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ABSTRACT

This paper addresses the monitoring of Varroa destructor in-
festation in Western honey bee colonies. We propose a simple
approach using automatic image-based analysis of the fall-
out on beehive bottom boards. In contrast to the existing
high-tech methods, our solution does not require extensive
and expensive hardware components, just a standard smart-
phone. The described method has the potential to replace
the time-consuming, inaccurate, and most common practice
where the infestation level is evaluated manually. The un-
derlining machine learning method combines a thresholding
algorithm with a shallow CNN—VarroaNet. It provides a re-
liable estimate of the infestation level with a mean infestation
level accuracy of 96.0% and 93.8% in the autumn and winter,
respectively. Furthermore, we introduce the developed end-
to-end system and its deployment into the online beekeeper’s
diary—ProBee—that allows users to identify and track infes-
tation levels on bee colonies.

Index Terms— Apiculture, Bee, Varroa, Mite, CNN, Ma-
chine Learning, Computer Vision

1. INTRODUCTION

Varroa destructor is an ectoparasitic honey bee mite that his-
torically appeared on Eastern honey bee (Apis cerana), but
spread to the Western honey bee (Apis mellifera) during the
first half of the 20th century and its occurrence has become
worldwide and now poses a major threat to apiculture. While
the native host is resistant to Varroa infestations, Varroa pop-
ulations in A. mellifera populations have grown uncontrol-
lably; by enhancing a viral transmission (due to mite feeding)
and weakening honey bee immunity, Varroa infestations pose
a significant threat to honey bee health and have resulted in
significant declines in A. mellifera populations globally [1, 2].
Varroa reproduction in A. mellifera, unlike A. cerana, oc-
curs on worker brood, which is available in colonies for the
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Fig. 1. Varroa destructor mites on a beehive bottom-board
photograph. Circles represents 2× and 4× zoom.

whole year, allowing mite populations to grow dramatically.
As a result, application of acaricidal pesticide is required for
bee colonies to sustain their survival [3]. This action produces
a substantial impact on colony dynamics and honey contami-
nation. Thus, early and precise estimation of infestation level
is crucial for the sustainability of apiculture.

Varroa mite levels in colonies should be inspected regu-
larly to ensure effective Varroa control and determine whether
chemical intervention is necessary. Beekeepers typically
monitor the mean abundance of mites—a number of mites
per 100 bees—monthly to determine when the population of
mites observed on adult worker bees has reached a threshold,
with the goal of the mite populations below two mites per
100 bees. The monitoring techniques used are, for example,
sugar rolls and alcohol washes, and sticky boards. Although
these procedures are inexpensive, they are time-consuming,
especially in apiaries with many colonies [1].

An accurate and inexpensive method for the Varroa mite
infestation level monitoring is to manually count the Varroa
individuals that fall on a solid board placed at the bottom
of the hive (see Figure 1). Although this method has been
used for years, it is tedious and time-demanding due to the
small size of the individuals (1–2mm) and the fact that they
are mixed with the various hive remnants (pollen, wax etc.).
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Fig. 2. Method overview. We check for low-resolution images, use ESCPN [4] super-resolution if needed, detect RoI via naive
thresholding, perform binary classification (Varroa / Other), and indicate infestation level based on the number of Varroa.

The paper introduces the first system for an automated
Varroa destructor mite detection on a fall-out board. It has the
potential to replace the current counting approach done via
the naked eye, which is both inaccurate and time-consuming.
The proposed system is based on the standard computer vi-
sion approach and a shallow CNN while using a standard mo-
bile phone with a camera without any additional investment
and design changes in the hives.

2. RELATED WORK

Smart apiculture is a growing area with enormous potential to
assist roughly 500 thousand beekeepers in managing around
100 million beehives globally. There have been several at-
tempts to use computer vision methods in beekeeping with a
focus on bee species identification and monitoring [5], honey
bee counting [6], honey bee flight and movement analysis [7,
8, 9], and Varroa destructor detection [10, 11, 12, 13, 14].
The first method for Varroa mite detection was developed by
Ramirez et al. [10], in a sandbox like environment, with a sin-
gle Varroa destructor mite in an Africanized honey bee cell,
using movement active area. Chazette et al. [11] introduced
a system for possible destruction by laser while using CNN
to identify Varroa on bees before they enter the beehive. Bee
detection was done via an implicit shape model and classifi-
cation by a custom CNN model. Bjerge et al. [12] developed
a novel portable system to monitor the infestation level us-
ing a video monitoring unit with multi-spectral illumination
and a camera placed at the entrance of the beehive. Shuriss-
chuster et al. [13] used a two-stage approach with a beehive
entrance camera for bee detection and further Varroa detec-
tion via a sliding window approach and AlexNet / ResNet or
segmentation with DeepLabV3. Bilik et al. [13] utilized an
object detection approach based on YOLOv5 [15] to identify
the mites directly on honeybees.

Most methods of Varroa infestation level monitoring re-
quire special equipment to detect bees while they enter the
hive or a camera system inside the hive; thus, the usability of
the methods is limited. As beekeepers usually own dozens of
hives, each with roughly 50 frames and tens of thousands of
bees, it is unimaginable to operate such systems in real life.

3. METHODOLOGY

This section describes the new dataset for Varroa mite infes-
tation monitoring and both building blocks of the proposed
two-stage approach, i.e., (i) standard computer vision method
for Regions of Interest (RoI) selection and (ii) shallow CNN
for RoI classification. The method is illustrated in Figure 2.

3.1. Dataset
All images used for the dataset construction were collected
for two years, captured on various devices, and include pre-
and post-treatment cases. The final dataset comprises 400
photos of around 100 beehives, 200 with COCO-like instance
segmentation annotations for Varroa detection evaluation and
200 with 3 types of infestation labels—Normal, High-Risk,
and Critical—to allow unbiased end-to-end evaluation. As
the critical number of mites per hive depends on the colony’s
size, the season, and the stage of treatment, the infestation
categories are simplified via different Varroa count thresholds
for winter and autumn seasons. Regions within the bottom-
board with and without Varroa are displayed in Figure 3.

The COCO-like part of the dataset (200 photographs) was
divided into two subsets (S1 & S2) to allow robustnes evalu-
ation towards unwanted biases, i.e., type of camera devices,
seasonality, number of positive samples, light conditions,
background texture/colour, and compression algorithms.

• S1: Photographs taken mainly in the autumn months—
highest Varroa activity—showing the bottom plates of
the hive in the conditions before and after treatment.

• S2: Photographs from winter months—lowest Varroa
activity—with a small number of Varroas.

Varroa mites Other objects

Fig. 3. Samples of objects on bottom board—hive remnants.



The development set was split into training and validation
subsets (90/10), keeping the same class distribution. A de-
scription of the COCO-like dataset is in Table 1.

Dataset Development set Test set
S1 S2 Photos Varroas Photos VarroasD × 100 7,213 18 992
× D 70 1,196 12 255D D 170 8,409 30 1,247

Table 1. Description of two datasets for Varroa Classification.

3.2. RoI Detection
Given the lack of annotated data for training conventional ob-
ject detectors, e.g., YOLO, DETR and EfficientDet, we pro-
pose an alternative detection algorithm for the Region of In-
terest (RoI) selection based on standard computer vision tech-
niques. Varroa mites are characterized by their dark colour;
thus, a straightforward algorithm based on image threshold-
ing allows the detection of potential RoIs with Varroa mites
with a sensitivity close to 1. The proposed algorithm is visu-
alized in Figure 4 and can be described as follows:

1. Thresholding: An image is converted to grey-scale and
binarized via thresholding; 12 binary images are pro-
duced. Thresholds are equivalent to pixel intensity val-
ues on a scale ⟨20, 140) with a step of 10.

2. Contours filtering & grouping: Each closed bound-
ary region is filtered based on contour area in range
⟨122, 602⟩. Remaining contours with centers closer
than 10 pixels are grouped across all the binary images.

3. Region definition & extraction: All RoIs are defined
by location, calculated as a median value from all
grouped contours. For every RoIs center, we cut the
60× 60 area from the original image.

3.3. Classification
For the potential Varroa candidates classification, we propose
two lightweight CNNs, VarroaNet-0.1 and VarroaNet-0.05,
with 100k and 50k parameters, respectively. Both CNNs are
composed of 3 convolutional, 3 pooling, and 3 linear layers.

RoI Detection

Finding Contours & GroupingThresholding RoI Extraction

Fig. 4. RoI detection flowchart overview.

Training Strategy: All standard networks were fine-
tuned from publicly available ImageNet-1k checkpoints us-
ing PyTorch and 21.11 Nvidia NGC Docker container. Var-
roaNets were initialized randomly. All architectures were
optimized for 200 epochs by SGD with momentum set to
0.9 and a mini-batch size of 128. Start LR was set to 0.01
and decreased by the following rule—if validation loss is not
reduced for 5 epochs, decrease LR by 5%.

Augmentations: Various augmentations from the Albu-
mentation library [16] were used to increase the robustness to
different visual conditions and devices. Namely, random jpeg
compression, cutouts, blur, HSV shift, and brightest changes.
Furthermore, image pixel values were re-scaled from ⟨0, 255⟩
to ⟨0, 1⟩ and normalized with a mean and standard deviation
value of 0.5 in each channel in order to rescale values from
⟨0, 1⟩ to ⟨−1, 1⟩ and achieve easier convergence.

Test-time: For CNN performance evaluation, the best
performing checkpoints on the validation set in the case of
Binary Cross-Entropy Loss were used.

3.4. Pre-processing

In order to increase the robustness against unseen data sub-
mitted to the ProBee platform, we preprocess the data to di-
minish the influence of possible low-resolution photographs.
The size of Varroa on low-resolution photographs makes them
unrecognizable if smaller than 12×12 pixels. Thus, all photos
captured on devices with small sensors—usually < 12MP—
are artificially increased in resolution by the ESCPN [4] algo-
rithm for the single image super-resolution to match the ex-
pected size of Varroa mite, i.e., area of ⟨122, 602⟩. The effect
of the ESCPN is visualized in Figure 5. for two low-resolution
Varroa samples on three different scales.

4. RESULTS

This section provides: (i) the performance comparison of
proposed VarroaNet-0.1 and VarroaNet-0.05 with standard
lightweight CNN architectures, (ii) the robustness analysis
to data from different seasons for VarroaNet-0.1, and (iii)
infestation-level confusion of the end-to-end system. The
evaluation performance is measured via macro-averaged F1
score (F1m), True Positive Rate (Sensitivity) and True Nega-
tive Rate (Specificity).

Original x2 x4 x8

Fig. 5. Effect of ESCPN super-resolution algorithm.
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RoI Classification. In order to provide a quantitative
evaluation, the newly proposed VarroaNets are tested among
different conventional lightweight CNN architectures, e.g.,
MobileNet-V3-S-0.75 [17], SE-MnasNet-0.75 [18] and FB-
NetV3 [19]. Even though achieved performance for both
VarroaNet architectures shows insignificant performance dif-
ferences (Refer to Table 2) in all measured metrics, compared
to standard architectures, the model complexity for both Var-
roaNets is up to 100× lower with an inference time of around
0.01s on a single CPU core—standard Xeon.

Furthermore, we studied the robustness of the method
to seasonality, various devices and different bottom board
colours. Interestingly, when tested on a different set than
trained the drop in performance is significant, almost dou-
bling the error rate in both cases. More preciselly, Specificity
was reduced for S1→S2 by 11.6% and for S2→S1 by 5%.
A closer examination of the performance on both datasets
indicates that the winter months with a smaller number of
bees—about 1/3 of the regular population—are easier to
classify. Primarily due to cleaner bottom boards caused by
minimal activity. A more comprehensive comparison of the
achieved scores is listed in Table 2 and Table 3.

Infestation-level Recognition. The critical number of
mites per hive depends on the colony’s size, the season, and
the stage of treatment. During autumn, just in a week, thou-
sands of dead mites might accumulate on the bottom board.
On the other hand, after the treatment and in winter, the num-
ber of fallen mites should not exceed three mites per bee
colony per month. Following the common practice, the eval-
uation is performed on subsets from the autumn and winter
seasons separately and differently. For each season, a collec-
tion of 100 images is used. The measured mean infestation
level confusion for autumn and winter are 4.0% and 6.2%,
respectively. For a more comprehensive analysis and perfor-
mance evaluation, refer to Figure 6.

Architecture Sens. Spec. F1m Params
MobileNet-V3-S-0.75 98.3 89.3 91.6 1.0M
SE-MnasNet-0.75 98.9 88.5 93.0 1.6M
FBNetV3 98.8 89.9 93.3 6.6M
VarroaNet-0.1 98.1 90.4 91.2 0.1M
VarroaNet-0.05 98.4 90.5 92.1 0.05M

Table 2. Comparison with conventional lightweight CNN ar-
chitectures. All networks share the training settings described
in Section 3.3. Trained and tested on S1+S2 dataset.

Training Sensitivity Specificity
S1 S2 S1 S2 S1+S2 S1 S2 S1+S2D × 97.9 99.6 98.3 88.9 77.3 86.5
× D 93.9 98.6 95.0 86.8 91.8 87.8D D 98.1 97.7 99.4 90.2 91.0 90.4

Table 3. Robustness to different Seasons based on training
data for VarroaNet-0.1.

Qualitative evaluation. Most wrongly classified RoIs are
those with irregular visual appearance, e.g., overlapping ob-
jects of the same color, extreme saturation and stacked Varroa
mites, or RoIs not labelled as Varroa. We estimated, on a ran-
domly sampled set of 200 RoIs, that 5–10% of wrong clas-
sifications of Other should be labelled as Varroa. Qualitative
results as misclassified samples are shown in Figure 7.

5. CONCLUSION

The paper proposes a new automatic system for Varroa de-
structor infestation-level monitoring in Western honey bee
hives. The design of the system, its performance validation
and the deployment within the existing beekeeper applica-
tion are described. Besides, the VarroaNets for Varroa mite
recognition is introduced. With just 50 / 100k parameters,
VarroaNets provide similar performance as standard CNNs
with 10–100 times less complexity and inference time. The
developed system achieved a mean infestation level accuracy
of 96.0% and 93.8% in the autumn and winter, respectively.

The major benefits of the proposed system including but
not limited to: (i) inexpensive approach, free of additional
costs, (ii) no special equipment is needed, just a smartphone,
(iii) straightforward periodical measuring of Varroa infesta-
tion with required frequency, anytime and anywhere, (iv) pro-
viding valuable data about Varroa infestation levels across
larger geographical areas reported by beekeepers.

The developed method is available through the REST
API and publicly available through the free-to-use web
application—ProBee. The data and code are available upon
request for non-commercial usage.
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