) 

3 m − 1 

(2 m ) 3 / 4 ̃
 U m −1 ,m 

+ 

m − 1 

(8 m ) 1 / 4 (2 m − 1) 3 / 4 
y ̃  U m −1 ,m −1 

] 
+ 

+ (m − 1) 

{
y 2 (3 m − 1) − 2 m + 1 

m 

5 / 4 (4 m − 2) 3 / 4 
˜ U m −2 ,m 

−
√ 

	(m − 0 . 5) 

	(m + 1) 

[2 m (m − 1)] 1 / 4 

(4 m − 2) 3 / 4 
y ̃  U m −2 ,m −1 

} 

, 

 

 m,n +1 = 

√ 

	
(

m + n +2 
2 

)
	
(

m + n +3 
2 

) m + 2 n + 1 

(m + n + 1) 3 / 4 
y ̃  U m,n 

−
√ 

	
(

m + n 
2 

)
	
(

m + n +3 
2 

) mn (m + n + 1) 1 / 4 

[ (m + n + 1)(m + n ) ] 
3 / 4 

x ̃  U m −1 ,n −1 + 

+ 

√ 

2 n 

(m + n + 1) 5 / 4 (m + n ) 3 / 4 

{
mxy ̃  U m −1 ,n + 

[(
x 2 − 1 

)
n 

+ m 

(
2 x 2 − 1 

)]˜ U m,n −1 

}
, 

 

 n +1 ,m 

= 

√ 

	
(

m + n +2 
2 

)
	
(

m + n +3 
2 

) m + 2 n + 1 

(m + n + 1) 3 / 4 
x ̃  U n,m 

−
√ 

	
(

m + n 
2 

)
	
(

m + n +3 
2 

) mn (m + n + 1) 1 / 4 

[ (m + n + 1)(m + n ) ] 
3 / 4 

y ̃  U n −1 ,m −1 + 

+ 

√ 

2 n 

(m + n + 1) 5 / 4 (m + n ) 3 / 4 

{
mxy ̃  U n,m −1 

+ 

[(
y 2 − 1 

)
n + m 

(
2 y 2 − 1 

)]˜ U n −1 ,m 

}
. 

e dropped the argument (x, y ) for simplicity. 
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