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Abstract

Membership function of a given fuzzy set is expressed by probability that a point
belongs in the fuzzy set. Such a membership function is derived from probability
distribution of points on the boundary of the fuzzy set. Polygonal boundary is
considered. Spatial operations (conjunction, disjunction, complement) are defined
accordingly. Several application areas are mentioned, namely classification of land
cover, cadastral mapping, material quality analysis, interferometric monitoring of
bridges.

1 Introduction

Several attempts had been made to represent uncertain real objects by means of precise
mathematical tools. Two most successful approaches – probability theory and fuzzy sets
theory – yet seem to be non-compatible. These two approaches have been heavily applied
to plenty of real-world problems, but still there are little understanding of their mutual
relationship. The early attempt to bring together probability and fuzziness was made
by the founder of the fuzzy sets theory (Zadeh, 1968). His achievements were further
worked out from more general point of view in (Singpurwalla and Jane M. Booker, 2004).
Researchers who have tried making fuzzy set theory and probability theory work in concert
usually agree with (Zadeh, 1995) that the two approaches are complementary rather
than compatible or competitive. These authors customarily conclude that vaugness and
randomness demonstrate two different aspects of uncertainty of the real world. Therefore
fuzzy sets differ from imprecise regions, membership function differs from probability
measure. Overview of such results is presented in (Schmitz and Morris, 2006).

Nevertheless, there are some cases that allow membership function of a fuzzy set to
gain probabilistic meaning. Passing reference of this possibility can be found in book
(Viertl, 1996). This case typically occures when fuzzy sets are spatially defined, namely
as geographic regions. Some interesting attempts to represent imprecise regions stem
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from geographical information sciences, e. g. (Cunha and Martins, 2014), (Bruin, 2000).
Therefore, geographical motivation stands beyond the approach addressed in this contri-
bution.

2 Formulation of the problem

We are searching for a spatial fuzzy region whose boundary is uncertain due to impre-
cise position of points on its boundary. Provided that the boundary of the region has
a polygonal shape the problem can be concisely formulated as follows:

2.1 Given:

1. two–dimensional closed polygonal region with imprecise vertices,

2. probability distribution of each vertex of the polygonal boundary.

2.2 Required:

1. probability that a point in 2D plane belongs to the given region,

2. fuzzy set whose membership function is defined by the probabilities evaluated by
means of 1.,

3. fuzzy set operations (conjunction, disjunction, complement) of probabilistic fuzzy
sets created by means of 2.

The given polygonal region can look as Figure 1 shows.

3 Solution — 1D case

3.1 Membership function

Principle of creating the probabilistic membership function can be easily explained in 1D
case. Let us suppose that the spatial fuzzy set is formed by a line segment FA,B . Boundary
of this set consists of two imprecise points, position of which is given by random variables
XA, XB . Probability that some fixed point xU belongs in the fuzzy set FA,B can be
evaluated by

P (xU ∈ FA,B) = P ((XA < xU ) ∧ (XB > xU ) |XA < XB) =

=

∫ xU

−∞
fA(x) dx

∫ ∞

xU

fB(y) dy∫ ∞

−∞
fB(y)

∫ y

−∞
fA(x) dx dy

(1)
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Figure 1: Polygonal region with imprecise vertices. Precision of each vertex is modeled
by a 2D probability distribution (black clusters).

Function fA, resp. fB stands for probability density function of random variable XA,
resp. XB . If the probability density functions are Gaussian N (x̂A, σA) , resp. N (x̂B , σB),
the resulting probability is quite simple:

P (xU ∈ FA,B) =

(
1 + erf

(
xU−x̂A√

2σA

))(
1− erf

(
xU−x̂B√

2σB

))
2

(
1 + erf

(
x̂B−x̂A√
2 (σ2

A+σ2
B)

)) . (2)

Function erf stands for error function, i. e.

erf(x) :=
2√
π

∫ x

0

e−t2 dt .

Membership function of fuzzy set FA,B can therefore be defined by probability (1).

µFA,B
: R → ⟨0, 1⟩ : ξ 7→ µFA,B

(ξ) := P (ξ ∈ FA,B) . (3)
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Illustration of the probabilistic membership function gives Figure 2.

3.2 Fuzzy set operations

3.2.1 Probabilistic fuzzy conjunction

Probability that some fixed point xU belongs in conjunction of two fuzzy sets FA,B , FC,D

can be expressed similarly as in (1).

P (xU ∈ FA,B ∧ FC,D) = (4)

= P ((XA < xU < XB) ∧ (XC < xU < XD) | (XA < XB) ∧ (XC < XD)) =

=

∫ xU

−∞
fA(w) dw

∫ ∞

xU

fB(x) dx

∫ xU

−∞
fC(y) dy

∫ ∞

xU

fD(z) dz∫ ∞

−∞
fB(x)

∫ x

−∞
fA(w) dw dx

∫ ∞

−∞
fD(z)

∫ z

−∞
fC(y) dy dz

.

If the border probability density functions are Gaussian N (x̂A, σA) , N (x̂B , σB),
N (x̂C , σC) , N (x̂D, σD), the resulting probability will be as follows:

P (xU ∈ FA,B ∧ FC,D) = (5)

=

(
1 + erf

(
xU−x̂A√

2σA

))(
1− erf

(
xU−x̂B√

2σB

))(
1 + erf

(
xU−x̂C√

2σC

))(
1− erf

(
xU−x̂D√

2σD

))
4

(
1 + erf

(
x̂B−x̂A√
2 (σ2

A+σ2
B)

)) (
1 + erf

(
x̂D−x̂C√
2 (σ2

C+σ2
D)

)) .

3.2.2 Probabilistic fuzzy disjunction

Probabilistic fuzzy disjunction can be easily deduced from conjunction operation (4) with
aid of elementary theorem of probability theory

P (K ∨ L) = P (K) + P (L)− P (K ∧ L) (6)

which holds for any random events K, L.

P (xU ∈ FA,B ∨ FC,D) = P (xU ∈ FA,B) + P (xU ∈ FC,D)− P (xU ∈ FA,B ∧ FC,D) (7)

Evaluation of (7) under assumption of normal distribution can be simply done with
substitutions (2), (5).

3.2.3 Probabilistic fuzzy complement

Membership function of probabilistic fuzzy complement can be obtained from (1) as easy
as fuzzy conjunction from (4). The same theorem (6) can be used with special option
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L = ¬K. Due to this option, P (K ∨¬K) = 1 and P (K ∧¬K) = 0 for any random event
K. Theorem (6) then claims

1 = P (K) + P (¬K) .

Thus the following equalities hold for fuzzy complement ¬FA,B .

P (xU ∈ ¬FA,B) = P (xU /∈ FA,B) = 1− P (xU ∈ FA,B) (8)

-10 10 20 30 40

0.2

0.4

0.6

0.8

1.0

-10 10 20 30 40

0.2

0.4

0.6

0.8

1.0

FA,B ¬FA,B

Figure 2: Membership function of probabilistic fuzzy set FA,B – drawn by red line.
Border probability density functions fA (blue line) and fB (green line) are shown on the
left and right hand side. The right part of the figure shows also membership function of
probabilistic fuzzy complement ¬FA,B (black line).

3.2.4 Membership functions of the fuzzy set operations

Membership functions of the above introduced fuzzy set operations are given by

µFA,B∧FC,D
(ξ) := P (ξ ∈ FA,B ∧ FC,D) ,

µFA,B∨FC,D
(ξ) := P (ξ ∈ FA,B ∨ FC,D) = µFA,B

(ξ) + µFC,D
(ξ)− P (ξ ∈ FA,B ∧ FC,D) ,

µ¬FA,B
(ξ) := P (ξ /∈ FA,B) = 1− µFA,B

(ξ) . (9)

These membership functions are defined by means of the source membership functions
µFA,B

, µFC,D
except fuzzy conjunction. Therefore, proper definiton of fuzzy conjunction

has to be accomplished by the following two–step procedure.

1. extract border density functions fA, fB from µFA,B
and fC , fD from µFC,D

,

2. evaluate P (xU ∈ FA,B ∧ FC,D) with the aid of (4) .

The first step of this procedure may not be satisfactorily achievable since the membership
functions µFA,B

, µFC,D
can be given in other ways than by (1). Extraction of border

density functions from an arbitrary membership function is subject of further research.
Illustration of the fuzzy set operations gives Figure 3 and Figure 2.
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Figure 3: Membership functions of probabilistic fuzzy conjunction FA,B ∧ FC,D (left)
and disjunction FA,B ∨ FC,D (right) are drawn by black line. The original fuzzy sets are
shown by red and light green colors.

4 Solution — 2D case

4.1 2D membership function

Two–dimensional generalization of formula (1) becomes much more complicated if a polyg-
onal boundary is considered. Closed polygon with n vertices is given. Coordinates of i-th
vertex are given in form of column vector xi ∈ R2, i ∈ {1, 2, . . . , n}. Sides of the poly-
gon must not intersect each other if they are not adjacent. Moreover, for the sake of
simplicity, the polygon is supposed to be convex. Coordinates of the all vertices creates
2n-dimensional vector

x := [x1,x2, . . . ,xn] .

Area of the given polygon is

S(x) =
1

2

n∑
i=1

det([xi,xi+1]) , (10)

where [xi,xi+1] is 2× 2 real matrix for each i ∈ {1, 2, . . . , n},

xn+1 := x1 .

Note that S(x) ≥ 0 if the polygon is oriented counter–clockwise.
Let each vertex be a random point in R2. Then the all random vertices form random

vector
X := [X1,X2, . . . ,Xn]

that creates random boundary of a polygon Fn. Such imprecise polygon can or cannot
cover a fixed point xU ∈ R2. Probability that the point xU lies inside the imprecise
polygon is

P (xU ∈ Fn) = P (X ∈ U(xU ) | (S(X) > 0) ∧ C(X)) . (11)
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Statement C(x) claims that polygon with vertices x is convex.
Set U(xU ) stands for the all possible convex polygons that include point xU . It is

defined by

U(xU ) := {x ∈ R2n |

(
n∧

i=1

κ(xi,xi+1,xU ) > 0

)
∧ C(x)} ,

where function κ expresses perpendicular oriented distance of the point xU from line that
passes through oriented tuple of points a,b.

κ : R6 → R : [a,b,xU ] 7→ (a− xU ) ·
(b− a)⊥

||b− a||
(12)

Symbol ⊥ stands for perpendicularity.

⊥ : R2 → R2 : [x, y] 7→ [x, y]⊥ := [−y, x] .

If the vertices of the polygonal boundary have probability distribution with density
function f , then

P (xU ∈ Fn) =

∫ ∫
· · ·
∫ ∫

︸ ︷︷ ︸
U(xU )

f(x) dx

P ((S(X) > 0) ∧ C(X))
. (13)

The multiple integral is 2n-tuple.

P ((S(X) > 0) ∧ C(X)) =

∫ ∫
· · ·
∫ ∫

︸ ︷︷ ︸
(S(x)>0)∧C(x)

f(x) dx .

4.2 2D fuzzy set operations

4.2.1 Probabilistic 2D fuzzy conjunction

Conjunction of two 2D fuzzy sets, say Fn, Gm can be defined similarly as in 1D case (4)
by probability

P (xU ∈ Fn ∧ Gm) =

∫ ∫
· · ·
∫ ∫

︸ ︷︷ ︸
U(xU )∧V(xU )

f(x) g(y) dx dy

P (S(x) > 0 ∧ S(y) > 0 ∧ C(x) ∧ C(y))
, (14)

where y is 2m-dimensional vector which contains coordinates of m vertices of a convex
polygon. Corresponding random vector Y has probability density function g.

V(xU ) := {y ∈ R2m |

(
m∧
i=1

κ(yi,yi+1,xU ) > 0

)
∧ C(y)} ,
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where function κ was introduced in (12).

P (S(X) > 0 ∧ S(Y) > 0 ∧ C(X) ∧ C(Y)) =

∫ ∫
. . .· · ·

∫ ∫
︸ ︷︷ ︸

S(x)>0∧S(y)>0∧C(x)∧C(y)

f(x) g(y) dx dy .

The above multiple integrals are 2(n+m)-tuple.
Suitable approximation have to be applied to evaluate the multiple integration for

normal densities f , g.

4.2.2 Probabilistic 2D fuzzy disjunction

P (xU ∈ Fn ∨ Gm) = P (xU ∈ Fn) + P (xU ∈ Gm)− P (xU ∈ Fn ∧ Gm) . (15)

4.2.3 Probabilistic 2D fuzzy complement

P (xU ∈ ¬Fn) = P (xU /∈ Fn) = 1− P (xU ∈ Fn) . (16)

4.2.4 Membership functions of the 2D fuzzy set operations

Membership functions of the 2D fuzzy set operations are given similarly as in (9) by

µFn∧Gm(ξ) := P (ξ ∈ Fn ∧ Gm) ,

µFn∨Gm(ξ) := P (ξ ∈ Fn ∨ Gm) = µFn(ξ) + µGm(ξ)− P (ξ ∈ Fn ∧ Gm) , (17)

µ¬Fn(ξ) := P (ξ /∈ Fn) = 1− µFn(ξ) .

Problem of extracting probability density functions f , g from membership functions
µFn , µGm is much more arduous in 2D than in 1D case. Solution of this problem has
crucial importance in real examples, namely in cartography and material analysis. These
examples will be addressed in the next section.

5 Applications

Probabilistic fuzzy regions can be found all around. Therefore, the designed approach
has many practical applications, namely classification of land cover, cadastral mapping,
material quality analysis, interferometric monitoring of bridges.

5.1 Cartography and material analysis

One of the most frequent task of digital cartography is classification of land cover. Sim-
plest case of the classification is recognition of certain region of interest against other type
of earth surface. The region of interest has to be localized by determination of points
on its boundary and input into geographic information system (GIS). Precision of these
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points can be inferred from so called probability map which is by–product of classifica-
tion procedure. The resulting region of interest then will be obtained as an imprecise
region similar to Figure 1. Spatial operations that are necessary component of every GIS
can then be realized by the fuzzy operation designed in this contribution. Similar prob-
lems with imprecise boundary occures in cadastral systems where parcels have polygonal
shapes.

Another application area has been emerged in material quality analysis. For example,
shape and size changes of microscopic grains in cocnrete blocks under radiation exposure
are important for security assessment of nuclear powerplants. Size of these grains can
be precisely estimated with the aid of the probabilistic representation designed in this
contribution.

5.2 Radar interferometry

Radar interferometry is very effective method for determination of descends and rises
of a bridge under traffic load. Magnitude and direction of movements of the bridge
body can be very precisely (up to 0.01 mm) measured by two ground based radars (GB-
RAR), see Figure 4. Unfortunately, part of the bridge body (so called range–bin) that
corresponds to the measurement cannot be determined precisely. Gray–scale rectangles
on Figure 4 represent response of radar rays from different range–bins. Regions of the
range–bins are imprecise, so that their conjunctions are imprecise as well. Probabilistic
quantification of these imprecisions which is offered in the presented fuzzy approach can
improve interpolation quality of the bridge movement in an arbitrary point.

bridge monitoring fuzzy region on the bridge

Figure 4: Bridge monitoring (left) by simultaneous measurement of two interferometric
radars. Gray–scale rectangles represent response of radar rays from different range–bins.
Fuzzy region on the bridge (right) shows conjunction of two overlapping range–bins
(red and green). The conjunction is marked by dark blue color.
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6 Conclusion

Representation of a fuzzy set of polygonal shape was designed in such a way that proba-
bility of membership of any point in the set is derived from imprecision of the polygonal
boundary. This representation enables a non-traditional definition of fuzzy set opera-
tions (conjunction, disjunction, complement) that produces other fuzzy sets which gain
the same probabilistic interpretation. Several real-world applications of the presented
approach were addressed.
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