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a b s t r a c t 

Moment invariants have been successfully applied to pattern detection tasks in 2D and 3D scalar, vector, 

and matrix valued data. However so far no flexible basis of invariants exists, i.e., no set that is optimal in 

the sense that it is complete and independent for every input pattern. 

In this paper, we prove that a basis of moment invariants can be generated that consists of tensor con- 

tractions of not more than two different moment tensors each under the conjecture of the set of all 

possible tensor contractions to be complete. 

This result allows us to derive the first generator algorithm that produces flexible bases of moment in- 

variants with respect to orthogonal transformations by selecting a single non-zero moment to pair with 

all others in these two-factor products. Since at least one non-zero moment can be found in every non- 

zero pattern, this approach always generates a complete set of descriptors. 

Published by Elsevier Ltd. 
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. Introduction 

Pattern matching is a classical task on scalar data in image pro- 

essing. Its generalization to higher dimensions enables application 

cientists working, for example, in hydrodynamics, continuum me- 

hanics, plasma physics, environmental or space sciences, to detect 

atterns in their vector- and matrix-valued data, too. We treat all 

hree of them simultaneously using the combined notion of tensor 

elds in 2D and 3D. 

In many pattern detection applications, users want to find a 

attern independent of the specific alignment of the provided tem- 

late, but searching for every possible orientation of the template 

ould cause a significant computational overhead and impair per- 

ormance. In this paper we address this problem providing an op- 

imal set of rotation-invariant descriptors, namely moment invari- 

nts. Moment invariants are capable of determining the degree of 

imilarity between a given pattern template and its potentially ro- 

ated occurrence in the data by comparing only a single instance 

f the template [1] . Their building blocks, the moments, are the 

rojections of a function to a function space basis. The similarity 
∗ Corresponding author. 
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etween a pattern and a field is inversely proportional to the Eu- 

lidean distance of their moments. 

The moments themselves are not invariant w.r.t. rotation. There 

re two main approaches that turn them into moment invariants, 

.e. that equip them with the power of orientation independence. 

irst, normalization can be imagined as applying a transformation 

o the input pattern that places it into a predefined standard posi- 

ion. Second, the generator approach makes use of relations from 

lgebra to find the right products, sums or other operations be- 

ween the moments that result in invariants. The state of the art 

f both approaches makes use of tensor algebra, especially of ten- 

or contractions to low ranks, because their transformations under 

otations are simple. 

Three properties are necessary to make an optimal set of de- 

criptors: completeness, independence, and flexibility, Section 3.3 . 

heoretically the generator approach and normalization are equally 

owerful. Used optimally, they should be able to construct an op- 

imal set of descriptors, but they each have their disadvantages. 

or example, to work optimally, the normalization requires con- 

ractions to first rank, which do not exist if all non-zero tensors 

appen to have even rank [2] . The currently best available gener- 

tor approach [3] on the other hand requires the input pattern to 

ave a non-zero first rank component, see Sections 4.1 and 4.2 . 

Long story short, there is currently no algorithm that produces 

 single flexible basis of 3D rotation-invariant descriptors even if 
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Table 1 

State of the art of moment invariants for scalar, vector, and tensor fields. The paren- 

theses indicate that this property is not proven, but a conjecture. 

Approach Dim. Authors Complete Indep. Flexible 

Normalization 2D Bujack, Hagen [2] � � � 

Normalization 3D Bujack, Hagen [2] � � � 

Generator 2D Bujack, Flusser [4] � � � 

Generator 3D Langbein, Hagen [3] ( � ) � - 
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he data is only scalar-valued, let alone for vector- or matrix-fields. 

n this paper, we close this gap by presenting an algorithm that in 

recomputation generates an overcomplete set, which is complete 

or every possible pattern, together with a fast selection method 

hat removes the superfluous, dependent elements for a given in- 

ut pattern during runtime. 

In the 2D case using complex moments, it has been shown that 

he optimal generator approach coincides with the optimal nor- 

alization approach [4] . It has been hypothesized that striving for 

hese three criteria might also lead to the goal of unifying the gen- 

rator and normalization approaches in 3D. That would result in a 

asis that combines the strengths of both approaches and beauti- 

ully tie the theory of moment invariant together. 

The main contribution of this paper is the proof that it is pos- 

ible to generate a basis of 2D and 3D moment invariants by only 

sing tensor products with one or two different types of factors, 

ontingent upon the conjecture of the set of all tensor contractions 

eing complete, Section 5.1 . This is a big step toward a unifying 

heory because a similar property is already known to be true for 

he 2D generator approach based on complex numbers [4] and the 

D and 3D normalization approaches [2] . 

This theoretical result has two advantages in practice, because 

n one hand it allows us to focus the search for bases to the small

ubgroup of products with only two factors and on the other hand 

t shows that and how a flexible basis can be generated for every 

ossible pattern in 2D or 3D scalar-, vector-, or matrix-fields. 

. Related work 

The first moment invariants were introduced to the image pro- 

essing society by Hu [5] . Flusser [6] introduced the concept of a 

asis of moment invariants as a complete and independent set and 

resented a rule to generate a basis for any order for 2D scalar 

unctions. Later, he proved that his basis also solves the inverse 

roblem [7] . 

Schlemmer et al. [8,9] were the first to generalize the notion 

f moment invariants to 2D vector fields using the generator ap- 

roach. Bujack et al. [10] followed the normalization approach and 

erived the first flexible basis of moment invariants for vector 

elds. Later, they unified the two approaches in 2D by showing 

hat the flexible generator basis coincides with the flexible normal- 

zation basis. 

For 3D functions, the task is much more challenging. One re- 

earch path goes in the direction of the spherical harmonics. Lo 

nd Don [11] , Burel and Henocq [12] , Kazhdan et al. [13] , Canter-

kis [14] , and Suk et al. [15] use them to construct moment invari-

nts for 3D scalar functions. The resulting descriptors are usually 

ot complete. 

A second research path makes use of the tensor contraction 

ethod, as first used by Dirilten and Newman [16] . Pinjo, Cyganski, 

nd Orr [17–19] use moment tensors to determine the orientation 

f scalar functions and to normalize with respect to linear trans- 

ormations. All tensor contractions to zeroth rank are rotationally 

nvariant, but there are infinitely many of them and it is difficult 

o find an independent set. Suk and Flusser [20] propose to calcu- 

ate all possible zeroth rank contractions from moment tensors up 

o a given order and then skip the linearly dependent ones. Higher 

rder dependencies still remain in their set. 

Langbein and Hagen [3] also treat tensor fields of higher rank. 

hey showed that the tensor contraction method can be general- 

zed to arbitrary tensor fields and dimensions. They suggested an 

lgorithm that is able to detect dependent invariants by means of 

inearly dependent derivatives. Independently, Hickman [21] sug- 

ests to use the derivatives, too. Gur and Johnson [22] contract 

ensors of the tensor field directly to derive invariants to outer ro- 

ation. 
2 
Bujack and Hagen follow the normalization approach, which 

rovides the first complete and independent set that is also flexible 

.r.t. vanishing moments for 3D tensor fields of arbitrary rank [2] . 

Please note that invariants can be constructed not only from 

oments of integer-valued orders, but also from fractional order 

oments [23,24] or from derivatives [25,26] . The fundamental the- 

rem of moment invariants [27] guarantees that every algebraic in- 

ariant has a moment invariant counterpart. 

The state of the art of the capabilities of moment invariant 

ases with respect to each of the two approaches and dimensions 

s summarized in Table 1 . The definitions of complete, indepen- 

ent, and flexible can be found in Section 3.3 . 

In this paper, we will present the first algorithm to produce an 

ndependent and flexible basis for 3D functions using the generator 

pproach. Like the algorithm by Langbein [3] , it is complete if the 

onjecture 1 holds. 

. Foundations 

In this section, we will recap the theoretical underpinnings and 

otations of moment tensors. For both the normalization and the 

enerator approaches, the most systematic and general framework 

o generate moment invariants of higher orders and for fields of 

igher field ranks, e.g., vector and matrix fields, is based on tensor 

alculus and makes use of the fact that contractions of high rank 

ensors are low rank tensors that are easy to handle. 

.1. Tensors and transformations 

Tensors represent physical quantities that follow specific rules 

nder transformations of the coordinate system. For a given basis, 

hey can be represented as arrays of numbers. The rank of a tensor 

s the number of its indices with scalars having rank zero, vectors 

ank one, and matrices rank two. We refer the reader to introduc- 

ions to tensor analysis [28,29] . 

efinition 1. A multidimensional array T 
i 1 ... i n 
j 1 ... j m 

that, under an active 

ransformation by the invertible matrix A 

i 
j 
∈ R 

d×d , behaves as: 

 

′ i 1 ... i n 
j 1 ... j m 

= | det (A 

−1 ) | w A 

i 1 
k 1 

. . . A 

i n 
k n 

( A 

−1 ) l 1 
j 1 

. . . ( A 

−1 ) l m 
j m 

T k 1 ... k n 
l 1 ... l m 

, (1) 

s called a (relative, axial) tensor of covariant rank m , contravariant 

ank n , and weight w . An (absolute) tensor has weight zero. 

emma 1. Let T and ˜ T be two relative tensors of covariant rank m , 

ontravariant rank n , and weight w and ˜ m , ̃  n , ˜ w respectively . Then 

he product T � ˜ T (also called outer product or tensor product): 

T � ˜ T ) i 1 ... i n ̃
 i 1 ... ̃ i ˜ n 

j 1 ... j m ̃ j 1 ... ̃ j ˜ m 

:= T i 1 ... i n 
j 1 ... j m 

˜ T 
˜ i 1 ... ̃ i ˜ n 

˜ j 1 ... ̃ j ˜ m 

(2) 

s a relative tensor of covariant rank m + ˜ m , contravariant rank n + ˜ n ,

nd weight w + ˜ w . 

emma 2. Let T be a relative tensor of covariant rank m , contravari- 

nt rank n , and weight w . Then the contraction T (i k , j l ) 
of a covariant

ndex i k and a contravariant index j l 

 

i 1 ... i k −1 i k +1 ... i n 
j 1 ... j l−1 j l+1 ... j m (i k , j l ) 

:= 

d ∑ 

ι=1 

T 
i 1 ... i k −1 ιi k +1 ... i n 
j 1 ... j l−1 ι j l+1 ... j m 

(3) 
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s a relative tensor of covariant rank m − 1 , contravariant rank n − 1 ,

nd weight w . 

.2. Moment tensors 

Dirilten and Newman [16] arranged the moments of each order 

uch that they obey the tensor transformation property (1) and use 

he contractions to generate moment invariants with respect to or- 

hogonal transformations. Langbein et al. [3] generalized the defi- 

ition of the moment tensor to tensor valued functions. 

efinition 2. For a tensor field T : R 

d → R 

d n ×d m with compact 

upport, the moment tensor o M of order o ∈ N takes the shape 

 M 

i 1 ... i n k 1 ... k o 
j 1 ... j m 

:= 

∫ 
R d 

x k 1 . . . x k o T i 1 ... i n 
j 1 ... j m 

(x ) d 

d x. (4) 

The following theorem and corrolary are the foundation of the 

enerator approach in 3D because they show that all zeroth rank 

ontractions are moment invariants. Proofs can be found in the 

ork by Bujack and Hagen [2] . 

heorem 1. The moment tensor of order o of a tensor field of co- 

ariant rank m , contravariant rank n , and weight w is a tensor of

ovariant rank m , contravariant rank n + o and weight w − 1 . 

orollary 1. The rank zero contractions of any product of the mo- 

ent tensors are moment invariants with respect to rotation and re- 

ection. 

We will distinguish between homogeneous invariants , which 

re constructed from only a single moment tensor M and its pow- 

rs, and simultaneous invariants , or mixed invariants, which con- 

ain more than one kind of moment tensors. 

.3. Desirable properties of a set of descriptors 

Corollary 1 provides an infinite number of invariants, with most 

f them containing redundant information. In order to optimally 

escribe a function, a set of moment invariants should have the 

ollowing three desirable qualities [4] : 

Completeness : The set is called complete if any moment in- 

ariant can be constructed from it. This property guarantees that 

ny two objects that differ by something other than a rota- 

ion/reflection can be discriminated. 

Independence : The set is independent if none of its elements 

an be constructed from the other elements. This property makes 

ure that the number of descriptors is minimal. 

Flexibility : The set is flexible, also called existent, if it is gener- 

lly defined and complete without requiring any specific moments 

o be non-zero. This property ensures that the set can detect and 

iscriminate any pattern independent of its specific form. 

. Langbein’s algorithm 

Removing dependent contractions has long been a difficult 

ask until independently Langbein and Hagen [3] and Hick- 

an [21] suggested to test the derivatives of the invariants for lin- 

ar dependence in order to find polynomial dependencies in the 

nvariants themselves. 

The former suggest this seminal algorithm to test the depen- 

ence, which we will call Langbein’s algorithm in this paper. We 

rovide a short overview. Details can be found in the original pa- 

er [3] . 

1. Initiate all moment tensors up to a given order o max with ran- 

dom numbers. 

2. Compute all zeroth rank contractions of all their products up to 

a given maximum number of factors p max . 
3 
3. Compute their derivatives w.r.t. all moments up to o max . 

4. Build a matrix with as many rows as moments. 

5. Until the number of maximally possible invariants is achieved: 

add the next derivative to the matrix if it increases the matrix’s 

rank. 

Langbein and Hagen [3] state that the order in which the in- 

ariants are tested is with increasing number of factors p ≤ p max , 

ut not how the order is within each group of equal factors. We 

ssume that within each group, we sort alphabetically first by mo- 

ent order in the product, e.g., 2 M 

2 3 M comes before 2 M 

3 M 

2 , and 

hen by contraction index, e.g., (0,1),(2,3) comes before (0,2),(1,3). 

ecause of commutativity, we only consider products of increas- 

ng moment order and contractions of increasing indices. When 

nvariance w.r.t. translation and scaling is needed in an applica- 

ion, typically the zeroth and first moments are normalized and do 

o longer contain information that can be used to construct rota- 

ion invariants [1] . Please note that we include them in this paper 

or brevity even though Langbein and Hagen originally excluded 

hem in their work. All treated algorithms function with and with- 

ut them. 

.1. 2D Example of non-flexibility 

Langbein’s Algorithm generates a basis of moment invariants, 

ut it is not flexible. We will show this using a 2D scalar pattern. 

p to order 3, Langbein’s algorithm returns the following basis. 

 M , 2 M (0 , 1) , 
1 M 

2 
(0 , 1) , 

1 M 

3 M (0 , 1) , (2 , 3) , 
2 M 

2 
(0 , 2) , (1 , 3) , 

1 M 

2 2 M (0 , 2) , (1 , 3) ,

 M 

2 
(0 , 1) , (2 , 3) , (4 , 5) , 

3 M 

2 
(0 , 3) , (1 , 4) , (2 , 5) , 

1 M 

2 M 

3 M (0 , 3) , (1 , 4) , (2 , 5) . 

(5) 

or purely quadratic and cubic patterns, the only non-vanishing in- 

ariants are 

2 M ( 0 , 1 ) = M 00 + M 11 

2 M 

2 
( 0 , 2 ) , ( 1 , 3 ) = M 

2 
00 + 2 M 

2 
01 + M 

2 
11 

 M 

2 
( 0 , 1 ) , ( 2 , 3 ) , ( 4 , 5 ) = M 

2 
0 0 0 + M 

2 
001 + M 

2 
011 + M 

2 
111 + 2 M 0 0 0 M 011 

+2 M 001 M 111 

 M 

2 
( 0 , 3 ) , ( 1 , 4 ) , ( 2 , 5 ) = M 

2 
0 0 0 + 3 M 

2 
001 + 3 M 

2 
011 + M 

2 
111 . 

(6) 

This basis is not complete for the function shown in Fig. 1 

f (x, y ) = (80 x 3 + 48 xy 2 − 48 x + 18 x 2 + 6 y 2 − 6) /πχ(x 2 + y 2 ≤ 1) , 

(7) 

ith χ corresponding to the characteristic function. It has the mo- 

ents 

 11 = 1 , M 0 0 0 = 1 , (8) 

nd all other moments up to order 3 are zero. Especially, there is 

o linear component. The values of the non-vanishing invariants of 

angbein’s basis are 

 M (0 , 1) = 1 , 2 M 

2 
(0 , 2) , (1 , 3) = 1 

 M 

2 
(0 , 1) , (2 , 3) , (4 , 5) = 1 , 3 M 

2 
(0 , 3) , (1 , 4) , (2 , 5) = 1 . 

(9) 

e can determine that the zeroth and first order moments are all 

ero from the vanishing invariants, but then we have four equa- 

ions left to reconstruct 3 + 4 − 1 = 6 remaining degrees of free- 

om, which consist of the moments of orders 2 and 3 minus one 

oF for the rotational invariance. Clearly we cannot reconstruct 

hem, which shows that the set (5) is not complete for this pat- 

ern (7) . 
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Fig. 1. The function from Eq. (7) and its components visualized using colormapping. Langbein’s basis is not complete for this pattern. 

Fig. 2. The function (10) and its components visualized using colormapping. Even though the function differs clearly from Eq. (7) , the Langbein invariants are identical (9) . 

F

s

M

A  

v  

t

w

4

t

0

3

1

2

1

c

3

3

W

t

d

o

L

) 

) 

i

M

This lack of completeness can especially lead to false positives. 

or example, the function 

f (x, y ) = (80 x 3 + 48 xy 2 − 48 x + 18 y 2 + 6 x 2 − 6) /πχ(x 2 + y 2 ≤ 1) , 

(10) 

hown in Fig. 2 , has the moments 

 00 = 1 , M 0 0 0 = 1 . (11) 

ll other moments up to order 3 are zero. The values of the in-

ariants are identical to the ones (9) of the first function (7) , and

herefore the Langbein basis cannot distinguish between them and 

ould produce false positives. 

.2. 3D Example of non-flexibility 

Langbein’s basis for 3D scalar functions up to order 3 contains 

he elements 

 M , 2 M (0 , 1) , 
1 M 

2 
(0 , 1) , 

1 M 

3 M (0 , 1) , (2 , 3) , 
2 M 

2 
(0 , 2) , (1 , 3) , 

3 M 

2 
(0 , 1) , (2 , 3) , (4 , 5) , 

 M 

2 
(0 , 3) , (1 , 4) , (2 , 5) , 

1 M 

2 2 M (0 , 2) , (1 , 3) , 
1 M 

2 M 

3 M (0 , 1) , (2 , 3) , (4 , 5) , 

 M 

2 M 

3 M (0 , 3) , (1 , 4) , (2 , 5) , 
2 M 

3 
(0 , 2) , (1 , 4) , (3 , 5) , 

2 M 

1 3 M 

2 
(0 , 2) , (1 , 3) , (4 , 5) , (6 , 7) , 

 M 

1 3 M 

2 
(0 , 2) , (1 , 5) , (3 , 4) , (6 , 7) , 

2 M 

1 3 M 

2 
(0 , 2) , (1 , 5) , (3 , 6) , (4 , 7) , 

1 M 

3 3 M (0 , 3) , (1 , 4) , (2 , 5) , 

 M 

2 3 M 

2 
(0 , 2) , (1 , 3) , (4 , 5) , (6 , 7) , 

1 M 

2 3 M 

2 
(0 , 2) , (1 , 5) , (3 , 6) , (4 , 7) 

(12) 
M

4 
Especially, for a purely cubic function, all invariants are zero ex- 

ept for 

 M 

2 
( 0 , 1 ) , ( 2 , 3 ) , ( 4 , 5 ) = M 

2 
0 0 0 + M 

2 
001 + M 

2 
011 + M 

2 
111 + M 

2 
002 + M 

2 
112 + M 

2 
022 

+ M 

2 
122 + M 

2 
222 + 2 M 0 0 0 M 011 + 2 M 0 0 0 M 022 

+ 2 M 001 M 111 + 2 M 001 M 122 + 2 M 011 M 022 + 2 M 111 M 122 

+ 2 M 002 M 112 + 2 M 002 M 222 + 2 M 112 M 222 

 M 

2 
( 0 , 3 ) , ( 1 , 4 ) , ( 2 , 5 ) = M 

2 
0 0 0 + 3 M 

2 
001 + 3 M 

2 
011 + M 

2 
111 + 3 M 

2 
002 

+ 6 M 

2 
012 + 3 M 

2 
112 + 3 M 

2 
022 + 3 M 

2 
122 + M 

2 
222 (13) 

e can deduce that the moments up to rank 2 are all zero, but 

hen we are left with only two equations to reconstruct 10 − 3 = 7 

egrees of freedom corresponding to the independent moments of 

rder 3 minus the 3 DoF for the 3D rotation, which shows that 

angbein’s basis is not flexible. 

Especially, the two functions 

f 1 (x, y, z) = 

(
25 

4 
x 3 + 

9 

4 
x 2 y + 

9 

4 
x 2 z + 

15 

4 
xy 2 + xyz + 

15 

4 
xz 2 + 

3 

4 
y 3 + 

3 

4 
y 2 z 

+ 

3 

4 
yz 2 + 

3 

4 
z 3 − 15 

4 
x − 3 

4 
y − 3 

4 
z 

)
χ(x 2 + y 2 + z 2 ≤ 1) f 2 (x, y, z

= 

(
25 

4 
x 3 + 

9 

4 
x 2 y + 

9 

4 
x 2 z + 

15 

4 
xy 2 − xyz + 

15 

4 
xz 2 + 

3 

4 
y 3 

+ 

3 

4 
y 2 z + 

3 

4 
yz 2 + 

3 

4 
z 3 − 15 

4 
x − 3 

4 
y − 3 

4 
z 

)
χ(x 2 + y 2 + z 2 ≤ 1) 

(14

n Fig. 3 have the moments 

 0 0 0 = 1 , M 001 = 1 , M 002 = 1 , M 012 = 1 , 

 0 0 0 = 1 , M 001 = 1 , M 002 = 1 , M 012 = −1 , 
(15) 
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Fig. 3. The two functions from (14) cannot be distinguished by Langbein’s basis. 
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Table 2 

Summary of the numbers of independent moments of 

order o and field rank r f from Lemmata 3 and 7 and 

independent invariants of that order from Lemmata 4 

and 8 . The values are correct for ranks r = r f + o > 1 . For 

low rank exceptions, please refer to the lemmata. 

Dim. r f ind. moments ind. invariants 

2D 0 o + 1 o

1 2(o + 1) 2 o + 1 

2 4(o + 1) 4 o + 3 

3D 0 1 
2 
(o + 1)(o + 2) 1 

2 
(o + 1)(o + 2) − 3 

1 3 
2 
(o + 1)(o + 2) 3 

2 
(o + 1)(o + 2) − 3 

2 9 
2 
(o + 1)(o + 2) 9 

2 
(o + 1)(o + 2) − 3 
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t

t

f

w

g

3

i

t

z

t  

p

t

o

a

z

T

5

b

C

r

c

i  

i

ith all other moments up to order 3 being zero. They cannot be 

iscriminated by Langbein’s basis because they both satisfy 

 M 

2 
(0 , 1) , (2 , 3) , (4 , 5) = 3 , 3 M 

2 
(0 , 3) , (1 , 4) , (2 , 5) = 13 , (16) 

ith all other invariants being zero. 

.3. Analysis of the problem with flexibility 

The origin of the problem lies in the fact that independence 

nd completeness are properties that do not fully translate from 

heir theoretical, analytic forms to their evaluations using certain 

andom numbers. A set of invariants can be independent for one 

onfiguration while being dependent for another. 

Our first idea was to run Langbein’s algorithm with the mo- 

ents of the input pattern instead of random numbers, but that 

id not work. 

For example, run with the moments of the input function (7) , 

angbein’s algorithm would classify the simultaneous invariants of 

rders 2 and 3 as dependent w.r.t. the previously added homoge- 

eous invariants of orders 2 and 3. That means it is discarded even 

hough we will see that one of them contains new information in 

ection 5.5 . 

Also, it would make the method computationally prohibitive if 

he whole algorithm would have to be run every single time a pat- 

ern is searched. We have to find a method to precompute inde- 

endent invariants. 

The examples in Sections 4.1 and 4.2 highlight that the problem 

f non-flexibility comes from the simultaneous invariants, because 

hey lose their information content if one of the involved tensors 

anishes. The more different factors appear in the invariant, the 

arger the set of patterns becomes for which it becomes useless. In 

he next section, we will analyze how we can reduce the number 

f factors and specifically select the kind of factors in the simulta- 

eous invariants to avoid this problem. 

. Systematic generation of bases of moment invariants 

In this section, we will systematically analyze the numbers of 

egrees of freedom and invariants and show that it is possible to 

enerate bases that consist of homogeneous invariants and simul- 

aneous invariants with no more than two different factors. A sum- 

ary can be found in Tables 2 and 3 . 

One result is that for each pattern, there exists a complete set of 

otation invariants if the set of all tensor contractions is complete 

n the first place and we will show how to derive it. 
5 
We have seen in the motivating examples in 

ections 4.1 and 4.2 that products of moment tensors lose 

heir information if one of the factors is zero. We therefore want 

o construct bases from products that have the least amount of 

actors. The structures of Sections 5.2 and 5.3 are identical. We 

ill first compute the number of independent invariants up to a 

iven order, i.e. the number of descriptors we have to find (column 

 in Table 3 ). Then we start filling these slots with homogeneous 

nvariants (column 4 in Table 3 ). Since they have only one factor, 

hey never lose their information through a multiplication with 

ero. The difference is the number of simultaneous invariants 

hat are needed to complete the set (column 5 in Table 3 ). Every

attern that is not identically zero has one non-zero moment 

ensor. If we can fill these remaining slots with products pairing 

nly this non-zero tensor with each other tensor, then we can 

void the information loss that comes from multiplications with 

ero altogether. Exactly this is the result of Theorem 3 in 2D and 

heorem 5 in 3D. 

.1. Conjecture 

Like all tensor contraction-based algorithms, our algorithm is 

ased on the following conjecture. 

onjecture 1. The set of all contractions of a moment tensor to ze- 

oth order are a complete set of rotation/reflection invariants of the 

orresponding moments. 

We are not able to prove this property, but we could show that 

t holds up to rank 6 in 2D and rank 4 in 3D, which can be seen

n the appendix. 
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Table 3 

Summary of the numbers of independent invariants up to order o m and of field rank r f 
from Lemmata 5 and 9 , the number of independent homogenous invariants up to that 

order and their difference, i.e. the number of simultaneous invariants that need to be 

added from Lemmata 6 and 10 . The values are correct for ranks r = r f + o m > 1 . For low 

rank exceptions, please refer to the lemmata. 

Dim. r f ind. invariants ind. hom. invariants diff. 

2D 0 1 
2 
(o m + 1)(o m + 2) − 1 1 

2 
o m (o m + 1) o m − 1 

1 (o m + 1) o(o m + 2) − 1 (o m + 1) 2 o m 
2 2(o m + 1) o(o m + 2) − 1 (o + 1)(2 o + 3) o m 

3D 0 1 
6 
(o m + 1)(o m + 2) o(o m + 3) − 3 1 

6 
(o 3 m + 6 o 2 m − 7 o m ) + 2 3 o m − 4 

1 1 
2 
(o m + 1)(o m + 2) o(o m + 3) − 3 1 

2 
(o 3 m + 6 o 2 m + 5 o m + 2) 3 o m − 1 

2 3 
2 
(o m + 1)(o m + 2) o(o m + 3) − 3 3 

2 
(o m + 1) 2 (o 2 m + 4) 3 o m 
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.2. Number of independent invariants in 2D 

We will first look at tensor fields of arbitrary rank in 2D and 

how that up to a maximal order o m 

∈ N a basis can be formed

rom the homogeneous invariants plus one simultaneous invariant 

or each combination of one designated order o 0 with all other or- 

ers o i ≤ o m 

. 

emma 3 (Independent moments) . The number of independent mo- 

ents of a moment tensor of order o ≥ 0 of a two-dimensional func- 

ion with field-rank r f ≥ 0 is 2 r f (o + 1) . 

roof. A two-dimensional order o moment tensor T k 1 , ... ,k o of a 

unction with field-rank zero r f = 0 , i.e., a scalar field, is symmet-

ic. We can see from (4) that the number of independent entries 

s identical to the different ways of assigning 0 or 1 in ascending 

rder to the indices k 1 , . . . , k o . This can be encoded as the first ap-

earance of 1, for which there are o + 1 options, i.e., any of the

ndices plus the option of it not appearing at all, i.e., 

 + 

o ∑ 

i =1 

1 = o + 1 . (17) 

For any dimension d > 0 , functions with higher field-rank, e.g., 

 vector field with r f = 1 or a matrix field with r f = 2 , have d r f 

omponents. Multiplication with the degrees of freedom in each of 

heir components completes the proof. �

emma 4 (Independent hom. invariants) . The number of indepen- 

ent homogeneous invariants of a 2D moment tensor of rank r = 

 + r f > 0 with order o ≥ 0 and field-rank r f ≥ 0 is 2 r f (o + 1) − 1 . 

For r = o + r f = 0 , there is 1 homogeneous invariant. 

roof. The generation of any kind of invariance discards the num- 

er of degrees of freedom of the transformation w.r.t. which the 

nvariance is achieved. Therefore, the number of possible indepen- 

ent invariants is the number of independent moments minus the 

egrees of freedom of a rotation. 

Now the assertion follows from Lemma 3 and the fact that a 

wo-dimensional rotation has one degree of freedom. 

The exception r = 0 comes from the fact that a zeroth rank ten- 

or is invariant to orthogonal transformations. �

emma 5 (Independent invariants) . The number of independent in- 

ariants of all 2D moments up to order o m 

≥ 0 of a function with 

eld-rank r f ≥ 0 is 2 r f (o m 

+ 1)(o m 

+ 2) / 2 − 1 . 

For order o m 

= 0 , there is 1 independent invariant. 

roof. Analogous to the proof of Lemma 4 , the number of possi- 

le independent invariants is the number of independent moments 

inus the degrees of freedom of a rotation. 

We can see from Lemma 3 and straight calculation that the 

umber of independent moments up to order o m 

is 

o m 
 

o=0 

2 

r f (o + 1) = 2 

r f (o m 

+ 1)(o m 

+ 2) / 2 . (18)
6 
Again the main assertion follows from Lemma 3 and the fact 

hat a two-dimensional rotation has one degree of freedom. 

Finally the exception o m 

= 0 follows again because a zeroth 

ank tensor is invariant. �

emma 6 (Simultaneous invariants) . If we use all homogeneous in- 

ariants for a 2D function with field-rank r f > 0 , we need to add o m 

imultaneous invariants to get to the total number of independent in- 

ariants. 

For r f = 0 , i.e., scalar fields, we need to add o m 

− 1 simultaneous

nvariants. 

roof. It follows from Lemma 4 that for 2D fields with r f > 0 , the

umber of independent homogeneous invariants up to order o m 

is 

o m 
 

o=0 

2 

r f (o + 1) − 1 = (o m 

+ 1)(2 

r f (o m 

+ 2) − 2) / 2 . (19)

emma 5 shows that the difference between independent invari- 

nts and independent homogeneous invariants is 

o m 

+ 1)(o m 

+ 2) / 2 − 1 − (o m 

+ 1)(2 

r f (o m 

+ 2) − 2) / 2 = o m 

. 

(20) 

For 2D scalar fields, i.e., r f = 0 , Lemma 4 shows that the num-

er of independent homogeneous invariants up to order o m 

is com- 

osed of adding up 2 0 (o + 1) − 1 for all o > 0 plus 1 for o = 0 , i.e.,

 + 

o m ∑ 

o=1 

o = o m 

(o m 

+ 1) / 2 + 1 . (21)

rom Lemma 5 , we can then see that the difference between in- 

ependent invariants and independent homogeneous invariants is 

o m 

+ 1)(o m 

+ 2) / 2 − 1 − (o m 

(o m 

+ 1) / 2 + 1) = o m 

− 1 . (22)

�

heorem 2 (Overcomplete set) . For 2D and the maximum order 

 m 

> 0 , the smallest set that is always able to discriminate two 

unctions that differ by more than an orthogonal transformation has 

o m 

+ 1)(2 r f o m 

+ o m 

+ 2 r f +1 − 2) / 2 elements if r f > 0 . 

For r f = 0 , i.e., scalar fields, the smallest set has o 2 m 

+ 1 elements. 

roof. For r f > 0 , taking the 2 r f (o + 1) − 1 homogeneous invari-

nts from Lemma 4 plus the one simultaneous invariant for all 

ombinations of orders o i , o j results in 

o m 
 

o=0 

(2 r f (o + 1) − 1) + 

o m ∑ 

o i =0 

o m ∑ 

o j = o 1 +1 

1 = (o m 

+ 1)(2 r f o m 

+ o m 

+ 2 r f +1 − 2) / 2 . 

(23) 
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For r f = 0 , taking the 2 r f (o + 1) − 1 homogeneous invariants

rom Lemma 4 for r = o + r f > 1 plus the one simultaneous invari-

nt for all combinations of orders o i , o j > 1 results in 

o m 
 

o=1 

((o + 1) − 1) + 

o m ∑ 

o i =1 

o m ∑ 

o j = o 1 +1 

1 = o 2 m 

+ 1 . (24) 

�

heorem 3 (Flexible basis) . For 2D and any given order o 0 ≤ o m 

ith r f + o 0 > 0 , we can find a complete and independent basis us-

ng all homogeneous invariants up to order o m 

and one simultaneous 

nvariant for each combination of o 0 and o with r = r f + o > 0 . 

roof. We know from Lemma 3 that the number of independent 

oments between order o 0 plus o is 2 r f (o 0 + 1) + 2 r f (o + 1) =
 

r f (o 0 + o + 2) and from Lemma 4 for r = o + r f > 1 that the num-

er of homogeneous invariants between these orders is 2 r f (o 0 + 

) − 1 + 2 r f (o + 1) − 1 = 2 r f (o 0 + o + 2) − 2 . Considering that the

egrees of freedom of a rotation in 2D is one, there exists 

ne independent simultaneous invariant because 2 r f (o 0 + o + 2) −
2 r f (o 0 + o + 2) − 2) − 1 = 1 . 

Therefore the number of simultaneous invariants that contain 

 0 are 

o m ∑ 

 0 � = o=1 

1 = o m 

− 1 , (25) 

hich coincides with the number needed from Lemma 6 . �

.3. Number of independent invariants in 3D 

Now we will analyze the independent invariants of tensor fields 

f arbitrary rank in 3D and show that up to a maximal order o m 

, a

asis can be formed from the homogeneous invariants plus three 

imultaneous invariants for each combination of one designated or- 

er o 0 with all other orders o i < o m 

. This section follows the same

tructure as the previous one. 

emma 7 (Independent moments) . The number of independent mo- 

ents of a moment tensor of order o ≥ 0 of a 3D function with field-

ank r f ≥ 0 is 3 r f (o + 1)(o + 2) / 2 . 

roof. A 3D order o moment tensor T k 1 , ... ,k o of a function with 

eld-rank zero r f = 0 , i.e., a scalar field, is symmetric. We can see

rom (4) that the number of independent entries is identical to the 

ifferent ways of assigning 0 , 1 , or 2 in ascending order to the in-

ices k 1 , . . . , k o . This can be encoded through the first appearance

f 1 and the first appearance of 2. Let the first appearance of 1 oc-

ur at index k i with i = 1 , . . . , o, then the possible locations for the

rst appearance of 2 range from i + 1 to o. This results in 

o 
 

i =1 

o ∑ 

j= i +1 

1 = 

o 2 − o 

2 

(26) 

egrees of freedom if both appear, plus 

 

o ∑ 

j=1 

1 = 2 o (27) 

f only one of them appears, plus 1 if neither appear. From straight 

alculation follows that we have (o 2 − o) / 2 + 2 o + 1 = (o + 1)(o +
) / 2 independent moments. 

For any dimension d > 0 , functions with higher field-rank, e.g., 

 vector field with r f = 1 or a matrix field with r f = 2 , have d r f 

omponents. Multiplication with the degrees of freedom in each of 

heir components completes the proof. �

emma 8 (Independent hom. invariants) . The number of 3D inde- 

endent homogeneous invariants of a moment tensor of rank r = 
7 
 + r f > 1 with order o ≥ 0 and field-rank r f ≥ 0 is 3 r f (o + 1)(o +
) / 2 − 3 . 

For each 0 ≤ r = o + r f ≤ 1 , there is 1 homogeneous invariant. 

roof. The generation of any kind of invariance discards the num- 

er of degrees of freedom of the transformation w.r.t. which the 

nvariance is achieved. Therefore, the number of possible indepen- 

ent invariants is the number of independent moments minus the 

egrees of freedom of a rotation. 

Now the assertion follows from Lemma 7 and the fact that a 3D 

otation has three degrees of freedom. 

The exceptions 0 ≤ r ≤ 1 come from the fact that a zeroth rank 

ensor and the Euclidean norm of a first rank tensor are invariants 

o orthogonal transformations. �

emma 9 (Independent invariants) . The number of independent in- 

ariants of all moments up to order o m 

> 0 of a function with field-

ank r f ≥ 0 is 3 r f (o m 

+ 1)(o m 

+ 2)(o m 

+ 3) / 6 − 3 . 

Up to order o m 

= 0 , there is 1 and for o m 

= 1 , there are 2 inde-

endent invariants. 

roof. Analogous to the proof of Lemma 8 , the number of possi- 

le independent invariants is the number of independent moments 

inus the three degrees of freedom of a rotation. 

For o > 1 , Lemma 7 shows that the number of independent mo- 

ents up to order o m 

is 

o m 
 

o=0 

3 

r f (o m 

+ 1)(o m 

+ 2) / 2 = 3 

r f (o m 

+ 1)(o m 

+ 2)(o m 

+ 3) / 6 . 

(28) 

The exceptions 0 ≤ o ≤ 1 follow again because a zeroth rank 

ensor and the Euclidean norm of a first rank tensor are 

nvariants. �

emma 10 (Simultaneous invariants) . If we use all homogeneous in- 

ariants for a 3D function with field-rank r f > 1 , we need to add 3 o m 

imultaneous ones to get to the total number of independent invari- 

nts. 

For r f = 1 , we need 3 o m 

− 1 and for r f = 0 , we need 3 o m 

− 4 si-

ultaneous invariants. 

roof. For r f > 1 , the exception r ≤ 1 in Lemma 8 cannot occur

nd the number of independent moments up to order o m 

is 

o m 
 

o=0 

3 r f (o + 1)(o + 2) / 2 − 3 = ((o m 

+ 1)(3 r f (o 2 m 

+ 5 o 2 m 

) + 6) − 18) / 6 . 

(29) 

he difference to the total number of invariants from Lemma 9 re- 

ults in 

3 

r f (o m 

+ 1)(o m 

+ 2)(o m 

+ 3) / 6 − 3 

−((o m 

+ 1)(3 

r f (o 2 m 

+ 5 o 2 m 

) + 6) − 18) / 6 = 3 o m 

. (30) 

For r f = 1 , i.e., vector fields, we know from Lemma 8 that the

umber of independent homogeneous invariants up to order o m 

≥
 is given through summing over 1 for o m 

= 0 and 3 1 (o + 1)(o +
) / 2 − 3 for o m 

> 0 , i.e., 

 + 

o m ∑ 

o=1 

3(o + 1)(o + 2) / 2 − 3 = (o 3 m 

+ 6 o 2 m 

+ 5 o m 

+ 2) / 2 . (31)

he difference to the total number of invariants from Lemma 9 re- 

ults in 

 

r f (o m 

+ 1)(o m 

+ 2)(o m 

+ 3) / 6 − 3 − (o 3 m 

+ 6 o 2 m 

+ 5 o m 

+ 2) / 2 = 3 o m 

− 1

(32) 

nd for o m 

= 0 , we do not need any simultaneous invariants. 
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For r f = 0 , i.e., scalar fields using Lemma 8 , we know that the

umber of independent homogeneous invariants up to order o m 

> 

 is given through summing over 1 for o m 

≤ 1 and 3 0 (o + 1)(o +
) / 2 − 3 for o m 

> 1 , i.e., 

 + 1 + 

o m ∑ 

o=2 

3 

r f (o + 1)(o + 2) / 2 − 3 = o m 

(o m 

− 1)(o m 

+ 7) / 6 + 2 . 

(33) 

rivially for o m 

= 0 , we have 1 and for o m 

= 1 , we have 2. Again

emma 9 shows that the difference between independent invari- 

nts and independent homogeneous invariants up to o m 

> 1 is 

o m 

+ 1)(o m 

+ 2)(o m 

+ 3) / 6 − (o m 

(o m 

− 1)(o m 

+ 7) / 6 + 2) = 3 o m 

− 4 

(34) 

nd for o m 

≤ 1 , we do not need any simultaneous invariants. �

heorem 4 (Overcomplete set) . For 2D and the maximum order 

 m 

> 0 the smallest set that is always able to discriminate two func-

ions that differ by more than an orthogonal transformation has 

o 3 m 

+ 15 o 2 m 

− 22 o m 

+ 18) / 6 elements if r f = 0 , (o 3 m 

+ 9 o 2 m 

+ 6 o m 

+
) / 2 elements if r f = 1 , and 3 / 2(o m 

+ 1))(o 2 m 

+ 6 o m 

+ 4) elements if

 f > 1 . 

roof. For r f > 1 , the number of simultaneous invariants is given 

hrough 

o m ∑ 

 i =0 

o m ∑ 

o j = o i +1 

3 = 3 / 2 o m 

(o m 

+ 1) . (35) 

dding the number of independent homogeneous invariants from 

he proof of Lemma 10 leads to 

3 / 2 o m 

(o m 

+ 1) + (o m 

+ 1)(3 

r f (o 2 m 

) + 5 o 2 m 

) + 6) − 18) / 6 

= 3 / 2(o m 

+ 1))(o 2 m 

+ 6 o m 

+ 4) . (36) 

For r f = 1 , i.e., vector fields, the number of simultaneous invari- 

nts is given through 

o m 
 

o=1 

2 + 

o m ∑ 

o i =1 

o m ∑ 

o j = o i +1 

3 = 1 / 2 o m 

(3 o m 

+ 1) . (37)

dding the number of independent homogeneous invariants from 

he proof of Lemma 10 leads to 

 / 2 o m 

(3 o m 

+ 1) + (o 3 m 

+ 6 o 2 m 

+ 5 o m 

+ 2) / 2 = (o 3 m 

+ 9 o 2 m 

+ 6 o m 

+ 2) / 2 . 

(38) 

For r f = 0 , i.e., scalar fields, the number of simultaneous invari- 

nts is given through 

o m 
 

o=2 

2 + 

o m ∑ 

o i =2 

o m ∑ 

o j = o i +1 

3 = (o m 

− 1)(3 o m 

− 2) / 2 . (39) 

dding the number of independent homogeneous invariants from 

he proof of Lemma 10 leads to 

(o m 

− 1)(3 o m 

− 2) / 2 + o m 

(o m 

− 1)(o m 

+ 7) / 6 + 2 

= (o 3 m 

+ 15 o 2 m 

− 22 o m 

+ 18) / 6 . (40) 

�

heorem 5 (Flexible basis) . For 3D and any given order o 0 ≤ o m 

ith r 0 = r f + o 0 > 1 , we can find a complete and independent basis

sing all homogeneous invariants up to order o m 

and three simulta- 

eous invariants for each combination of o 0 and o with r = r f + o > 1

nd two simultaneous invariants for the combination of o 0 and o with 

 = r f + o = 1 . 

roof. We know from Lemma 7 that the number of independent 

oments of order o is 3 r f (o + 1)(o + 2) / 2 and of order o is
0 0 0 

8 
 

r f (o + 1)(o + 2) / 2 and from Lemma 8 that the numbers of cor-

esponding homogeneous invariants are 3 r f (o 0 + 1)(o 0 + 2) / 2 − 3 

nd 3 r f (o + 1)(o + 2) / 2 − 3 for r = o + r f > 1 . Considering that the

egrees of freedom of a rotation in 3D is three, we know that 

here exist three independent simultaneous invariants because 

 

r f (o 0 + 1)(o 0 + 2) / 2 + 3 r f (o + 1)(o + 2) / 2 − (3 r f (o 0 + 1)(o 0 + 

) / 2 − 3 + 3 r f (o + 1)(o + 2) / 2 − 3) − 3 = 3 . 

If r f > 1 , all r = o + r f > 1 and therefore the number of simul-

aneous invariants that contain o 0 are 

o m ∑ 

 0 � = o=0 

3 = 3 o m 

, (41) 

f r f = 1 , we have r = o + r f = 1 for o = 0 and therefore the number

f simultaneous invariants that contain o 0 are 

o m ∑ 

 0 � = o=1 

3 + 2 = 3(o m 

− 1) + 2 = 3 o m 

− 1 (42) 

f r f = 0 , we have r = o + r f = 1 for o = 1 and therefore the number

f simultaneous invariants that contain o 0 are 

o m ∑ 

 0 � = o=2 

3 + 2 = 3(o m 

− 2) + 2 = 3 o m 

− 4 . (43)

ll three cases coincide with the number needed from Lemma 10 , 

hich completes the proof. �

.4. Algorithm 

Our algorithm follows the main idea from Bujack et al. [4] . In 

 nutshell, we will first use all possible independent homogeneous 

nvariants and then add simultaneous invariants between the low- 

st order tensor that is significantly different from zero o 0 M >> 0 

aired with all other tensors. 

Explicitly for a given maximum order o m 

, we precompute the 

vercomplete set of invariants from Theorems 2 and 4 that con- 

ains all homogeneous invariants and for each pair of moments 

 i , o j ≤ o m 

the simultaneous invariants that are independent of the 

omogeneous moments and to each other using the algorithm by 

angbein and Hagen [3] . We provide the overcomplete set in the 

ppendix up to rank 6 in 2D and up to rank 4 in 3D. 

Please remember that the overcomplete set is not a basis 

ecause the simultaneous invariants are not mutually indepen- 

ent but only independent within each pair o i , o j . Comparing 

heorems 2 and 4 to Lemmata 5 and 9 shows that the number 

f elements of the overcomplete set is larger than the number of 

lements of a basis. 

Then, to compose the flexible bases, we start with the 

vercomplete set and kick out all simultaneous invariants that 

o not contain the chosen non-zero moments of order o 0 . 

heorems 3 and 5 prove that this method indeed produces the cor- 

ect number of independent invariants. 

Now we will discuss how to select o 0 for a given pattern. To 

ake the basis robust, it should use low order moments rather 

han higher order moments and avoid moments that are close to 

ero. We measure the magnitude of a moment tensor through the 

verage magnitude of its entries 

 

o M‖ = 

1 
n + m + o 

3 ∑ 

i 1 ... i n , j 1 ... j m ,k 1 ... k o =1 

| o M 

i 1 ... i n k 1 ... k o 
j 1 ... j m 

| (44) 

nd during runtime, we select o 0 as the lowest order moment ten- 

or satisfying o + r f ≥ 1 whose norm is above average, i.e., 

 0 = argmin 

o≤o m ,r= o+ r f > 1 
‖ 

o M‖ > 

1 
o m +1 

o m ∑ 

o=0 

‖ 

o M‖ . (45) 
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hen, the basis is given through all precomputed homgeneous plus 

imultaneous invariants of orders o 0 , o, where o 0 � = o = 0 , . . . , o m 

. 

For the actual pattern matching, we compute the moments of 

he pattern and the field, select the significantly non-zero moment 

 0 of the pattern, evaluate the corresponding basis, take the r-th 

oot of each element with r being the rank of the tensor product 

t consists of to balance the contribution between different ranks, 

nd use the reciprocal of the Euclidean distance of the descriptor 

ector as similarity. Please note that the Euclidean distance is not 

ecessarily the optimal measures of similarity, but many others are 

ossible, for example the Mahalanobis distance [30] . 

.5. 2D Example of flexibility 

In this section, we will demonstrate that our algorithm applied 

o the example pattern from Section 4.1 is complete. Up to order 3 

n 2D, the homogeneous invariants are: 

0 M = M 

1 M 

2 
( 0 , 1 ) = M 

2 
0 + M 

2 
1 

2 M ( 0 , 1 ) = M 00 + M 11 

2 M 

2 
( 0 , 2 ) , ( 1 , 3 ) = M 

2 
00 + 2 M 

2 
01 + M 

2 
11 

3 M 

2 
( 0 , 1 ) , ( 2 , 3 ) , ( 4 , 5 ) = M 

2 
0 0 0 + M 

2 
001 + M 

2 
011 + M 

2 
111 

+ 2 M 0 0 0 M 011 + 2 M 001 M 111 

3 M 

2 
( 0 , 3 ) , ( 1 , 4 ) , ( 2 , 5 ) = M 

2 
0 0 0 + 3 M 

2 
001 + 3 M 

2 
011 + M 

2 
111 

 M 

4 
( 0 , 3 ) , ( 1 , 6 ) , ( 4 , 7 ) , ( 2 , 9 ) , ( 5 , 10 ) , ( 8 , 11 ) = M 

4 
0 0 0 + 3 M 

4 
001 + 3 M 

4 
011 + M 

4 
111 

+ 4 M 0 0 0 M 

3 
011 + 6 M 

2 
0 0 0 M 

2 
001 

+ 12 M 

2 
001 M 

2 
011 + 4 M 

3 
001 M 111 

+ 6 M 

2 
011 M 

2 
111 + 12 M 0 0 0 M 

2 
001 M 011 

+ 12 M 001 M 

2 
011 M 111 . 

(46) 

ince the non-zero moments are M 11 and M 0 0 0 , the algorithm se- 

ects the lower rank o 0 = 2 . The simultaneous invariants that re- 

ain after removing all that do not contain order 2 are as follows. 

1 M 

2 2 M ( 0 , 2 ) , ( 1 , 3 ) = M 

2 
0 M 00 + M 

2 
1 M 11 + 2 M 0 M 1 M 01 

 M 

1 3 M 

2 
( 0 , 2 ) , ( 1 , 3 ) , ( 4 , 5 ) , ( 6 , 7 ) = M 00 M 

2 
0 0 0 + M 00 M 

2 
001 + M 11 M 

2 
011 

+ M 11 M 

2 
111 + M 00 M 0 0 0 M 011 

+ M 00 M 001 M 111 + 2 M 01 M 0 0 0 M 001 

+ 4 M 01 M 001 M 011 + 2 M 01 M 011 M 111 

+ M 11 M 0 0 0 M 011 + M 11 M 001 M 111 . 

(47) 

he basis comprises the homogeneous (46) and simultaneous in- 

ariants (47) . They take the values 

 M = 0 , 2 M 

2 
(0 , 2) , (1 , 3) = 1 , 3 M 

2 
(0 , 1) , (2 , 3) , (4 , 5) = 1 , 

 M 

2 
(0 , 1) = 0 , 3 M 

2 
(0 , 1) , (2 , 3) , (4 , 5) = 1 , 1 M 

22 M (0 , 2) , (1 , 3) = 0 , 

 M (0 , 1) = 1 , 3 M 

2 
(0 , 3) , (1 , 4) , (2 , 5) = 1 , 2 M 

13 M 

2 
(0 , 2) , (1 , 3) , (4 , 5) , (6 , 7) = 0 . 

(48) 

nalogous to Flusser [6] , we remove the one degree of freedom 

hat refers to the rotational invariance by fixing one moment’s 

egree of freedom. Without loss of generality, we select to set 

 0 0 0 = 1 so that we can keep the calculation simple. All correct 

alues follow from straight calculation solving for 10 − 1 = 9 un- 

nowns in 9 equations. We will provide a sketch. With M 0 0 0 = 1 ,

t follows from the three 3rd order homogeneous invariants that 

 001 = M 011 = M 111 = 0 . Inserting these values into the simultane- 

us invariant of orders 2 and 3 immediately gives M = 0 , which
00 

9 
eads to M 11 = 1 , M 01 = 0 using the two 2nd order homogeneous

nvariants. Finally M 0 = 0 follows from the simultaneous invariant 

f orders 1 and 2, M 1 = 0 from 1st order homogeneous invariant, 

nd M = 0 was clear from the start. 

Especially, the flexible basis is able to discriminate the func- 

ions (7) and (10) from Fig. 2 , because the simultaneous in- 

ariant of orders 2 and 3 differs with the prior sufficing 
 M 

1 3 M 

2 
(0 , 2) , (1 , 3) , (4 , 5) , (6 , 7) = 0 and the latter being 1. 

.6. 3D Example of flexibility 

Analogously, the flexible basis is able to discriminate the two 

atterns from Section 4.2 . For example, it contains the higher fac- 

or homogeneous invariant 3 M 

4 
(0 , 1) , (2 , 3) , (4 , 6) , (5 , 7) , (8 , 9) , (10 , 11) , which 

akes the value 27 for f 1 from Equation (14) , but the value 11 for

f 2 . The full basis can be found in the appendix. 

.7. Exceptions 

In all of our experiments using real data, we have never en- 

ountered a case where no such o 0 different from zero could be 

ound. In theory, it can happen for two possible reasons though. 

1) The pattern does not differ from zero for all moments up to 

 m 

. In this case, we consider the function to be zero and there- 

ore fully rotationally invariant. (2) We have the case of a 3D scalar 

eld, r f = 0 , and the only non-zero tensor is 1 T . This function is ro-

ationally symmetric along one axis. The degrees of freedom of a 

otation of this type of function are only two and either choice of 

 0 works just fine. 

In both cases, we can choose o 0 arbitrarily or use the full pre- 

omputed, overcomplete set to ensure that every function can be 

istinguished from the pattern. 

Please note that the overcomplete set will always work and can 

e used for simplicity if performance is not an issue. 

.8. Size of the problem 

The algorithm by Langbein and Hagen [3] is still a crucial com- 

onent inside our algorithm to check for the independence of the 

nvariants, but the systematic approach reduces the size of the 

roblem in theory. 

The original algorithm required triangulating matrices of size 

 i × n m 

with the number of moments n m 

= 2 r f (o m 

+ 1)(o m 

+ 2) / 2

n 2D and n + m = 3 r f (o m 

+ 1)(o m 

+ 2)(o m 

+ 3) / 6 in 3D. Now we

now that we can decompose the problem into many smaller ones 

f sizes n m 

= 2 r f (o + 1) in 2D and n m 

= 3 r f (o + 1)(o + 2) / 2 in 3D

or the homogeneous invariants. In 2D, the problem for the si- 

ultaneous invariants disappears completely, because we know 

e need only one. In 3D, the matrices reduce to n m 

= 3 r f ((o 0 +
)(o 0 + 2) + (o + 1)(o + 2)) / 2 . Also the number of potential can-

idates of invariants n i to fill up the matrix rows is reduced be- 

ause only tensor products with one or two different types of fac- 

ors have to be taken into account. 

In practice, for the orders that we computed, Langbein’s ba- 

is could be found faster though. Since both algorithms terminate 

hen the number of required invariants are found, the factor dom- 

nating the computation time is the number of invariants that ac- 

ually get tested and their sizes. Langbein’s algorithm is efficient 

.r.t. this number because it sorts the candidates by the number of 

actors and will find enough small simultaneous invariants before 

aving even to check the large homogeneous ones that are neces- 

ary to ensure flexibility. The times of the precomputation can be 

ound in the appendix. 
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Fig. 4. The two patterns used for the experiment visualized through line integral convolution (LIC) [32] and velocity magnitude through color coding. 
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.9. Implementation 

We provide an open source implementation of the algorithms 

hrough the Visualization Toolkit VTK [31] . The moment invariants 

odule ( gitlab.kitware.com/vtk/MomentInvariants ) is used for pat- 

ern detection and can be run using the method suggested by Bu- 

ack et al. [2] , the method suggested by Langbein and Hagen [3] ,

r the method suggested in this paper. The derivation of the inde- 

endent homogeneous invariants is very time consuming for high 

anks, which is why we separate it from the main pattern detec- 

ion algorithm, where we use the hard-coded invariants. 

. Experiments 

We will demonstrate the difference between the flexible basis 

nd Langbein’s basis on two real world datasets. 
ig. 5. Comparison of the pattern detection results on the velocity of a fluid dynamics si

imilarity is color coded using the heated body map and transparency on top with 0 bei

annot distinguish the two patterns and returns approximately the same similarity for bot

han the wrong pattern. (For interpretation of the references to colour in this figure legen

10 
Please note that the two algorithms produce very similar results 

or most real world patterns. In order to show cases where they 

iffer noticeably, we explicitly chose locations in the datasets that 

ave a very small rank one component. 

.1. 2D Vector 

Fig. 5 shows one timestep of a hydrodynamics simulation of 

 von Kármán vortex street. This flow behavior is the result of a 

aminar fluid being forced around an obstacle, which periodically 

heds vortices in alternating orientation in its wake. We cut out a 

attern with small first rank moments from the 2D vector-valued 

ataset, Fig. 4 , rotate it, and let the algorithm look for it in the full

ataset. 

We can see in the top row of Fig. 5 that both bases, Lang-

ein’s and ours, have no problem detecting the correct location of 
mulation. The velocity field is visualized using LIC in green in the background. The 

ng fully transparent and 2 e 5 being completely opaque. The algorithm by Langbein 

h, while our flexible algorithm detects the correct pattern about 10 K times stronger 

d, the reader is referred to the web version of this article.) 

https://gitlab.kitware.com/vtk/MomentInvariants


R. Bujack, X. Zhang, T. Suk et al. Pattern Recognition 123 (2022) 108313 

Fig. 6. Average normalized similarity of 10 randomly cut out patterns depending on added uniform noise in [ −1 , 1] multiplied with the values on the x-axis shows that 

both bases behave similar in most cases. 
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Fig. 7. The dataset and pattern visualized using color coding on the surface. 

Fig. 8. The patterns used for the 3D experiment visualized with nested isosurfaces. 

fl

t

v

b

he pattern independent of the new orientation. To demonstrate 

he difference in their behavior, we let them look for a different 

attern, Fig. 4 b, which does not occur in the dataset, but has the 

ame homogeneous invariants as the cut out pattern, Fig. 4 a. Please 

ote the different velocity magnitudes. We see that Langbein’s ba- 

is cannot discriminate the two patterns, while our flexible basis 

learly does in the lower row of Fig. 5 . 

To show that both algorithms behave comparably in most set- 

ings, we cut out 10 patterns randomly selected from the dataset 

nd compare the similarity by which each basis detects them for 

ank 3 when they get distorted with increasing amounts of uni- 

orm random noise. We normalize the similarity with noise in 

0 −3 [ −1 , 1] to one so that the graphs of the different bases are

irectly comparable. The average results of 500 repetitions can be 

ound in Fig. 6 . 

.2. 3D Scalar 

For this example, we use the velocity magnitude of one 

imestep of the homogeneous buoyancy driven turbulence 

ataset [33,34] . It is produced by Los Alamos National Labo- 

atory’s Direct Numerical Simulation (DNS) code and is available 

t Johns Hopkins Turbulence Database [35,36] . For this simulation, 

wo fluids are initialized randomly at rest and later mix due to 

ravity and differential buoyancy forces. 

We cut out a pattern with small moments of orders 1 and 2 

rom the 3D scalar-valued dataset, as shown in Fig. 7 . Then, analo- 

ously to the example in Section 4.2 , we construct a false pattern 

y replacing the value of M 012 with its negative. We rotate the pat- 

erns, and let the algorithms look for them in the original dataset. 

Fig. 9 compares the results of the Langbein basis and the flexi- 

le basis for the reconstructed pattern, whose moments up to or- 

er 3 coincide with one location in the data, and the false pat- 

ern, differing in the sign of M 012 = −0 . 0 0 05 . The little outlined

ube shows the correct location of the cut out pattern, which is 

orrectly detected by both algorithms. The algorithm by Langbein 

as a hard time distinguishing the two patterns even though the 

rst order moments do not vanish completely, but are in the range 

f 0.0 0 05, same as M 012 and only one order of magnitude smaller

han the largest moment of this pattern. In contrast to that, the 
11 
exible basis detects the correct pattern about 30 times stronger 

han the wrong pattern. 

As mentioned before, the degenerate cases in which moments 

anish completely are rare in real world data. In normal settings, 

oth bases behave similar, Fig. 6 (b). 
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Fig. 9. Comparison of the pattern detection results on the velocity magnitude of the DNS simulation visualized with volume rendering. The similarity is color coded using 

the heated body map and transparency on top with 0 being fully transparent and 59 M being fully opaque. 

7

m

t

3

s

t

n

a

c

a

p

t

s

w

T

a

b

t  

r

i

t

p

m

a

i

o

a

m

f

l

D

c

i

A

u

P

S

f

R

 

 

 

 

 

 

[

 

[

. Discussion and conclusion 

We have presented a systematic approach to find bases of mo- 

ent invariants with respect to orthogonal transformations using 

he generator method for scalar, vector, and tensor fields in 2D and 

D. 

Provided that our conjecture holds, i.e., that the set of all ten- 

or contractions is complete, we showed that it is always possible 

o construct a basis using all homogeneous invariants and simulta- 

eous invariants with no more than two different moment tensors 

nd with one of the factors fixed per pattern. 

This result is very important from a theoretical perspective be- 

ause it reveals the structural similarity between the 3D generator 

pproach and the first complete and independent 2D generator ap- 

roach for scalar fields by Flusser [6] , which also uses products of 

ensors of only two different orders. It also reveals a stronger than 

o far expected similarity to the 3D normalization approach [2] , 

hich also used one fixed normalizer, i.e., two different factors. 

he normalization approach and the generator approach have their 

dvantages and disadvantages. We hope that an optimal basis can 

e constructed when we understand how to express one through 

he other [4] and consider the results of this work a step in the

ight direction. 

The implications are also of a practical nature. Instead of check- 

ng for independence across all orders, we are able to decompose 

he problem into many smaller ones, which can be solved inde- 

endent of each other. Further, the property that the needed si- 

ultaneous invariants can be formed with one of the factors fixed 

llows for a flexible algorithm that is always fully discriminative, 

ndependent of the shape of the input pattern. 

We would like to point out though that vanishing moments 

ccur far less in patterns cut out from real world data than for 

nalytical patterns, which makes Langbein’s basis work reliable in 

ost of these cases. For a normal distribution of moments, it runs 

aster because it makes use of invariants from moment products of 

ower order and with fewer factors. 
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