
NOVEL RECONSTRUCTION WITH INTER-FRAME MOTION COMPENSATION FOR FAST
SUPER-RESOLUTION LIVE CELL IMAGING

Adam Harmanec1,2 Zuzana Kadlecova2,3 Filip Sroubek1

1Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, CZ
2Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, CZ

3Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK

ABSTRACT
Structured illumination microscopy is a widely popular super-
resolution technique for live cell imaging capable of surpass-
ing the diffraction limit. Its temporal resolution is limited
by the need to capture multiple low-resolution images to
reconstruct a single high-resolution image. When observ-
ing rapid biological processes, the local movement between
frames leads to the formation of reconstruction artifacts,
which subsequently impair the data interpretation. We pro-
pose to include this type of movement in the definition of the
image formation forward problem. The motion can then be
estimated from the original data using optical flow, and the
optimization problem is solved using the alternating direc-
tion method of multipliers. Our approach is tested against
other reconstruction techniques on both synthetic and real
biological data.

Index Terms— Image reconstruction, structured illumi-
nation microscopy (SIM), ADMM, optical flow

1. INTRODUCTION

It has been long understood that the lateral resolution of an
optical microscope is bounded by the diffraction limit [1].
Traditional super-resolution methods in image processing
[2] exploit the aliasing effect in images with sub-pixel shift
to recover corrupted high frequencies, yet the diffraction
limit remains unchallenged. On the other hand, microscopy
super-resolution methods that have been developed in the
last two decades overcome this limitation [3, 4, 5]; however,
only structured illumination microscopy (SIM) [4], especially
when combined with total illumination reflective fluorescence
(TIRF) [6, 7], offers the high temporal and spatial resolution
to capture dynamic biological processes in living cells [8].
It uses structured light to increase resolution and conversely
assumes that the images are without sub-pixel shift. Our ap-
proach described below is suitable for any SIM system, but
this work will demonstrate it in a more demanding situation

The work on this paper was supported by the Czech Science Founda-
tion grant 21-16786M, the Technology Agency of the Czech Republic grant
TN01000024 and the SVV project number 260 575.

on our custom-built eTIRF-SIM with a 90nm lateral resolu-
tion and a temporal resolution of 100-200ms per channel and
frame.

Even though this configuration allows rapid imaging, SIM
suffers from several inherent limitations. Since multiple con-
secutive images need to be acquired and reconstructed into a
single image with higher resolution, the most dynamic sub-
cellular structures appear as artefacts during reconstruction
[9] (See the second column of Fig. 5 (a)). Combined with a
somewhat low(er) signal-to-noise ratio (SNR) of the individ-
ual images, this severely limits the interpretation and quantita-
tive analysis of SIM time-lapse movies. The current research
is focused on shortening the acquisition time [8], which, how-
ever, results in a further reduction of the SNR.

To address the poor reconstruction fidelity of dynamic
sub-cellular features, we propose a method for compensating
the local inter-frame movement in the imaging model, there-
fore radically reducing the number of motion artifacts. In ad-
dition, our method is defined in an optimization framework
that enables various regularization methods, which can fur-
ther improve the reconstruction.

This method is practical for several reasons. It allows for
a more robust interpretation due to higher data fidelity. It can
also be applied to acquiring longer time-lapse movies, where
SNR steadily decreases.

2. METHOD

2.1. Forward problem

Similarly to [10, 11] and as visualized in Fig. 1, we define the
SIM images formation model as:

g = DHIu,

where g = [g1, ..., gn]
T is a set of the n observed low

resolution images, u is the single unknown original high
resolution image and D, H and I = [I1, ..., In]

T are the
down-sampling, convolution and illumination operators, re-
spectively. The images are column-wise concatenated and all
of the operators are linear and represented by matrix multi-
plication.

3211978-1-6654-9620-9/22/$31.00 ©2022 IEEE ICIP 2022

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 Im

ag
e 

Pr
oc

es
si

ng
 (I

C
IP

) |
 9

78
-1

-6
65

4-
96

20
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
IP

46
57

6.
20

22
.9

89
76

35

Authorized licensed use limited to: UTIA. Downloaded on December 01,2022 at 07:28:48 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c) (d) (e) (f)

Fig. 1: Visualisation of the SIM image formation. Images
in the top row are in the image domain and images in the
bottom row are their Fourier domain counterparts. Image (a)
is the high-resolution image u (the same in the synthetic data
experiments), (b) is one of the illumination patterns ik, (c) is
the result of Iku, (d) are the PSF and OTF, (e) is the result of
HIku and (f) one of the final observed images gk = DHIku.

The illumination operator Ik corresponds to a pixel-wise
multiplication with a structured illumination pattern. Al-
though there are other illumination strategies [12, 13] for
which our definition would also work, for simplicity, we
will assume the standard two-dimensional sinusoidal pattern
created by the inference of two laser beams [4]. The inten-
sity of the k-th pattern at point rxy is a sum of three simple
harmonics:

ik(rxy) =

1∑
m=−1

eim(2πpk·rxy+σk),

where pk and σk are the modulation vector and phase
offset respectively. This pattern is chosen deliberately so
that its Fourier transform is just three delta function peaks
at δ(±mpk). Intuitively, convolution with these peaks in
Fourier space shifts frequencies beyond the diffraction limit
closer to the origin and into the support of the optical transfer
function (OTF). To separate the three summed components
corresponding to each peak, three different images are ac-
quired, each with a different illumination phase σk. To
achieve good resolution in all directions, three modulation
vectors pk evenly spaced over a circle are usually used, which
results in nine (n = 9) images in total.

The convolution operator H represents the point-spread
function (PSF, i.e. the real space equivalent of the OTF) of
the optical system. This operator defines resolution properties
of the microscope and acts as a low-pass filter removing high
frequency details.

Finally, the down-sampling operator D reduces the lateral
resolution by a factor of two in both the horizontal and ver-
tical directions. This represents the sampling frequency of
the microscope sensor. In theory, the factor could be lower,
since SIM results in just over two-fold resolution gain. This
is however not used in practice because less photons would
illuminate each pixel and therefore increase noise.

2.2. Proposed extension

The model described above assumes that the unknown image
u remains stationary throughout the acquisition of the 9 im-
ages. However, each of these 9 images can take between a
few tens of milliseconds up to a second or more to acquire,
hence this is often not the case. Each of the lower resolution
images in the set then effectively corresponds to a different
higher resolution image, and this discrepancy inevitably leads
to reconstruction artifacts.

To compensate for this, we propose to extend the imaging
model with a warping operator W = [W1, ...,Wn]:

g = DHIWu

One of the images is selected as the reference, e.g. the
middle one (k = 5), and the Wk operator models the lo-
cal transformations between the reference and the k-th image.
This is done pixel-wise with sub-pixel accuracy.

More formally, each pixel in the transformed image is
filled with the value of a pixel in the original image. If the
coordinates in the original image are not an integer, the value
is interpolated from the nearest neighboring pixels.

2.3. Finding a solution

Here we seek to find the original sharp image u that best ex-
plains (in the least squares sense) the measured data g. That
alone would not be stable and so we also incorporate a reg-
ularization factor. We are using total variation (TV) [14] but
other methods could also be used. This results in the follow-
ing optimization task:

u = argmin
u

1

2
||DHIWu− g||22 + γ||∇u||1

The L1 norm (and other forms of regularization) are gen-
erally non-smooth. We can however use the popular opti-
mization framework alternating direction method of multipli-
ers (ADMM) [15] that splits the objective into several simpler
problems.

First, we need to isolate the L1 term to only contain a
single variable. This can be done by substituting z for ∇u al-
lowing as to decouple the smooth L2 term and the non-smooth
regularization. It is then incorporated into the original objec-
tive using scaled augmented Lagrangian multiplier v, which
leads to a joint minimization problem:

min
u,z

1

2
||DHIWu−g||22+

ρ

2
||∇u−z+v||22+γ||z||1−

ρ

2
∥v∥22

We can now minimize both terms separately. ADMM
does this by repeating the following 3 steps in each iteration:

1. Updates u by solving

u = argmin
u

1

2
||DHIWu− g||22 +

ρ

2
||∇u− z + v||22
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Fig. 2: Performance of the reconstruction algorithms on syn-
thetic data with respect to the linear motion speed (in pixels
per frame) of the simulated object.

2. Updates z by solving

z = argmin
z

ρ

2
||∇u− z + v||22 + γ||z||1

3. Updates v by setting v = v +∇u− z

The first update does not have a closed form solution and
must be solved iteratively. We are using the conjugate gradi-
ent (CG) method [16]. In practice, only a few CG iterations
are sufficient for convergence.

The z update can be rearranged into a more suitable form:

z = argmin
z

γ

ρ
||z||1 +

1

2
||z − (∇u+ v)||22

and solved independently per-pixel using a proximal op-
erator [17]. The proximal operator of a scaled function λf(q)
is defined as:

proxλf (q) = argmin
p

f(p) +
1

2λ
||p− q||22

By setting f(z) = ||z||1, λ = γ
ρ and q = ∇u + v we

get the equivalent problem. Finally, the original minimization
can be solved using the known closed form solution of the
proximal operator:

proxλ||p||1(q) = sign(q)max(0, |q| − λ)

There are three parameters in the algorithm above: the
regularization weight γ, the acceleration ρ and the number of
iterations. For the experiments in the next section, we use
γ = ρ = 1 and 20 ADMM iterations.

2.4. Parameter estimation

The image formation operators H, I and W are parametrized,
and their parameters have to be established before the opti-
mization problem can be solved.
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Fig. 3: Performance of the reconstruction algorithms on syn-
thetic data with respect to the standard deviation of the Brow-
nian motion (in pixels per frame) of the simulated object.

The convolution operator H requires the knowledge of the
PSF. It can be measured experimentally or approximated us-
ing a mathematical model. In our case, we are approximating
the OTF as the auto-correlation of the pupil function [10].

The illumination operator I depends on the properties of
the structured illumination patterns. Generally, the system is
not stable enough and the parameters have to be estimated
from the observed images g. Extensive research deals with the
issue of their estimation [18], even under difficult conditions
[19], hence the specific methods will not be discussed here.

The warping operator W simulates the local inter-frame
movement which is obviously not known. In our experiments,
we calculate the motion estimation using dense optical flow.
More specifically, we up-sample the original images g to the
size of u using cubic interpolation, mildly blur them using
a Gaussian and finally calculate the optical flow by a single-
stage Farneback algorithm [20] with a small window.

(a) Wiener (b) TV (c) Proposed

Fig. 4: Examples of reconstruction using different algorithms
on synthetic data with linear motion from bottom right to top
left with speed of 1 pixel per frame (See Fig. 2).

3. EXPERIMENTS

We demonstrate the performance of our method in several ex-
periments with both synthetic and real live-cell microscopy
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Fig. 5: Selected examples of reconstruction using the proposed approach and the traditional Wiener filtering on real biological
data. The observed sub-cellular structures are known to have the shape of an annulus.

data. For comparison, we also show the results obtained with
the traditional Wiener filtering approach [4] and an iterative
optimization approach with TV regularization similar to the
proposed approach, but without the movement compensation.

In the first experiment with synthetic data, we simulate
the movement of a sub-cellular structure represented by a cir-
cle with a diameter of approximately 20 pixels. In the ref-
erence middle frame, the object is always exactly in the cen-
tre of the frame. In the preceding and subsequent frames, it
moves either linearly or in a random Brownian motion, and
the movement distance in each direction is sampled from the
normal distribution. The base synthetic images are then illu-
minated with a known structured light pattern, convolved with
a PSF, down-sampled and augmented with a random Poisson
noise. Finally, the nine low-resolution images generated in
this way were reconstructed by the different algorithms and
we measured the resulting peak signal-to-noise ratio (PSNR)
depending on the linear speed or standard deviation of the
normal distribution, respectively. An example of the resulting
reconstructions is shown in Fig. 4.

To achieve less ambiguity in our experiments, we per-
formed the reconstruction multiple times for each parameter
with different noise and motion orientation. Figs. 2 and 3
show both the mean values and their standard deviation. It is
clear from the results that the proposed method is very robust
to even large movement.

The second experiment in Fig. 5 illustrates the benefit
of the proposed method on real live-cell microscopy images.
For this purpose, we used a custom-built eTIRF-SIM to ob-
tain data that captures the formation of endocytic vesicles at
the membrane of an epithelial cell line [21]. The vesicles ap-

pear as small protein assemblies at the plasma membrane that
gradually enlarge into rings in the exponentially decaying in-
tensity of the incident light with the evanescent TIRF field.
Each low-resolution frame was illuminated for approximately
60ms with the total time of six minutes resulting in around
60-120 high-resolution images. We have reconstructed the
movies with both the Wiener reconstruction used with this
setup previously and with the newly proposed method. From
these we hand-selected representative smaller cut-outs that
clearly demonstrate the differences between them.

It should be mentioned that although in most cases the
proposed method achieved better results without reconstruc-
tion artifacts caused by the movement, there are still cases
where the results are suboptimal and where the object iden-
tity and interpretation are obscure. This can be seen in parts
of Fig. 5 (b).

4. CONCLUSION

We have proposed a direct extension to SIM image recon-
struction suitable for fast super-resolution live-cell imaging.
We established this extension in the image formation model
forward problem with a simple TV regularization. Next,
we derived the iterative solution of this optimization using
ADMM. An optical flow algorithm was used to estimate the
local motion. We have demonstrated the method’s applicabil-
ity on synthetic data and on data from a real microscope. A
more detailed analysis of local movement estimation methods
and different regularization techniques will be addressed in
future work.
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