

Declaration:

Hereby I declare that I have prepared my doctoral thesis independently based on

the sources mentioned in bibliography.

I have no relevant reason against using this work according to Copyright Act

(§ 60 Zákona č. 121/2000 Sb.).

In Prague _____________ _________________

 Ing. Raissa Likhonina

Acknowledgement

I would like to acknowledge and to express my gratitude to my supervisor

doc. Ing. Evženie Uglickich, CSc. and Ing. Jiří Kadlec, CSc., the head of the signal

processing department of ÚTIA AV ČR, v.v.i., for their help, useful comments,

valuable advices and engagement through the research process.

I would like to thank doc. Ing. Ivan Nagy, CSc. and my colleagues for their support

and useful comments during my work on the thesis.

I would like to greatly thank my parents and my sister for their support and patience

during my studies.

The thesis has been supported by the following projects:

- ECSEL project SILENSE “(Ultra)Sound Interfaces and low Energy iNtegrated

Sensors”, Project No.: ECSEL 737487, MSMT 8A17006.

- ECSEL project StorAIge “Embedded storage elements on next MCU generation

ready for AI on the edge”, Project No.: ECSEL 101007321, MSMT 8A21009

TITLE: Fast Bayesian Algorithms for FPGA Platforms

AUTHOR: Ing. Raissa Likhonina

DEPARTMENT: Department of Applied Mathematics, K611

held in ÚTIA AV ČR, v.v.i., Department of Signal Processing, under supervision

of Ing. Jiří Kadlec, CSc.

BRANCH OF STUDY: Engineering Informatics in Transportation and

Telecommunications

SUPERVISOR: doc. Ing. Evženie Uglickich, CSc., Department of Applied

Mathematics, Faculty of Transportation Sciences, Czech Technical University in Prague

ABSTRACT:

The thesis is devoted to fast Bayesian algorithms, more precisely to the QRD RLS

Lattice algorithm combined with hypothesis testing and applied to hand detection

problem solution based on ultrasound technology. Due to the proposed structure

of regression models and the offered approach to hypothesis testing in the work,

the algorithm under consideration is able to solve the problem of noise cancellation and

additionally to compute the distance between the hand and the device; thus, potentially

enabling to identify simple gestures. Further, the algorithm was implemented in parallel

on the HW platform of Xilinx Zynq Ultrascale+ device with a quad-core ARM Cortex

A53 processor and FPGA programmable logic and proved to function reliably and

accurately in real time using real data from an ultrasound microphone.

The work contains an investigation of the state of the art in the corresponding field and

gives the theoretical background necessary for the development and modification

of the algorithm to fulfill the goals of the thesis.

The thesis also includes thorough description of experiments and an analysis

of the results including those from simulation and from computation using real

ultrasound data both in the MATLAB R2019b environment and on the HW platform

of Xilinx Zynq Ultrascale+.

KEYWORDS: RLS algorithms, FIR filters, hypothesis testing, Bayesian approach,

FPGA, parallel processing, pipelining, ultrasound, hand detection

NÁZEV: Rychlé algoritmy Bayesovského rozhodování pro FPGA platformy

AUTOR: Ing. Raissa Likhonina

ÚSTAV: Ústav aplikované matematiky, K611

řešená v ÚTIA AV ČR, v.v.i., oddělení zpracování signálů, pod vedením

Ing. Jiří Kadlec, CSc.

OBOR: Inženýrská informatika v dopravě a spojích

VEDOUCÍ PRÁCE: doc. Ing. Evženie Uglickich, CSc., Ústav aplikované matematiky,

Fakulta dopravní, České vysoké učení technické v Praze

ABSTRAKT:

Disertační práce je věnována rychlým algoritmům Bayesovského rozhodování, přesněji

řečeno QRD RLS Lattice algoritmu s testováním hypotéz, který byl aplikován na řešení

problému detekce ruky na základě ultrazvukové technologie. Během výzkumu

se ukázalo, že je potřeba navrhnout strukturu regresních modelů a přistupovat

k testování hypotéz určitým způsobem pro zvolený případ, tj. aby algoritmus byl

schopen potlačit šum a navíc vypočítat vzdálenost ruky od zařízení, což by potenciálně

umožnilo identifikovat jednoduchá gesta. Dalším cílem bylo implementovat algoritmus

na HW platformě za použitím reálných dat z ultrazvukových mikrofonů. Algoritmus byl

implementován na zařízení Xilinx Zynq Ultrascale+ s programovatelnou logikou FPGA

a běží paralelně na jeho čtyřjádrovém procesoru ARM Cortex A53. Algoritmus byl

zatím implementován na FPGA programovatelné logice. Během experimentů

se ukázalo, že algoritmus funguje spolehlivě a přesně v reálném čase s využitím

reálných dat z ultrazvukového mikrofonu.

Práce obsahuje zkoumání současného stavu problematiky v příslušném oboru

a poskytuje teoretické podklady nezbytná pro vývoj a modifikaci algoritmu pro splnění

cílů práce.

Součástí práce je také důkladný popis experimentů a analýza výsledků ze simulace

a z výpočtu za využitím skutečných ultrazvukových dat jak v prostředí MATLAB

R2019b, tak i na HW platformě Xilinx Zynq Ultrascale+.

KLÍČOVÁ SLOVA: RLS algoritmy, FIR filtry, testování hypotéz, Bayesovský

přístup, FPGA, paralelní zpracování, pipelining, ultrazvuk, detekce ruky

11

CONTENT

Glossary…………………………………………………………………… 13

List of Figures……………………………………………………………... 17

List of Tables……………………………………………………………… 21

Introduction…………………………………………………………………….. 23

1. Mathematical Methods, Tools and Techniques……………………............ 39

1.1. Bayesian Approach to System Identification: Estimation of the Model

Parameters………………………………………………….............................

39

1.2. Hypothesis Testing about the Order of a Regression Model……………. 44

1.3. Types of the RLS Algorithms……..…………………………………….. 46

1.4. QRD RLS Lattice Algorithm and Hypothesis Testing…………………... 49

1.5. FPGA, Tools and Techniques…………………………………………… 50

1.6. Results and Related Publications……………………………………....... 54

2. Algorithm Implementation in the MATLAB R2019b Environment…….. 57

2.1. Simulation in MATLAB R2019b……………………..……………......... 57

2.1.1. Experiments with the QRD RLS Lattice Algorithm…………........ 57

2.1.2. Comparison of Computation Results of the QRD RLS Algorithm

and the QRD RLS Lattice Algorithm…………………………………….

66

2.2. Experiments with Real Data……………………………………………... 68

2.2.1. Experimental Results Using the QRD RLS Lattice Algorithm....... 68

2.2.2. Comparison of Computation Results of the QRD RLS Algorithm

and the QRD RLS Lattice Algorithm…………………………………….

83

2.3. Discussion……………………………………………………………….. 85

2.4. Results and Related Publications…………………………………….......

86

12

3. Algorithm Optimization on a PC…………………………………………... 91

3.1. Batch Version of the Algorithm…………………………………………. 91

3.2. Pipelining and Parallel Processing………………………………………. 93

3.3. Parallel Computing Toolbox in MATLAB R2019b………….…………. 95

3.4. Results and Related Publications……………………………………....... 105

4. Algorithm Implementation on the Xilinx Zynq Ultrascale+ Cortex A53

ARM 4 Cores, 1.05 GHz Platform………………………………………….

107

4.1. Trenz Electronic Platform Description………………………………….. 107

4.2. Algorithm Implementation on the Xilinx Zynq Ultrascale+ Cortex A53

ARM Processor, 4 Cores, 1.05 GHz………………………………………….

111

4.3. Algorithm Implementation in the FPGA Programmable Logic…………. 118

4.3.1. FPGA Accelerators……………………………………………….. 118

4.3.2. Algorithm Implementation in the FPGA Logic Part

of the Device……………………………………………………………..

123

4.3.3. Portability to Different Platforms…………………………………. 138

4.4. Results and Related Publications……………………………………....... 140

Conclusion………………………………………………………………………. 143

Potential Applications………………………………………………………….. 149

Future Prospects……………………………………………………………….. 151

Bibliography……………………………………………………………………. 153

Appendices……………………………………………………………………… 163

Appendix 1…………………………………………………………………... 165

Appendix 2…………………………………………………………………... 171

13

GLOSSARY

Abbreviation Definition

ASIC Application Specific Integrated Circuits

BRAM Block Random Access Memory

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide Semiconductor

CPU Central Processing Unit

DAS Delay-And-Sum

DDR Double Data Rate

DF Directional Forgetting

DMA Direct Memory Access

DP Double Precision

DPU Data Processing Unit

DSP Digital Signal Processing

EF Exponential Forgetting

FIFO First In First Out

FIR Finite Impulse Response

FP Floating Point

FPGA Field Programmable Gate Array

FSM Finite State Machine

FTF Fast Transversal Filter

GUI Graphic User Interface

14

HDL Hardware Description Language

HLS High Level Synthesis

HMI Human-Machine Interface

HT Householder Transformation

HW HardWare

IC Integrated Circuits

I/O Input/Output

IP cores Intellectual Property cores

LAB Logic Array Block

LS Least Squares

LMS Least Mean Squares

LUT LookUp Table

MIMO Multiple-Input-Multiple-Output

MMC MultiMediaCard

MPSoC MultiProcessor System on Chip

NLMS Normalized Least Mean Squares

PC Personal Computer

PCI Peripheral Component Interconnect

PCM Pulse-Code Modulation

PLL Phase-Locked Loop

QRD QR Decomposition

QRD-LSL QRD Least Squares Lattice

RAM Random Access Memory

RLS Recursive Least Squares

RTL Register-Transfer Level

RMS Route Mean Square

15

SDK Software Development KIT

SDSoC Software Development System on Chip

SFG Signal-Flow Graph

SILENSE (ultra)Sound Interfaces and Low Energy iNtegrated Sensors

SIMD Single-Instruction-Multiple-Data

SISD Single-Instruction-Single-Data

SISO Single-Input-Single-Output

SoC System on Chip

SoM System on Module

SP Single Precision

SRAM Static Random Access Memory

SRC Square-Root Covariance

SRI RLS Square-Root Information Recursive Least Squares

SVM Support Vector Machine

SW SoftWare

TD Time Delay

TTL Time-To-Live

URAM Ultra Random Access Memory

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLIW Very Large Instruction Word

VLSI Very-Large-Scale-Integration

16

17

LIST OF FIGURES

Figure 1: Thin flexible foil with a matrix of ultrasound transceivers for gesture

recognition…………………………………………………………………………

24

Figure 2: Example of a hand detection application……………………………….. 25

Figure 1.1: FPGA architecture……………………………………………………. 51

Figure 2.1: Block diagram………………………………………………………… 59

Figure 2.2: Hypothesis testing model…………………………………………….. 60

Figure 2.3: Input signal…………………………………………………………… 61

Figure 2.4: Simulation results: a time-invariant environment model……………... 63

Figure 2.5: Simulation results: a time-invariant environment model

(detailed fragment)………………………………………………………………...

64

Figure 2.6: Simulation results: a time-variant environment model……………….. 65

Figure 2.7: Simulation results: a time-variant environment model (detailed

fragment)…………………………………………………………………………..

65

Figure 2.8: Results of the estimation process using the QRD RLS

algorithm…………………………………………………………………………..

66

Figure 2.9: Results of the estimation process using the QRD RLS Lattice

algorithm…………………………………………………………………………..

67

Figure 2.10: ÚTIA evBoard with the FPGA module and the carrier

board……………………………………………………………………………….

69

Figure 2.11: ÚTIA FPGA implementation of the beam-former accelerators…….. 70

Figure 2.12: Raw uncompressed output signal from the ultrasound device……… 71

Figure 2.13: Raw uncompressed output signal from the ultrasound device

(without cross-talks)……………………………………………………………….

71

18

Figure 2.14: QRD RLS Lattice principle…………………………………………. 72

Figure 2.15: Raw compressed output signal from the ultrasound device………… 73

Figure 2.16: Fragment of the output signal……………………………………….. 73

Figure 2.17: Input reconstruction…………………………………………………. 74

Figure 2.18: Input signal………………………………………………………….. 74

Figure 2.19: Output signal………………………………………………………… 75

Figure 2.20: Estimation results using the QRD RLS Lattice algorithm

(simulation with real data parameters)…………………………………………….

77

Figure 2.21: Block diagram……………………………………………………….. 77

Figure 2.22: Hand detection………………………………………………………. 79

Figure 2.23: Hand detection (filtration errors)……………………………………. 80

Figure 2.24: Distance computation……………………………………………….. 80

Figure 2.25: Hand distances (the uncompressed signal)………………………….. 81

Figure 2.26: Hand distances (the compressed signal)…………………………….. 82

Figure 2.27: Estimation results using the QRD RLS algorithm…………………... 83

Figure 2.28: Estimation results using the QRD RLS Lattice algorithm…………... 84

Figure 3.1: QRD RLS Lattice algorithm – SP arithmetic………………………… 92

Figure 3.2: Block diagram of the pipelining process……………………………... 93

Figure 3.3: Block diagram of the parallel processing…………………………….. 94

Figure 3.4: Parallel processing in MATLAB R2019b….………………………… 96

Figure 3.5: Parallel processing (2 processor cores)……………………………….. 97

Figure 3.6: Parallel processing (4 processor cores)……………………………….. 98

Figure 3.7: Parallel processing (4 processor cores, 8 processes)…………………. 98

Figure 3.8: Parallel processing (8 processor cores)……………………………….. 99

Figure 3.9: State parameter transmission…………………………………………. 100

Figure 3.10: Data transfer for the parallel processing…………………………….. 101

19

Figure 3.11: Time needed for the algorithm computation given a different

number of processors………………………………………………………………

102

Figure 3.12: Number of operations per second given a different number

of processors…...

104

Figure 4.1: Trenz Electronic TE0808 MPSoC module…………………………… 108

Figure 4.2: Trenz Electronic TEBF0808 carrier board…………………………… 109

Figure 4.3: Prototype for the QRD RLS Lattice algorithm computation…………. 110

Figure 4.4: Computational time and MFLOP/s for different core versions

of the algorithm (SP FP arithmetic, ns=1000)…………………………………...

114

Figure 4.5: Computational time for four core version of the algorithm given SP

FP arithmetic………………………………………………………………………

115

Figure 4.6: Ping-pong data sharing……………………………………………….. 116

Figure 4.7: Zynq Ultrascale+ SoC with eight 8xSIMD HW accelerators………… 120

Figure 4.8: Run-up – parallel computation – wind-up……………………………. 123

Figure 4.9: Block diagram of the computation process…………………………… 125

Figure 4.10: 8 SIMD HW accelerator layers……………………………………… 129

Figure 4.11: MOVE kernel………………………………………………………... 130

Figure 4.12: Data sharing via memory_move…………………………………….. 132

Figure 4.13: Computation of one step of the inner for-cycle……………………... 133

Figure 4.14: Performance comparison in terms of the computational time………. 135

Figure 4.15: Performance comparison in terms of MFLOP/s…………………….. 135

Figure 4.16: Current, voltage and power in a stand-by mode…………………….. 137

Figure 4.17: Current, voltage and power during the computation in SP………….. 138

Figure A.1: Example of a nested order……………………………………………. 165

Figure A.2: QRD RLS Lattice algorithm…………………………………………. 175

20

21

LIST OF TABLES

Table 2.1: Hand distances………………………………………………………….. 82

Table 2.2: Comparison of the algorithms in terms of their computational

time………………………………………………………………………………….

86

Table 3.1: Number of operations per second (for N=528000)……………………... 102

Table 3.2: Computational time (DP arithmetic) (for N divided into smaller parts)... 103

Table 3.3: Computational time (SP FP arithmetic) (for N divided into smaller

parts)………………………………………………………………………………...

103

Table 3.4: Number of operations per second for the algorithm in the DP

arithmetic…………………………………………………………………………...

104

Table 3.5: Number of operations per second for the algorithm in the SP FP

arithmetic…………………………………………………………………………...

104

Table 4.1: Computational time for different division factors……………………… 114

Table 4.2: Comparison of the computational time for the MATLAB and ARM

implementations (SP FP arithmetic, for N divided into smaller parts)……………

117

Table 4.3: Comparison of the number of operations per second for the MATLAB

and ARM implementations (SP FP arithmetic, for N divided into smaller

parts)………………………………………………………………………………...

1

117

Table 4.4: Internal block rams of the accelerators…………………………………. 122

Table 4.5: Compatible Xilinx Zynq devices……………………………………….. 139

22

23

INTRODUCTION

The present work is devoted to Fast Recursive Bayesian Algorithms and their

implementation on hardware platforms with Field Programmable Gate Array (FPGA)

programmable logic. The area of algorithm application is very wide, especially

in digital signal processing applications, and includes, but is not limited to, parameter

estimation, echo suppression, beam-forming, radar applications, equalization, etc.

However, there are certain difficulties in implementing the algorithms under

consideration on hardware platforms due to their high computational complexity

and problems with numerical stability.

In turn, FPGA platforms are also well known and commonly used in aerospace

and automotive industries, bioinformatics, high performance computing, medical

and industrial applications. One of the reasons for its popularity is in the fact that they

are faster for some applications, which is due to their parallel capabilities and optimality

in terms of the number of gates used for a certain process. The FPGA platforms are

frequently used during development of pre-defined applications, before implementing

them on Application Specific Integrated Circuits (ASIC) [100].

The work under consideration is motivated and supported by the European project

called “SILENSE” standing for (ultra)Sound Interfaces and Low Energy iNtegrated

Sensors. The project started from the 1
st
 of May, 2017 and lasted for 36 months.

Its main field was acoustic technologies used for activation and control of devices

by gesture as well as for data communication and indoor positioning. The domains,

which were targeted by the project, were wearables, automotive and smart home

applications. Within the project and in respect to these domains, it was planned

to achieve such important goals as to create intuitive user interfaces in mobile

and wearable devices, to improve hygiene due to touchless control, to increase safety

by developing gesture recognition applications for in-car system control

and for machinery control in industrial applications, to increase security by gestural

authentication and to improve the quality of life for disabled and old people. The project

comprised development of acoustic technology on all levels, i.e. hardware, software

and the system. In terms of hardware, it was supposed to develop new micro-acoustic

transducers to decrease the cost and energy consumption as well as to improve

performance of the end devices. Besides, it was planned to develop more specifically

heterogeneously and monolithically integrated arrays of micro-acoustic transducers

with their supporting electronics and to provide a dedicated low-power Integrated

Circuits (IC) design. As far as software is concerned, the project aimed at developing

smart algorithms for acoustic data communication, sensing and gesture

recognition [26, 95].

The present work is connected with that part of the project, which is targeted

to the development of new algorithms for gesture recognition applications. Examples

24

of such applications can be in-car applications for controlling audio and video systems,

dashboards or applications used for navigation and entertainment purposes or air-

conditioning control settings. In this case it is supposed that gesture-based applications

will improve safety as the time, when the driver’s attention is distracted from the road,

will be significantly reduced. The passengers can also benefit from such kind

of a system by easily interacting control elements, which are far or even unreachable

for them [26].

The system is supposed to be based on a network of ultrasound transducers with

an integrated pre-processing unit (see Fig. 1). These transducer arrays will be integrated

behind the screen or on the flexible foil, which will be placed at an optimal position

in the interior of the car (headliners, door panels, seats, etc.) [26].

The ultrasound impulses are supposed to be transmitted by the system, reflected

from a hand and returned back to the system. On the basis of responses and their

characteristics, the device should be able to detect the presence, position and distance

of the hand. Because the hand will not be necessarily perpendicular to the surface

of the display, it is supposed that microphones will be turning to the direction of hand

movement. Therefore, in a final application an adaptive beamforming technique may be

used for directional signal reception [105].

However, it is obvious that there will be also reflections from the objects in

the environment other than the hand (see Fig. 2). These undesired responses can present

a great challenge for a recognition process and, therefore, should be removed

from the target signal.

Figure 1: Thin flexible foil with a matrix of ultrasound transceivers for gesture recognition [26]

25

Figure 2: Example of a hand detection application [60-61]

It follows that for pre-processing of incoming data in a way of reducing acoustic noise,

it is necessary to develop the corresponding algorithms based on the noise cancellation

technique. These algorithms have to be numerically robust and fast, being capable

to provide user interaction in low-power, low-cost situations and to process incoming

data in real-time. Therefore, the main goal of the thesis is to develop appropriate

algorithms for such kind of applications.

The work is also supported by the ECSEL project “StorAIge”, which stands

for “Embedded storage elements on next MCU generation ready for AI on the edge”.

It focuses on increasing high performance of new platforms and decreasing the energy

consumption. It targets automotive, industrial and security markets [97].

State of the Art

The main interest of the thesis is the adaptive Recursive Least Squares (RLS)

algorithms used for system identification [40-41, 76]. These algorithms can be derived

from Bayesian theory for adaptive system identification in real time and will be

extended with hypothesis testing to identify the probability of an identification model

best suited for a particular situation (hand presence/absence) [40-41, 81].

It is worth noting that the adaptive RLS filters are already widely used in many real

applications including speech analysis, video compression, noise and echo cancellation,

equalization, mobile and multimedia systems, beam-formers, system identification

and radar applications [21]. It is clear that the research made in this field is enormous

and very profound.

However, while attempting to implement the algorithms on hardware platforms,

it appeared that there were certain problems due to their high computational complexity

and numerical stability issues [76]. To deal with the computational complexity, the fast

versions of the RLS algorithms were developed. To name a few investigations in this

area, the following works should be mentioned [15, 29, 76]. To solve the issue with

the numerical stability, a so-called QR decomposition of recurring updated matrices was

proposed [11, 76, 90, 96].

26

Hereby, let us give a short insight into studies of the RLS algorithms and their

development to understand what is already done and what requires further

investigations.

One of the first practically applicable algorithms from this group was so-called

Levinson-Durbin recursion, which represented an effective method for parameter

estimation of one-step predictor of a stationary random process monitored on a finite

time interval. This algorithm was well described in a work by Markel [40].

Itakura F. and et al continued to work with this algorithm and replaced the gradual

calculation of a predictor of an increasing order with corresponding relations between

prediction errors. The relations were represented in the form of a lattice structure and

the parameters of the algorithms ranged from -1 to 1. This property was very important

and contributed to further development of the algorithms with the same structure [40].

A work by Lee D., Morf M. and Fridlander B. had a great importance for the RLS

algorithm development in identification of an autoregression model [52]. The authors

developed the lattice algorithms equivalent with the least squares methods, a so-called

LS lattice, and for the first time they used normalization of the variables in the range

from -1 to 1. So the normalized algorithms had several benefits as compared with

the non-normalized: mainly in a fewer storage and lower computational requirements.

Besides, they could be easily implemented in a fixed-point arithmetic [52]. This work

was very popular and a number of scientists continued to work in this direction. Among

them are Lev-Ari [54], Ljung [67-68], Porat [86-87].

Porat B. and co-authors at this time explored the square root normalized ladder

algorithms, where they developed the growing memory and sliding memory covariance

ladder algorithms and used the estimated reflection coefficients for computing

the model parameters [86]. The other work from 1983 was devoted to the least squares

identification of the finite impulse response (FIR) models and to the development

of the square-root normalized lattice algorithms both for the time-invariant models

and for tracking the time-varying parameters [87].

Lev-Ari H. and et al described the least squares adaptive lattice and transversal filters

using a unified geometric theory [54]. The filters described in these works were

applicable for the nonstationary processes. The authors also described the windowed

fast transversal filters adaptive algorithms with normalization and discussed the trade-

off between the growth rate of numerical errors and the computational requirements

for the fixed-order algorithms.

At the same time the other algorithms of a recursive parameter identification

of an autoregression model, which were equivalent to the least squares method, were

developed. The algorithms were called the fast Kalman and the fast lattice and some

of them also allowed the normalization of the variables by their time varying

ranges [40].

At this time Ljung S. and Ljung L. focused on the analysis of the recursive algorithms

and the error propagation of the RLS adaptation algorithms [67-68]. In their work

the authors proved the exponential stability of the conventional LS algorithms

and the fast lattice algorithms in terms to such errors and that the base of the decay

27

was equal to the forgetting factor. However, the fast least squares algorithms or the fast

Kalman algorithms were shown to be numerically unstable.

Cioffi J. and et al made a great contribution to investigation in this field. Their works

were dedicated to the fast RLS transversal filters for adaptive filtering, where

the authors offered substantial reductions in the computational requirements relative

to the fast RLS algorithms such as the fast Kalman algorithms of Morf M., Ljung L. and

Falconer D. and the fast lattice algorithms of Morf M. and Lee D. [15-16]. Besides,

Cioffi J. focused on the limited-precision effects in adaptive filtering and discussed

the problem of the overflow due to the accumulating errors [18]. In the work [17]

the author proposed to replace the Givens rotations used for the fast QR algorithms with

the Householder transformation to significantly reduce the computation.

The work by Samson L., Ardalan S. H. and Bottomley G. E. were devoted to

the analysis of the algorithm errors. Assuming rounding arithmetic, Samson made

the analysis of fixed point errors of the normalized lattice algorithm used for

autoregressive system identification [92].

Bottomley also focused on the round-off errors of the fixed-point RLS and stated

that they caused the instability [11]. The solution proposed by the author was to bias

these round-off errors.

Ardalan S. H. investigated both the floating point errors of the RLS and Least Mean

Squares (LMS) adaptive filters and the fixed-point round-off errors of the exponentially

windowed RLS algorithms used for time-varying systems [4-5]. In both cases the author

concluded that the forgetting factor lambda played a very important role and influenced

the resulting noise. The researcher stated that to reduce the algorithm sensitivity

to the additive noise, it was necessary to set lambda close to one. But, on the other hand,

the round-off error would increase as lambda -> 1.

Farbre P. and et al in their work offered to use normalization to improve the fast RLS

algorithms [29]. The results were shown on the example of the fast Kalman algorithm.

The stability problem was also discussed in works [38, 53, 96].

Leung H. and Haykin S. analyzed the stability of the recursive QRD-LS algorithms

in regards to the finite precision systolic array implementation [53].

Slock D. T. M. developed the numerically stable fast transversal filters with exponential

weighting for the RLS adaptive filtering [96]. The stability was achieved due to

the feedback gains, which became possible with introducing redundancy into

the algorithms.

Horita E. and et al offered a new RLS criterion to solve a numerical stability problem

resulted from the finite precision errors [38]. This criterion included a strong parameter

energy factor, which contributed to the algorithm stability.

The QRD-based RLS algorithms are proved to be stable, but due to the square-root

computations for the Givens rotations they can cause a problem of a so-called

computational bottleneck. This was investigated by Hsieh S. F. and et al in their work,

28

where the authors tried to develop a unified approach for the QRD-based RLS

estimation without computing the square roots [37].

An interesting work from this point is one by Sakai H. and et al, where the RLS

algorithm of a modified Gram-Schmidt type of the parallel extraction is presented [91].

These algorithms are the counterpart of the algorithms using an inverse

QR decomposition based on the Givens rotations and do not contain the square root

operations. Thus, the problem of a bottleneck is also solved.

The probability approach to identification of stochastic systems was formulated in

works by Peterka V., Kárný M. and Kulhavý R. [47-48, 50, 81]. Unknown parameters

of a model in these works were supposed to be random variables. After data being

measured, it was possible to calculate the posterior probability distributions conditioned

by the data from the prior probability distributions. The technique used for the recursive

parameters identification and described in these works was based on actualization

of a root matrix decomposition of the positive definitive symmetric matrices.

This resulted in the excellent numerical properties, so there was no risk of instability

due to the loss of the positive definiteness. The Bayesian approach to the algorithm

development enabled to solve the problem of a selection of the initial conditions and

to use forgetting factors. Kárný M. implemented an exponential forgetting in

the algorithms [47] and Kulhavý R. described and showed the advantages

of a directional forgetting [50]. Moreover, Kulhavý R. formulated identification of time

varying systems in independence to a model of the parameter development. The weak

point of these algorithms was the difficulty to implement them in a fixed-point

arithmetic; therefore, the calculations were to be held in a floating-point

arithmetic [47-48, 50, 81].

Kadlec J. tried to solve the above mentioned problem in the work [40], where the author

developed the algorithm of probability identification for a model of the vocal tract.

Both the model parameters and the model order could be time varying. The algorithm

had a lattice structure and, therefore, could benefit from the parallel implementation.

Considering a recursive actualization of the order probability distribution, it was

possible to decide about the number of parameters describing the vocal tract. Moreover,

the variable normalization was proposed, which allowed implementing the algorithm in

a fixed-point arithmetic and using then fast microprocessors [40].

In work [41] Kadlec J. continued the investigation and tried to find a method

of the recursive probability identification of a regression model. This method had

to allow the variable normalization using the time varying ranges from -1 to 1 in such

a way that the algorithms could be easily implemented in a fixed-point arithmetic.

The method had similar numerical properties as the square root algorithms

of the probability identification implemented in floating–point arithmetic [41].

Besides, Kadlec J., McWhirter J. G. and Walke R. L. in 1995 proposed the normalized

Givens rotation algorithm for the RLS processing and showed an important

consequence of the normalization as for the algorithms being implemented in fixed

point arithmetic [73]. This fact allows performing a design of a simpler application

on the specific integrated circuits for the adaptive filtering and beamforming.

29

Zhu Li and Chao Li perform a comparative study of the LMS and RLS algorithms [56]

in terms of a convergence rate in the system identification applications. Another

comparative analysis is presented in [89].

There is also an interesting work by Gaensler T. and Bensty J. giving insights into the

RLS algorithm and discussing the fast versions of the RLS algorithm [7].

The fast versions of the RLS algorithms, their modifications, the methods for increasing

the throughput, the precision analysis are also described in works [3, 22-23, 55, 75, 79].

Due to the fact that the algorithms allow the parallel pipelined implementation,

there are a lot of works dedicated to this topic.

Shanbhag N. R. and et al developed the pipelined adaptive digital filters, which were

suitable for the low-power, low-area and higher-speed applications [94]. In their work

the authors described the pipelined adaptive lattice filter architecture, the relaxed look-

ahead pipelined LMS adaptive filters and quantizers, the pipelined adaptive differential

vector quantizer architecture, the pipelined Kalman filter architecture and different

applications [94].

The finite-precision error analysis of the QRD-RLS and STAR-RLS adaptive filters was

made by Raghunath K. J. [88]. The author supposed that the QRD RLS adaptive

filtering algorithm was suitable for the Very-Large-Scale-Integration (VLSI)

implementation due to its numerical properties. Thus, the researcher developed a new

fine-grain pipelinable STAR-RLS algorithm suitable for the high-speed applications.

It was claimed that the algorithm could be implemented with as few as 8 bits

for the fractional part, depending on the filter size and the forgetting factor used [88].

Matsubara K. and et al in the same year developed the pipelined LMS adaptive digital

filter based on the look-ahead delayed LMS algorithm and proposed an efficient

architecture for the hardware implementations [72].

Another works devoted to the pipelined adaptive filters are a paper by Douglas S. C.

and et al discussing a pipelined architecture for the LMS adaptive FIR filter architecture

without the adaptation delay [25], and a work by Nishikawa K. and et al describing

the pipeline implementation of the gradient-type adaptive filters [78].

A new approach to the householder transformation (HT) for the RLS filters was

described by Liu K. J. R. and et al. This approach made the HT suitable for the VLSI

implementation and applicable to the real-time signal processing applications [65].

In their further work the authors modified the HT algorithms in a way that it became

possible to perform a two-level pipelined implementation of the systolic block

householder transformations at both the vector and the word levels [66].

Djigan V. I. describes a family of the sliding window RLS adaptive filtering algorithms

with the regularization of the adaptive filter correlation matrix fitted for the parallel

computations. The author claims that this approach can be used in all traditional

applications of the adaptive filters [24].

30

There are also a number of books with a comprehensive description of the current

situation in the adaptive filtering and with different examples of the algorithm

applications. Among them it is worth mentioning [21, 30, 36]. In [36] the author

examines both the mathematical theory behind various linear adaptive filters

with the FIR and the elements of the supervised neural networks.

Due to the fact that the algorithms proposed in the thesis will be implemented on

the HW platform with the FPGA programmable logic, it is worth mentioning several

publications devoted to this field and areas connected.

Bondalapati K. and Prasanna V. in [9] discuss the advantages of the reconfigurable

computing systems and the methodologies used for developing the configurable

computing models.

Kung S. Y. provides a general overview of the VLSI array processors and a unified

treatment for the algorithm, architecture and their application [51].

Pirsch P. also investigates this field and provides a very detailed description of basic

architectures for the VLSI implementations of the Digital Signal Processing (DSP) tasks

including a description of the parallel processing and pipelining, the applications

of the specific array processors and the programmable digital signal processors [83].

Lightbody G. has several works devoted to the VLSI and Intellectual Property (IP)

cores development. In the early work the author describes the VLSI architectures in

connection to the RLS adaptive filtering algorithms [57]. In the work from 2003

in cooperation with Woods R. and Walke R. the researcher develops a parameterizable

generic architecture for the RLS filtering in the form of a hardware description

language (HDL) [58].

The synthesis and optimization of the DSP algorithms are covered in a work

by Constantinides G. and et al, where the authors focused on the digital design

and architectural synthesis, the signal scaling, the methodologies of the DSP design,

the precision optimization, the importance of the scheduling, the allocation and binding

problems [19]. The authors also described the trade-off between the numerical accuracy

for the area and power-consumption advantages.

A very detailed description and analysis of the FPGAs can be found in works by Goslin

G., Meyer-Baese U., Wolf W. and Woods R. and et al. [31, 74, 105-106].

Other works devoted to the FPGA architecture for the RLS algorithms can be found

in [2, 10, 46, 101].

It should be noted as well that to be able to use the discussed algorithms

for the applications running on the small platforms, the problem of the power

consumption should be solved.

A general description of a low power digital design can be found in work [13]

by Chandrakasan A. and Brodersen R. and in work [14] by Chen C. S. and et al.

Besides, there are several works devoted to a floating-point design for the low-power

31

signal processing applications. Among them are works by Pillai R. V. K. and et al and

Fang F. and et al. [28, 82].

As it was stated before, the RLS algorithms are very often used for the noise/echo

cancellation applications. The most popular applications are those in the area

of telecommunication and mobile speech recognition application. In this respect

the works [8, 49, 77, 93] are worth of attention.

Other works in this field solve the problem of a variable forgetting factor [33, 99],

the simplified versions of the RLS algorithms for the acoustic echo cancellation [110],

and provide a comparison of the performance of the LMS, NLMS, RLS and QR-RLS

in the noise suppression [69].

A very interesting work in the field of using the RLS algorithms for the noise

cancellation is the one by Iglesias M. E. [39], who describes a noise reduction technique

based on the QRD RLS algorithm and the ways of its implementation on the FPGA-

based platform. The researcher performs a simulation in MATLAB and in the FPGA

and discusses the obtained results [39]. However, in this case there is no parallel

architecture being used.

As far as the ultrasound technology and RLS algorithms concern, only one more or less

related article was found [1]. In their work the authors try to use a new method based on

the RLS adaptive filtering to eliminate the effect of the blurring of the tissue reflectivity,

which deteriorates the biomedical ultrasound image quality. The experiments proved

that due to the RLS algorithms it is possible to improve the contrast and resolution

of the image and the algorithm itself can be considered reliable. The authors also

managed to reduce the dimensionality, which led to the computational complexity

decrease [1].

From the above description it follows that there is a lot of publications devoted

to different areas of the field under consideration. However, the major interest

for the thesis is presented by the following works:

o Works [40-41] by Kadlec J. – the work about the probability identification

of an autoregression model with an unknown order with the help of lattice

structures [40] and the work about the probability identification of a regression

model in a fixed point arithmetic [41].

o Work [76] by Moonen M. about the adaptive signal processing, where the author

performs different adaptive algorithms based on the RLS and LMS

and considers their complexity, convergence and stability [76]. The author

shows how these algorithms can be implemented for the parallel processing

with the help of Signal-Flow Graph (SFG) diagrams and how the complexity

or a number of operations per iteration can be decreased. This is very important

for the fast identification and decrease of the power consumption. Among

the algorithms described in the book are LMS, RLS NLMS, QRD-RLS, square-

root free QRD, RLS with the inverse updating, fast transversal filters, lattice

algorithms, QRD least squares lattice, fast QR algorithms. All algorithms are

implemented on the example of FIR filters, where the exponential forgetting

is considered [76].

32

o Work [81] by Peterka V., where a Bayesian approach to system identification

and hypothesis testing are presented.

o Work [43] by Kadlec J. and Likhonina R. about the adaptive RLS algorithm

implementations with a custom arithmetic and work [60] by Kadlec J.

and Likhonina R. about the noise cancellation using the QRD RLS algorithms.

Both works are related to the project SILENSE. The work [43] describes

the algorithms created by Kadlec J. and discusses the results obtained

from the MATLAB simulation, while the work [60] describes the simulation

results using the noise cancellation technique.

Challenges, Goals and Contributions

It is worth mentioning several challenges, which exist in the research area,

and underlining the contributions of the thesis.

Firstly, though literature analysis clearly shows that the field of investigation is well

studied and profoundly described in many works, and that the existing algorithms

function very efficiently on large computers; however, there is still a problem

to implement them on small area chips. The microprocessors have usually a small

memory footprint. Processing a large amount of data, which is often the case in acoustic

signal processing, can cause slow performance.

Secondly, this particular work is performed within the project focused on ultrasound

technology. It can be noticed that there is a gap in the research area. Only one more

or less related work, which is dealing with ultrasonic diagnostics and improvement

of diagnostics with the help of the RLS algorithm, was found [1]. Still no work

was found, which would describe how to use the RLS algorithms for hand detection

applications based on ultrasound.

Thirdly, there is a large amount of scientific investigations focusing on noise

cancellation techniques using the RLS algorithms, e.g. [8, 49, 77, 93, 110]. However,

they mainly concentrate on telecommunication and mobile speech recognition

applications, which are not the case for the present research, where the algorithms

are supposed to pre-process incoming data in a way to remove undesired ultrasound

responses from the target signal, subject to use for hand detection.

Last, but not least is the fact that the algorithms, which constitute the basis of the thesis

and will serve as a reference model for further development, were already proposed

in [40-41, 47-48, 50, 81]. They were supplemented with estimation of the order

of a regression model, which is based on recursive Bayesian hypothesis testing.

The algorithms were successfully tested for RLS Lattice in an application for speech

coding [40-41]. However, hand detection applications based on ultrasound technology

have their specific features. In this context hypothesis testing is supposed to be applied

in a different way. As far as the signals can come to microphones at different angles

(not necessarily perpendicular) and with different delay, it seems to be more appropriate

and important to identify the structure of a regression model and to choose a particular

identification model, which corresponds better to a real-time situation, rather than

to estimate only the order. Such kind of a solution in the field under consideration

was not found in literature.

33

To summarize the last four points, it would mean that there is a strong need within

the project to propose such kind of algorithms, which will deal with ultrasound signals,

efficiently remove undesired responses from the target signal (noise reduction), ensure

fast execution and processing of a large amount of data in real time, and guarantee high

reliability and low power consumption on small platforms.

This and all previously mentioned challenges and considerations specify the main goals

of the thesis, which can be formulated as follows:

1. to develop a numerically robust adaptive signal processing algorithm

of recursive identification of regression models for ultrasound signals,

performing noise cancellation and measuring hand distance from the device in

real time.

It is supposed that there will be several models, which will correspond to different

situations, e.g. whether a hand is present or not in front of the device. Using recursive

hypothesis testing and calculated probabilities, it will be possible to decide,

which model suits better for incoming data. The final goal is to use recursive Bayesian

hypothesis testing to improve the functionality of an ultrasound hand detection

application by reducing undesired responses (noise cancellation) and measuring hand

distance from the device. The latter will be possible due to the special nature

of the input signal (chirps). Though such kind of a signal is challenging as far as

it refers to weakly exciting types and, thus, it requires numerically robust computation;

however, it enables to compute the distance between the hand and the device as soon as

the response from the hand, i.e. the exact moment the hand appears, is known.

After being supplemented with recursive probability estimation, the algorithm will

come through verification process. For these purposes data corresponding to several

regression models of different orders will be modelled and fed to the algorithm. At first

the algorithm will be tested and verified in MATLAB R2019b [70] in double precision

arithmetic. When the results are satisfactory, i.e. the algorithm is proved to identify

correctly the most appropriate regression model and to estimate its parameters, then,

it will be tested in floating-point representation.

After the algorithm pass the verification successfully both in double precision

in MATLAB R2019b and in C code with single precision in MATLAB R2019b,

real data from an ultrasound microphone are supposed to be used to verify the validity

of the proposed models and correct performance of the algorithm.

It is also worth comparing the performance of different algorithms in terms

of computational time, memory usage and other metrics, and, thus, to prove

that a chosen algorithm for the present work is more suitable for the implementation

on the HW platform.

Overall, the innovation shall lead to a newly improved, optimized algorithm with good

numerical properties, capabilities of identification of regression models and distance

computation based on incoming data. The algorithm, moreover, shall ensure low power

consumption as well as sufficiently accurate performance in real time.

34

2. to implement the algorithm on an embedded hardware platform, potentially used

for applications for hand detection with data processing from a microphone.

It should not be forgotten that the existing algorithm [40-41] serving as a reference

model for testing the correct performance of the C coded implementation was already

implemented in MATLAB R2019b and the C simulation environment. However,

there is still a need to implement it for systolic, pipelined System on Chip (SoC) IP core

(28 nm, 20 nm, possibly 16 nm); to be more specific, on the integrated circuit Xilinx

Zynq Ultrascale+ with the multi-core processor ARM Cortex A53 and the FPGA

programmable logic part [34-35].

After the new algorithm is developed and specified and its functionality is verified using

MATLAB, the next step is to convert and to map it on the Xilinx Zynq Ultrascale+

device. It will be necessary to test how the algorithm performs on the processor;

therefore, there will be experiments performed in a way that data corresponding

this or that regression model will come to Xilinx Zynq Ultrascale+ from a flash memory

card or from a computer. On the basis of the mapped algorithm, Xilinx Zynq

Ultrascale+ will identify the structure of the regression models and choose the most

appropriate one. In the end the information about power consumption, time

of calculations and other characteristics can be obtained and a conclusion about

the algorithm performance on small platforms can be made.

As far as the algorithm has high computational complexity, it is very probable that such

kind of SW implementation will not be fast enough for real-time processing. Therefore,

the next step will be to parallelize the computation process in a way that each core

of the quad-core ARM Cortex A53 processor will be busy with computation of a certain

part of the algorithm at each time step. In this case it will be possible to reach efficiency

of the computation process and to decrease the computational time.

The parallel version of the HW implementation will be tested and verified

with the golden model received from MATLAB R2019b. If verification tests

are successfully fulfilled and if the computational time corresponds to the real-time

processing, then the SW implementation will be considered successful. The prototype

device in this case will represent an FPGA-based HW platform, where FPGA

programmable logic will be responsible for providing data from an ultrasound

microphone and the ARM part of the FPGA-based HW platform will compute

the algorithm on four cores of ARM Cortex A53 and provide identification results:

the presence or the absence of the hand in front of the device.

However, if the computation of the algorithm is slow and does not correspond to real-

time processing, further modification will be needed. In this case the accelerators

in the FPGA part of the device will be used and the algorithm will be mapped on

the accelerators.

The SW implementation using four cores of ARM Cortex A53 processor is supposed

to be done both in double and single precision arithmetic, while the HW implementation

using FPGA accelerators is supposed to be fulfilled only in single precision arithmetic

due to limited computational resources, which can be mapped to the programmable

logic. The FPGA implementation of the algorithm is supposed to be performed using

8xSIMD FP03x8 accelerators designed in ÚTIA [42].

35

This new solution area promises to have a great potential for touchless device control

using an operator’s hand detection based on the digital processing of responses

of ultrasound signals.

3. to apply the developed algorithm for tracking of hand movement-based gestures

(possibly).

The final goal within the project SILENSE, which supports the present research,

is to create a functional prototype of a gesture recognition device, which can be used as

a Human Machine Interface (HMI) in the automotive industry or smart home/building

domain. This goal is out of the scope of the thesis, because the algorithm presented in

this work are only a part of the hand detection application and aim at eliminating

undesired ultrasound responses and cleaning the target signal for further processing.

However, if succeeded it can be good evidence and a spectacular example of a practical

value of the algorithm.

To summarize the main steps for achieving the above mentioned goals, the following

steps should be mentioned:

1. to achieve goal 1:

a. implementation of a hypothesis testing algorithm for identification

of regression models (within considered context) based on a Bayesian approach

with recursive estimation,

b. incorporation of hypothesis testing into existing algorithms,

c. pipelining and parallelizing the chosen algorithm,

d. validation experiments both with modelled and real data from an ultrasound

microphone:

i. verification in MATLAB R2019b in double precision,

ii. verification in MATLAB R2019b using C code in single precision,

iii. verification of a parallelized version of the algorithm in MATLAB

R2019b using MATLAB Parallel Computing Toolbox.

e. comparing the performance of different algorithms.

2. to achieve goal 2:

a. converting the algorithm to the Xilinx Zynq Ultrascale+ device (computation

is performed on a single core of the multi-core ARM Cortex A53 processor),

b. pipelining and parallelizing the algorithm for computing on four cores

of the ARM Cortex A53 processor,

c. verification of the algorithm mapped on Zynq Ultrascale+ on the basis

of the golden model from MATLAB R2019b to prove its functionality

and to test it in terms of power consumption, time of computation, and other

metrics,

d. implementation of the algorithm on the FPGA programmable logic part

of Xilinx Zynq Ultrascale+,

e. verification of the algorithm mapped to FPGA accelerators on the basis

of the golden model from MATLAB R2019b.

3. to achieve goal 3:

a. application of the developed algorithm for hand tracking and identification

of simple gestures possible due to the measurement of the hand distance

from the device, i.e. creating a functional prototype, verification and final

version (possibly).

36

To summarize the expected contributions, the following should be mentioned:

1. A newly designed structure of regressions models, which is chosen in a way

enabling to compare the models and to obtain information for the predetermined

goals of the specified application, i.e. a) noise cancellation, b) distance

computation between the hand and the device.

2. Application of recursive Bayesian identification to the defined problem,

i.e. incorporation of hypothesis testing to the algorithm so that on the basis

of computed probabilities it is possible to compare the structures of regression

models and to make a decision between two use-cases (“there is a hand

in front of the device” vs “there is no hand in front of the device”) at a certain

computation step. It results in determining the exact moment when there is

a response from the hand and due to the specific form of the input signal (chirps)

to measure the distance between the hand and the device.

3. Implementation of the algorithm: a) in the MATLAB R2019b environment,

b) in parallel in the MATLAB R2019b environment using the Parallel

Computing Toolbox, c) in C code, d) in parallel in C code on four threads.

4. Simulation close to the real situation, i.e. the models used for simulation

in MATLAB R2019b will be retrospectively recalibrated in a way

that the parameters from identification with real data will be used to create

regression models for simulation purposes.

5. Algorithm implementation on an embedded HW platform, on the ARM

Cortex A53 processor with four cores using real data from an ultrasound

microphone and performing computation in real time.

6. Algorithm implementation in the FPGA programmable logic part of the Xilinx

Zynq Ultrascale+ device using 8xSIMD FP03x8 accelerators to accelerate

the computation process.

Structure of the Work

To conclude this introductory description, the structure of the present work is described.

The first chapter is devoted to mathematical methods including description of RLS

algorithms and FIR filters, the Bayesian approach to system identification problems,

modification of existing algorithms and their optimization. It also presents techniques

and SW tools needed for the implementation of the algorithm on the HW platform.

In the second chapter the algorithm implementation on a PC, in MATLAB R2019b

is provided. Simulation results as well as experiments with real data are discussed

and a comparison of two algorithms is performed.

The third chapter describes steps of algorithm optimization on a PC. It includes

the pipelining and parallel processing technique as well as a discussion

of parallelization of the algorithms using the Parallel Computing Toolbox in

the MATLAB R2019b environment.

37

The algorithm implementation on the Trenz Electronic board is presented in Chapter 4,

while the Conclusion section of the work provides a short summary of the work and

analyzes the obtained results.

The remaining two parts of the work shortly describe potential applications

of the algorithm and future prospects.

There are also appendices to Chapter 1, which describe the applied algorithm in more

details.

38

39

CHAPTER 1

Mathematical Methods, Tools

and Techniques

This part describes the RLS algorithms, the Bayesian approach to system identification

and the incorporation of hypothesis testing in the chosen algorithm. The mathematical

tools and methods presented in this chapter serve as a basis for further implementation

of the chosen algorithm first in the MATLAB R2019b environment [70] and then on

the HW platform. More detailed information together with the derivation of equations

presented in this chapter can be found in Appendices.

Moreover, some basic information about the FPGA-based platforms including

the FPGA technology, tools and techniques used for programming on microprocessors

and on the FPGA chips are provided in the following sections of the chapter.

Finally, in the last section the main outputs of this stage of the research and the related

publications are mentioned.

1.1. Bayesian Approach to System Identification: Estimation

of the Model Parameters

To continue the discussion about the development of the chosen RLS algorithm

with probability estimation of a corresponding model, it is worth giving a brief insight

into the Bayesian approach to system identification and the recursive least square

estimation from the viewpoint of the probabilistic theory [81].

In contrast to the classical statistics, the Bayesian statistics observes the probability

as the subjective experience of the uncertainty and unknown parameters being uncertain

and random, described by a probability distribution [20, 81].

T. Bayes underlines three basic components, which constitute the Bayesian statistics:

the prior distribution, the information in the data themselves and the posterior

inference [20].

The prior distribution is represented by the previous knowledge available before testing.

It can be, for example, in the form of a normal distribution. Its variance defines the level

of uncertainty about the value of the parameter under consideration. It is obvious

that the larger variance the more uncertainty the value of the parameter has. The prior

variance in this case is defined as the precision, which is the inverse of the variance.

40

The smaller the prior variance, the more confidence there is that the prior mean reflects

the mean [20].

The second component, the information in the data, presents what is observed.

It is defined by the likelihood function of the data given the parameters [20].

The posterior inference is based on combining the prior distribution and the observed

evidence via the Bayes’ theorem, which is a fundamental theorem in the Bayesian

statistics. As the result, a so-called posterior distribution is obtained, which reflects the

knowledge updated on the basis of new data [20].

The Bayes’ theorem can be written as follows [20]:

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 =
𝒑𝒓𝒊𝒐𝒓 𝒙 𝒍𝒊𝒌𝒆𝒍𝒊𝒌𝒉𝒐𝒐𝒅

𝒎𝒂𝒓𝒈𝒊𝒏𝒂𝒍 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅
,

or in the form of the equation for parameter estimation [81]:

𝒑(𝜽|𝒚) =
𝒑(𝜽) ∙ 𝒑(𝒚|𝜽)

𝒑(𝒚)
, (𝟏. 𝟏)

where 𝒑(∙) denotes the probability, 𝒚 is the output, 𝜽 are parameters.

The equation can be simplified by dropping 𝒑(𝒚), which represents a normalizing

constant for 𝒑(𝜽|𝒚) sums to 1. In this case it is obtained [81]:

𝒑(𝜽|𝒚)~𝒑(𝜽) ∙ 𝒑(𝒚|𝜽), (𝟏. 𝟐)

where ~ means proportionally.

Summarizing the points mentioned above, the Bayes’ theorem states that the updated

knowledge about the parameters of the interest given the current data depends on

the prior knowledge about the parameters weighted by the current information given

those parameters [20].

The probabilistic approach gives a path between the probabilistic theory and the least

square error estimation. It allows extending the estimation task by the hypotheses

probability estimation [84].

The Bayesian approach provides a different view of hypothesis testing as far as it uses

the background knowledge for the analyses [20]. It is emphasized in [81] that using

the Bayesian approach for hypothesis testing the uncertainty of the hypotheses should

be described by a probability distribution on the set of hypotheses. These hypotheses are

priori considered as possibly true. Then, the solution is presented in the form

of the posterior probability distribution. This probability distribution is defined

on the set of hypotheses conditional on the input-output data observed on

the system [81].

41

Obviously, the probability of the hypotheses 𝑯𝒏 will be equal to the probability

that a true system model 𝑴𝒕𝒓𝒖𝒆 belongs to the class 𝑪𝒏, which represents the subset

of the models.

In this case the probability distribution is determined as follows [81]:

𝒑(𝑯𝒏|𝑫(𝒕)) = 𝑷𝒓[𝑴𝒕𝒓𝒖𝒆 ∈ 𝑪𝒏|𝑫(𝒕)], 𝒏 = 𝟏, 𝟐, … , 𝑵 (𝟏. 𝟑)

where 𝑫 is a set of data.

Note also that the notation 𝑫(𝒕) means all data up to time 𝒕.

Usually, when there is no need explicitly to choose the model structure, the calculation

can be made simultaneously with all model structures, setting weights for each

structure. The weights determine the probability of the individual models [81].

To determine the posterior probability distribution, the prior probability distribution

on the entire set of all models has to be defined. The prior probability is usually

assigned to each of the hypotheses 𝒑(𝑯𝒏) (for 𝒏 = 𝟏, 𝟐, … , 𝑵) and the prior probability

distribution is determined on the set of the possible parameter values within each

of the hypotheses 𝒑(𝜽𝒏|𝑯𝒏) (for 𝒏 = 𝟏, 𝟐, … , 𝑵). Note that 𝒑(𝑯𝒏) represents the prior

uncertainty about the validity of the hypotheses before the knowledge is updated with

the new data, while 𝒑(𝜽𝒏|𝑯𝒏) is the prior uncertainty about the values of an unknown

parameter 𝜽𝒏 given the hypothesis 𝑯𝒏 was true. Thus, the product of these two

probabilities 𝒑(𝜽𝒏|𝑯𝒏) ∙ 𝒑(𝑯𝒏) determines the prior probability for every subset

of the models within the corresponding class [81].

According to [81], the assumption is

𝐏𝐫[𝑴 ∈ 𝑪𝒏 ∩ 𝑪𝒎] = 𝟎 ∀𝒏, 𝒎 ≠ 𝒏 (𝟏. 𝟒)

where 𝑴 is a system model, 𝒎 = 𝟏, 𝟐, … , 𝑵.

This formula shows that the model classes can overlap with a zero probability,

as a subset of the models common for two or more classes may obtain a nonzero prior

probability and posterior probability only through one of the hypotheses [81].

It should be noted that while the choice of the prior 𝒑(𝑯𝒏) is obvious assuming that all

hypotheses are equally likely, the choice of the prior 𝒑(𝜽𝒏|𝑯𝒏) is quite difficult in

the case of hypothesis testing [81].

Further, given 𝒑(𝑯𝒏|𝑫(𝒕𝒔)) and 𝒑(𝜽𝒏|𝑯𝒏, 𝑫(𝒕𝒔)) for some 𝒕𝒔 ≥ 𝟎 and 𝒏 = 𝟏, 𝟐, … , 𝑵,

it is possible to calculate 𝒑(𝑯𝒏|𝑫(𝒕)) for 𝒕 > 𝒕𝒔. The assumption of the natural

conditions of control is made [81]:

𝒑(𝑯𝒏|𝑫(𝒕)) =
𝒑(𝑫𝒕𝑺+𝟏(𝒕)|𝑫(𝒕𝑺), 𝑯𝒏) ∙ 𝒑(𝑯𝒏|𝑫(𝒕𝑺))

∑ 𝒑(𝑫𝒕𝑺+𝟏(𝒕)|𝑫(𝒕𝑺), 𝑯𝒎) ∙ 𝒑(𝑯𝒎|𝑫(𝒕𝑺))𝑵
𝒎=𝟏

, (𝟏. 𝟓)

42

where 𝑫𝒕𝑺+𝟏(𝒕) are data observed at the unknown system output from time 𝒕𝑺 + 𝟏 to 𝒕,

variables 𝑫(𝒕) and 𝑫(𝒕𝑺) are data observed up to and including the time-index 𝒕 and 𝒕𝑺

respectively, hypothesis 𝑯𝒏 is an unknown identification model with a certain structure

and an order, term 𝒑(𝑫𝒕𝑺+𝟏(𝒕)|𝑫(𝒕𝑺), 𝑯𝒏) is a probabilistic description of the modelled

system with the identification model given by hypothesis 𝑯𝒏.

Then applying the chain rule to the above equation, the first factor in the numerator

can be written in the following way [81]:

𝒑(𝑫𝒕𝑺+𝟏(𝒕)|𝑫(𝒕𝑺), 𝑯𝒏) = ∏ 𝒑(𝒚𝝉|𝒖𝝉,𝑫(𝝉 − 𝟏), 𝑯𝒏) ∙ 𝒑(𝒖𝝉|𝑫(𝝉 − 𝟏), 𝑯𝒏)

𝒕

𝝉=𝒕𝒔+𝟏

, (𝟏. 𝟔)

where 𝝉 is a certain time interval, 𝝉 = 𝒕𝟎 + 𝟏, 𝒕𝟎 + 𝟐, … , 𝒕, 𝒖𝝉 is the input in time 𝝉, 𝒚𝝉

is the output in time 𝝉, 𝑫(𝝉 − 𝟏) are data observed up to and including time 𝝉 − 𝟏.

Moreover, if the natural control conditions are considered, then the following

simplifications can be made [81]:

𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) = 𝒑(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏), 𝑯𝒏). (𝟏. 𝟕)

And finally the formula for computing the hypothesis probability takes the form [81]:

𝒑(𝑯𝒏|𝑫(𝒕)) =
∏ 𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) ∙ 𝒑(𝑯𝒏|𝑫(𝒕𝑺))𝒕

𝝉=𝒕𝒔+𝟏

∑ ∏ 𝒑𝒎(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) ∙ 𝒑(𝑯𝒎|𝑫(𝒕𝑺))𝒕
𝝉=𝒕𝒔+𝟏

𝑵
𝒎=𝟏

. (𝟏. 𝟖)

Further, under the assumption of the natural conditions of control it can be written [81]:

𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) = ∫ 𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏), 𝜽𝒏) ∙ 𝒑𝒏(𝜽𝒏|𝑫(𝝉 − 𝟏))𝒅𝜽𝒏. (𝟏. 𝟗)

There the simplified notation is used [81]:

𝒑𝒏(𝜽𝒏|𝑫(𝝉 − 𝟏)) = 𝒑𝒏(𝜽𝒏|𝑫(𝝉 − 𝟏), 𝑯𝒏). (𝟏. 𝟏𝟎)

It is obvious that in order to test, which hypothesis is more likely to be true, it is

necessary to estimate the probabilities of the models and on the basis of the probabilities

to make a decision. The equation for computing the hypothesis probability leads to

the fact that for the posterior probability ratio for any two of the N hypotheses it is

valid [81]:

𝒑(𝑯𝒏|𝑫(𝒕))

𝒑(𝑯𝒎|𝑫(𝒕))
= ∏

𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) ∙ 𝒑(𝑯𝒏|𝑫(𝒕𝑺))

𝒑𝒎(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) ∙ 𝒑(𝑯𝒎|𝑫(𝒕𝑺))

𝒕

𝝉=𝒕𝒔+𝟏

. (𝟏. 𝟏𝟏)

The left-hand side is a so-called Bayes factor. By this factor our prior beliefs about

the hypotheses are updated to yield the posterior beliefs, about which hypothesis is

more likely [20, 81].

43

The entire probability distribution on the set of N hypotheses is uniquely determined

by any 𝑵 − 𝟏 finite ratios for 𝒏 ≠ 𝒎 and by the following condition [81]:

∑ 𝒑(𝑯𝒌|𝑫(𝒕))𝑵
𝒌=𝟏 = 𝟏. (𝟏. 𝟏𝟐)

Using the likelihood function the posterior probability ratio equation can be rewritten

as follows [81]:

𝒑(𝑯𝒏|𝑫(𝒕))

𝒑(𝑯𝒎|𝑫(𝒕))
=

∫ 𝑳𝒏(𝒕)(𝜽𝒏)𝒅𝜽𝒏

∫ 𝑳𝒎(𝒕)(𝜽𝒎)𝒅𝜽𝒎

∙
𝝐𝒏

𝝐𝒎
∙

𝒑(𝑯𝒏)

𝒑(𝑯𝒎)
, (𝟏. 𝟏𝟑)

where
𝝐𝒏

𝝐𝒎
∙

𝒑𝒏(𝜽𝒏)

𝒑𝒎(𝜽𝒎)
 is a prior distribution.

From the above formula it can be concluded that by the choice of a prior distribution

the posterior probability of any of compared hypotheses can be heavily influenced.

However, it is not so determining. With growing 𝒕 the ratio of integrals over

the likelihood diverges very fast, if the hypothesis 𝑯𝒏 is true. It is the reason why

the ratio of integrals begins dominating any reasonably chosen ration of
𝝐𝒏

𝝐𝒎
∙

𝒑𝒏(𝜽𝒏)

𝒑𝒎(𝜽𝒎)
.

It means that with growing 𝒕 the posterior probability of the true hypothesis is

converging to one in any case. However, this property holds only for the large data

sizes. For small or medium data sizes the choice of prior distributions should be made

carefully [81].

The recursion for the real-time updating of the probability distribution on

the hypotheses can be written from the general formula for computing the hypothesis

probability for 𝒕𝒔 = 𝒕 − 𝟏 [81]:

𝒑(𝑯𝒏|𝑫(𝒕)) =
𝒑𝒏(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏))

𝒑(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏))
∙ 𝒑(𝑯𝒏|𝑫(𝒕 − 𝟏)), (𝟏. 𝟏𝟒)

where 𝒑𝒏(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏)) is a conditional probability distribution within the n-th

hypotheses determined according to the formula (1.9). The denominator here is

the ordinate of the overall predictive probability density from the previous step

for the newly observed output [81]. It is a normalizing constant.

The last thing, which should be mentioned in this connection, is that the Bayes factors

condition on the observed data. This fact gives benefits in increasing the flexibility in

data collection and in the robustness of the inferences [20].

44

1.2. Hypothesis Testing about the Order of a Regression

Model

Generally, in the Bayesian RLS regression model approaches including

works [40-41, 47-48, 50, 81], several assumptions for performing hypothesis testing

in regards to the least square computation are proposed. First of all, it was assumed

that a stochastic system can be described by a parametrized system in the form

of a conditional probability density function:

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝒖𝒕, 𝜽, 𝝎𝒕) = 𝒌 ∙ 𝝎𝒕

𝟏
𝟐 ∙ 𝐞𝐱𝐩 {−

𝝎𝒕

𝟐
∙ (𝒚𝒕 − 𝜽𝑻 ∙ 𝒁[𝑵])𝟐}, (𝟏. 𝟏𝟓)

where 𝜽 is a vector of unknown regression parameters, it is a random variable of size 𝑵;

𝒁[𝑵] is a data vector of size 𝑵 consisting of the delayed output values and input data

𝒖𝒕, which directly influence the output 𝒚𝒕; 𝒌 is a normalizing constant; 𝝎𝒕 is

an unknown degree of accuracy, it is a random variable, which can be defined as

a reciprocal to the variance 𝝈𝒕
𝟐 [40-41, 47-48, 50, 81]:

𝝎𝒕 =
𝟏

𝝈𝒕
𝟐

. (𝟏. 𝟏𝟔)

Note that the upper index 𝑻 means the transpose of a vector.

Note also that the conditional probability density (1.15) corresponds to the description

of a system by a regression model in the form [40-41, 47-48, 50, 81]:

𝒚𝒕 = 𝜽𝑻 ∙ 𝒁[𝑵] + 𝒆𝒕, (𝟏. 𝟏𝟕)

where 𝒆𝒕 is a sequence of random variables, which are mutually independent on the past

measured data and on the last input and which have a normal distribution with a zero

mean value and an unknown variance. This unknown variance is defined through

the degree of accuracy 𝝎𝒕 in equation (1.15) [40-41, 47-48, 50, 81].

The second important assumption is that the prior conditional probability density

of the parameters 𝜽, 𝝎𝒕 for time 𝒕 = 𝑻, 𝑻 + 𝟏, … has the form of Gaussian-Wishart

distribution [40-41, 47-48, 50, 81]:

𝒑(𝜽, 𝝎𝒕|𝑫(𝒕 − 𝟏)) = 𝒌 ∙ 𝝎𝒕

𝓥+𝑵−𝟐
𝟐 ∙ 𝐞𝐱 𝐩 {−

𝝎𝒕

𝟐
∙ [

−𝜽
𝟏

]
𝑻

∙ 𝑽𝑴[𝑵 + 𝟏] ∙ [
−𝜽
𝟏

]} , (𝟏. 𝟏𝟖)

where 𝑽𝑴[𝑵 + 𝟏] is a positive definitive symmetric matrix of size N+1, 𝑽𝑴[𝑵 + 𝟏] >
𝟎; 𝓥 is a real positive value, which represents the number of degrees of freedom

in the Gaussian-Wishart distribution, 𝓥 > 𝟎.

45

The important point is that the form of the conditional probability density

of the parameters is replicated during the recursive update [40-41, 47-48, 50, 81]:

𝒑(𝜽|𝑫(𝒕)) =
𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝒖𝒕, 𝜽)

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝒖𝒕)
∙ 𝒑(𝜽|𝑫(𝒕 − 𝟏)). (𝟏. 𝟏𝟗)

It means that the update of the conditional probability density (1.15) can be fully

described by the algebraic relations for the development of characteristics 𝑽𝑴[𝑵 + 𝟏],
𝓥. These characteristics constitute the sufficient statistics of the probability

identification [40-41, 47-48, 50, 81].

𝑽𝑴[𝑵 + 𝟏] = [
𝑽𝑴[𝑵] 𝑽[𝑵]

𝑽𝑻[𝑵] 𝐯
], (𝟏. 𝟐𝟎)

where 𝑽𝑴[𝑵] is a square symmetric positive definite matrix of size 𝑵𝒙𝑵,

𝑽[𝑵] is a column vector of size 𝑵, 𝑽𝑻[𝑵] is a transposed vector 𝑽[𝑵] of size 𝑵,

𝐯 is a positive scalar.

Note that the lower notation 𝑴 under the letter means “matrix” to differentiate

between a matrix 𝑽𝑴[𝑵] and a vector 𝑽[𝑵] in further discussion of the algorithm.

The update of the characteristics is as follows [40-41, 47-48, 50, 81]. To simplify

the notation, instead of (𝒕|𝒕)under the characteristics the upper line " ̅ " above the letter

is used to show that the corresponding characteristics is after updating with 𝒚𝒕.

The index (𝒕|𝒕 − 𝟏) is omitted under the characteristics, which means that

the corresponding characteristics is before updating with 𝒚𝒕 [40-41, 47-48, 50, 81]:

�̅�𝑴[𝑵 + 𝟏] = 𝑽𝑴[𝑵 + 𝟏] + 𝒁[𝑵 + 𝟏] ∙ 𝒁𝑻[𝑵 + 𝟏], (𝟏. 𝟐𝟏)

�̅� = 𝓥 + 𝟏, (𝟏. 𝟐𝟐)

where 𝒁[𝑵 + 𝟏] is an extended data vector of size 𝑵 + 𝟏, i.e. a vector [
𝒁[𝑵]
𝒛𝑵+𝟏

]=[
𝒁[𝑵]

𝒚𝒕
].

The a prior statistics 𝑽𝟎𝑴
 and 𝓥𝟎 are outputs from a priori probability density function

𝒑(𝜽|𝑫(𝒕𝟎) and used for the start of the recursion.

The letter 𝑵 gives the order of the system.

Another form of the statistics update is given in Appendix 1. This form has been used in

the experimental part of the work. Besides, in Appendix 1 the algorithm used for

programming is presented in details as it is used in a code. It is decided not to give it

here due to its complexity and a great number of equations, which can be hard readable

and which can complicate the understanding of the main point of the chapter.

The characteristics updates for further steps are performed with a forgetting factor.

The most common forgetting techniques are exponential [47] and directional

forgetting [50]. The simplest one from these two for the implementation is

the exponential forgetting, which assumes the memory to be infinite. It gives small

46

weights to the old data and larger weights for the latest data points [76]. A weighting

factor ranges from 0 to 1. Actually there is only one additional step in the exponential

weighting RLS: the weighting of the covariance matrix. The benefit of this step is

that it leads to the extremely simple RLS algorithms, which are stable, because both

the old data and errors are wiped out by the exponential forgetting [76].

However, the exponential weighting can face a problem in case of ill-excited systems.

If the input and output signals do not bring sufficient information, the previous

information is gradually wiped out with the exponential forgetting. The solution

is to discount the old data only when a new information is available, i.e. to make

forgetting in the certain directions. This approach was offered by Kulhavý R.

and was called the directional forgetting [50].

However, as far as the QRD RLS Lattice algorithm is supposed to be used for the noise

cancellation for the hand detection applications and due to the fact that the latter

algorithm does not use the directional forgetting, the exponential forgetting will be

preferred in this work.

The characteristics updates using both the exponential and directional forgetting can be

found in Appendix 1.

1.3. Types of the RLS Algorithms

This chapter gives a brief insight into types of the RLS algorithms to show

their advantages and disadvantages. Finally, the reason of our choice of the QRD RLS

Lattice algorithm used for hypothesis testing is given.

In [76], the adaptive filtering problems are introduced, the standard RLS algorithms

are described and other RLS-based types of the algorithms, which have some specific,

beneficial features, are derived.

The algorithms are often used in the applications, where a real-time processing

is the requirement. In this case the signal processing device needs to be as fast as

the sampling devices that produce new data in each time step. Thus, the new data

should be used for re-computation and for the update of the previous information.

The RLS algorithms do not perform parameter estimation and prediction error

computation from the very beginning: only the data from the previous step are used

for re-computation. It saves time and decreases the complexity [76].

The standard recursive least square algorithm is given by M. Moonen in the following

form [76]:

�̅�[𝑵] = 𝜽[𝑵] + 𝒌 ∙ (𝒛𝑵+𝟏 − 𝒁𝑻[𝑵] ∙ 𝜽[𝑵]) =

= 𝜽[𝑵] + (𝑽𝑴[𝑵])−𝟏 ∙ 𝒁[𝑵] ∙ (𝒛𝑵+𝟏 − 𝒁𝑻[𝑵] ∙ 𝜽[𝑵]), (𝟏. 𝟐𝟑)

where (𝑽𝑴[𝑵])−𝟏 = (𝑼𝑻[𝑵] ∙ 𝑼[𝑵])−𝟏 is an autocorrelation matrix of the filter input

signal; 𝒌 = (𝑽𝑴[𝑵])−𝟏 ∙ 𝒁[𝑵] is a Kalman gain vector, which contributes to better

performance of the algorithm and gives the direction, in which 𝜽[𝑵] should be

modified [76].

47

From the above formula it is obvious that �̅�[𝑵] is computed from 𝜽[𝑵] and it uses only

𝑶(𝑵𝟐) arithmetic operations [76].

However, the standard RLS algorithms are usually used only for the theoretical

purposes, as far as they can be potentially unstable due to the numerical round-off

errors. The problem consists in computation of a covariance matrix 𝑽𝑴[𝑵],
which due to the numerical errors can lose its positive definiteness [76].

The stable variants of the RLS algorithms are based on the QR decomposition (QRD)

of the matrix 𝑼[𝑵]. The decomposition itself is made in the following form [76]:

𝑼 = 𝑸 ∙ 𝑹, (𝟏. 𝟐𝟒)

where 𝑼 is a long matrix of size 𝑳𝒙𝑵, where 𝑳 comprises all measured data,

𝑸 is an orthogonal matrix of size 𝑳𝒙𝑵, 𝑹 is an upper triangular matrix of size 𝑵𝒙𝑵

with positive diagonal elements.

The matrix 𝑹 is also called as a Cholesky factor of the normal matrix of 𝑼𝑻 ∙ 𝑼

and it is valid that [76]

𝑼𝑻 ∙ 𝑼 = 𝑹𝑻 ∙ 𝑹. (𝟏. 𝟐𝟓)

The compound matrix 𝑼[𝑵 + 𝟏] = [
𝒁𝟏[𝑵] …
𝒛𝑵+𝟏(𝟏)

𝒛𝑵+𝟏(𝟐)
…

𝒁𝑳[𝑵]
 𝒛𝑵+𝟏(𝑳)

] has the following

QR decomposition [76]:

[𝑼𝑳−𝟏[𝑵 + 𝟏]|
𝒁𝑳[𝑵]
𝒛𝑵+𝟏(𝑳)

] = [𝑸|𝒒] ∙ [
𝑹 𝒛
𝟎 𝜻

], (𝟏. 𝟐𝟔)

where matrix [𝑼𝑳−𝟏[𝑵 + 𝟏]|
𝒁𝑳[𝑵]
𝒛𝑵+𝟏(𝑳)

] has size of 𝑳𝒙(𝑵 + 𝟏), [𝑸|𝒒] is an orthogonal

matrix of size 𝑳𝒙(𝑵 + 𝟏), the last term is a triangular matrix of size

(𝑵 + 𝟏)𝒙(𝑵 + 𝟏) [76].

The QR decomposition can be made by using different methods, among which are

the Givens, Householder and Gram-Schmidt methods.

The equation for a so-called square-root information RLS (SRI RLS), which avoids

forming the product 𝑼𝑻 ∙ 𝑼, is given by M. Moonen in the following way [76]:

[�̅� �̅�
𝟎 ∗

] ← �̅�𝑻 ∙ [
𝑹 𝒉

𝒁𝑻[𝑵] 𝒛𝑵+𝟏
]. (𝟏. 𝟐𝟕)

Taking into considerations all previous points, the equation for computing 𝜽 looks

as follows [76]:

𝜽 = 𝑹−𝟏 ∙ 𝒉, (𝟏. 𝟐𝟖)

48

or for the next step of computation [76]:

�̅� = �̅�−𝟏 ∙ 𝒉.̅ (𝟏. 𝟐𝟗)

Basically, the algorithm consists of two computational steps per time update. The first

step is a triangular updating and the second one is a triangular back-substitution

(optional). Due to the fact that both steps require 𝑶(𝑵𝟐) computations, the algorithm

itself has the computational complexity equal to 𝑶(𝑵𝟐) [76].

One more benefit of this algorithm consists in the fact that it is possible to calculate

the error signal without explicitly computing 𝜽 at each time step. This is referred

to as a residual extraction and it is used in many applications, where only the error

computation is needed [76]. In this work this feature of the algorithm is considered

to be of a great importance as far as only the computed errors will be used to eliminate

the undesired responses from the environment, i.e. for the noise cancellation.

One more point to be also mentioned is a need to avoid the computation of the square-

root, performed when making the QR decomposition with the Givens transformation.

It is beneficial in the hardware implementations, because it prevents the computational

bottleneck. To avoid the square-root computation, one can make a particular

factorization of the R-matrix. This leads to the square-root free Givens rotations [76].

To summarize the advantages of the SRI RLS algorithms, its numerical stability

and easiness to be applied on a sequential processor should be underlined. Besides,

when there is only a need for a residual extraction and, therefore, the back-substitution

can be skipped, the algorithm can be pipelined for the parallel processing.

However, without skipping the back-substitution and a weight vector computation,

the algorithm can result in the data contraflow and cannot be easily pipelined. In this

case the alternative algorithm can be used, which is based on the ‘inverse QRD updating

and referred to the square-root covariance (SRC) algorithms by M. Moonen [76].

Though the square-root RLS algorithms have better numerical properties than

the standard RLS algorithms, the computational complexity of 𝑶(𝑵𝟐) per time update is

quite large and there is a need to make it smaller in some applications.

There are a number of the fast RLS algorithms described in literature. Among them,

for example, is a fast version of the QRD-updating based on a residual extraction

algorithm called the QRD least squares lattice (QRD-LSL) algorithm. This algorithm

is very useful when only a residual extraction is needed. In this case the back-

substitution step is avoided and the algorithm can be easily pipelined. Because

the QRD-LSL has only orthogonal transformations, it results in its good numerical

properties and, therefore, in the long term stability [76].

Other fast algorithms based on the QRD-LSL include the Lattice algorithms without

the orthogonal transformations. They are cheaper as far as their computational

complexity is concerned, but could suffer from the numerical problems [76].

49

Another algorithm, which uses the orthogonal transformations, but has the same

computational complexity as the QRD-LSL does, is a so-called “fast QR”

algorithm [76].

As far as the computational complexity is concerned, the most efficient RLS Lattice

algorithm requires 24N operations per time update and can be pipelined for

the increased rate of operations [76].

The above mentioned fast algorithms are good and suitable for the residual extraction

problems. However, some applications require the weight computation. In this case

the fast versions of the inverse updates based RLS algorithms can be applied.

One of them is a so-called ‘fast transversal filter’ (FTF). The problem of this algorithm

is that it cannot be used for continuous operations with very large amounts of data,

because it suffers from the numerical instability. As far as the computational complexity

is concerned, the FTF requires 8N operations per time update, but it cannot be easily

pipelined due to the data contraflow; thus, the computation cannot be accelerated by

the parallel processing [76].

As far as in this work the noise cancellation is performed based on the residual

extraction, the next chapter describes the incorporation of hypothesis testing

into the QRD RLS Lattice algorithms, which was chosen due to its modular structure,

reliability and computational speed.

1.4. QRD RLS Lattice Algorithm and Hypothesis Testing

Due to convenience in the implementation and the computational speed as it was shown

in the previous section, the QRD RLS Lattice in the error feedback form is chosen

for the implementation on the HW platform.

The RLS Lattice algorithm can be derived from the QRD algorithm, more detailed

information of which can be found in [40-41, 47-48, 50, 81]. However, a short

description of the most important equations is given in Appendix 2.

Due to its modular structure, the QRD RLS Lattice algorithm is suitable for

the incorporation of the hypothesis estimation. In this case each module can perform

the order update. It allows obtaining estimations of all orders during the computation

process [84].

The hypothesis estimation is performed using (1.14). There are two stages of probability

estimation. The first stage computes the order update. It means that the old probability

estimates are updated by the new data during the first stage. In the second stage

the normalization of the updated order estimates is performed. The second stage fulfills

the forgetting of the hypothesis probability density function [84]. These stages

can be incorporated into the QRD RLS Lattice algorithm.

50

However, to compute the probability estimates of the hypotheses, it is necessary

to know 𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏), 𝑯𝑵), which is calculated using (A.15):

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝑯𝑵) = 𝝅−𝟏/𝟐 ∙
𝜦((𝝑−𝑵)/𝟐+𝟏)

�̅�((�̅�−𝑵)/𝟐+𝟏)
∙

|𝑽[𝑵]|𝟏/𝟐

|�̅�[𝑵]|𝟏/𝟐
∙

Г((�̅� − 𝑵)/𝟐 + 𝟏)

Г((𝝑 − 𝑵)/𝟐 + 𝟏)

The initial hypothesis probability density function is chosen in the form of the uniform

distribution.

It is worth noting that the equation (A.15) is not used in its direct form in the algorithm,

because it needs some approximations due to the numerical problems.

The approximation of the equation and the update of probabilities are presented

in Appendix 2.

The implementation of N QRD RLS Lattice estimations to test each hypothesis can be

parallelized. For each estimation of an identification model by hypothesis testing,

one QRD RLS Lattice instance can be computed in parallel. It can be implemented on

the multi-core ARM A53 Cortex processor of the Xilinx Zynq Ultrascale+ device and

on the FPGA accelerators [34-35].

1.5. FPGA, Tools and Techniques

The prototype of the device, where the algorithm will be running, will receive

the signals from the ultrasound microphones. This part will be programmed in the

FPGA programmable logic of the Xilinx Zynq Ultrascale+ device. Besides, as far as

the algorithm itself will be also implemented on the FPGA programmable logic part

of the hardware platform, it is not out of the point to give a definition of the FPGA

and describe the tools and techniques used for the FPGA design development.

The present section reveals these issues.

The term FPGA stands for a field-programmable gate array. It is a large-scale integrated

circuit, which can be reprogrammed after being produced. The fact

that the configuration of the device and its operation can be changed is obvious

from the word combination “field-programmable”. The phrase “gate array”, on the other

hand, explains what kind of internal architecture the device has to have the ability

of being reprogrammed “in the field” [100].

The FPGA structure is shown in Figure 1.1.

The common FPGA architecture comprises an array of small blocks of programmable

logic, reconfigurable or programmable interconnects, which wire the blocks together,

and I/O blocks [6].

The logic blocks are usually called configurable logic blocks (CLB) or logic array block

(LAB) depending on a vendor. Generally, a logic block includes a number of logical

cells, consisting of up to 5-input lookup tables, a full adder cell, some multiplexers

and a D-type flip-flop. The memory elements can be also represented by more complex

blocks of memory instead of simple flip-flops. Besides, modern FPGA devices

comprise some on-chip memory resources, such as, for example, Static Random Access

51

Figure 1.1: FPGA architecture [6]

Memory (SRAM). Thus, the local memory within each logic element can be combined

with globally shared memory blocks [6].

The lookup table (LUT) is formed out of one or two single-bit registers and some logic

elements such as clock enables and multiplexers. The LUTs represent small 8-bit

RAMs, which can implement any combinational function of their inputs.

The complexity of the function performed can be configured in the FPGA [6].

It is good to take in mind that routing is very crucial for the FPGA. It can influence

performance of the whole design; therefore, a compromise between the programming

flexibility and the area efficiency should be found when thinking over about the number

of routing channels, which have to be placed in the FPGA. The routing channels can be

made as high-speed long lines across the chips or as flexible local lines, connecting

the separate blocks. The interconnections can run vertically and horizontally. There are

also programmable switches in the FPGA architecture, which are shown as a gray

square in Figure 1.1. The switches are implemented with MOSFET transistors

and connect the orthogonal lines of interconnections according to the digital circuit

designed in the FPGA. They can be SRAM-based, electrically erasable, or one-time-

programmable [6].

In more complex FPGAs the logic blocks are combined with higher-level arithmetic

and control structures, such as multiplexers and counters [6].

Moreover, because the FPGA-based applications have many different system-level

interface requirements, the FPGAs usually contain configurable I/O blocks, which can

be configured as TTL, CMOS, PCI and etc. The majority of FPGAs are also equipped

with dedicated high-speed I/Os for clocks and global resets as well as PLLs and clock

management schemes [6].

It should be also noted that besides basic features the modern FPGA families include

also a higher level functionality. It results in reducing the required area and increasing

speed in computation of the common embedded functions. The examples of such higher

level functionality can be multipliers, generic DSP blocks, embedded processors, high

speed I/O logic, embedded memories and etc. [6].

Nowadays the FPGAs also contain so-called IP cores such as processor cores, external

memory controllers and etc. These cores have ASIC level performance and power

52

consumption, though they exist alongside the programmable fabric. This results in more

free space for the application-specific logic [100].

The behavior of the FPGA is usually defined by using a hardware description language

(HDL) such as VHDL or Verilog or by arranging blocks of pre-existing functions using

block diagram-oriented design tools such as Vivado [104] from the Xilinx.

The advantage of specifying the FPGA behavior with the HDL is in fact that it allows

working with large structures, because it is possible to specify them numerically.

On the other hand, schematic way of specifying the FPGA behavior is more user-

friendly and better for visualization purposes [100].

However, the key for the success of the project development is to define, which parts

of the design should be implemented on the hardware and which parts should be made

in the form of the software on a traditional processor. The important problem

in the early phases of the design is connected with an effective partitioning

of the algorithm when applying the parallel programming techniques as well as

with the mapping of the application to the hardware resources through the use

of the automated compiler and hardware synthesis tools. These two points greatly

influence the finally achieved system performance [100].

Speaking about the advantages of using the FPGA compared with the ASICs, one can

emphasize its ability of being reconfigured after being manufactured, a partial re-

configuration of a part of the design, the lower non-recurring engineering costs,

the reduced development time, and a lower risk during the development. Besides, using

the FPGA the designer can incrementally port and verify the algorithms previously

prototyped in the software. Moreover, the FPGA can serve as a prototyping mechanism

with further goal to implement the design on the ASIC-based platform [100].

It should be also noted that the use of the FPGA in the DSP domain is increasing.

Talking about the DSP applications in respect to the FPGA, it is good to say

that in many DSP applications the mixed processor design is preferred. In such a design

the application’s less-performance-critical components such as an operating system,

a network stack and the user interface are placed on a host microprocessor such

as the ARM, whereas more computationally intensive components are served

by the dedicated hardware in the FPGA [100].

The main producers of the FPGA platforms are companies Xilinx and Altera.

They provide the Windows and Linux design software, which is used to design,

analyze, simulate and compile the designs [6].

During the present work the software tools from the Xilinx company are supposed to be

used: Vivado Design Suite [104], Software Development Kit (SDK) [107] and Software

Defined System on Chip (SDSoC) tools [108].

The Vivado Design Suite is a software tool produced by the Xilinx for synthesis

and analysis of the HDL designs. It has additional features for the SoC development

and high-level synthesis and enables C, C++ and SystemC programs to be directly

targeted into the Xilinx devices without manually creating the Register-Transfer

Level (RTL) [59].

53

The Vivado Design Suite has a library of predefined complex functions and circuits,

which can be used for the design. These predefined circuits are called IP cores and they

simplify the design process [59].

This software tool can be used for the hardware design preparation, which includes

several phases. The first step is to create the hardware design using the IP Integrator

and a list of the available IP cores, thus creating the RTL description in the VHDL

or Verilog. The design has to be validated. The validation process helps to find

the errors in the design that could prevent the hardware from working properly.

The most frequent errors can appear in connections between the blocks or

in the parameter settings for the individual blocks [59].

If the validation is successful, then a so-called HDL wrapper can be generated.

It is basically a top-level description of the system. Then the synthesis process generates

all source files for the IP blocks as well as any relevant constraint files and maps

the design to a netlist. The netlist is translated to a gate level description. On this stage

the simulation is made once again to confirm that the synthesis is fulfilled

without errors [59].

The next step is the design implementation, where the netlist is placed and routed onto

the FPGA device resources and a bitstream file (a binary file) with the configuration

data for the implementation in the programmable logic is generated. The designer can

validate the map, place and route the results using a timing analysis, a simulation and

other verification methodologies. After it the hardware image is complete and

the hardware platform can be exported to the SDK environment. The SDK supports

creation of the software applications for the specified hardware platform [59].

One more tool, which will be possibly used during the present work, is the SDSoC

environment. The SDSoC is a system level compiler, which targets a base platform

and is capable to compile C/C++ functions into the programmable logic. It works one

level above the Vivado HLS compiler. After analyzing a program and determining

the data flow between the software and hardware functions, it generates an application

specific SoC including a complete boot image with the firmware, operating system,

and application executable. The Xilinx HLS compiles the transformed C/C++

to the HDL code. The HDL code and the corresponding cores are automatically packed

into the IP-XACT format and serve as the input for the Vivado IP integrator.

The SDSoC environment automatically generates the compatible data-mover IP-cores

and the interface IP-cores for the programmable logic part of the Zynq Ultrascale+

device. This can result in the automated generation of a new SoC system with new

HW accelerators, which replace the original SW-based system. The SDSoC supports

compilation of the Xilinx versions of OpenCV libraries, which comprise different

mathematical functions such as Gaussian, Median, Bilateral, Canny edge detection,

SVM, LK Optical Flow and etc. [44, 107].

More detailed description of the design development using the mentioned software tools

will be provided in the practical part of the work.

54

1.6. Results and Related Publications

During the research stage presented in the previous sections the analysis and

comparison of the existing adaptive RLS algorithms were performed. The results of this

stage of the research are the following released publically accessible Application note

and Evaluation package:

1. Kadlec J., Likhonina R. Adaptive RLS Algorithms Reference Implementations.

Application note, ÚTIA, 2017.

Abstract: This software presents set of adaptive recursive least squares system

identification algorithms based on the Bayesian extensions of real-time adaptive

system identification as well as extending the existing recursive least square

adaptive algorithms for estimation of time varying parameters in the applications

of acoustic signal processing. The included reference adaptive algorithms

are implemented in Matlab 2016b. Algorithms serve as „golden“ reference models

for the embedded implementations on dedicated processors like Arm Cortex A9

and the FPGA programmable logic accelerators in devices the Xilinx Zynq.

Algorithms are numerically robust. Algorithms are implemented in double

precision floating point (64bit), single precision floating point (32bit)

and in logarithmic arithmetic with precision 32bit and 19bit. This software also

presents adaptive recursive least squares system identification algorithms taking

advantage of dynamic normalization of the core of the algorithm into the guarantied

range <1-, 1> for all variables. These algorithmic cores are suitable for the fixed-

point implementation (14bit).

2. Evaluation package including .m scripts with the DSP algorithms pre-compiled

as .mexw64 files for MATLAB R2016.b (or higher) and two standalone

SW applications for Win7 64b or Win10 64b (for users without MATLAB).

These standalone SW applications have been created by compilation of .m scripts

and .mex functions in the MATLAB R2019b compiler toolbox.

Both the application note and the evaluation package are available for downloading

at http://sp.utia.cz/index.php?ids=results&id=dsp_1_6

Moreover, the tools and techniques for programming in the FPGA part of the Xilinx

Zynq were investigated. The outputs of this investigation are the following:

1. Functional demonstrator of the camera-to-touchscreen device prepared using

the Xilinx Vivado 2015.2 and SDK 2015.2 tools and showing how to get a full HD

color image from the camera module with a higher resolution to a touch display

with a smaller resolution and to move along the image by touching the screen.

2. Likhonina R., Kohout L., Kadlec J. Camera to Touchscreen Demonstration

for MicroZed 7020 carrier board, Avnet 7-inch Zed Touch Display and Avnet

Toshiba Industrial 1080P60 Camera Module. Application note, ÚTIA, 2016.

Abstract: This application note describes a camera-to-touchscreen demonstrator,

which has been created using MicroZed 7020 carrier board, Avnet 7-inch Zed

Touch Display and Avnet Toshiba Industrial 1080P60 Camera Module.

http://sp.utia.cz/index.php?ids=results&id=dsp_1_6

55

The Camera Module sends full HD (1080p high-definition) image at 60 fps,

which is processed by MicroZed 7020 carrier board and transferred to the 7-inch

LCD display with active area 800x480 pixels. Thus, there is a part of full HD image

displayed on the LCD display. The full image can be looked through moving along

the active area by touching the screen.

The application note and the demonstrator are available for downloading

at http://sp.utia.cz/index.php?ids=results&id=Avnet_TCM_LCD.

3. Likhonina R., Kohout L., Kadlec J. Camera-to-touchscreen design. In: 6th

International Workshop on Mathematical Models and their Applications

(IWMMA’2017), Krasnojarsk, RU, 20171113.

Abstract: The present paper describes an FPGA design of a camera-to-touchscreen

demonstrator that has been prepared using Xilinx Vivado 2015.2 and SDK 2015.2

tools. The demonstrator consists of MicorZed 7020 Carrier Board, Avnet 7-inch

Zed Touch Display and Avnet Toshiba Industrial 1080P60 Camera Module.

The camera transmits a full HD video signal at 60 frames per seconds to MicroZed

7020 board, which processes it and sends to the LCD display with active area

of 800x480 pixels. As the display has smaller resolution, only a fragment

of the whole video frame can be seen at once on the display, whereas the full image

is stored in the memory. By touching the screen one can travel along the stored

video frame and look through the whole image. The design can be used,

for example, as a car rear view mirror monitor benefiting from touchscreen

technologies.

The conference article is available at

http://library.utia.cas.cz/separaty/2017/ZS/likhonia-0484186.pdf

http://sp.utia.cz/index.php?ids=results&id=Avnet_TCM_LCD
http://library.utia.cas.cz/separaty/2017/ZS/likhonia-0484186.pdf

56

57

CHAPTER 2

Algorithm Implementation

in the MATLAB R2019b Environment

This chapter describes an approach, which is supposed to be applied as a pre-processing

stage for hand detection and gesture recognition problems.

It comprises three sections. The first section describes simulation results performed in

the MATLAB R2019b simulation environment [70] and compares two algorithms –

the QRD RLS algorithm and the QRD RLS Lattice algorithm – in terms

of the computational accuracy and time.

In the second part of this chapter the experimental results with real data are performed.

Firstly, it presents the simulation experiments based on the parameters obtained during

the identification process with the real data. Such kind of a simulation is closer

to the reality and presents a safe step to the experiments with the real data, which proves

that the algorithms function in a reliable way. It can also serve as a golden model

for further experiments on different devices. Finally, the results of experiments

with the real data obtained from the device equipped with ultrasound transducers

including the experiments both with the QRD RLS algorithm and the QRD RLS Lattice

algorithm are discussed and the algorithms are compared again in terms

of the computational accuracy and time.

The last two sections provide a short summary of the whole chapter and a comparative

analysis of the outputs including contributions on this stage of the research and

the related publications.

2.1. Simulation in MATLAB R2019b

This section provides a description of the simulation results as well as a comparison

of the computation results of the QRD RLS algorithm and the QRD RLS Lattice

algorithm. The computation is performed in the MATLAB R2019b environment

on a PC.

2.1.1. Experiments with the QRD RLS Lattice Algorithm

The proposed approach, subject to a detailed description in this section, is based on

a noise cancellation technique and uses the QRD RLS Lattice algorithm

with the exponential forgetting (EF) [40-41, 47-48, 50, 81].

58

The basic concept of a hand recognition application is straightforward: the device

equipped with a network of ultrasound transducers and an integrated pre-processing unit

transmits ultrasound impulses, which are reflected from a hand and returned back

to the system. The received responses and their characteristics such as, for example,

time needed to come back to the system, are used to detect the hand presence and

position or even the distance from the hand to the device [60-63].

However, a seemingly simple concept of a hand detection application faces a couple

of challenges in the real environment as far as inevitable undesired responses from other

objects in the environment apart from the hand can cause a significant problem

for an identification process (see Fig. 2). In this case an undesired response can be

considered to be a static response. Obviously it has to be removed or at least suppressed

in the target signal, which is the subject for the next stage of the data

processing [60-63].

According to [76], a noise cancellation method assumes two types of signals:

o one is the desired signal, which is composed both from the temporary present

short distance reflection signal and from the reflection signal mixed

with the environment;

o the other one is the reference ultrasound source signal.

It is also assumed that a stochastic nature of the environment can be modelled

by an additive uncorrelated noise. Based on the static relation of the environment

reflection signal and the ultrasound source signal, it is possible to reconstruct

the temporary present short distance reflection signal as a prediction/filtration error

of the adaptive QRD RLS Lattice algorithm. It is constructed as a residual from the

model of the static environment. As it was stated in the previous chapter, the QRD RLS

Lattice algorithm allows computing the error signal without explicitly calculating the

estimates of the parameters of a regression model at each time step [76]. It is a key and

very important feature, which is supposed to be used to deal with a hand detection

problem and with the suppression of the undesired responses.

During a simulation process, it is assumed that the hand appears only for a short period

of time. Therefore, the reflections from the hand represent an additional short period

disturbance. In this particular case the noise cancellation technique is applied using

the QRD RLS Lattice algorithm with the EF, which is extended with hypothesis testing.

It allows estimating a model, which suits best for this or that situation given

the incoming data. Figure 2.1 shows a block diagram of the modelling process [60-64].

59

Figure 2.1: Block diagram

It is obvious from the diagram in Fig. 2.1 that the modelling process of a noise

cancellation case comprises four main parts:

o the environment model producing the undesired noise and serving as a reference

signal;

o the hand model simulating a hand, which appears for a short period of time

and causes the additional disturbance;

o two identification blocks representing regression models of two different orders,

one of which has a certain time delay.

Generally, a hand detection problem is modelled with so-called linear finite impulse

response (FIR) based regression models [76]; thus, all four models – the environment

and hand models, and two identification blocks – are the linear FIR models having

a common input u. Given the input data, the environment and hand models compute

the outputs y1 and y2 respectively. Later on, these outputs are summed up to receive

the output y. The result of the summation y is sent to identification block 1 and

identification block 2. The identification blocks perform parameter estimation

of the hand model (if needed) recursively and calculate prediction and filtration

errors [60-64].

As it was mentioned before, the hand reflection signal is reconstructed as

a prediction/filtration error of the algorithm. Therefore, it is clear that the development

of the prediction error e should estimate the development of the output y2 (see Fig. 2.1),

as far as it is the hand, which causes the additional disturbance and, therefore,

the increase of the prediction/filtration error. Using prediction resp. filtration errors,

the hand appearance can be detected [60-64].

To make the detection even more precise and reliable, the algorithm is supplemented

with the estimation of the probability of two hypotheses about one or another

identification model suitable for the given situation. Thus, on its basis an appropriate

identification model suited better to the given situation can be chosen. Basically,

60

due to the computation complexity and limited time for computation, only two

identification models are considered (see Fig. 2.2).

Both models, subject to estimation, use the same incoming data. However, the first

model has a higher order and learns using all available data during a specific time

period. The second model has a smaller order and a certain time delay (TD)

(see Fig. 2.2). It ensures that the second model works on the data where there is no hand

presence possible as far as the hand is assumed to appear only in the area of the time

delay. In this way a certain assumption about a possible distance of the hand from

the device is made.

Using this principle, it can be assumed that if there is no hand in front of the device,

the identification model with a higher order would have a higher probability; otherwise,

the identification model of a smaller order with the time delay is supposed to suit better

for an estimation process as far as it describes better and more accurately the given

situation.

The assumption can be explained in the following way. As it was mentioned above,

both models – a model of a higher order and a model of a smaller order – have the same

input and are trained on the same data. However, the first model with a higher order

is set in the way that it takes all available data and tries to perform the echo cancellation

as precise as it is possible. It learns on the situation, when there is no hand, and creates

a certain relation between its FIR parameters and the input/output data. Therefore,

when there is no hand, it performs the filtration very well, but when the hand appears,

the relation between the parameters of the model and the input/output data is strongly

affected and the model has to learn again, so it becomes inappropriate for the given

situation. However, it still computes the prediction/filtration errors based on

its parameter estimates, which only start changing.

Contrarily, the second model with a smaller order is set in a way that it has the input

time delayed data and it works with the input/output from the part, where it is assumed

that there is no hand appearance possible. Due to the fact that it does not have all

available data, it cannot compute the prediction/filtration errors in a right way,

but the estimation process is always in the same situation, i.e. there is a constant

Figure 2.2: Hypothesis testing model [64]

61

problem to make estimation. When there is a hand, nothing will change for the second

model, because the hand is out of the area where the model has its FIR parameters,

so the relation between its FIR parameters and the input/output will not change for

the second model, though there will be a higher dispersion on the output due to more

noise related to the reflections from the hand, which are not compressed. Due to this

fact, the second model with a smaller order and the time delay will have a higher

probability when the hand appears in front of the device, because its parameters do not

change. And in this way it will get a higher probability than the first model, which is

greatly affected by the hand appearance.

Thus, using the output probabilities of the recursive model probability estimation,

the hand presence in front of the device is clearly identified.

During investigation, a series of experiments using both time-invariant and time-variant

environment models have been fulfilled. As far as their outputs are very similar,

only several of them have been chosen to illustrate the challenges and the final results

of the simulation (see Fig. 2.3-2.7).

Let’s start with the time-invariant environment model.

The signal u, the input to the environment and hand models as well as to two

identification blocks, is built in a way to correspond to the input signal provided

by the ultrasound device, which real data will be used in the experiments described in

the next section. It is in the form of a set of chirps represented by a sinusoid wave with

a period of 5 samples and 880 samples space between them (see Fig. 2.3).

Such kind of the input signal is considered to provide the ill-excitation of the system,

which means that it affects the numerical sensitivity and complicates the estimation

process; however, it enables to calculate the hand distance to the device, which

represents further contribution of the present approach. It will be described and

experimentally shown in the section devoted to the experiments using the real data from

the ultrasound device.

Figure 2.3: Input signal

62

The environment model is represented by a FIR model with order 880 to cover all

available data (the inputs/outputs). It has constant random coefficients for

the experiments in Fig. 2.4 and Fig. 2.5 and random coefficients with slowly changing

values for the experiments in Fig. 2.6 and Fig. 2.7.

The hand model is represented by a FIR model having order 300. The hand absence

is modelled by setting the coefficients in the columns of the model matrix to zero

values. The columns of the matrix correspond to the time development of the signal.

To simulate a short-term appearance of the hand, the coefficients of the hand model

are set to non-zero values. To simulate a certain distance of the hand to the device,

the first 50 rows and the last 150 rows of the matrix of the hand model are set to zero.

It should be also noticed that both the environment and hand models operate with

the uncorrelated additional output noise to make the simulation closer to a real situation.

During the simulation, three cases of the hand appearance are analyzed:

o two short-term appearances at time step 10 000 and 50 000, both lasting

for 2000 samples;

o a longer-term hand appearance at time step 80 000, lasting for 10 000 samples.

It is worth mentioning that to model the system, there should be made certain

assumptions about the distance between the hand and the device, which is supposed

to be known. Given it, the assumptions about the orders of the identification models and

the time delay for hypothesis testing are made. Based on them, the implemented

hypothesis order probability estimation identifies, which identification system is better

for the parameter estimation for this or that period of the identification process.

Both identification models are also represented by the FIR models. The first model has

the order set to 880 to ensure that it covers all available data during the one pulse

of the input signal, which lasts for 880 samples. The order of the second model is 300.

However, it takes only a limited number of the remote data, where the hand is unlikely

to appear. Therefore, there is the time delay set to 580.

Due to the implemented hypothesis, the final results of estimation are not strongly

dependent on a value of the EF factor; thus, one optimal value can be set for both

the time-invariant and time-variant systems. However, a choice of the optimal value

of the EF factor depends on the order of the system and should be made within certain

limits given by the equation (A.79) in Appendix 2.

The value of the EF factor for the performed experiments is set to 0.99998.

The time scale for all experiments is 100 000 samples. Further, to make the simulation

experiments closer to the experiments with the real ultrasound data, where the signals

are transmitted with a frequency 40 kHz, but then it is sampled with a sampling

frequency of 192 kHz, it is also assumed that the sampling frequency of 192 kHz

is used, i.e. a maximum distance, from where the objects can be seen given the order

of the model 880 is approximately 78.6 cm. Adding TD=580 samples to the second

identification model, we, thereby, make an assumption that the hand can occur within

the range of 0 – 51.8 cm from the device.

63

Now let us discuss the results of the experiments with the time-invariant (Fig. 2.4-2.5)

and time-variant environment models (Fig. 2.6-2.7) in more details.

Figure 2.4 shows the results of the experiments given the time-invariant environment

model. The prediction error development is shown in magenta (see Fig. 2.4-2.7).

In the very beginning of the estimation process there is an increase of a prediction error.

It can be explained by the fact that the system needs some time to learn to estimate

the parameters correctly and to converge to the right values. The character of the hand

output and, therefore, the development of the hypothesis in the place of the hand

presence, i.e. its form “short peak-nothing-short peak”, is conditioned by the character

of the input signal, described above.

Figure 2.4 shows three peaks of the prediction error at time step 10 000, 50 000 and

80 000. It is the moment when the hand appears. It is also clear from Fig. 2.4 that after

the hand disappears there is still an increase of the prediction error preserved for some

time. Especially it is obvious for the third hand appearance, when it stays a longer

period in front of the device. These slowly decreasing errors are caused by the fact that

the value of the EF factor is close to 1 and the system adapts to a new situation very

slowly. Therefore, the development of the prediction error and the output y2 (presented

in blue), though it should be similar, differs from time to time (see Fig. 2.4). From this,

it is obvious that based only on the prediction error results; it is hard to identify when

the hand disappears, especially, in case of the long-term presence. By implementing

hypothesis testing in the algorithm, the results can be improved and become more

precise.

In Fig. 2.4 the identification model of the 880
th

 order is shown by a red curve, while

the identification model of the 300
th

 order with the time delay (TD) of 580 samples

is presented in a green curve.

Figure 2.4: Simulation results: a time-invariant environment model

64

It is clear from the graphs in Fig. 2.4 that when the hand is present in front

of the device, the identification model of a smaller order is winning. Contrarily, if there

is no hand in front of the device, the identification model of a higher order is applied by

the algorithm. It is obvious that the results are in correspondence with the assumption

made in the beginning of this section, which states that the smaller order model should

have a higher probability, if there is a hand in front of the device. Thus, hypothesis

testing determines the exact moment of the hand appearance, which due to the nature

of the input signal can be used for calculating the hand distance from the device.

To show the results in more details, a fragment for the second hand appearance

is chosen (see Fig. 2.5).

To bring the simulation more in a line with the reality, in further series of experiments

a time-variant environment model is used. In this case it is not static anymore and

it simulates the situation when there are some slowly moving objects present

in the environment.

Similarly to figures for the time-invariant environment model, the results for the time-

variant environment model are presented in Fig. 2.6.

Figure 2.5: Simulation results: a time-invariant environment model (detailed fragment)

65

Figure 2.6: Simulation results: time-variant environment model

Figure 2.7: Simulation results: a time-variant environment model (detailed fragment)

All parameters are set exactly alike as in the previous experiments, except for

the coefficients in the environment model, which are slowly changing-in-time random

values.

It is clear from Fig. 2.6 that the prediction error in the very beginning is very high due

to using the time-variant environment model and the first hand appearance is almost

undetectable if using only the development of the prediction error. However, the hand is

accurately recognized by the application of hypothesis testing. The results of estimation

for the second and the third hand appearance are very precise as well.

66

More detailed results for the second hand appearance are shown in the fragment

in Fig. 2.7.

From the graphs above it is obvious that the assumption about the smaller order model

best suited for a description of the hand presence in front of the device is valid. Besides,

this simulation model corresponds better to the real situation and, therefore,

the assumption is supposed to be valid for the experiments with the real ultrasound data

as well.

2.1.2. Comparison of Computation Results of the QRD RLS Algorithm

and the QRD RLS Lattice Algorithm

To show the advantages of the QRD RLS Lattice algorithm chosen

for the implementation on the hardware platform, let us compare the results

of the experiments for the time-variant environment model for the QRD RLS algorithm

and for the QRD RLS Lattice algorithm. The comparison is made in terms

of the accuracy and computational time.

The settings of the experiments are the same as those described in the previous sections.

The results of the QRD RLS algorithm are shown in Figure 2.8, while the results

of the QRD RLS Lattice algorithm are shown in Figure 2.9.

Figure 2.8: Results of the estimation process using the QRD RLS algorithm

67

Figure 2.9: Results of the estimation process using the QRD RLS Lattice algorithm

It is obvious from the graphs in Fig. 2.8 and in Fig. 2.9 that the outputs for both

the QRD RLS algorithm and the QRD RLS Lattice algorithm in terms of the quality

of estimation and its accuracy are practically the same. However, as far as

the computational time is concerned, the gap between two compared algorithms is quite

large. For the QRD RLS Lattice algorithm, the computational time is within 15s

on a PC with Intel® Core™ i7-4770 CPU, 3.5GHz: the variable initialization is made

in the MATLAB R2019b environment and the algorithm itself is calculated in C code

using .mexw64. However, for the QRD RLS algorithm, it constitutes 580s

or approximately 10 min of computation.

Thus, given N=100000 and the number of operations for one computation step 34850,

the QRD RLS Lattice algorithm requires approximately 58 MFLOP/s to be processed

in real time. In the experiments the PC (single core) delivered 232 MFLOP/s

for the QRD RLS Lattice algorithm in the DP performance, i.e. it can successfully

compute the algorithm in the range of the real-time processing.

As for the QRD RLS algorithm, given N=100000 and the number of operations for one

computation step 2301952, it requires approximately 3837 MFLOP/s to be processed

in real time. However, in the experiments the PC (single core) delivered only

397 MFLOP/s for the QRD RLS algorithm in the DP performance.

According to the experiments performed during the simulation in the MATLAB

R2019b environment, it can be concluded that the proposed approach to system

identification using the QRD RLS Lattice algorithm is promising and it can provide

the sufficiently precise outputs. It has its limitations in terms of making the assumptions

about the distance between the hand and the device. These limitations should be

carefully considered before the implementation of the algorithm.

However, it is also obvious that though the QRD RLS Lattice algorithm is fast

in comparison with the QRD RLS algorithm, still it might be insufficient

for the real-data processing and there might be a need to accelerate the performance

68

of the algorithm. The means for the algorithm acceleration will be discussed in the next

chapters.

The next section describes the results obtained while using the real ultrasound data

from the device equipped with the ultrasound transducers and microphones. Performing

these experiments, we would be able to say if the computation speed of the algorithm

is sufficient or if it needs the acceleration.

2.2. Experiments with Real Data

This section describes the experimental results with real data taken from a device

equipped with ultrasound sensors. The results of the experiments using QRD RLS

Lattice algorithm are provided in section 2.2.1, while comparison between QRD RLS

algorithm and QRD RLS Lattice algorithm is described in section 2.2.2.

2.2.1. Experimental Results Using the QRD RLS Lattice Algorithm

The ultrasound data were provided by the device developed in ÚTIA. The detailed

description of the device and its functions can be found in [85]. In the present section

only a short description is provided.

Figure 2.10 shows the design of the ultrasound device and its components.

Three basic components of the hardware platform are represented by the TE0720 FPGA

SoM module, the TE0706 carrier board and the ÚTIA evBoard v1.7.

The board comprises a linear microphone array, a dual piezo ultrasound speaker,

a common clock distribution to all microphones and the ultrasound speaker driving

the circuit. The microphone array consists of 32 digital microphones, one of which

is used to provide the control signal. The distance between the microphone acoustic

ports constitutes 3.8 mm. The frequency range of a microphone is from 0 to 80 kHz,

while the array maximal frequency is 40 kHz [85].

It should be also noted that the ultrasound speaker works on 40 kHz frequency.

The responses after it are sampled and decimated to obtain the Pulse-Code Modulation

(PCM) samples, which sampling frequency is 192 kHz.

69

Figure 2.10: ÚTIA evBoard with the FPGA module and the carrier board [85]

The beam-former was designed in the FPGA part of the hardware module by the ÚTIA

team. The block diagram is shown in Fig. 2.11.

There are three dark-green blocks on the left side from the memory block,

which process the data from the microphones and store them in the memory [85]:

o block “Packetize”, which adds end markers to the stream of the microphone

data, i.e. on this stage the data are divided into blocks,

o block “Capture”, which stores the data blocks to the double data rate (DDR)

memory,

o block “Chirp Generator”, which generates chirps. Using this block, the chirp

frequency, its length and the number of reverse phase periods at the end of each

chirp are adjustable [85].

Blue blocks on the right side from the memory block are responsible for adjustments

of the microphones and the signal from the microphones. There are six blocks [85]:

o block “Adjust Phase”, which adjusts the phase of the signal taking into

consideration the steering direction of the beam-former. It is possible to set

the initial angle and the number of sectors of the view field.

o block “Decimate and Sum”, which define the microphones for beam-forming

and the order and subsampling/decimation factor,

o block “BP Filter”, which applies the bandpass filtering to the delay-and-sum

(DAS) beam-former output,

o block “RMS Envelope”, which uses a running window to compute the route

mean square (RMS). Besides, it optionally subsamples the output. The window

length and the subsampling factor are adjustable.

70

o block “Max Detection”, which is responsible for the detection of the position

and the value of the global maximum in the output data,

o block “Conversion to Img”, which has two modes – Normalization on and off.

When the Normalization mode is turned on, the compensation of the strength

of the recorded ultrasound depending on the distance is performed by using

the exponential function. When the Normalization mode is turned off,

the minimal and maximal values are used for the conversion of the RMS

envelope data to the value between 0-255 [85].

For more details refer to [85].

At this point let’s describe the output signal, which is subject to processing

by the algorithms in this work.

As it was mentioned above, the output signal is obtained from 31 microphones situated

on the ultrasound device. The ultrasound speaker sends chirps 600 times on the 40 kHz

frequency, whereby in-between sending the preceding signal and the following one

there is a certain waiting period or a delay, during which nothing is sent. Each signal

has 880 PCM samples, which are obtained by sampling with the sampling

frequency of 192 kHz.

The raw output signal is presented in Figure 2.12. It has 11520000 samples, lasts for 60s

and after each pulse there is a certain time delay, which constitutes 18320 samples

or 0.095s.

On the upper graph in Fig. 2.12 there is a raw uncompressed signal, where it is

impossible to differentiate by a human eye if there is a hand. On the bottom graph the

enlarged pulses are presented to show the waiting period between two measurements.

For illustration purposes, the signal was processed in a way that the large peaks,

which correspond to the cross-talks, are removed, so that it became obvious, in which

time moment the hand was present in front of the device (see Fig. 2.13).

Figure 2.11: ÚTIA FPGA implementation of the beam-former accelerators [85]

71

Figure 2.12: Raw uncompressed output signal from the ultrasound device [64]

Figure 2.13: Raw uncompressed output signal from the ultrasound device (without cross-talks)

Besides, in Fig. 2.13 the time scale was converted to seconds to illustrate that the total

measurement time was 60s.

The principle of functioning of the algorithm is in the way illustrated in Fig. 2.14.

In the beginning the algorithm works with a priori initial conditions. It performs

estimation in stage S1 up to the waiting period and in the end it has some outputs.

Its outputs represent initial conditions for identification for the following stage,

i.e. for stage S2 (see Fig. 2.14). During the waiting period the algorithm stops

and does not compute anything. When stage S2 starts, the algorithm begins

72

its estimation process again, but with the inputs calculated in stage S1. In this way

it performs the identification process and computes all data up to stage Sn where

the final results are computed. Due to the waiting period, practically the algorithm has

more time for computation in each stage.

However, for the practical and computational purposes the raw signal from Fig. 2.12

is compressed by removing delays between the preceding and the following signals.

The compressed raw signal is illustrated in Fig. 2.15.

It should be also noted that during the experiments described below the data from only

one microphone are used. It differs from the current approach, which is used

by the ÚTIA team for hand detection on the ultrasound device described above.

In the current approach the data from all microphones are used and the beam-forming

is made. In the approach presented in this section it is illustrated that even on the basis

of the data taken from one microphone it is possible to detect the hand presence

and the distance between the hand and the device.

If we look at the signal in more details (see Fig. 2.16), we can clearly see that in

the bottom part of the figure, which illustrates a detailed graph for one pulse sent during

the measurement, there is a high peak in the beginning when the speaker sends

the signal (outlined in a red rectangle in Fig. 2.16). It is due to the fact that the device

listens to itself. Then there are smaller peaks, which represent the resonance.

The response from the hand is outlined in a green rectangle.

Figure 2.14: QRD RLS Lattice principle

73

Figure 2.15: Raw compressed output signal from the ultrasound device

Figure 2.16: Fragment of the output signal

The input signal provided by the ultrasound speaker is a set of chirps represented

by a sinusoid wave with a period of 5 samples, a sampling frequency 192 kHz,

and 880 samples space between them. It is not possible to measure it directly; thus,

the reconstruction of the input signal from the raw output signal was performed.

As far as the microphone and the speaker are situated close to each other, it is possible

to do it in a way that the reconstructed input signal is very similar to the real one.

As it was shown above, the first high peak in the raw output signal is actually the input

signal listened out by the device (see Fig. 2.16 and Fig. 2.17). From the graphs,

it is obvious that the peak occurs every time the speaker sends the pulse and, therefore,

74

it has a certain period of its occurrence. It can be used for the reconstruction of the input

signal in the experiments with the real data as far as we know the beginning, the length

of the input signal (140 samples), and the duration of one pulse (880 samples).

Everything in-between the preceding peak and the next one are set to zero

(see Fig. 2.17).

In this way the input signal is taken from the raw output signal and reconstructed

in a separate input, which is used in the experiments with the Lattice identification

hypothesis testing algorithm. The reconstructed input signal is shown in Fig. 2.18.

Figure 2.17: Input reconstruction

Figure 2.18: Input signal [64]

75

The raw output signal is modified in a way that the self-listened inputs (high peaks used

for the reconstruction of the input signal) are replaced by zeros. It is possible to make it

without affecting the validity of the experiments, because the period of its occurrence

is known. The final output signal used in the experiments is illustrated in Fig. 2.19.

The higher peaks on the graph in Fig. 2.19 represent the responses from the hand,

while the smaller peaks are signals coming back from other objects in the environment

and considered to be noise. From the graph in Fig. 2.19, it is clear that during

the measurements there are six hand appearances on different distances from the device.

Moreover, the development of the third hand presence is different from the others. It is

due to the fact that in this case the hand was moving forwards and backwards from the

device.

The goal of the algorithms using hypothesis testing is to identify the presence

of the hand and its distance from the device.

But as the first step before applying hypothesis testing on the real data, it is reasonable

to bring the simulation more in a line with the reality and to ensure that the algorithms

function in a way it has to function. In the simulation described in the previous section,

the artificial models were used. They were based on the random parameters generated

in the MATLAB R2019b environment. In case described below the simulation is based

on the measured data and uses the real input signal.

As the first phase of performing the simulation, it is necessary to perform

the identification process using the QRD RLS algorithm, which will compute

parameters of the models. Taking one of the parameters when there is no hand and

the other one when there is a hand, it is possible to reproduce the simulation close

to the reality. These parameters represent the environment and hand models.

Figure 2.19: Output signal [64]

76

The parameters are taken in the area, where the identification process is stable.

The difference of the simulation from the real situation is in the fact that the hand

is always the same - constant and static - because it is simulated using one parameter

only. Thus, its distance to the device is also constant. Otherwise, the simulation is as

close to the reality as it is possible.

The principle of the simulation is similar as it was described in the section devoted

to the simulation with the random values. There are four models: the environment

model, the hand model and two identification models. This time, however, the order

of the identification models are set to 768 and 256 with the time delay of 512 as it is

supposed to be done in the experiments with the real data using hypothesis testing.

The choice of the orders is explained in more details later on. The EF factor is set

to 0.99999988.

The time period of the simulation is 528000 samples as it will be in the experiments

with the real data with the application of hypothesis testing.

To make the simulation experiments close to the reality, there are also six occurrences

of the hand simulated. They have more or less the same period of the presence in front

of the device as in the experiments with the real data provided hypothesis testing.

During the simulation one hand appearance is close to the preceding hand occurrence.

It is made for the purpose to complicate the computation for the algorithm and to see

if the algorithm is able to detect hand appearances closely coming one after another.

The results of the simulation are presented in Fig. 2.20.

It is obvious from the graph in Fig. 2.20 that the QRD RLS Lattice algorithm functions

precisely enough in the situation when the parameters from the real data computation

are used for the generation of the environment and hand models. It accurately switches

between two hypotheses when the hand appears. It means that hypothesis testing can be

safely applied to the real data computation, which is described below.

Let us remind first the basic concept of the algorithm for the real data computation.

The idea is the same as it was in the case of testing the algorithm with the simulated

data (see Fig. 2.21).

77

Figure 2.20: Estimation results using the QRD RLS Lattice algorithm (simulation with real data

parameters)

Figure 2.21: Block diagram

However, in this case there are three blocks only (see Fig. 2.21):

o the block representing the real data coming from a microphone,

o two identification blocks standing for the regression models of two different

orders, one of which has a certain time delay.

The output of the algorithm of our interest is the estimated probability of hypotheses

of the regression model: if there is a hand in front of the device, the algorithm

should choose the regression model structure appropriate for this situation and different

from the one in case there is no hand.

The identification models are set in the following way. The order of the first model

is set to n1=768. This order is enough to cover the available data for the one pulse

78

and at the same time it is good for pipelining into 3 or 6 processes, which will be

described in the section about the optimization of the algorithm and its HW

implementation.

The order of the second model is set to n2=256 and there is a time delay of 512 samples.

Thus, there is an assumption made that the second identification system makes

estimation on the data, where there is no hand appearance possible, i.e. on the distance

in the range from 0 cm to 46 cm. Besides, this order is also easily divided

by 1 or 2 processes.

After fulfilling a set of the experiments, the optimal value of the EF factor was found,

which is 0.99997. As far as the compressed output signal is used, the experiments work

on N=528000 data samples.

Knowing the sampling frequency and the number of data samples, it is possible

to calculate time, during which the algorithm has to perform the outputs to be able

to process the data in real time.

𝑻𝒓𝒆𝒂𝒍 =
𝑵

𝒇𝒔
=

𝟓𝟐𝟖𝟎𝟎𝟎

𝟏𝟗𝟐𝟎𝟎𝟎
= 𝟐. 𝟕𝟓𝒔. (𝟐. 𝟏)

However, we also need to consider the fact that the real time of the measurement

of the hand responses by the ultrasound device differs from it due to the waiting period

before sending each signal by the speaker as it was described in the beginning

of this section. Thus, considering this time of silence and the real size of the measured

data, i.e. 11520000 samples, the real 𝑇𝑟𝑒𝑎𝑙 = 60s. It means that the algorithm has

to perform estimation within 60s, in order it was possible to apply it for the real-time

data processing applications. Moreover, considering the number of operations during

one step of computation equal to 34850 and the number of steps N=528000, it is

possible to calculate the number of operations per second, which are required to be

performed. It is equal to approximately 307 MFLOP/s.

Figure 2.22 shows the results of computation.

On the graph in Fig. 2.22 there are the computed filtration errors (blue curves)

and the hypothesis development during time (green and red curves in the bottom

of the graph). In the beginning of the estimation process, the algorithm needs some time

to estimate parameters in a right way. It is the learning stage of the algorithm.

Therefore, there is some uncertainty, which identification model to choose. However,

after the learning stage, i.e. after approximately 6000 samples, the estimation process

converges to the correct values and the algorithm accurately recognizes the hand

appearance by switching between two hypotheses.

In case when there is a hand, which causes the additional disturbance, the system

switches into the identification model with a smaller order and with the time delay

(green coloured). Contrarily, if there is no hand, the identification model with a higher

order (red coloured) learnt on all available data has a higher priority. Thus, it is obvious

from the graph that the assumption made in the beginning of the section is valid

for the real ultrasound data the same as it was valid for both simulations.

79

Figure 2.22: Hand detection [64]

As it was stated before, the filtration errors computed by the identification model

trained on all available data, i.e. the identification model with a higher order,

are accurately estimated and can be used along with the hypotheses to detect the hand

presence (see Fig. 2.23).

The upper graph in Fig. 2.23 represents the output signal y, while the bottom graph

shows the development of the filtration error. It is clear from Fig. 2.23 that the signal

is cleaned out from the unwanted responses from the environment and can be used

for further data processing. The hypotheses help to define the precise moment the hand

appears and disappears and in this way they allow to say from where further signal

analysis should be started.

As it was mentioned above, due to the fact that the input signal is in the form of pulses

(chirps) (see Fig. 2.24), it is possible to calculate the distance of the hand from

the device.

80

Figure 2.23: Hand detection (filtration errors)

Figure 2.24: Distance computation

It is clear from the graph in Fig. 2.24 that there is a certain delay between the chirp and

the hand response. Thus, knowing the number of samples between the input (the chirp)

and the response from the hand, it is possible to calculate the hand distance

from the device according to the well-known equation:

𝒔 =
𝒗 ∙ 𝒕

𝟐
 (𝟐. 𝟐)

where s is the distance [m]; v is the speed of the ultrasound in the air, which is 343 m/s;

t is time [s].

81

In the equation time is divided by 2, because it should be taken into consideration

that the signal goes from and back to the device.

Time can be calculated according to the following equation:

𝒕 =
𝑵

𝒇𝒔
, (𝟐. 𝟑)

where N is the number of samples between the input and a hand response,

𝒇𝒔 is a sampling frequency [kHz], which is 192 kHz in our case.

The final results are presented in Fig. 2.25 and Fig. 2.26.

From the graph in Fig. 2.25 it is obvious that during the measurement five hand

occurrences were more or less in the same position and their distance was

approximately the same, i.e. approximately 40-45 cm. There are some minor changes

in the position of Hand 2, which constitutes only several centimetres. However, in case

of Hand 3 the changes in the position are more visible. They can be explained by

the fact that during the measurement the operator was moving the hand towards and

backwards from the device; therefore, its distance varies from 27 cm to 50 cm. Though

the assumption about the maximal possible distance of the hand from the device, that is

46 cm, is not valid for Hand 3 as far as it was moving in the range from 27 cm to 50 cm,

still the algorithm proves to be robust and hypothesis testing functioned reliable

in this case too.

Moreover, from the graph in Fig. 2.25 it is easy to obtain the information about

the duration, during which the hand was present in front of the device, because time is

converted from samples to seconds. More detailed information about time as well as

about the precise hand distance to the device is presented in Table 2.1.

Figure 2.25: Hand distances (uncompressed signal)

82

However, because in Fig. 2.25 the signal is uncompressed and very long, it is not very

visible from the graph, the moment the hand appears and disappears. Therefore,

the graph illustrating the compressed output signal along with the results for the hand

distance computation is presented in Fig. 2.26.

Figure 2.26 illustrates the compressed signal and the hypothesis development during

the computation process along with the calculated distance of the hand to the device.

In this case time is presented in samples.

Table 2.1 shows the precise values of the distance and time for each hand

appearance [64].

Figure 2.26: Hand distances (compressed signal) [64]

Table 2.1: Hand distances

Hand Distance [cm] Time [s]

Hand 1 44 1.9

Hand 2 40-45 3.9

Hand 3 27-50 6.7

Hand 4 41 1.7

Hand 5 40 2.6

Hand 6 45 3.7

83

Finally, it can be concluded that the experiments with the real data obtained from

the ultrasound device show that the algorithm based on hypothesis testing functions

reliably and precisely enough and can be used for dealing with a noise cancellation

problem. Moreover, using this method, it is possible both to detect the hand and

to calculate its distance from the device on the basis of the data only from one

microphone. The distance calculation is considered to be the additional contribution

to the solution of the hand detection problem.

2.2.2. Comparison of Computation Results of the QRD RLS Algorithm

and the QRD RLS Lattice Algorithm

The ultrasound data were also used for the experiments using the QRD RLS algorithm

to compare its performance with the algorithm chosen for the implementation on

the hardware platform.

The results of the experiments using the QRD RLS algorithm are shown in Fig. 2.27,

while the outputs of the QRD RLS Lattice algorithm are presented in Fig. 2.28.

Figure 2.27: Estimation results using the QRD RLS algorithm

84

Figure 2.28: Estimation results using the QRD RLS Lattice algorithm

In the beginning of the estimation process both algorithms need some time for learning.

After approximately 6000 samples, the estimation process converges to the right values

and both algorithms function reliably and precisely recognizing the hand in places

where it factually appears.

It is obvious from the graphs in Fig. 2.27 and in Fig. 2.28 that both algorithms have very

similar results and are equally accurate. However, the advantages of the QRD RLS

Lattice algorithm become more visible and relevant, when the computational time is

compared.

The computation was made again on a PC with Intel® Core™ i7-4770 CPU, 3.5GHz:

the variable initialization is made in the MATLAB R2019b environment and

the algorithm itself is calculated in C code using .mexw64. For the QRD RLS Lattice

algorithm, the time of computation considering N=528000 and the highest order n1=768

is approximately 45s. For the QRD RLS algorithm with the same settings, it is

approximately 2330s, i.e. 39 min of computation. It should be noted that

the computation was performed on the single core.

As it was mentioned in the beginning, to use the algorithm in the real-time applications,

the algorithm has to make computations within 60s. The QRD RLS algorithm has

2301952 operations for one step of computation. The QRD RLS Lattice algorithm has

34850 operations for one step of computation. To process the algorithms in real-time,

a PC needs to deliver approximately 20257 MFLOP/s for the QRD RLS algorithm and

approximately 307 MFLOP/s for the QRD RLS Lattice algorithm. During

the experiments it was found out that given the described setup, the PC (single core)

delivered approximately 522 MFLOP/s for the QRD RLS algorithm and approximately

409 MFLOP/s for the QRD RLS Lattice algorithm, computation in the DP arithmetic.

It means that in case of the QRD RLS algorithm, it is approximately 39 times slower

than it is required for the real-time processing. In case of the QRD RLS Lattice

algorithm the PC (single core) manages to compute the algorithm in the range

of the real-time processing.

85

However, it is assumed that the computational speed of the QRD RLS Lattice algorithm

will be slowed down while being used on small platforms as far as they have

a processor frequency only 1.05GHz and a programmable logic max. 240MHz. Thus,

to process the data on a small platform in real time, the QRD RLS Lattice algorithm

is not fast enough and still needs accelerating. The methods of the acceleration

and the hardware implementation are proposed in the next chapters.

2.3. Discussion

This chapter is devoted to the experiments with the algorithms used for the noise

cancellation, speaking more precisely, for a hand detection problem. The experiments

are based both on simulations and on the real data from the ultrasound device.

The contribution of the algorithm on this stage is that it computes

the prediction/filtration errors and makes the output signal cleaner for further data

processing. Moreover, using hypothesis testing the moment of the hand appearance

and disappearance can be precisely identified. Another benefit is in the fact that

it allows computing the distance of the hand to the device. Thus, only on the basis

of the data measured on one microphone, it is possible to obtain the valuable results

such as the accurate detection of the hand presence and its distance to the device.

Besides, taking the parameters computed during the experiments with the real data,

the simulation close to the reality was performed. It proved that hypothesis testing could

be safely applied on the real data measured on the ultrasound device.

The chapter also provides a comparison between the QRD RLS algorithm and the QRD

RLS Lattice algorithm and shows why the latter is supposed to be used for

the implementation on the HW platform. One of the reasons is that the QRD RLS

Lattice algorithm proves to be faster than the QRD RLS algorithm. Besides, the QRD

RLS Lattice algorithm has a particular structure, which is easily pipelined and, thus,

the algorithm can be accelerated and implemented on the HW platform.

Table 2.2 gives an insight into the computational time of both algorithms during

different experiments.

The first number of MFLOP/s in Tab. 2.2 refers to MFLOP/s delivered by the PC

(single core) given the described computation settings. The second number

of MFLOP/s, which is compared with the first one, is MFLOP/s required for

the algorithm to be computed in the range of the real-time processing.

It is obvious from Tab. 2.2 that the computation of the QRD RLS algorithm is very slow

and unsatisfactory, especially in case of the real data processing, which constitutes

approximately one hour of computation.

As far as the QRD RLS Lattice algorithm is concerned, its computation can be made

in real time given the same or faster PC. It is valid both for the simulation and real data

experiments.

However, it was a bit slower than it is required during the experiments concerning

the simulation based on the real data parameters (the third set of the experiments). It can

86

Table 2.2: Comparison of algorithms in terms of their computational time

Type of experiments
QRD RLS algorithm

QRD RLS Lattice

algorithm

Time [s] MFLOP/s Time [s] MFLOP/s

Simulation 580 397 vs 3837 15 232 vs 58

Real data 2330 522 vs 20257 45 409 vs 307

Simulation using the

real data parameters

---- 71 259 vs 307

be explained by the fact that the inputs based on the real data parameters are computed

for the purposes of the simulation. Contrarily, in the real time experiments the inputs

are provided by the real measurements.

If compared with the simulation based on the random parameters, the time scale is much

longer for the third set of experiments (the simulation with the real data parameters).

It constitutes 528000 data samples vs 100000 data samples for the experiments

with the random parameters. Therefore, the computational time for the third set

of experiments is also longer than for the first one (see Tab. 2.2).

The next chapter describes the method of pipelining and parallel processing of the QRD

RLS Lattice algorithm for the purposes of its acceleration and implementation

on the HW platform.

2.4. Results and Related Publications

To summarize the main contributions on this stage of investigation, the following

outputs should be mentioned:

1. A new approach for hand detection is proposed, where a specific structure

of the regression models was designed in a way, which enables not only

to eliminate the undesired responses from the objects in the environment,

but also to determine the exact moment of the hand appearance.

The structure of the regression models is proposed in the following way: one

regression model has a higher order and analyses all incoming data, while

the other regression model has a smaller order and a predefined time delay.

The assumption is: if there is no hand in front of the device, the model with

a higher order has a higher probability as far as the relations between its FIR

parameters correspond to the incoming data. When the hand appears in front

of the device, the model with a smaller order and the time delay has a higher

probability, because the change does not affect the relations between its FIR

parameters, whereas in case of the model with a higher order the relations of its

FIR parameters are corrupted and do not correspond anymore to the incoming

data.

87

2. The exact moment of the hand occurrence is determined due to incorporated

hypothesis testing choosing between two structures of two regression models

best appropriate for a description of the present situation.

3. Knowing the exact moment of the hand appearance and due to the nature

of the input signal, which is in the form of chirps, it is possible to calculate

the distance between the hand and the device.

4. This approach – a new structure of the regression models, hypothesis testing,

the distance calculation – was implemented both for the QRD RLS algorithm

and the QRD RLS Lattice algorithm for the purpose of a comparison and

choosing the more suitable algorithm for the implementation on the HW

platform.

5. The principle of the algorithm computation corresponds to the provided output

signal, where there is a certain waiting period between the chirps. Thus,

the algorithm functions in such a way that in the beginning the algorithm works

with a priori initial conditions, then it performs estimation and saves state

parameters for the next stage of computation. During the waiting period

the algorithm does not compute anything. After the waiting period, it starts

again, but using the state parameters saved in the previous stage of computation.

Due to the waiting period, the algorithm practically has more time for

computation on each stage.

Source codes are available in MATLAB R2019.b and SciLab:

- simulation package for modelling of echo cancellation for ultrasound hand-

gesture recognition in form of MATLAB scripts or compiled Win 64bit

applications (MATLAB 2018.b (or higher) or Win7 64bit or Win10 64bit

are required): http://sp.utia.cz/index.php?ids=results&id=noise-cancellation

- QRD RLS Lattice algorithm :

o simulation with parameters generated in the MATLAB environment:

 time-invariant environment model

 time-variant environment model

o simulation with parameters calculated from the real ultrasound data

o experiments with the real ultrasound data

 hand detection

 distance computation

- QRD RLS algorithm:

o simulation with parameters generated in the MATLAB environment:

 time-invariant environment model

 time-variant environment model

o experiments with the real ultrasound data

 hand detection

QRD RLS algorithms are available

at https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina

http://sp.utia.cz/index.php?ids=results&id=noise-cancellation
https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina

88

Publications related to the research topic are the following:

1. Likhonina R., Kadlec J. Noise cancellation using QRD RLS algorithms.

Application note, ÚTIA, 2018.

Abstract: This Application Note aims to simulate a noise cancellation problem

with MATLAB tools. This is purposed for pre-processing process for final

gesture recognition application. It also shows advantages and disadvantages

of an approach used for a noise cancellation. In applications for gesture

recognition the signals can reflect and be detected not only from a desired source

(a hand), but from the environment as well, which creates undesired noise

and hardens the process of precise gesture identification. Therefore,

it is essential to eliminate the signals, which come from other static sources

than a hand. For these purposes echo cancellation methods can be used. Echo

cancellation is widely and successfully applied in telephony in a way

of preventing echo from being created or removing it after it is already present.

We will assume that a hand will appear just for a short time period

and the additional reflections will act as an additional short period “disturbance”.

The echo cancellation in this specific case will be based on QRD algorithm

with double precision arithmetic and exponential forgetting. The QRD algorithm

is also called as an information filter without square root operations. It is based

on QRD decomposition of the input/output information matrix. The recursively

updated QRD factorization of the information matrix helps to avoid the problem

with loss of positive definiteness of the information matrix due to rounding

errors and, thus, provides a numerically stable solution. The exponential

forgetting is used instead of directional forgetting to keep the perspective

of reduction of the computation time by applying the QRD version of the Lattice

algorithm. QRD Lattice works only with the exponential forgetting

with a constant exponential forgetting factor.

The application note together with the simulation package is available

at http://sp.utia.cz/index.php?ids=results&id=noise-cancellation .

2. Likhonina R. QRD RLS algorithm for hand gesture recognition applications.

In: Proceedings of IWSSIP 2019, pp. 195-201, Eds: Žagar Drago, Rimac-Drlje

Snježana, Martinović Goran, Galić Irena, Vranješ Denis, Habijan Marija,

International Conference on Systems, Signals and Image Processing 2019

(IWSSIP 2019), (Osijek, HR, 20190605), DOI: 10.1109/IWSSIP.2019.8787283.

Abstract: The work is focused on algorithmic technique for detection of hand

presence and distance from a hand to a device transmitting ultrasound signals.

The described method is based on QRD Recursive Least Squares (RLS)

algorithm with double precision arithmetic and exponential forgetting (EF).

Modelling of a hand detection problem is based on linear Finite Impulse

Response (FIR) based regression models and performed using MATLAB tools.

The modelled system comprises an environment model, a hand model

and an identification block. A series of experiments testing both time-invariant

and time-variant environment models and time-variant hand models show

the importance of a correct choice of the EF factor. The experiments prove

the accuracy of the algorithm and the possibility to calculate a distance

http://sp.utia.cz/index.php?ids=results&id=noise-cancellation
https://doi.org/10.1109/IWSSIP.2019.8787283

89

from the hand to the device. The final version of the algorithm is supposed to be

implemented on the embedded Xilinx Zynq device equipped with a microphone

and ultrasound transducers.

The article is available at http://library.utia.cas.cz/separaty/2019/ZS/likhonina-

0505584.pdf

3. Likhonina R. Hand gesture recognition based on ultrasound technology:

pre-processing stage. In: Proceedings - Research monograph: 2019 8th

Mediterranean Conference on Embedded Computing (MECO), pp. 354-360,

Eds: Stojanović Radovan, Jóźwiak Lech, Jurišić Dražen, Lutovac Budimir,

Mediterranean Conference on Embedded Computing - MECO'2019 /8./, (Budva,

ME, 20190610), DOI: 10.1109/MECO.2019.8760063.

Abstract: This paper describes an approach, which can be used as a pre-

processing stage for a hand detection and gesture recognition problem.

The approach is based on noise cancellation using QRD Recursive Least Squares

(RLS) algorithm with double precision arithmetic and exponential forgetting

(EF). The paper discusses algorithmic techniques and presents experiments

showing how it is possible to calculate the distance between a hand and a device.

A series of experiments were performed. During them a time-variant

environment regression model and a time-variant hand model as well as different

values of the EF factor were used.

The article is available at http://library.utia.cas.cz/separaty/2019/ZS/likhonina-

0505586.pdf

4. Likhonina R. Hand detection algorithm: pre-processing stage. In: Proceedings

of the 17th international conference on informatics in control, automation and

robotics, pp. 695-701, Eds: Gusikhin Oleg, Madani Kurosh, Zaytoon Janan,

ICINCO 2020 (17th international conference on informatics in control,

automation and robotics), (online conference, FR, 20200707),

DOI: 10.5220/0009885206950701.

Abstract: The present work describes a new approach to hand detection based

on QRD Recursive Least Squares (RLS) Lattice algorithm and probabilistic

approach to system identification. The described method is supposed to be used

as a pre-processing stage for a hand gesture recognition application based on

ultrasound technology. The approach includes a noise cancellation concept and

uses linear Finite Impulse Response (FIR) based regression models in MATLAB

environment. Within the algorithm the hypothesis testing technique is

implemented. The work shows the results of computation using real data from

an ultrasound device. The final version of the algorithm is supposed to be

implemented on the embedded Xilinx Zynq device.

The article is available at http://library.utia.cas.cz/separaty/2020/ZS/likhonina-

0532163.pdf

http://library.utia.cas.cz/separaty/2019/ZS/likhonina-0505584.pdf
http://library.utia.cas.cz/separaty/2019/ZS/likhonina-0505584.pdf
https://doi.org/10.1109/MECO.2019.8760063
http://library.utia.cas.cz/separaty/2019/ZS/likhonina-0505586.pdf
http://library.utia.cas.cz/separaty/2019/ZS/likhonina-0505586.pdf
https://doi.org/10.5220/0009885206950701
http://library.utia.cas.cz/separaty/2020/ZS/likhonina-0532163.pdf
http://library.utia.cas.cz/separaty/2020/ZS/likhonina-0532163.pdf

90

91

CHAPTER 3

Algorithm Optimisation on a PC

The present chapter is devoted to the optimization of the QRD RLS Lattice algorithms

and to the implementation of its pipelined version on a PC. It also analyses the obtained

results from the viewpoint of computational time and the number of operations per

second for different pipe-line versions of the algorithm. In the end the main

contributions of this stage of the research and the related publications are discussed.

3.1. Batch Version of the Algorithm

As it was described in the previous section, though the algorithm manages to calculate

the outputs within 60s, which corresponds to the duration of the real data obtained from

the ultrasound device; still there is a need to optimize and accelerate it as far as it is

supposed to be used on a hardware platform with a small memory footprint and with

a lower processor frequency.

The version of the algorithm, which was used in the previous experiments, functions

in a way that all variables needed for computation, i.e. the inputs, are initialized and

saved in the global memory in the MATLAB R2019b environment [70], while

the computation is made in the С code using .mexw64 files. Each time step

the programme needs to take the variable, to allocate the memory for it, to make

computation and to return the variable back. It takes time and slows down

the computation process.

In a batch version of the algorithm the computation is performed in a way that during

the initialisation, all necessary inputs are prepared in the MATLAB R2019b

environment and after that they are copied to the locally allocated memory, which

is not moved and which is not allocated all the time. The C functions have pointers on

the data and work with the local data only. The programme takes all variables prepared

in advance, computes the algorithm and returns the outputs to MATLAB R2019b.

After it the hypotheses are calculated. In this way the time of computation can be

reduced.

After fulfilling these changes, the computational time is substantially reduced from 45s

of a non-batch version to 19s of a batch version of the algorithm, which is almost

two times.

The next change, which has to be done in the structure of the algorithm, is to perform

computation in the single precision (SP) arithmetic. The point is that the Xilinx Zynq

Ultrascale+ hardware platform is best suited for computing the floating point (FP)

92

operations, which results in the worse accuracy, but in the higher speed. The previous

version of the algorithm uses the double precision (DP) arithmetic both during

computation in the MATLAB R2019b environment and in C code using .mexw64 files.

Therefore, the next step is to use the SP FP operations instead, while computing

the algorithm in C code and to control if the accuracy of the outputs is still satisfactory

for our purposes.

It is obvious from Fig. 3.1 that the hand presence is detected precisely by switching

between the model of a higher order (red coloured), when there is no hand, and

the model of a smaller order (green coloured), when the hand appears. Thus, the results

obtained during performing the computation in the SP FP arithmetic are very similar to

those made in the DP arithmetic and can be considered to be accurate.

As far as the computational time is concerned, it does not decrease very much and

constitutes approximately 16s (compared to 19s in the DP arithmetic).

This small decrease of the computational time can be explained by the fact

that all inputs are calculated in the MATLAB R2019b environment in DP. After that

they are converted into variables in SP FP and the algorithm is computed in C code

using .mexw64 files. After the main computation is made, the outputs in SP FP are

converted into the outputs in DP and returned to MATLAB R2019b. The DP-SP-DP

conversion performed before and after the main computation slows down the process.

However, when the algorithm is mapped on the ARM Cortex A53 device, all operations

will be made in SP FP and, therefore, it is supposed that the computational time will be

potentially decreased.

To be able to implement the algorithm on the ARM Cortex A53 device and to use

the benefits of the parallel computation, there is a need to perform several steps.

Figure 3.1: QRD RLS Lattice algorithm – single precision arithmetic

93

As the first step, it is necessary to pipeline it, i.e. to divide it into a number of processes,

where the output of one process will be the input for the next one. The systolic structure

of the QRD RLS Lattice algorithm allows doing it more or less easily.

Such kind of processes can be executed sequentially or in parallel. The latter is the final

goal of the algorithm modification in this chapter.

3.2. Pipelining and Parallel Processing

Since it is necessary to optimize and to accelerate the QRD RLS Lattice algorithm

to make it suitable for the implementation on the ARM Cortex A53 device, a pipelining

and a parallel processing comes into consideration.

It should be noted that the pipelining and parallel techniques come along with each

other. It means that if the algorithm can be pipelined, it can also be processed

in parallel.

The pipelining is a technique where a problem is divided into several stages. Each stage

is separately executed and is connected with other stages. The block diagram in Fig. 3.2

illustrates the process of the pipelining [27, 98].

It is clear from the block diagram in Fig. 3.2 that each stage S1-Sn has an input register,

which contains the data necessary for processing. The output of the preceding stage

serves as the input to the following stage. The computation process in this case is made

sequentially from S1 to Sn, where in the last stage the final computation results

are available.

It should be noted, however, that in case with the QRD RLS Lattice algorithm, which

has a systolic array structure, the time is fixed. The computation begins from order 0

and runs up to the pre-defined order n, where variables of a higher order are fully

dependent on the variables of a lower order. It is not possible to cut the algorithm at any

time, but it is possible to define a certain boundary, where the state variables can be

saved and moved to the next stage of computation starting from the order n+1. It is also

possible to compute the vector of such state variables for each time step t, t+1, t+2…t+n

and to save them for the next stage of the computation process.

This systolic property of the algorithm enables to do the pipelining and parallel

processing, which will be described in more details in the next sections of this chapter.

Figure 3.2: Block diagram of the pipelining process [98]

94

The purpose of the pipelining is to reduce the throughput of the system and make

the computation possibly faster [27]. Due to the increase of the system throughput,

the power consumption can be also reduced. All this is very critical for

the implementation of the algorithm on the Xilinx Zynq Ultrascale+ hardware platform.

However, there are a number of risks connected with the pipelining, which should be

considered while performing it.

One of the risks associated with the pipelining is possible conflicts between instructions

using the data. Thus, it is important to ensure that the following instruction is not

allowed to access the data if the preceding one is working on them [27, 98].

This issue leads to the problem of the data dependency, when the results

of the following stage are dependable on the outputs of the previous one [27, 98].

The parallel processing differs from the pipelining in a way that during the pipelining

the independent stages are executed in an interleaved manner (see Fig. 3.2), while

in the parallel processing it is achieved by duplicating the hardware (see Fig. 3.3) [27].

It means to build a parallel processing structure, the Single-Input-Single-Output (SISO)

system needs to be converted into a Multiple-Input-Multiple-Output (MIMO)

system [27].

The block diagram in Fig. 3.3 shows that in the parallel processing a problem is also

divided into several smaller independent parts, or blocks as it was made in

the pipelining; however, they are processed concurrently by multiple processors.

The processors communicate via a shared memory [80].

Figure 3.3: Block diagram of the parallel processing [80]

95

It is also shown in Fig. 3.3 that each part is further divided into the sequences

of instructions. The execution of the instructions is coordinated by the control unit.

After all stages are executed, the computation results are combined as a part

of the whole algorithm [80].

As far as several inputs can be processed at the same time, the sampling rate is reduced.

It decreases the power consumption and speeds up the computational time [80].

Thus, the pipelining and parallel processing techniques can be combined to make

the QRD RLS Lattice algorithm faster and to decrease the power consumption.

Due to its systolic structure, it is possible to divide the algorithm under consideration

into several stages for processing it in an interleaved manner. Further on, these stages

can be processed in parallel on multiple processors. The next section describes

the mentioned approach in more details.

3.3. Parallel Computing Toolbox in MATLAB R2019b

To perform the parallel computation there is a special toolbox in MATLAB R2019b,

which is called the Parallel Computing Toolbox. It aims at dividing a large

computationally and data intensive problem into smaller parts, after which these parts

can be computed using multicore processors. The toolbox comprises high-level

constructs such as parallel for-loops, special array types, and parallelized numerical

algorithms. It enables to run programmes in both interactive and batch modes.

The applications are executed on so-called workers, which run locally. The workers

represent the MATLAB R2019b computational engines [71].

To compute in parallel, it is necessary to use “parfor loop”, which allows independent

iterations to run in parallel on multicore central processing units (CPUs). The parallel

pools are automatically created by “parfor”. The file dependencies are automatically

managed [71].

The safest way to test this tool with the algorithm under consideration is to compute two

identification models of different orders simultaneously. It can be done without large

changes in the algorithm as far as there is no dependency between the models.

There is a need only to provide both models with the input data (see Fig. 3.4).

By applying the MATLAB R2019b Parallel Computing Toolbox, two identification

models M1 (the identification model of a higher order) and M2 (the identification model

of a smaller order) are computed as two processes on two cores in parallel.

For these purposes MATLAB creates two server MATLABs on two cores of a PC, i.e.

MATLAB worker 1 and MATLAB worker 2 in Fig. 3.4. It copies all necessary input

data for the model M1 and for the model M2 to both of its workers. After receiving

the necessary inputs, both workers process the data independently and simultaneously.

As soon as the computation is fulfilled, the results are sent to the main programme,

where, based on the outputs, hypothesis testing is performed.

96

Figure 3.4: Parallel processing in MATLAB R2019b

The final computation results are the same as they were discussed in the section

about computing the real data using the QRD RLS Lattice algorithm.

As far as the computational time is concerned, it is 16s for the computation in DP

and 14s for the computation in SP FP on the same PC described in the previous

sections. If compared with the previous results, which was 19s for the computation

in DP and 16s for the computation in SP FP, it is obvious that the algorithm is not much

faster than it was before without using the Parallel Computing Toolbox. It is due to

the fact that there is still a very large volume of the data, which has to be duplicated

for the parallel processes. Thus, there is a need to divide the problem into smaller parts

to reduce the amount of the data for each core of the processor.

To accelerate the algorithm, each identification model should be pipelined into more

parts. There are several versions of the pipelining and parallel processing considered

and analysed in this section in terms of the computational time and the number

of operations per seconds. These versions are the following:

1. Two processor cores:

a. one process of 256 for M2; one process of 768 for M1,

b. one process of 256 for M2; three processes for M1, each of 256.

The first case is to process the data on two cores of the processor. It has two

possibilities. The first one is to process two identification models, - one of which

is of order 256 and another one is of order 768, - on two separate processor cores

as it was described above, which does not speed the computation very much.

The second possibility is to divide computation for M1 into 3 parts, each of which

will be 256 (see Fig. 3.5).

Thus, there will be one process T1=256 for M2 and three processes T2, T3, T4 for M1,

each of which is of size 256. The process T1 is processed on one processor core

and the processes T2…T4 are processed on another processor core sequentially.

97

Figure 3.5: Parallel processing (2 processor cores)

2. Four processor cores:

a. one process of 256 for M2 processed by one processor core;

three processes, each of size 256, for M1 are processed by three

processor cores.

b. two processes, each of 128, for M2 processed by one processor core;

six processes, each of 128, for M1 processed by three processor cores.

As far as M1 was already pipelined into three smaller parts, it is logically to try

to compute each part in parallel (see Fig. 3.6).

Thus, in case of four processor core processing, there is one processor core,

which computes the identification model M2 of order 256 and there are other three

processor cores, which perform the computation of three processes, each of 256,

for the identification model M1 of order 768. The difference with the two processor core

version is that in case of four processor core computation, all processes can be

processed in parallel.

The second variant of four processor core version of the computation has both models

M1 and M2 pipelined into smaller parts, each of which is equal to 128. The block

diagram of this case is shown in Fig. 3.7.

98

Figure 3.6: Parallel processing (4 processor cores)

Figure 3.7: Parallel processing (4 processor cores, 8 processes)

It is obvious from the block diagram that M2 is divided into two processes T1 and T2,

each of which has size of 128. Both processes are computed on one processor core

sequentially.

M1 is divided into six processes T3…T8 and can be processed on three processor cores.

Each processor core can process two processes. Thus, processor 2 will process T3

and T4 sequentially, processor 3 will process T5 and T6 sequentially and finally

99

processor 4 will process T7 and T8 sequentially. In the final implementation

the processor cores can execute their operations in parallel.

This variant of four processor core computation leads to the last case considered

in this section – eight processor core processing.

3. Eight processor cores: two processes, each of 128, for M2 processed

by two processor cores; six processes, each of 128, for M1 processed by six

processor cores.

As far as both identification models are already pipelined and the total number

of processes is 8, they can be logically executed on the eight core PC (see Fig. 3.8).

Figure 3.8: Parallel processing (8 processor cores)

100

Figure 3.8 illustrates that each thread of size 128 is executed on a separate processor

core. Thus, the computation can be parallelized in this way.

However, to make cores run simultaneously, the algorithm should be divided not only

in terms of its size, but also in terms of time. It is necessary to prescribe time for each

process, to decide, which data from the preceding stage of computation will be

the inputs for the next stage of the algorithm and to ensure the data independency

while processing separate parts of the algorithm.

The matrix of the state parameters in our case, i.e. the outputs, which will be the inputs

for the next stage of computation, comprises 9 elements. These parameters should be

transferred from one stage of the computation process to another as it is shown

in Fig. 3.9.

In terms of time the algorithm time step, i.e. N=528000 samples, was divided into 10,

20, 50, 100 and 200. Due to the pipelining and parallel processing, there is no need to

copy the whole matrix of the input data for each process, but only the data this or that

process is supposed to work on at that certain moment (see Fig. 3.10). It decreases

the amount of the data each processor should deal with.

Figure 3.9: State parameter transmission

101

Figure 3.10: Data transfer for parallel processing

It should be noticed that the smaller step is, the faster the algorithm should be.

It is logical to divide time into smaller steps. However, it is not always the case, because

the data communication is also increasing. It results in slowing down the computation

process. So, there is a need to analyse, which is more appropriate for the situation under

consideration, and to find a golden middle. The results of experiments of the parallel

processing are illustrated in Tables 3.1-3.5 and in Fig. 3.11-3.12.

Let us remind that in order the algorithm could be used for the real time applications,

it should compute outputs within 60s and deliver at least 307 MFLOP/s. Table 3.1

shows the number of MFLOP per second for each version of the pipelined processing

given N=528000.

Figure 3.11 shows the computational time needed for processing the algorithm

in different versions of the parallel implementation when time step N is divided

into smaller parts. The graph in Fig. 3.11 illustrates the example of the computational

time received while computing in the SP FP arithmetic.

102

Table 3.1: Number of operations per second (for N=528000)

Number of processors MFLOP/s

1 307

2 (1 processor) 307

2 (2 processors) 307

4 316

8 316

Figure 3.11: Time needed for the algorithm computation given a different number of processors

It is obvious that the fastest version of the algorithm for the final results of computation

is when time step N is divided by 10. The time of computation is increasing

with the increase of the amount of the data needed to be processed at each stage.

However, up to N divided by 140 (for 8 cores), the algorithm is computed

within required 60s.

More detailed results for the computation both in the DP and SP FP arithmetic are

presented in Tab. 3.2 and Tab. 3.3 respectively.

From the tables it is clear that when N is divided by 200, for the eight processor core

versions the final computational time is not sufficient as far as it constitutes 83s and 81s

for the computation in DP and SP FP respectively. For other versions of the parallel

processing, it is still within 60s.

However, we should also consider the computational time for each separate output,

which is presented in the last columns of the tables. Thus, for the fastest version

of the algorithm, i.e. N/10, it is 6s. It means that only once in 6s the hypotheses

can obtain the necessary data and decide if there is a hand or there is no hand in front

of the device. It is obvious that for the real-time applications this case is not appropriate.

103

Table 3.2: Computational time (DP arithmetic) (for N divided into smaller parts)

Time step
Time [s] Time [s] Time [s] Time [s] Time [s]

Outputs [s]

1DP 2DP1 2DP2 4DP 8DP

10 16 15 10 8 7 6

20 16 16 12 11 13 3

50 16 21 18 18 25 1.2

100 16 29 27 30 45 0.6

200 16 44 45 54 83 0.3

Table 3.3: Computational time (SP arithmetic) (for N divided into smaller parts)

Time step
Time [s] Time [s] Time [s] Time [s] Time [s]

Outputs [s]

1FP 2FP1 2FP2 4FP 8FP

10 12 12 8 7 6 6

20 13 14 11 10 12 3

50 12 18 16 17 24 1.2

100 12 26 25 28 44 0.6

200 12 41 43 53 81 0.3

In the second case N is divided by 20, i.e. that the outputs are available every 3s,

which is also not enough for the real-time applications.

For N divided by 50, it constitutes 1s, which is already close to what is required.

And only when N is divided by 100 or a higher number, it gives a less than 1s period

of the identification process, where the data needed for hypothesis testing are provided

and, thus, the hand presence is detected.

Figure 3.12 shows the number of operations per second, which each analyzed version

of the algorithm requires. It is clear from the graph that the number of operations

per second is decreasing with the higher amount of the data needed to be duplicated

from MATLAB for performing the parallel processing given a higher number

of processors, which are available. Thus, the least MFLOP/s is for the eight processor

core version of the algorithm given N/200.

More detailed information both for the DP and SP FP computation is given in Tab.3.4

and Tab.3.5.

104

Figure 3.12: Number of operations per second given a different number of processors

Table 3.4: Number of operations per second for the algorithm in the DP arithmetic

Time

steps

MFLOP/s MFLOP/s MFLOP/s MFLOP/s MFLOP/s
Outputs [s]

1DP 2DP1 2DP2 4DP 8DP

10 1150 1227 1840 2629 2629 6

20 1150 1150 1533 1840 1416 3

50 1150 876 1022 1082 736 1.2

100 1150 635 682 657 409 0.6

200 1150 418 409 347 222 0.3

Table 3.5: Number of operations per second for the algorithm in the SP FP arithmetic

Time

steps

MFLOP/s MFLOP/s MFLOP/s MFLOP/s MFLOP/s
Outputs [s]

1FP 2FP1 2FP2 4FP 8FP

10 1533 1533 2300 2629 3067 6

20 1416 1314 1673 1840 1533 3

50 1533 1022 1150 1082 767 1.2

100 1533 708 736 657 418 0.6

200 1533 449 428 347 227 0.3

105

Because hypothesis testing has to be in real time and because the algorithm is supposed

to be processed on more than two cores, the parallel version of the algorithm given N

divided by 100 is the best variant from the described cases so far.

Thus, the four processor PC delivered the SP FP performance for the QRD RLS Lattice

algorithm constitutes 657 MFLOP/s, while for eight processors it is only 418 MFLOP/s.

In both cases it is enough for the real-time processing.

According to the experiments presented above, it is clear from Tab. 3.4 and Tab. 3.5

that the MATLAB R2019b Parallel Toolbox does not parallelize well as far as

the processing on eight processors is slower than the processing on four processors (44s

vs 28s respectively). It can be explained by the fact that MATLAB needs to duplicate

all necessary variables and functions to all its created workers. It means that given N

divided by 10, MATLAB copies data 10 times for each its worker. With the higher

division number and the higher number of created workers, the data duplication,

i.e. the communication overhead, is increasing and it slows down the computation

process significantly. Therefore, in this particular case parallel processing was not very

efficient. However, it should be noted that all possible steps for the optimization

of the algorithm on a PC including converting from DP to SP, using a batch structure,

the pipelining and parallel processing, were made.

The next step is to implement one of the pipelined versions of the algorithm on

the ARM Cortex A53 device. As the golden model, the four processor core version

is considered to be used as far as the Xilinx Zynq Ultrascale+ has the quad-core ARM

Cortex A53 processor.

In this case the algorithm acceleration is supposed to be substantial, because the data

communication will not be so demanding. There will be one shared memory,

where the data will be stored. To process the algorithm in parallel, a number of threads

will be created. They will work with the exact area of the memory, so there will be

no need to duplicate all data to each thread. Only the state parameters are required

to be copied. It will decrease the load of the data communication.

However, in case the HW implementation does not give satisfactory results in terms

of the computational speed, there will be a need to use the accelerators in the FPGA

logic of the device. Then, the version of the algorithm with more cores will come

into consideration.

3.4. Results and Related Publications

The outputs and contributions of the research on the present stage of the algorithm

development are the following:

1. The QRD RLS Lattice algorithm is pipelined for parallel processing on 2, 4

and 8 processor cores using the MATLAB R2019b Parallel Toolbox.

2. The algorithm is able to give the complete development of all necessary

variables including hypothesis probabilities every 0.6s. It means that it enables

to reconstruct what the hand did in the time period of 0.6s. It can be beneficial

for the applications when on the basis of the hand distance from the device

simple gestures can be identified.

106

The following source codes are available (MATLAB R2019b or a higher version

and the MATLAB Parallel Toolbox are required)

at https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina:

- QRD RLS Lattice algorithm - batch version:

o double precision arithmetic

o single precision arithmetic

- QRD RLS Lattice algorithm – 1 processor core

o 1 core, 1 process, double precision arithmetic

o 1 core, 1 process, single precision arithmetic

- QRD RLS Lattice algorithm – 2 processor cores

o 2 processor cores, 2 processes, double precision arithmetic

o 2 processor cores, 2 processes, single precision arithmetic

o 2 processor cores, 4 processes, double precision arithmetic

o 2 processor cores, 4 processes, single precision arithmetic

- QRD RLS Lattice algorithm – 4 processor cores

o 4 processor cores, 4 processes, double precision arithmetic

o 4 processor cores, 4 processes, single precision arithmetic

o 4 processor cores, 8 processes, double precision arithmetic

o 4 processor cores, 8 processes, single precision arithmetic

- QRD RLS Lattice algorithm – 8 processor cores

o 8 processor cores, 8 processes, double precision arithmetic

o 8 processor cores, 8 processes, single precision arithmetic

Publications related to the research topic are the following:

1. Likhonina R., Uglickich E. Hand detection application based on QRD RLS

Lattice algorithm and its implementation on Xilinx Zynq Ultrascale+. In: Neural

Network World, 32(2), pp. 73-92, 2022, 10.14311/NNW.2022.32.005.

Abstract: The present paper describes hand detection application implemented

on Xilinx Zynq Ultrascale+ device, comprising multi-core processor ARM

Cortex A53 and FPGA programmable logic. It uses ultrasound data and is based

on adaptive QRD RLS Lattice algorithm extended with hypothesis testing.

The algorithm chooses between two use-cases: (1) “there is a hand in front of the

device” vs (2) “there is no hand in front of the device”. For these purposes a new

structure of the identification models was designed. The model presenting use-

case (1) is a regression model, which has the order sufficient to cover all

incoming data. The model responsible for use-case (2) is a regression model,

which has a smaller order than the model (1) and a certain time delay, covering

the maximal distance where the hand can possibly appear. The offered concept

was successfully verified using real ultrasound data in MATLAB optimized

for parallel processing and implemented in parallel on four cores of ARM

Cortex A53 processor. It was proved that computational time of the algorithm

is sufficient for applications requiring real-time processing.

The article is available at nnw.cz/obsahy22.html

https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina
https://doi.org/10.14311%2FNNW.2022.32.005
http://nnw.cz/obsahy22.html

107

CHAPTER 4

Algorithm Implementation on the Xilinx

Zynq Ultrascale+ Cortex A53 ARM

4 Cores, 1.05 GHz Platform

This chapter describes the implementation of the QRD RLS Lattice algorithm

on the HW platform from the Trenz Electronic, a German provider of the development

services in the electronics industry.

The first section is devoted to the device used for the implementation, while

the following sections present the implementation steps and the ways of the algorithm

acceleration. Finally, the main outputs of the research on this stage of the development

are discussed.

4.1. Trenz Electronic Platform Description

For the purposes of the implementation of the QRD RLS Lattice algorithm, the Trenz

Electronic TE0808 SoC and the Trenz Electronic TEBF0808 carrier board are used.

A short description of the platform together with the implementation steps is presented

below.

The Trenz Electronic TE0808 is an industrial MPSoC module, which comprises

the Zynq UltraScale+ ZU9EG-ES1, the four core ARM processor of frequency

1.05 GHz, the programmable logic max. 240 MHz, 64-bit DDR4 (max. 4GB), dual SPI

boot Flash in parallel (512MB maximum), user I/Os, B2B connectors.

It is of size 52x76 mm and it requires 3.3V power supply. The TE0808 module

equipped with the components is illustrated in Fig. 4.1 in more details [34].

108

Figure 4.1: Trenz Electronic TE0808 MPSoC module [34]

1 - Xilinx Zynq UltraScale+ XCZU9EG MPSoC, 4-7 – 256Mx16 DDR4-2400

SDRAM, 17-18 - 256Mb serial NOR Flash memory.

Here only several components of the module are mentioned. For more details about

the TE0808 MPSoC module components, please, refer to [34].

The Trenz Electronic TEBF0808 carrier board is a baseboard, which is used for

the module described above. It comprises on-board components, which serve for testing

and evaluating the modules compatible with this board. The board can be fitted into

a PC enclosure. Fig. 4.2 illustrates the carrier board and its components [35].

The TEBF0808 carrier board has several JTAG interfaces, which serve for

programming both the System Controller CPLDs and the Zynq Ultrascale+ MPSoC.

It is also equipped with two System Controller CPLDs, which is the central system

management unit. They control signals, which are logically linked by the implemented

logic of the CPLD firmware. The CPLD firmware generates the output signals

to control the system, the on-board peripherals and the interfaces. The System

Controller also monitors the power-on sequence and displays the programming state

of the FPGA module [35].

The TEBF0808 carrier board has also several EEPROMs for configuration and general

user purposes, an embedded MMC memory with a memory density of 32Gb (4GB)

and an on-board Gigabit Ethernet PHY [35].

The carrier board size is 170mm x 170 mm [35].

109

Figure 4.2: Trenz Electronic TEBF0808 carrier board [35]

7 – FMC HPC connector, 13 – MMC Card socket, 14-17 – a place for a module.

Here only several parts of the carrier board are mentioned. For more detailed

information about the TEBF0808 carrier board, please, refer to [34]

The working prototype of the device used for the algorithm computation is presented

in Fig. 4.3.

As it is shown in Fig. 4.3, the prototype consists of the Trenz Electronic platform,

a computer, a display where the computation results can be viewed, a ventilator to cool

the Xilinx Zynq Ultrascale+ Cortex A53 ARM processor and other accessories.

110

Figure 4.3: Prototype for the QRD RLS Lattice algorithm computation

111

The board is connected via the Ethernet cable to a mini computer UMAX U-Box N41

with Intel Celeron Quad Core N4100 (Gemini Lake) 2.4 GHz, Intel UHD Graphics 600,

4GB DDR4 RAM, 64GB eMMC. The prototype device allows performing

the algorithm computation, viewing the results on the display and making necessary

changes of the host SW by cross-compilation of the host code for the ARM processor.

Besides, it is portable and, thus, it enables a certain level of flexibility and convenience

while working with it.

4.2. Algorithm Implementation on the Xilinx Zynq

Ultrascale+ Cortex A53 ARM Processor, 4 Cores, 1.05 GHz

The first step of the implementation is to use a batch version of the algorithm,

which is not parallelized yet and is computed on one core. It is a safe way to implement

the algorithm on the Xilinx Zynq Ultrascale+ Cortex A53 ARM device and to ensure

that it functions in a way it is supposed to do.

Initially, the TE0808 is equipped with the SciLab SW interpret, which is similar

to MATLAB R2019b [70] and which allows computing the algorithm under

consideration on the HW platform.

During the experiments it was shown that the computational time was very long and

constituted approximately 196s for DP and 189s for SP FP for the data length of 60s.

Moreover, this time is only for computing two identification models and

does not consider hypothesis testing. Due to some specificity of the computation

of some functions in the SciLab SW interpret, the hypothesis computation lasts very

long: 729s and 727s in DP and SP FP respectively.

Even taking the computational time for computing the identification models only,

it is much than twice slower than it is necessary for the real-time processing.

For a comparison, the computational time on a PC for a batch version of the algorithm

was 19s.

The slowdown of the computational time was expectable as far as the Xilinx Zynq

Ultrascale+ Cortex A53 ARM processor has only 1.05 GHz processor frequency

compared with 3.5 GHz of the PC, Intel® Core™ i7-4770 CPU.

It is also necessary to note that for the QRD RLS Lattice algorithm the ARM device

delivers only 94 MFLOP/s (for DP) and 98 MFLOP/s (for SP) instead of 307 MFLOP/s

required for the real-time computation. It is obvious that the acceleration

of the algorithm is needed.

To optimize and to accelerate the algorithm under consideration, it is necessary to fulfil

a number of steps.

Firstly, it is reasonable if the Xilinx Zynq Ultrascale+ Cortex A53 ARM device

does not use the SciLab SW interpret for generation of the input values. Instead,

so-called header files, .h, can be created, where all input data will be saved. These

header files are then copied to the local memory of the Xilinx Zynq Ultrascale+ Cortex

112

A53 ARM device and the processor can work with the necessary data addressing

to its local memory. It should be kept in mind, however, that the local memory

is limited in its size and, therefore, it is necessary to ensure that there is enough space

for the data needed for the computation.

After the data are copied, the Xilinx Zynq Ultrascale+ Cortex A53 ARM processor runs

appropriate functions, which compute the algorithm. The computation was presented

both in the DP and SP FP arithmetic to compare the results.

Differently from the data processing in MATLAB R2019b, in case of SP FP

computation, there is no need to convert DP into SP in the beginning and in the end

of the computation process. It may potentially accelerate the process of computation

too, but not substantially.

For the verification purposes, the output values computed in MATLAB R2019b

were saved as .h files and used as the reference values while verifying the outputs

computed on the Xilinx Zynq Ultrascale+ Cortex A53 ARM device.

The computational time for the algorithm in the DP and SP arithmetic constitutes

approximately 200s and 188s respectively; however, in this case including the

hypothesis testing computation. It means the Xilinx Zynq Ultrascale+ Cortex A53 ARM

device delivers only 92 MFLOP/s (for DP) and 98 MFLOP/s (for SP) instead of 307

MFLOP/s required for the real-time computation.

Secondly, as far as the Xilinx Zynq Ultrascale+ Cortex A53 ARM device under

consideration has four processor cores, it means there is a great potential already on this

stage of the development that the algorithm can be processed in parallel and

the computational time can be decreased substantially, i.e. approximately up to 3.5x.

It could be sufficient for the real-time processing.

However, there are a number of challenges, which should be taken into consideration

while making the implementation.

The first challenge is in the data distribution and data storage. The parallel processing

means that the processors should communicate the data locally. Thus, it is necessary

to think about how large a separate stage of the algorithm can be to ensure

that all necessary data are located in the local memory.

The second challenge is to control that the algorithm parallelization functions in a way

it should function and the obtained results are correctly computed. During the algorithm

implementation, it is possible to stop the computation process at any time except for

processing a microinstruction and to see what there is in the beginning and in the end

of a computation step. Thus, in this way it is possible to develop and to debug the whole

computation process.

The algorithm optimization at this stage of development is performed in two main steps.

The first step is to divide the QRD RLS Lattice algorithm into smaller parts and to make

computation run in parallel. When succeeded, the next step is to perform hypothesis

testing also in parallel and in a way that their outputs, i.e. the probabilities for each

model, are available at time step corresponding to the real-time processing.

113

In the beginning, the algorithm was split into two parts. One core makes

the computation for a long identification model (M1, T1 = 768 for H1), whereas the other

core computes a regression model of a smaller order (M2, T2 = 256 for H2).

Again, the computation was made both in DP and SP FP and the outputs were verified

with the results obtained in MATLAB R2019b.

According to the experiments, this step allows decreasing the computational time

from 200s to 151s for DP and from 188s to 139s for SP. It means that the Xilinx Zynq

Ultrascale+ Cortex A53 ARM device delivers 122 MFLOP/s (for DP)

and 133 MFLOP/s (for SP FP) on this stage of the algorithm optimization process.

It is not enough for the real-time processing, but already on this stage the algorithm

can serve as a golden model, which proves that it functions correctly and which can be

used as a sample for further optimization of the algorithm.

The next step is to implement the four core pipelined version of the algorithm

on the Xilinx Zynq Ultrascale+ Cortex A53 ARM device using the computational

resources of all four processors.

Again, the input parameters are copied to the local memory via header files prepared

in advance. Once they are in the local memory, one core computes the QRD RLS

Lattice algorithm with order n2=256 and time delay TD=512 for a hypothesis H2,

which has a higher probability when the hand appears in front of the device.

Other three cores compute the QRD RLS Lattice algorithm with order n1=768

for a hypothesis H1, which states that there is no hand in front of the device.

However, the second algorithm is split into three threads T2=T3=T4=256 and each part

is processed separately by a separate core.

The results of computation were verified with the reference model provided

by MATLAB R2019b.

The experiments show that the computational time is substantially reduced while using

the four core pipelined version of the algorithm. It constitutes approximately 58s for DP

and 55s for SP. It means that the Xilinx Zynq Ultrascale+ Cortex A53 ARM device

delivers 318 MFLOP/s for the DP version of the algorithm and 335 MFLOP/s for the SP

FP version of the algorithm. This is already sufficient to process the data in real time.

Figure 4.4 compares the computational time and MFLOP/s for one core (1), two

core (2) and four core (4) versions of the algorithm on the Xilinx Zynq Ultrascale+

Cortex A53 ARM device. The example is given for the SP FP arithmetic

and for computing with the data blocks equal to 528, i.e. there are the outputs ready

for hypothesis testing each 60ms, which corresponds to 1000 results in 60s.

Table 4.1 shows the computational time for four cores given the data divided

into smaller blocks, where ns is a division factor [64].

114

Figure 4.4: Computational time and MFLOP/s for different core versions of the algorithm (SP FP

arithmetic, ns=1000)

Table 4.1: Computational time for different division factors [64]

ns Time [s] for DP Time [s] in SP

10 66.57 62.74

20 62.18 62.70

50 59.40 56.40

100 58.57 55.77

200 58.22 55.23

1000 57.51 54.85

2000 57.66 55.25

4000 57.83 55.33

8000 57.89 55.13

16000 58.82 55.56

It is obvious from the table that the best computational time is achieved when the data

are divided by a division factor ns = 1000 (outlined in green).

To make the comparison clearer, Figure 4.5 represents an example of the computational

time for the four core version of the algorithm for the SP FP arithmetic.

From the graph in Fig. 4.5 it is also clear that the computational time is decreasing

by making smaller data blocks purposed for the computation and reaches its best value

at ns = 1000, i.e. a block contains 528 samples at each step of the computation process.

188

139

55

98

133

335

0

50

100

150

200

250

300

350

400

1 2 3 4

Ti
m

e
 /

 M
FL

O
P/

s

Cores

Time [s]

MFLOP/s

115

Figure 4.5: Computational time for four core version of the algorithm given SP FP arithmetic [64a]

However, after this value it begins increasing again as far as the communication

also increases. Thus, a division factor ns = 1000 is considered to be optimal for this case

of the data processing.

In the version of the algorithm described above each processor has its own local set

of variables and there is a need to move the data back and forth between the processors

to ensure that the following process has all necessary data for the next stage

of the computation. This has been a source of slowing down in the computation process.

Another way to ensure that each core has the valid data for the next step of the data

processing is to apply a so-called cache ping-pong technique.

Let us remind that the longer algorithm M1 is divided into three threads T2=T3=T4=256.

To avoid a large data amount movement back and forth between the processors,

it is possible to create a pair of threads for each part of the algorithm, 2Ta, 3Ta, 4Ta

and 2Tb, 3Tb, 4Tb, which are fully identical. However, there are twice as much registers,

which require twice as much memory and which are accessed as group A and group B

in turns. Thus, when group A is ready with the computation, the data are saved

in the memory and group B can access them to compute the next step. Applying this

method, we will ensure that the threads will have the appropriate data for each

computational step without the additional copy of the data. It eliminates the need to wait

until the valid data are copied by the single ARM core from T2 to T3 or T3 to T4

respectively. The principle of the ping-pong technique is schematically presented

in Fig. 4.6.

The experiments proved that the method functions well in terms of the accuracy

and avoidance of the data conflicts. However, it did not succeed to decrease

the computational time, which remained approximately 58s and 55s for the DP and SP

FP arithmetic respectively.

116

Figure 4.6: Ping-pong data sharing

It can explained by the fact that the data transfer is so fast that it does not contribute

greatly to the time decrease, because the number of variables in this case is growing

and it potentially slows down caching by a frequent cache-miss. However,

this technique is supposed to be used on the stage of the QRD RLS Lattice algorithm

implementation in the FPGA part of the Xilinx Zynq Ultrascale+ Cortex A53 ARM

device.

The last step of the optimization at this point is to incorporate hypothesis testing

into the parallelized algorithm and to see if the computational time increases

and if the algorithm needs further acceleration or not.

As it was mentioned above, the optimal division factor ns is equal to 1000. It gives

the best results in terms of the computational time and it ensures that there will be

the appropriate data for hypothesis testing each 60ms, which is more than sufficient

for the real-time processing applications. It should be also noted that the algorithm

provides the whole information about the identification process including

the probabilities of each model for 528 samples every 60ms. It helps to reconstruct

what the hand did during this period of time.

Thus, the hypothesis computation should be applied in a way that the algorithm gives

the probabilities of each model every 60ms. For these purposes, two additional threads

were created: Th1 and Th2. Thread Th1 computes all necessary values for hypothesis H1

and thread Th2 – for hypothesis H2. They run independently of each other after all

necessary data needed for the computation are received from thread T1 of model M2

(for hypothesis H2) and thread T4 of model M1 (for hypothesis H1).

After threads Th1 and Th2 finish their computation at a certain time step, the probabilities

of M1 and M2 are calculated. This process is running each 60ms. The whole

computational time increases, but not critically. After incorporating the hypothesis

computation, it constitutes precisely 58s for the DP version of the algorithm and 55.24s

for the SP FP version of the algorithm. It means that the optimization of the algorithm

was successfully fulfilled and it reaches its main goal: the algorithm can be applied

for the real-time processing applications.

117

If compared with the computation of the QRD RLS Lattice algorithm

in MATLAB R2019b with the Parallel Toolbox, the Xilinx Zynq Ultrascale+ Cortex

A53 ARM implementation has the computational time from 156.27s to 67.13s

(1 processor to 4 processors) approximately, whereas in the MATLAB environment

it takes from 12.4s to 6.2s (1 CPU core to 4 CPU cores) approximately to perform

the whole computation of the algorithm for the computation in 10 steps.

However, with the increasing number of the processors and with the increasing value

of the computation steps, the computational time in MATLAB with the Parallel

Toolbox is increasing, while in the case of the Xilinx Zynq Ultrascale+ Cortex A53

ARM implementation it is decreasing. Thus, for the Xilinx Zynq Ultrascale+ Cortex

A53 ARM implementation with four processor cores computing in 1000 time steps,

the computational time reaches 54.85s, whereas in the MATLAT with four processor

cores and the computation in 1000 time steps it constitutes approximately 231s.

The reduced performance of the MATLAB Parallel Toolbox is due to the overhead

related to the frequent copy of the data and the start of the parallel processes. More

detailed comparison for one CPU, two CPU and four CPU implementations in terms

of the computational time and MFLOP/s is provided in Tab. 4.2 and Tab. 4.3.

Table 4.2: Comparison of the computational time for the MATLAB and ARM implementations (SP

FP arithmetic, for N divided into smaller parts)

Time

step

(ns)

MATLAB

Time [s]

ARM

Time [s]

MATLAB

Time [s]

ARM

Time [s]

MATLAB

Time [s]

ARM

Time [s]

Outputs

[s]
1FP 1FP 2FP 2FP 4FP 4FP

10 12.41 156.27 9.90 139.06 6.20 67.13 6

20 12.51 156.44 12.41 138.97 9.59 63.09 3

50 12.38 156.30 18.08 138.86 16.76 56.79 1.2

100 12.34 156.19 27.15 139.02 28.41 56.16 0.6

200 12.35 156.25 44.60 138.79 53.05 55.62 0.3

1000 12.37 156.09 156.23 138.91 231.31 54.85 0.06

2000 12.78 187.92 284.50 139.12 421.28 55.25 0.03

Table 4.3: Comparison of the number of operations per second for the MATLAB and ARM

implementations (SP FP arithmetic, for N divided into smaller parts)

Time

step

(ns)

MATLAB

MFLOP/s

ARM

MFLOP/s

MATLAB

MFLOP/s

ARM

MFLOP/s

MATLAB

MFLOP/s

ARM

MFLOP/s
 Outputs

[s]
1FP 1FP 2FP 2FP 4FP 4FP

10 1484 118 1861 133 2971 274 6

20 1472 118 1484 133 1921 292 3

50 1488 118 1019 133 1099 324 1.2

100 1493 118 679 133 648 328 0.6

200 1492 118 413 133 347 331 0.3

1000 1489 118 118 133 80 336 0.06

2000 1441 98 65 132 44 333 0.03

118

The rows in green in Tab. 4.2 and Tab. 4.3 are the computational time and MFLOP/s

respectively given the time step ns = 1000 for different versions of the algorithms

implemented both in the PC MATLAB R2019b with the Parallel Toolbox

and on the ARM cores. In case of the computation for 1000 time steps the outputs

are available each 60ms.

4.3. Algorithm Implementation in the FPGA Programmable

Logic

The previously described steps of the optimization and implementation of the QRD

RLS Lattice algorithm on the Xilinx Zynq Ultrascale+ Cortex A53 ARM processor

proved to be successful. However, the computational time is very close to the upper

threshold for the real-time processing. Thus, for less powerful SoC platforms

the algorithm will function slower and the efficiency of the proposed solution will

decrease.

Therefore, in this section there is a try to convert the algorithm to the FPGA part

of the Trenz Electronic platform to accelerate the computation and to reach

the increased performance in respect to the real-time processing.

In the present chapter the ways of the algorithm transformation to the FPGA

are described and a comparison with the previously described solutions in terms

of the computational time and MFLOP/s is presented.

4.3.1. FPGA Accelerators

In the previously described SW experiments and implementations the Xilinx Zynq

Ultrascale+ ZU09-EG-ES1 device has been used. This device has been located

on the Trenz Electronic TE0808 MPSoC with the Cortex A53 4-core ARM,

1.05 GHz [34-35].

The Xilinx Zynq Ultrascale+ ZU09-EG-ES1 is an evaluation sample of the device.

It requires the Xilinx Vivado 2017.4 [104] and SDSoC 2017.4 design tools [107-108].

The SDSoC 2017.4 design tools are supported by Xilinx only up to the version 2019.1.

Starting from the Xilinx tools release 2019.2, the Xilinx decided to support a new Vitis

toolchain [103].

Therefore, the perspective development of the HW accelerators mapping to the HW

acceleration required to migrate from the Xilinx SDSoC toolchain to the Xilinx Vitis

acceleration flow, starting from the Xilinx 2019.2 tools.

It is the reason why in this section, we will target:

o the Xilinx Zynq Ultrascale+ ZU09-EG-1E device on the TE0808-09EG-1E

module with 2GBytes of DDR4 memory and the 4-core A53 ARM processor

(1.05 GHz),

o the Xilinx Zynq Ultrascale+ ZU15-EG-1E device on the TE0808-15EG-1E

module with 2GB of DDR4 memory and the 4-core A53 ARM processor

(1.05 GHz).

119

The Xilinx Zynq Ultrascale+ ZU09EG device supports only BRAMs, whereas

the Xilinx Zynq Ultrascale+ also supports URAMs.

The Xilinx Zynq Ultrascale+ ZU09EG device is a direct replacement

of the ZU09-EG-ES1 device. It can implement eight HW Data Processing Units (DPUs)

in the programmable logic. These units use BRAMs (1K x 32b).

The Xilinx Zynq Ultrascale+ ZU15EG device can also implement eight HW DPUs

in the programmable logic. These units use 112 URAMs (4K x 64b) and also some

BRAMs (1K x 32b). The HW module works with 4GB 64-bit DDR4 SDRAM, 128MB

SPI Boot Flash (dual parallel) [102].

Both devices are supported by the Xilinx High Level Synthesis (HLS 2019.2)

and by the Xilinx Vitis 2019.2 acceleration design flow. This is a software platform

developed by the Xilinx and released first in year 2019. The Vitis acceleration flow

design methodology enables portability from a platform to a platform (standard Xilinx

development boards or custom boards) and also a platform reuse, i.e. it is possible to

swap different acceleration applications with the same platform [109].

The ZU09-EG-ES1, ZU09-EG-1E and ZU15-EG-1E have the same speed grade

of the programmable logic and the same performance of the 4-core 1.05 GHz A53 ARM

processor. Therefore, the SW implementation results made in the previous chapters can

be compared with the implementation results in the FPGA obtained in this chapter.

The HW version of accelerators, which can be used for the computation

of a parallelized version of the QRD RLS Lattice algorithm, uses eight Single

Instruction Multiple Data (SIMD) DPUs developed in ÚTIA, the signal processing

department. The detailed information about these HW accelerators can be found

in [42, 45]. In this section only a short description is presented.

The internal structure of the Zynq Ultrascale+ SoC with eight accelerators is illustrated

in Fig. 4.7.

120

Figure 4.7: Zynq Ultrascale+ SoC with eight 8xSIMD HW accelerators [45]

The HW acceleration is represented by eight accelerators and a direct memory access

(DMA) input/output [45].

There is a possibility to develop the SW firmware, which uses the accelerator.

This firmware can be compiled by the user application running in Petalinux

or Debian OS on the A53 processor [42, 45].

The Debian OS can be configured for an automatic boot of the X11 Desktop after

the Power On. It contains the SciLab SW interpret with a graphical GUI. The SciLab

can be used autonomously without a PC [42, 45].

The HW of the floating point accelerators is fixed. The reconfiguration can be made

by reprogramming the firmware code. The firmware defines the function

of the programmable finite state machine (FSM) inside the accelerator and the function

of the communication logic [42, 45].

The input comprises the programme firmware data, the configuration registers for

the scalar control and the floating point single precision data. Both the program

firmware data and the floating point single precision results are transmitted via the AXI

stream interface from the ARM processor [42, 45].

121

The outputs have two parts: dedicated interrupt lines indicating the end of the data

movement operation, and the floating point single precision result data,

which are received in the data buffers in DDR4 memory via the AXI stream interface

generated in the SDSoC [42, 45] or in the Vitis [103] acceleration flow.

Data communication is implemented as an AXI-stream. The connectivity is represented

with the AXI stream input, the AXI stream output and the AXI-lite configuration

registers [42, 45].

The AXI stream input has input FIFO 512x256b and supports the AXI stream side

channel indicating the last transferred word sent to the component via the DMA

transaction from the ARM processor [42, 45].

The AXI stream output has output FIFO 512x256b and supports the output side channel

indicating the last transferred word sent from the component via the DMA to the ARM

processor [42, 45].

The interfaces of the accelerators include the data streaming I/O, which is AXI-S 256b

at 240 MHz and the firmware programme VLIW 128b at 240 MHz. [42].

The 8xSIMD HW accelerator firmware is a simple sequence of VLIW vector

instructions, which is stored in the accelerator programme memory. The accelerator

does not support for-loops, if-else, and similar constructs as well as it does not perform

checking overflow/underflow in the floating point operations [42, 45].

The firmware can be first defined in the host software and then downloaded via

the streaming interface to the accelerator. It is re-programmable in run-time by the data

streaming. The computation and data streaming can be performed in parallel [42, 45].

The accelerator has two parts. One side is responsible for the data communication

and the other is responsible for the computation. The computation and stream-based

data communication can be overlapped. This is controlled by the user-space host

software running on the ARM core. It can be used for the run-time reconfiguration by

loading a new VLIW instruction sequence to the accelerator programme memory

while the computation is in progress [42, 45].

The architecture allows designing a time configurable set of SP FP data-flow operations

driven by the predefined state machines. Possible variants are the following [42, 45]:

o 8xSIMD_v10 Operations: SP FP Vector ADD, SUB, MUL, DIV operations,

o 8xSIMD_v20 Operations: (1) + SP FP MAC (chained multiply and add

operation),

o 8xSIMD_v30 Operations: (1) + (2) + SP FP vector by vector dot product

operation,

o 8xSIMD_v40 Operations: (1) + (2) + (3) + SP FP extended vector by vector dot

product operation.

The data communication support HW is determined at the design time and cannot be

changed at the runtime. The HW data movers are generated by the Xilinx

122

Vitis 2019.2 [42, 45]. In the application described below the DMA HW interrupt based

API is used.

As far as the memory of the accelerator is concerned, the data are stored in dual-ported

blocks. Speaking more precisely, the 8xSIMD HW accelerator has 12 dual-ported

4096x64b URAMs Blocks (0…11) in case of ZU15EG device or 48 dual-ported

1024x32b BRAMs in case of ZU09EG device, which are used as 24 Data RAM

1024x32b A1…A8, B1…B8 and Z1…Z8.

The 8xSIMD HW accelerator has two 4096x128b Blocks (12, 13), which are used

as programme RAM 4096x128b P1…P3 (see Tab. 4.4) [42, 45]. The ZU15EG uses two

URAM memory blocks and the ZU09EG uses 16 BRAM memory blocks

for a programme.

Thus, for the algorithm implementation purposes there is an environment with the four

core A53 ARM, which has Linux running on the ARM core and the HW acceleration,

i.e. eight 8xSIMD accelerators in the programmable logic part of the device [42].

The golden model MATLAB .mex functions are used to verify both the results

of the 4-core ARM SW implementation and those of the HW acceleration part.

The results obtained from MATLAB, from SW implementation and from HW

implementation are then compared in terms of computational time and number

of operations per second.

Table 4.4: Internal block rams of accelerators [42, 45]

SIMD A

32 bit

Block

64 bit

SIMD B

32 bit

Block

64 bit

SIMD Z

32 bit

Block

64 bit

VLIW

prog

Block

64 bit

A1
0

B1
4

Z1
8

P1
12

A2 B2 Z2 P2

A3
1

B3
5

Z3
9

P3
13

A4 B4 Z4 P4

A5
2

B5
6

Z5
10

A6 B6 Z6

A7
3

B7
7

Z7
11

A8 B8 Z8

123

4.3.2. Algorithm Implementation in the FPGA Logic Part of the Device

This chapter describes the computation of two FIR filters based on the QRD RLS

Lattice algorithm and their probabilities in the programmable logic part of the Xilnix

Zynq Ultrascale+ device. The computation results are compared and verified with

the golden model from MATLAB R2019b. The implementation is performed in

a hardware pipeline and benefits from the parallel processing. The communication uses

a ping-pong sharing technique, the principle of which was described in the previous

chapters.

Let us remind the design used for the four core ARM computation.

There are four cores working in parallel and computing two regression models, M1 and

M2. M1 is of order 768, M2 has a smaller order of 256 and a time delay of 512. Both

models are internally systolic arrays. This allows the algorithm implementation on four

SW threads – T1=256 for the computation of M2 and T2=T3=T4=256 –

for the computation of M1. It means that the system order for a large Lattice is 768

and the system order for a small Lattice is 256 (see Fig. 3.6).

In order to cut the QRD RLS Lattice algorithm into several parallel processed, system-

order related stages, it is necessary to define, to store and to transfer the outputs,

which will be the inputs for the next stage of the computation. They should be

transferred from one stage of the computation process to another stage. Nine

input/output variables were defined (see Fig. 3.9).

Besides, it should be kept in mind that there is a certain phase of a run-up

of the algorithm before the parallel computation and a certain phase of a wind-up

of the algorithm after the parallel computation.

The run-up phase is needed to ensure that all cores will have data for starting

the computation in parallel. The wind-up phase finishes the computation and gradually

frees the parallel computed cores (see Fig. 4.8).

Figure 4.8: Run-up – parallel computation – wind-up

124

In case of the ARM processor the algorithm is divided only into four stages, while

the ARM processor has only four cores and a large memory to keep a large amount

of data there. The computational capabilities of four cores were fully used and, thus,

the computation itself was very efficient. Besides, the ARM processor works at

1.05 GHz frequency. As the result the computational time of the algorithm was enough

for the real-time data processing.

However, in case of the FPGA implementation there are certain limitations. Firstly,

the local memories of the HW device are small and it is impossible to move such a large

amount of data there. Secondly, it works at 240 MHz frequency.

On the other side, there are eight accelerators in the FPGA. Each accelerator has eight

layers, i.e. 8x8=64. It means there are 16x more threads, which can process the data

in parallel. It gives a great potential to accelerate the algorithm if it is specially

optimized for the HW application.

To fulfil it, the first step is to divide the algorithm into smaller parts in order to meet

memory limitations of the HW device and to use fully all eight DPUs and eight layers

in them.

For these purposes, the algorithm is divided in a way that each stage computes four

orders at each time step. It means a smaller identification model M2 is divided

into 64 pthreads (64 pthreads x 4 orders = 256 order) and a larger identification model

M1 is divided into 192 pthreads (192 pthreads x 4 orders = 768 order).

It was the maximal possible amount of data, which can be put in the local memories

of the device in the present HW design.

This solution was firstly proposed and verified in the SW on the ARM processor.

The SW version can be executed in pthreads started from the user host application.

The pthreads, similarly as it was in the previous implementation, run in parallel

under control of the ARM Linux kernel and on four cores of the ARM A53 processor.

However, the computational time considerably increases from 55s to approximately

120s. This increase is due to the following reasons:

(a) the communication traffic between pthreads substantially increased,

(b) the overhead related to starting and stopping pthreads increased,

(c) the volume of the computation in each pthread decreased by the move

from 4 pthreads to 256 pthreads.

It results in slowing down of the SW version of the algorithm.

The computation process for the FPGA implementation of the algorithm

is schematically presented in Fig. 4.9. The ARM part is presented in yellow colour,

while the FPGA logic part is coloured in green.

125

Figure 4.9: Block diagram of the computation process

126

As it is obvious from Fig. 4.9 the design works with three HW data movers, –

memory_read, memory_write and memory_move, - and eight 8xSIMD FP03x8

accelerator HW IPs. All kernels are interfaced using OpenCL C++ API and compiled

to the HW by the Xilinx Vitis 2019.2 toolchain.

Before starting the computation process, the SW OpenCL utility functions find a HW

image in the HW archive on the SD card and verify what kind of devices exist and what

kind of functions they can fulfil.

Moreover, the parameters should be defined and the registers should be set up

in the SW to launch the HW kernels and to start the current stage of computation

in the HW cores. The registers are set up via the AXI-lite to make the HW kernels know

the amount of data and their destination. After it all kernels are ready to be started.

The memory_read kernel sends the input data from DDR4 device buffers A to eight

8xSIMD HW accelerators sequentially. It works on 240 MHz. The communication

width is 256b, i.e. 8x32 words.

The memory_write kernel sends the output data from eight 8xSIMD HW accelerators

to device buffers in the DDR4. It also works on 240 MHz. The communication width

is 256b, i.e. 8x32 words.

The memory_move kernel connects the QRD RLS Lattice algorithm stages by moving

the outputs from the output data buffers Z in the DDR4 to the input data buffers A

in the DDR4.

In the ARM host SW the OpenCL function “migrate” is used to migrate the data

from the host Global Memory into the Linux part of the DDR4 to the linear address

space device buffers in the DDR4.

The device buffers A, B and Z contain the data for all eight 8xSIMD HW accelerators.

The data in A, B and Z device buffers are divided into 8 parts, i.e. A1…A8, B1…B8,

Z1…Z8, for eight 8xSIMD HW accelerators.

The device buffers A are used for the inputs, whereas the device buffers Z are used

for the outputs.

The device buffers B are used for the internal state of both Lattice filters (lattice

coefficients), which are then stored and updated inside of eight 8xSIMD HW

accelerators. There is no need to copy them to the DDR4 device buffers during

the algorithm computation.

There are four memory block types inside each 8xSIMD accelerator: A, B, Z and P.

Memories A, B, Z are the data blocks, where A1…A8 is for the inputs, B1…B8

is for the state variables and Z1…Z8 is for the outputs. These are the local memories

in the FPGA, which are not accessible by the ARM processor.

P is a programme block, where the instructions for the computation are saved.

The composition of blocks A, B, Z, P is presented in Tab. 4.4.

127

The data blocks and the programme block are composed with URAMs in case

of the ZU15EG device and with BRAMs in case of the ZU09EG device.

Eight 8xSIMD HW accelerators need in total 112 URAMs, i.e. 12 for A, B, Z

blocks + 2 for P block for each DPU. Each DPU has four URAMs, which are of size

4095x64b. It is possible to work with URAMs for A, B, Z blocks as with two halves

of 32b. Besides, for A, B, Z blocks only 1K Word is needed, remaining space

is not used. However, 4K Words is the minimal increment for URAM (see Tab. 4.4).

The programme block P consists of two URAMs, i.e. it is 4096x128b. The number

of Very Large Instruction Words (VLIW) for the Lattice programme is 2774 VLIW.

The maximal limitation for a programme is 4K Words.

In case of the ZU15EG device the data blocks are composed of BRAMs and use 3x64

memories, each memory is 1024x32b. The programme block uses 2x8 memories,

each of 4096x64b.

The host ARM application forms the VLIW program instructions in the DDR4 memory

as two 64b words. The C programme defines sequences of VLIW programme

instructions in the DDR4 memory and writes them to the eight 8xSIMD HW accelerator

programme memories. The programme is autonomously executed by the accelerators.

Thus, all eight 8xSIMD HW accelerators have the same program P and compute

the same algorithms, but on the separate stages, i.e. using different data in blocks A, B

and Z.

In the experiments there are 528000 data samples in total. They are divided into

2000 time steps, i.e. each computation step has to process 264 time samples. There is no

enough space in the 8xSIMD internal memory to move data for all 264 time samples.

Only 12 samples can be processed as a batch. Therefore, each 264 data sample block

is further divided into 22 data sub-blocks 12x22=264.

The data sub-blocks are coming in a form of 8x9x4x12 blocks, where 8 is the number

of SIMD layers of each 8xSIMD HW, 9 is the number of I/O variables needed for each

time sample, 4 is a vector length related to the number of threads computed in each

layer of 8xSIMD accelerator and 12 is the number of time steps.

The data from the device buffers are coming for 4 threads for each layer of each

accelerator. Also, there are 22 blocks of data for A1…A8 inputs and Z1…Z8 outputs

in the device buffers, i.e. from _a to _v. It allows benefiting from the ping-pong sharing

technique.

It means when A_a is being computed, A_b can be simultaneously prepared for the next

step of the computation. When A_b is being computed, A_c is being prepared, etc.

After A_a is received via the output FIFOs from the accelerator URAMs or BRAMs,

it is written to the output memory buffer in the DDR4. Simultaneously A_b is being

processed inside of eight 8xSIMD accelerators and A_c is being copied from

the memory buffer in the DDR4 via the input FIFOs to the accelerator URAMs or

BRAMs.

128

The HW accelerators receive the data blocks for the computation via the input FIFOs.

It is necessary to send 9x12=108 words for one thread or 108x4=432 words

for 4 threads at each computational batch of each 8xSIMD HW accelerator computation

layer. The input and output FIFOs of each 8xSIMD HW accelerator have depth 512

of 256b wide words. These input and output FIFOs are separate for each 8xSIMD HW

accelerator.

The 8xSIMD HW accelerators are programmed as the Lattice computation kernels

to execute 256 threads. Computation is started from the user host application.

It is supposed that all 192+64=256 threads will run in parallel. However, to launch

the parallel computation of all 256 threads at the same time, a run-up phase should be

done first (see Fig. 4.8). It is performed in the SW on the ARM processor.

After computing the first 191 steps, there are already data available for 192 threads

of a larger identification model M1 and for 64 threads of a smaller identification model

M2. Thus, the parallel computation of all 256 threads can be started from time step 192.

The parallel computation is fulfilled by the SW pthreads or by the HW accelerators.

As it was mentioned before, each 8xSIMD HW accelerator has 8 layers inside. The first

6 layers of each accelerator, i.e. L1…L6, compute the parts of the QRD RLS Lattice

of order 768, while the last 2 layers, i.e. L7…L8, compute the parts of the QRD RLS

Lattice of order 256 (see Fig. 4.10).

Each 8xSIMD HW accelerator layer computes 4 threads by the execution

of the sequences of vector instructions with a vector length equal to 4.

Each thread computes 4 order-related steps of the algorithm and, therefore, the QRD

RLS Lattice algorithm with order 768 = 4*192 and the QRD RLS Lattice algorithm

with order 256 = 4*64 are computed.

Eight 8xSIMD HW accelerators work in parallel under the control of the pre-loaded

firmware. The accelerators perform the processing of a batch of 12 input data samples

for both Lattice filters samples and generate 12 output data samples for both

Lattice filters. There are registers on each of the accelerators, which prescribe the

address: from where to where the inputs/outputs should be moved.

In parallel to the HW computation, the ARM processor SW prepares new input data for

the processing of the next 12 data samples and finally waits for an interrupt. At the end

of each batch of 12 data samples, the HW accelerators generate an interrupt. It serves

for synchronisation of the SW with the HW processing.

As it was mentioned above, during the computation the accelerators are able to copy

the data via the FIFOs from/to the DDR4 device buffers. This leads to the possibility

to compute and to transmit the data in parallel. It is made to provide a larger efficiency,

i.e. to use the computational and communication resources of the accelerators as much

as possible.

129

Figure 4.10: 8 SIMD HW accelerator layers

It is possible due to the fact that the RAM inside the programmable logic has two

addresses, i.e. it is dual-ported as it was described above. The memory is divided into

two parts: one part is for reading and writing for the present step (a computation part)

and the second part is for the data preparation for the next step (a communication part).

The communication is able to read and to write one 256b wide word in single clock

cycle (240 MHz). The data needed for the computation should be divided in a way

that in one part the computation is performed and in the other part the communication

(input and output) is made in parallel.

This copy to/from the accelerator in parallel with the accelerator execution of its

sequence of VLIW instructions requires avoiding data race-conditions. This has to be

avoided by the user application, by writing to the data which are not used for writing

by the currently executed sequence of the VLIW instructions [42].

Therefore, the HW computation should be shorter than communication. When it is not,

then it is necessary to use the SW hand-shake of the ARM with the HW (it is supported

for the array of up to eight 8xSIMD accelerators) to ensure that the computation

programme batch is finished before a new data transmission is started.

When the first outputs are ready, they are sent to the linear address space device buffers

in the DDR4 via the output FIFOs and memory_write kernel (see Fig. 4.10). The data

130

outputs can be reused for the next step of the computation or they can be migrated

to the Linux host Global Memory part of the DDR4, where the data can be accessible

to the ARM processor host SW application.

It should be noted that eight 8xSIMD HW accelerators are independent.

The computation layers are not connected with each other (see Fig. 4.10).

However, it is necessary to transmit the Lattice-order-state related input/output variables

between the HW accelerator units for the next step of computation (see Fig. 3.9).

It means that a part of the outputs stored in the device buffer Z have to be transmitted

on the right place as the inputs of the device buffer A for the next stage of computation.

In the first stage of the HW accelerator development, it was made in this way:

o The outputs from Z were migrated from the device buffer in the DDR4 back

to the ARM host Global Memory in the DDR4.

o Copying from Z to A in the host Global Memory was performed by the ARM

in the SW.

o After it, the new inputs in A were migrated from the host Global Memory back

to the linear address device space buffers.

The process of copying to and from between the host Global Memory and the linear

address space device buffers was slow and due to it the computational time was

approximately 140s.

To make it faster and more efficient, the Vitis HLS toolchain was used to create

the single HW memory_move kernel for all 8xSIMD HW accelerators (see Fig. 4.11).

The memory_move kernel has access to both linear address space device buffers A

and Z. It has also a mechanism for reading and writing. The goal of the memory_ move

kernel is to take the outputs from the device buffer Z and to move them on a certain

address in the device buffer A. The communication data path is 256b wide

(to accommodate 8x32=256b).

Figure 4.11: MOVE kernel

131

Besides, there are two small buffers “in” and “out”. The “in” buffer serves for giving

the input data for each time step of the computation. The “out” buffer keeps the outputs

of each step of the computation, which are migrated then to the host Global memory.

The communication data path is 512b wide (to accommodate 9x32=288b > 256b).

The remaining bits of each 512b wide word are unused.

Thus, the memory_move kernel performs the HW supported data communication,

i.e. the connectivity in a way that the outputs of the algorithm, which are in the device

buffer Z in the DDR4, are connected in a right way to the new inputs, which

are in the device buffer A in the DDR4.

Briefly speaking, the memory_move kernel makes an application-specific data

connection of the outputs into the inputs for all eight 8xSIMD HW accelerators.

Figure 4.12 illustrates the principle of data communication for one 8xSIMD in more

details.

The ARM part is coloured in yellow, while the FPGA logic part is in green and

comprises three HW kernels, one 8xSIMD HW accelerator and the input/output FIFOs.

As it was stated before, the data are divided into 22 blocks, i.e. from A_a to A_v for

the inputs and from Z_a to Z_v for the outputs. When the first block A_a, which

contains 12 data samples, are processed by the 8xSIMD unit, the output Z_a is sent to

the device buffer. The memory_move kernel takes the output Z_a and transforms it into

the input A_b, which is then sent for processing by the 8xSIMD unit. In this way

the data communication is supported by HW (see Fig. 4.12).

It is good to remind that during the computation the ping-pong communication

technique is applied and the parallel computation of the Lattice stages in all eight

8xSIMD HW accelerators is performed in parallel with data movement. All operations

are performed 2000 times to complete computation of all 528000 data samples.

To resume, in the present design there are three tasks performed in parallel

(see Fig. 4.9):

o memory_read for 8 accelerators,

o computation for 8 accelerators and 8 layers in each accelerator, i.e. 8x8=64,

o memory_write for 8 accelerators.

However, the process of the computation is still slowed down by the time overheads

in the SW part.

Let us remind that in the algorithm computation there are two for-cycles:

o the outer one computes 2000 time steps, i.e. 12*22*2000=528000 data samples,

o the inner one processes 264 time steps, i.e. 12*22=264 data samples.

The average time needed for performing one step of the inner for-cycle

is shown in Fig. 4.13.

132

Figure 4.12: Data sharing via memory_move

133

Figure 4.13: Computation of one step of the inner for-cycle

Figure 4.13 illustrates the following processes:

(1) defining parameters and starting the current stage of computation in the HW

cores (average time),

(2) migrating the inputs for the next stage of computation (average time),

(3) migrating the results from the previous stage of computation (average time),

(4) waiting for the end of the HW supported data movement and the HW

computation (average time),

(5) mem_read1 HW data mover for 8 8xSIMD (DDR4 device buffer A

to 8x AXI-S),

(6) mem_write1 HW data mover for 8 8xSIMD (8x AXI-S to DDR4 device

buffer Z),

(7) mem_move1 HW data mover for 8 8xSIMD (device buffers Z and I/O to device

buffer A),

(8) eight 8xSIMD HW accelerators computing 12 time steps in 256 Lattice threads.

It is obvious from Fig. 4.13 that there is a large overhead caused in the SW part.

The first step of a parameter definition and starting the current stage of the computation

process in the HW cores (1) lasts 80µs. The migration of the inputs for the next stage

of computation (2) and the migration of the outputs from the previous stage

134

of computation (3), which are performed in parallel with the computation process, last

30µs each.

The HW kernels are launched in the ARM SW by calling to the Xilinx XRT run-time

support. After the HW kernels are ready with their work, they should be finished

by the ARM. For these purposes, the ARM creates three processes (4) for three kernels.

These processes wait for the interrupts from the HW kernels to finish them. Creating

these processes lasts 260µs in the SW in average. This overhead is related to the current

implementation of the OpenCL and XRT API.

However, in the future development, it will be possible to reduce its impact by making

the HW computation more efficient, e.g. by providing the 8xSIMD HW accelerators

with a larger amount of data for the computation or by making the programme batch

longer (for more details see Future prospects).

After the HW accelerated computation process is over and the outputs are migrated

to the host Global Memory, the results of the algorithm computation are verified

and compared with the golden SW model. The results are proved to be identical.

The computational time reaches in average 16s for the HW accelerated QRD RLS

Lattice algorithm, it means

- 3.4x acceleration is achieved in comparison to the 4 thread SW implementation

on the four core A53 processor,

- 7.5x acceleration is achieved in comparison to the 256 thread SW implementation

on the four core A53 processor.

The comparison of the optimal implementations of the algorithm on

o PC Intel® CoreTM i7-4770 CPU in MATLAB R2019b,

o Xilinx Zynq Ultrascale+ Cortex A53 4 core ARM processor, 4 threads,

o Xilinx Zynq Ultrascale+ Cortex A53 4 core ARM processor, 256 threads,

o Eight 8xSIMD HW accelerators, 256 threads,

are presented in Fig 4.14 and Fig. 4.15.

135

Figure 4.14: Performance comparison in terms of the computational time

Figure 4.15: Performance comparison in terms of MFLOP/s

0

20

40

60

80

100

120

PC Intel®
CoreTM i7-
4770 CPU,
MATLAB
R2019b

Xilinx Zynq
Ultrascale+
Cortex A53
four core
ARM, 4
threads

Xilinx Zynq
Ultrascale+
Cortex A53
four core
ARM, 256
threads

Xilinx Zynq
Ultrascale+
ZU15-EG,
8xSIMD

FP03x8, 256
threads

13

55

120

16

Ti
m

e
 [

s]

Time [s]

0

200

400

600

800

1000

1200

1400

1600

PC Intel®
CoreTM i7-
4770 CPU,
MATLAB
R2019b

Xilinx Zynq
Ultrascale+
Cortex A53
four core
ARM, 4
threads

Xilinx Zynq
Ultrascale+
Cortex A53
four core
ARM, 256
threads

Xilinx Zynq
Ultrascale+
ZU15-EG,
8xSIMD

FP03x8, 256
threads

1415

335

153

1150

M
FL

O
P/

s

MFLOP/s

136

Let us remind that the QRD RLS Lattice based filters require 34850 floating point

operations for each time step. The operations include +, -, *, /. From 34850 floating

point operations there are 8200 floating point division. These operations are computed

by eight layers of the 8xSIMD HW accelerators on the ZU09EG or ZU15-EG.

The accelerators are controlled by the single SW thread running on the ARM A53.

The SW optimized (-O3) four-thread implementation of the algorithm on the Xilinx

Zynq Ultrascale+ Cortex A53 ARM processor was executed on four A53 cores

with 1.05 GHz clock frequency. It gives approximately 55s of the computational time.

However, the SW implementation of the algorithm on the Xilinx Zynq Ultrascale+

Cortex A53 ARM processor with the same number of threads as the HW

implementation has, i.e. with 256 threads, gives only 120s for the parallel processing.

The reason is that the ARM processor has only four cores and it needs to share 256

tasks between these four cores. It results in slowing down the computation process.

The HW accelerators on the Zynq system with eight 8xSIMD HW accelerators running

at 240 MHz accelerate the SW implementation with 4 threads 3.4x and the SW

implementation with 256 threads 7.5x.

It is also clear from Fig. 4.14 and Fig. 4.15 that using the HW accelerators

the performance is more or less similar to the single-thread optimized implementation

on PC Intel® CoreTM i7-4770 CPU in MATLAB R2019 (13s on PC vs 16s

in the FPGA).

The FPGA version of the algorithm is a bit slower; however, it is good to keep in mind

that the PC works at 3.5 GHz, whereas the eight 8xSIMD HW accelerators work

at 240 MHz, i.e. on 16.7x smaller frequency.

It is also good to note that for the present HW implementation it delivers about

1 GFLOP/s (see Fig. 4.15). However, theoretically the HW device might deliver up to

16 GFLOP/s peak.

The reason of delivering less GFLOP/s is that the HW implementation does not use

the whole time for the computation during the overheads described. Besides, a half

of the instructions inside are just “copying”, which is an operation, but it does not

deliver GFLOPs. Moreover, there is some loss in GFLOPs due to the sequential

streaming to the 8xSIMD by the memory_read kernel and due to the sequential

streaming out from the 8xSIMD by the memory_write kernel.

For the future development, it is expected that it will be possible to reach up to

4 GFLOP/s on a larger Zynq Ultrascale+ ZU15 device by increasing the amount of data

processed by the 8xSIMD or by increasing the size of the programme, or by increasing

the number of order-related steps inside of each layer of the 8xSIMD. Each

of the variants has its limitations. However, the better efficiency can be achieved.

The algorithm under consideration was also implemented using the identical HW design

on the ZU09-EG device to prove the portability of the HW design described above

and to show that it will really give the similar computational time. The SIMD units

were configured with the smallest memories and are still compatible with the host SW.

137

The computational time for this implementation is similar to the implementation

on the ZU15-EG, i.e. it constitutes in average 16s.

The power consumption of the platform under consideration was measured using

the Agilent MSO6034A MegaZoom III Technology 300-MHz Oscilloscope, the voltage

probe Agilent 10073C and the current probe Agilent N2783A with the amplitude

accuracy ±1.05 of reading ±10 mA at 23 °C ± 3 °C.

Figure 4.16 shows the values of the current (yellow curve), voltage (green curve) and

power (magenta curve) when there is no computation, while Fig. 4.17 illustrates the

course of the current (yellow curve), voltage (green curve) and power (magenta curve)

when the algorithm is being computed.

Figure 4.16: Current, voltage and power in a stand-by mode

138

Figure 4.17: Current, voltage and power during the computation in SP

The power for a stand-by mode constitutes max. 13.53W. The power during

the algorithm computation is max. 13.94W. Thus, the difference in the power

consumption between the stand-by and computation modes is 0.41W. The small

increase of the power while starting the computation is due to the fact that the Xilinx

Zynq Ultrascale+ Cortex A53 ARM is set in a way that even in a stand-by mode it runs

on the full power and does not decrease either clock frequency or voltage.

4.3.3. Portability to Different Platforms

There are several Xilinx devices, where the proposed design can be used without large

changes (see Tab. 4.5).

139

Table 4.5: Compatible Xilinx Zynq devices

Device Characteristics and limitations

ZU9-EG-ES An evaluation version supported only with the old toolchain

Vivado 2017.4 and SDSoC 2017.4, which are no longer supported

by the Xilinx.

It has the Cortex A53 4x core ARM processor, 8x DPUs, BRAMs.

The HW design should be made in the SDSoC, but it will have

the identical memory_read, memory_write and memory_move

DMA and A, B, Z, P blocks.

There could be a problem in data communication, because it uses

256b AXIS. The SDSoC 2017.4 is supporting integration of only

32b AXIS interfaces.

ZU9-EG The same platform as the previous one, but not an evaluation

version. It is already supported with the Xilinx Vitis 2019.2

and has the HLS Acceleration Flow. It has the Cortex A53 4x core

ARM processor, 8x DPUs, BRAMs, 256b and 512b AXIS.

The proposed design is compatible with the platform, but blocks A,

B, Z and P should be made of BRAMs instead of URAMs.

For the implementation of the algorithm data blocks A, B, Z

were designed as 3x64 memories, each of 1024x32b, the

programme block P has 2x8 memories, each of 4096x64b.

There are also 2x8 FIFOs, each of 512x256b.

From the point of view of the SW and firmware the design

is identical and from the point of view of the OpenCL it is

compatible. During the experiments it was proved

that the implementation of the algorithm has the same acceleration

as the ZU15-EG.

ZU15-EG A platform, which is used for the described HW implementation

of the QRD RLS Lattice algorithm. It has the Cortex A53 4x core

ARM processor, 8x DPUs, URAMs, BRAMs and the HLS

Acceleration Flow.

It is supported with the Xilinx Vitis 2019.2. It has a great potential

for further acceleration of the algorithm when enlarging

the memory data blocks, the programme block and FIFOs. It also

gives a possibility for a more complex design with 2x HW to solve

two different tasks.

140

Table 4.5: Compatible Xilinx Zynq devices (continuation)

ZU04-EG A small chip. It has only 3x DPUs, BRAMs. In respect

to the considered algorithm, it is possible to use 2x DPUs on this

chip, but each layer of each DPU will compute 16 threads instead

of 4 threads.

It can have the Cortex A53 4x core ARM processor or the Cortex

A53 2x core ARM processor. The computation in the SW part

with the 2x core ARM processor will take more time,

but the computation from the viewpoint of the OpenCL will be

identical, while it is actually a relation between the HW and one

core of the ARM processor.

In case of this platform the acceleration is supposed to be smaller.

ZU07-EG

(ZCU104)

A university reference module. It has the Cortex A53 4x core

ARM processor, 6x DPUs, URAMs and BRAMs. The SW

and firmware will be identical to those for the ZU15-EG.

4.4. Results and Related Publications

The last stage of the research work provides the following contributions:

1. The parallel implementation of the QRD RLS Lattice algorithm on four cores

of the ARM Cortex A53 processor of the Xilinx Zynq Ultrascale+ device,

which succeeds to compute the algorithm using the real ultrasound data

within required 60s and delivers 335 MFLOP/s, i.e. it is suitable for the real-

time applications. Besides, the algorithm provides the complete information

about the identification process including the probabilities for every 528 samples

each 60ms. It means that the reconstruction of the hand behavior is possible

for a simple gesture identification based on the calculated distance between

the hand and the device.

2. The FPGA implementation of the QRD RLS Lattice algorithm using eight

8xSIMD HW accelerators including memory_read, memory_write and

memory_move HLS HW kernels for data moving processes.

The implementation computes 256 threads in parallel and performs the data

communication between eight 8xSIMD HW accelerators. The ping-pong

communication technique is applied. The algorithm provides the complete

information about the identification process for every 264 samples (each 30ms).

The computational time reaches 16s, i.e. it delivers 1150 MFLOP/s.

In comparison with the implementation on four cores of the Cortex A53 ARM

processor, 4 threads, and with the implementation on four cores of the Cortex

A53 ARM processor, 256 threads, the HW acceleration reaches 3.4x and 7.5x

respectively. The computational time of the FPGA implementation is already

141

comparable with the computation on the single threaded PC Intel® CoreTM i7-

4770 CPU in MATLAB R2019b, which constituted 13s for the best optimized

version of one core delivering outputs each 30ms.

The implemented HW/SW system and the related Poster has been presented

by the ÚTIA team at the Embedded World conference, Nurnberg, 21-23.6.2022.

It is available at http://storaige.eu/utia-at-demonstrators-at-the-embedded-world-2022-

conference/

The following source code is available (the implementation on the Xilinx Zynq

Ultrascale+ Cortex A53 ARM processor)

at https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina:

- QRD RLS Lattice algorithm – one core:

o double precision arithmetic

o single precision arithmetic

- QRD RLS Lattice algorithm – two cores core:

o double precision arithmetic

o single precision arithmetic

- QRD RLS Lattice algorithm – four cores core:

o double precision arithmetic, hypothesis testing

o single precision arithmetic, hypothesis testing

o single precision arithmetic, ping pong sharing technique

- QRD RLS Lattice algorithm – 256 pthreads:

o double precision arithmetic

- Implementation in the FPGA part of Xilinx Zynq Ultrascale+ device:

o QRD RLS Lattice algorithm – 256 threads in parallel (including SW

single precision implementation)

Publications related to the research topic are the following:

1. Likhonina R., Uglickich E. Hand detection application based on QRD RLS

Lattice algorithm and its implementation on Xilinx Zynq Ultrascale+. In: Neural

Network World, 32(2), pp. 73-92, 2022, 10.14311/NNW.2022.32.005.

Abstract: The present paper describes hand detection application implemented

on Xilinx Zynq Ultrascale+ device, comprising multi-core processor ARM

Cortex A53 and FPGA programmable logic. It uses ultrasound data and is based

on adaptive QRD RLS Lattice algorithm extended with hypothesis testing.

The algorithm chooses between two use-cases: (1) “there is a hand in front

of the device” vs (2) “there is no hand in front of the device”. For these purposes

a new structure of the identification models was designed. The model presenting

use-case (1) is a regression model, which has the order sufficient to cover all

incoming data. The model responsible for use-case (2) is a regression model,

which has a smaller order than the model (1) and a certain time delay, covering

the maximal distance where the hand can possibly appear. The offered concept

was successfully verified using real ultrasound data in MATLAB optimized

http://storaige.eu/utia-at-demonstrators-at-the-embedded-world-2022-conference/
http://storaige.eu/utia-at-demonstrators-at-the-embedded-world-2022-conference/
https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina
https://doi.org/10.14311%2FNNW.2022.32.005

142

for parallel processing and implemented in parallel on four cores of ARM

Cortex A53 processor. It was proved that computational time of the algorithm

is sufficient for applications requiring real-time processing.

The article is available at nnw.cz/obsahy22.html

2. Kadlec J., Likhonina R. DTRiMC tool for TE0808-09-EG-ES1 module

on TEBF0808 carrier board. Application note, ÚTIA, 2021.

Abstract: Evaluation package for the Design Time Resource integration

of Model Composer DTRiMC tool. It serves for integration of eight 8xSIMD,

FP03x8, floating-point, run-time-reconfigurable accelerators for Zynq

Ultrascale+ TE0808-09EG-ES1 module on TEBF0808 carrier board. It provides

SW projects and two designs containing the HW design bitstreams and API

interface for SW developer in form of shared linux libraries. The SW developer

can program ARM host application in C and compile by gcc compiler or in C++

and use the g++ compiler. User can use the Xilinx SDK for compilation

and debug of provided SW projects on a PC (Linux or Windows 10, 64bit).

The “make” utility can be also used for compilation of host applications directly

on the embedded Zynq Ultrascale+ ZU09-EG-ES1 system. All designs presented

in this evaluation package contain four independent twins of serial connected

FP03x8 accelerators in the programmable logic part of the device. The HW data

movers supporting the data communication are represented for the SW

developer as shared C/C++ library with simple SW API. The API is identical

for several alternatives of HW data movers. The evaluation package includes

8xSIMD FP32 accelerators with HW license enabling only restricted number

of operations. If these licensed operations are all used, user has to reset complete

system. This will enable to use the licensed count of operations again.

The application note is available at

http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mul

f64_DTRiMC

http://nnw.cz/obsahy22.html
http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC

143

CONCLUSION

The present work is devoted to the QRD RLS algorithms and the implementation

of a chosen algorithm on the HW platform from Trenz Electronic. The platform

comprises the multi-core processor ARM Cortex A53 and FPGA programmable logic.

The work is supported by the European project called SILENSE, which aimed at using

ultrasound technology for different kind of applications in automotive, smart home,

wearables and other domains.

The algorithm in this work is supposed to solve a hand detection problem using noise

cancellation techniques.

After making a research of the state of the art in this field, the novelty was stated out,

which can be summarized as follows:

- though the algorithms function well on large PCs, still there exists a problem

of their implementation on small area chips with small memory footprints;

- there is a gap in the research area what the algorithm implementation for hand

detection applications based on ultrasound is concerned;

- the presented research uses noise cancellation techniques based on the RLS

algorithm to pre-process incoming ultrasound data by removing undesired

ultrasound responses from the target signal, subject to use for hand detection

applications;

- hypothesis testing is applied in a context different from previous

research [40-41, 47-48, 50, 81]: it is used to identify the structure of a regression

model and to choose a particular identification model, which corresponds better

to a real-time situation;

- the approach described in the work enables to compute distance

between the hand and the device.

The main goals of the work were defined as follows:

- to develop a numerically robust adaptive signal processing algorithm

of recursive identification of regression models for ultrasound signals,

performing noise cancellation and computing hand distance from the device,

- to implement the algorithm on embedded hardware platform, using the data

processed from a microphone,

- possibly, to apply the developed algorithm for tracking of hand movement-based

gestures.

The 2D tracking of hand movement-based gestures was not in the scope of the work

and was not implemented. Instead, it focuses on gestures based on 1D distance

measurement.

144

Before the very algorithm implementation, the work described mathematical tools

and techniques needed to achieve stated goals. The theoretical description included

the recursive Bayesian approach to system identification, types of the RLS algorithms,

incorporation of hypothesis testing, FPGA techniques and tools used for the HW

implementation.

The research had several stages to achieve the final goal of the algorithm

implementation on the HW platform. The first large stage was to modify the existing

algorithm and to incorporate hypothesis testing so that it was appropriate for making

the experiments in the MATLAB R2019b environment. For these purposes,

from the family of the RLS algorithms the QRD RLS Lattice algorithm was chosen.

The choice was conditioned by the inner structure of the algorithm, which allowed

pipelining and parallel processing. This property was essential during the algorithm

implementation on the HW platform.

Besides, in the course of the experiments the QRD RLS Lattice algorithm proved to be

much faster in comparison with the QRD RLS algorithm - 45s for the QRD RLS Lattice

algorithm via 2330s for the QRD RLS algorithm while processing the real data

from an ultrasound microphone – and to deliver more MFLOP/s. It meant that the QRD

RLS Lattice algorithm after its optimization might be fast enough to work on a small

HW platform and to process the data in real time.

During the first stage of investigation, the experiments with simulated data as well

as the experiments with real data from an ultrasound microphone were performed.

The experiments showed that using only prediction/filtration errors for detecting

the hand was not sufficient. Therefore, the algorithm was incorporated with hypothesis

testing. For these purposes, a special structure of regression models was proposed.

Thus, two identification models corresponding to two different use-cases (“there is

a hand in front of the device” and “there is no hand in front of the device”) were

designed. It was assumed that a regression model with a higher order describes

the situation when there is no hand in front of the device, while a regression model

with a smaller order has a higher probability when there is a hand in front of the device.

In this way hypothesis testing applied to two regression model structures helps to make

results of hand detection more accurate.

The orders of the models were not chosen occasionally. The model with a higher order

processes all incoming data at each time step. The model with a smaller order works

only with a certain amount of incoming data. Besides, the model with a smaller order

has a certain time delay, which defines the distance, after which the appearance

of the hand is not already possible. The choice of the order was also conditioned

by further steps of the research, i.e. pipelining and parallel processing.

On this stage of the algorithm development, the experiments showed that hypothesis

testing helped to make results of hand detection more accurate. The assumptions made

about the structure of the regression models were also fully proved by the experiments.

Moreover, an additional value of the developed algorithm was the possibility

to compute the distance between the hand and the device.

145

Another output of this stage of investigation was the simulation in MATLAB R2019b,

which was made close to the real situation by applying parameters calculated

by the QRD RLS algorithm during the identification process using real ultrasound data.

During the first stage of the research, it was also stated that in order the QRD RLS

Lattice algorithm could be used in the real-time applications, it should compute

the outputs from the provided ultrasound data within 60s. It means that it should deliver

at least 307 MFLOP/s.

The second big stage of the research was the algorithm optimisation on a PC.

For these purposes a batch version of the algorithm was created and pipelining

and parallel processing techniques were used. The computation was made in

the MATLAB R2019b environment using the Parallel Computing Toolbox. Different

versions of the algorithm were presented: for two, four and eight core processing.

The experiments showed that all versions computed accurately, but parallel processing

in MATLAB R2019b in this particular case did not function as required, because

it did not accelerate the computation process, so that the eight core version computed

slower than four core version of the algorithm: 45s vs 30s respectively for time step

equal to 100. It was explained by the complexity of the data communication process.

Also, on this stage of the research both the double precision and single precision

floating point versions of the algorithm were investigated. As it was assumed the single

precision version was faster, but not substantially: 28s (single precision floating point

arithmetic) vs 30s (double precision arithmetic) for the four core version

of the algorithm with time step equal to 100.

Though the computational time seemed to be sufficient for the real-time applications

on this stage of the development, but it was necessary to remember that at this point

the algorithm was computed on a PC with Intel® Core™ i7-4770 CPU, 3.5 GHz.

However, the HW platform, which was used on further stage of investigation,

has a processor frequency of only 1.05 GHz and a programmable logic max. 240 MHz.

It meant that the computational time might be insufficient.

During the experiments it was stated that for further research stage the four core version

of the algorithm will be used as a golden model as far as the ARM processor has four

cores. Besides, the time step should be at least 100 to ensure that the hypotheses have

data every 0.6s and, thus, they are able to provide the outputs in real time with only 0.6s

delay.

After the second stage of the research was successfully fulfilled and the results

were verified, the QRD RLS Lattice algorithm was implemented on the four cores

of the ARM processor in a way that the hypotheses had appropriate data for further

computation every 60ms, i.e. the optimal time step in the case of the implementation

on the HW platform proved to be 1000.

The whole computational time on the third stage of the algorithm development

constituted 58s (double precision arithmetic) and 55.24s (single precision arithmetic).

As far as the real data measurement was 60s, the algorithm implementation on the HW

platform was considered to be fast enough to process data in real time and to deliver

the results every 60ms.

146

In terms of MFLOP/s, the ARM device delivered 317 MFLOP/s for the double

precision version of the algorithm and 333 MFLOP/s for the single precision floating

point version of the algorithm. In the beginning it was stated that in order the algorithm

was able to compute in real time, it was needed to ensure at least 307 MFLOP/s. Thus,

this requirement was fulfilled as well.

As the last step the QRD RLS Lattice algorithm was implemented in the FPGA part

of the Xilinx Zynq Ultrascale+ device, on the ZU09EG and ZU15EG. There are eight

8xSIMD HW accelerators, each of which has 8 layers, i.e. there are 64 parallel

computing data paths. The HW accelerator data paths can process a separate part

of the algorithm in parallel at each time step. The larger identification model

was divided into 192 parts, while the smaller identification model has 64 parts. The first

six layers of each accelerator process threads for the larger identification model, the two

remaining layers of each accelerator process threads for the smaller identification

model. Each layer processes 4 threads, each thread computes 4 orders. The system order

of the first Lattice filter is 768. The system order of the second Lattice filter is 256. Data

- the inputs, state variables and outputs - are saved in the linear address space device

buffers in the DDR4memory.

The HW accelerator local memories for the data and for the programme are composed

from URAMs 4096x64b for the ZU15EG device or BRAMs 1024x64b for the ZU09EG

device, the FIFO is composed from BRAMs, 512x256b. There are eight HW blocks,

which fulfil the algorithm processing including the computation and data

communication. The HW supported data communication is performed by the HLS HW

unit memory_read, HLS HW unit memory_write and HLS HW unit memory_move.

The computation is performed by eight 8xSIMD HW accelerators. The computational

time is 16s. It delivers 1150 MFLOP/s.

It means a 3.4x acceleration in comparison with the optimized 4-pthread SW

implementation on the Xilinx Zynq Ultrascale+ Cortex A53 4 core ARM device

is achieved.

It is a 7.5x acceleration in comparison with the optimized 256-pthread SW

implementation on the Xilinx Zynq Ultrascale+ Cortex A53 4 core ARM device.

It should be also noted that each modification of the algorithm and each small step

of its implementation both in MATLAB R2019b and on the HW platform on every

stage of the development were always accompanied with verification tests to ensure

that the results were equal to the reference values.

To summarize the main outputs and contributions of the research, the following

should be mentioned:

o Hypothesis testing is based on identification of the structure of a regression

model, after which a decision-making process is performed. The structure

of each regression model is chosen in a way that it corresponds to a certain

situation: a regression model with a larger order analyses all incoming data and

has higher probability when there is no hand in front of the device;

while a regression model with a smaller order works with a limited amount

of data. It has a certain time delay and a higher probability in the moment

147

the hand appears in front of the device. On the basis of the probabilities

of the identification models, a decision is made. In comparison to [76],

this approach uses recursive Bayesian identification. However, differently from

[40-41, 47-48, 50, 81], Bayesian identification is applied specifically for

achieving a specific goal – hand detection and distance determination – as it was

described previously.

o The algorithm allows determining the distance between the hand and the device.

It is due to the form of the input signal (chirps) used in the experiments.

Using the distance computation, simple types of gestures can be identified.

o The simulation in the MATLAB R2019b environment was made close

to the reality by using parameters calculated during the identification process

using the real ultrasound data.

o The developed algorithm was implemented both in the MATLAB R2019b

environment and in C code using real data from an ultrasound microphone.

Pipelining and parallel processing techniques were applied.

o The QRD RLS Lattice algorithm combined with hypothesis testing was mapped

on the embedded quad-core ARM Cortex A53 processor.

o The computation of the developed algorithm was conditioned by the specificity

of the HW platform, its computational resources. It was required to compute

528000 data samples within 60s. Due to the pipelining and parallel processing

technique, this goal was achieved and the algorithm implementation

on the HW platform can be used for the real-time processing applications.

o The FPGAs are prepared for ultrasound microphones by the ÚTIA team and can

be used in the same Xilinx Zynq Ultrascale+ application.

o The FPGA implementation of the QRD RLS Lattice algorithm is performed

on eight 8xSIMD HW accelerators prepared in ÚTIA. It was implemented

and tested on the Xilinx ZU09EG and ZU15EG. The computational time is 16s

and a 3.4x acceleration is achieved in comparison to the 4 pthread SW

implementation on the 4-core A53 ARM processor. A 7.5x acceleration

is achieved in comparison to the 256 pthread SW implementation on the 4-core

A53 ARM processor.

o The power consumption is low and constitutes 13.53W in a stand-by mode

and 13.94W for the single precision floating point computation.

To conclude, the proposed method for hand detection based on the noise cancellation

technique and using the QRD RLS Lattice algorithm functions reliably and accurately

and fulfils its goals. The algorithm implementation on the HW platform functions

as reliably and sufficiently accurately as the version of the algorithm on a PC does

and can be used for the real-time applications. Therefore, the research and investigation

results can be considered achieving their goals successfully in the scope defined

in the beginning of the work.

148

149

POTENTIAL APPLICATIONS

Touchless technologies are a natural stage of HMI development. In recent years

they have become more and more frequently used and more diverse.

According to Grand View Research, Asia Pacific region, mainly China, India

and Japan, dominated the market in 2017 and it is supposed that the situation

will remain the same at least up to 2025. In Europe the dominance in this market is held

by Germany, U.K. and France. It is forecasted that the gesture recognition market

will reach $30.6 billion in 2025 [9, 12, 32].

The reason why people are inclined more and more to use gesture recognition and hand

tracking applications are their intuitive and user-friendly mastering and easy usage.

Not the least is better ergonomics of the devices. Besides, touchless technologies also

contribute to more safety, e.g. what automotive and health care applications

are concerned. In the light of the coronavirus pandemic, the hygiene concerns are also

becoming more and more acute.

The major areas where gesture recognition and hand tracking technologies are used

nowadays are automotive, consumer electronics and healthcare fields [9, 12, 32].

The algorithm under analysis can be potentially used anywhere where noise cancellation

for such kind of applications is required. It means it can be used in [12, 32]:

1. automotive including lighting system, biometric access, HUD (heads-up

display), music and incoming calls control, etc.,

2. healthcare including sign language, lab & operating rooms, checking imagery

with simple gestures without touching the display, etc.,

3. consumer electronics including smart home applications, smart TV, gaming

consoles, smartphones, etc.,

4. others, e.g. educational hubs, hospitality, advertisement & communication, etc.

150

151

FUTURE PROSPECTS

As far as Xilinx ZU15-EG has enough URAMs, it is possible in the future to enlarge

the amount of data sent and received at each time step. For these purposes, it is

necessary to enlarge memory blocks A, B, Z as well as a programme block P and FIFO.

In this case the P device buffer will be 8K Words long and 128b wide, device buffers

for A, B, Z will be 2K Words and FIFO 1K Word. It will result in working with a larger

amount of data (24x9 instead of present 12x9) and in less communication between

units. Thus, it will lead to higher acceleration, possibly to the 5x acceleration

in comparison with performance of the ARM 4 core processor implementation.

However, such kind of a design will not be compatible with Xilinx ZU09-EG due to

the size of the latter platform.

Another way leading to even a higher acceleration is to compute two tasks in parallel.

For example, it is possible to have four hypotheses instead of 2 or to have two variants

of the algorithm with different forgetting factors. It means the amount of communicated

data will increase from 24x9 to 24x18. In this case the P device buffer will remain

the same, i.e. 8K Words long and 128b wide; device buffers A, B and Z will be 4K

Words each and FIFO 2K Words. The HW units will be fully used and the best

efficiency will be achieved. It is supposed that the acceleration will be at least 10x

in comparison with the 4 thread implementation in SW or at least 30x in comparison

with the 256 thread SW implementation.

The presented HW implementation delivers approximately 1 GFLOP/s for Zynq

Ultrascale+ ZU09 (with BRAMs) as well as for the ZU15 device (with only partially

utilized URAMs).

In the future development, we will focus on increasing of the amount of computing

(batch size) for eight 8xSIMD units. We would like to reach up to the 4 GFLOP/s

performance in case of the large Zynq Ultrascale+ ZU15 device for the HW accelerated

Lattice filter. This performance increase will be possible due to the optimally utilised

URAM memories and large FIFO memories and due to the extension of HW computing

batch length. The fixed SW overhead related to the XRT and OpenCL API will have

a relatively smaller impact on the final performance of HW accelerated Lattice

algorithm in comparison to the current implementation.

The gained knowledge related to the implementation of the Lattice algorithm will be

applied to HW accelerations of other DSP algorithms with an internal systolic array

structure.

152

Further work in this direction could include making a device prototype, which would

comprise both ultrasound microphones and beam-former FPGA design and a hand

detection application on one HW platform. This prototype could be equipped with

the display, which would provide graphic output of the computation and allow tracking

of hand movement-based gestures.

153

BIBLIOGRAPHY

[1] ALESSANDRINI M., MARCHI DE L., SPECIALE N. Recursive Least Squares

adaptive filters for ultrasonic signal deconvolution. Conference: International

Symposium on Circuits and Systems (ISCAS 2008). Seattle, Washington, USA: May,

2008, doi: 10.1109/ISCAS.2008.4542073.

[2] ALI KH. J., Mohammad H. A., WALI M. H. Implementation of a recursive data

of adaptive QRD-RLS algorithm using HDL coder. In: ResearchGate: March, 2020

[online].

Available at https://www.researchgate.net/publication/339613298_Implementation_of_

A_Recursive_Data_of_Adaptive_QRD-RLS_Algorithm_Using_HDL_Coder

[3] APOLINARIO J., DINIZ P. S. R. Fast QRD-RLS algorithms. In: QRD-RLS

adaptive filtering. Springer: December, 2009, pp. 1-27,

doi: 10.1007/978-0-387-09734-3_4.

[4] ARDALAN S. Floating-point error analysis of recursive least-squares and least-

meansquares adaptive filters. In: ICASSP ’86. IEEE International Conference

on Acoustics, Speech, and Signal Processing, 1986, pp. 513-516,

doi: 10.1109/ICASSP.1986.1169030.

[5] ARDALAN S., ALEXANDER S. Fixed-point roundoff error analysis of the

exponentially windowed RLS algorithm for time-varying systems.

In: IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 35, No. 6, pp.

770-783, June 1987, doi: 10.1109/TASSP.1987.1165207.

[6] AUGUSTO SOARES, J. What is FPGA? How does that works? Quora, 2017

[online]. Available at https://www.quora.com/What-is-FPGA-How-does-that-works

[7] BENESTY J., GAENSLER T. New Insights into the RLS Algorithm. In: EURASIP

journal on advances in signal processing, March, 2004(3),

doi: 10.1155/S1110865704310188

[8] BENZIANE M., BOUAMAR M., MAKDIR M. Simple and efficient double-talk-

detector for acoustic echo cancellation. Traitement du Signal, Vol. 37, No. 4, pp. 585-

592, doi: https://doi.org/10.18280/ts.370406

[9] BONDALAPATI K., PRASANNA V. K. Reconfigurable computing systems.

In: Proceedings of the IEEE, Vol. 90, No. 7, pp. 1201–1217, July 2002,

doi: 10.1109/JPROC.2002.801446.

154

[10] BOPPANA D., DHANOA K., KEMPA J. FPGA based embedded processing

architecture for the QRD-RLS algorithm. In: 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, 2004, pp. 330-331,

doi: 10.1109/FCCM.2004.34.

[11] BOTTOMLEY G. E., ALEXANDER S. T. A novel approach for stabilizing

recursive least squares filters. IEEE Transactions on Signal Processing, Vol. 39,

Issue 8, August 1991, pp. 1770-1779, doi: https://doi.org/10.1109/78.91147.

[12] BUBNIUK, N. Hand Tracking and Gesture Recognition Using AI: Applications

and Challenges. Intellias: Intelligent Software Engineering [online], August 14, 2020.

Available at https://www.intellias.com/hand-tracking-and-gesture-recognition-using-ai-

applications-and-challenges/

[13] CHANDRAKASAN A. P., BRODERSEN R. W. Low power digital CMOS

design. Springer New York, NY, Edition 1, 1995,

doi: https://doi.org/10.1007/978-1-4615-2325-3.

[14] CHEN CHAU-SHEN, HWANG TING TING, LIU C. L. Low power FPGA design

– a re-engineering approach. In: Proceedings of the 34th Design Automation

Conference, 1997, pp. 656–661, doi: 10.1109/DAC.1997.597226.

[15] CIOFFI J. M., KAILATH T. Fast recursive-least-squares transversal filters

for adaptive filtering. IEEE Transactions on Acoustics Speech and Signal Processing,

V. 32, Issue 2, May 1984, pp. 304-337, doi: 10.1109/TASSP.1984.1164334.

[16] CIOFFI J., KAILATH T. Windowed fast transversal filters adaptive algorithms

with normalization. In: IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol. 33, No. 3, pp. 607=625, June 1985,

doi: 10.1109/TASSP.1985.1164585.

[17] CIOFFI J. The fast householder filters RLS adaptive algorithm RLS adaptive filter.

In: International Conference on Acoustics, Speech and Signal Processing, Vol. 3,

pp. 1619–1621, 1990, doi: 10.1109/ICASSP.1990.115735.

[18] CIOFFI J. Limited-precision effects in adaptive filtering. In: IEEE Transactions

on Circuits and Systems, Vol. 34, No. 7, pp. 821-833, July 1987,

doi: 10.1109/TCS.1987.1086209.

[19] CONSTANTINIDES G. A., CHEUNG P. Y. K., LUK W. Synthesis

and optimization of DSP algorithms. Springer New York, NY, 2004,

doi: https://doi.org/10.1007.b116503.

[20] CUMMING, G. The new statistics: why and how. Psychological Science, 25(1),

2014.

[21] DINIZ P. S. R. Adaptive filtering: algorithms and practical implementation.

Third edition. Springer, Boston, MA: 2008, doi: 10.1007/978-0-387-68606-6.

155

[22] DINIZ P. S. R. Adaptive Lattice-based RLS algorithms. In: Adaptive Filtering.

Fourth edition. Springer, Boston, MA: 2013, doi: 10.1007/978-1-4614-4106-9_7.

[23] DINIZ P. S. R., SIQUEIRA M. G. Finite and infinite-precision properties of QRD-

RLS algorithms. In: QRD-RLS Adaptive Filtering. Springer, Boston, MA: December,

2009, doi: 10.1007/978-0-387-09734-3_9.

[24] DJIGAN V. I. RLS adaptive filtering algorithms based on parallel computations.

Radioengineering: Proceedings of Czech and Slovak Technical Universities and URSI

Committers, January, 2005.

[25] DOUGLAS S. C., ZHU QUANHONG, SMITH K. F. A pipelined architecture

for LMS adaptive FIR filter architecture without adaptation delay. In: IEEE

Transactions on Signal Processing, Vol. 46, No. 3, pp. 775-779, March 1998,

doi: 10.1109/78.661345.

[26] ECSEL Research and Innovation Actions (RIA). Proposal Outline: (Ultra)Sound

Interfaces and Low Energy iNtegrated Sensors. SILENSE: Calls, 2016.

[27] EKLUND C. Pipelining and Parallel Processing. Nokia Research Center, FIN-

00045 Nokia Group, October 13, 1999. Available at

http://www.netlab.tkk.fi/opetus/s38220/f99/rpt99f2.pdf

[28] FANG F., CHEN T., RUTEBNBAR R. A. Floating-point bit-width optimisation

for low-power signal processing applications. In: 2002 IEEE International Conference

on Acoustics, Speech, and Signal Processing, 2002, pp. III-3208-III-3211,

doi: 10.1109/ICASSP.2002.5745332.

[29] FABRE P., GUEGUEN C. Improvement of the fast recursive least-squares

algorithms via normalization: a comparative study. In: IEEE Transactions.

On Acoustics, Speech, and Signal Processing, Vol. 34, Issue 2, April 1986, pp. 296-308,

doi: 10.1109/TASSP.1986.1164813.

[30] FARHANG-BOROUJENY B. Adaptive filters theory and applications. John Wiley

& Sons Inc., 1998

[31] GOSLIN G. Using Xilinx FPGAs to design custom digital signal processing

devices. In: Proceedings of the DSPX 1995 Technical Proceedings, pp. 565–604, 1995,

12NOV94.

[32] Grand View Research. Gesture Recognition Market Size, Share & Trends Analysis

Report by Technology (Touch-based, Touchless), by Industry (Automotive, Consumer

Electronics, Healthcare), and Segment Forecasts, 2019-2025. Report ID: GVR-2-68038-

019-4. January, 2019. Available at https://www.grandviewresearch.com/industry-

analysis/gesture-recognition-market

[33] GUPTA V. K., CHANDRA M., SHARAN S. N. Noise minimization from speech

signals using RLS algorithm with variable forgetting factor. In: Research Journal

of Applied Sciences, Engineering and Technology. 4(17): 3102-3107, August, 2012.

156

[34] HARTFIEL J. TE0808 TRM. In: Trenz Electronic Wiki (last modified on June 01,

2020). Available at https://wiki.trenz-electronic.de/display/PD/TE0808+TRM

[35] HARTFIEL J. TEBF0808 TRM. In: Trenz Electronic Wiki (last modified on March

12, 2019). Available at https://wiki.trenz-electronic.de/display/PD/TEBF0808+TRM

[36] HAYES M. H. Statistical digital signal processing and modelling. NY: June, 1996.

ISBN: 978-0-471-59431-4

[37] HSIEH S. F., LIU K. J. R., YAO K. A unified approach for QRD-based recursive

leastsquares estimation without square roots. In: IEEE Transactions on Signal

Processing, Vol. 41, No. 3, pp. 1405–1409, March 1993, doi: 10.1109/78.205742.

[38] HORITA E., MIYANAGE Y. Numerically stable RLS algorithms for time-varying

signals. In: Wiley Online Library, Electronics and Communications in Japan (Part III:

Fundamental Electronic Science), Vol. 82, Issue 4, pp. 26-37, January 1999, doi:

https://doi.org/10.1002/(SICI)1520-6440(199904)82:4<26::AID-ECJC4>3.0.CO;2-B

[39] IGLESIAS M. E. Implementation of QRD-RLS algorithm on FPGA. Application

to noise canceller system. In: IEEE Latin America Transactions, Vol. 9, No. 4,

pp. 458-462, July, 2011, doi: 10.1109/TLA.2011.5993728.

[40] KADLEC J. Průběžná pravděpodobnostní identifikace autoregresního modelu

s neznámým řádem. In: Analýza, syntéza a rozpoznávání řeči, ČSVTS, Praha 1985

[41] KADLEC J. Pravděpodobnostní identifikace regresního modelu v pevné řádové

čárce. Praha, 1986

[42] KADLEC J. Eight FP03x8 accelerators for TE0808-09-EG-ES1 module

on TEBF0808 carrier board. Application note, ÚTIA, 2021.

[43] KADLEC, J., LIKHONINA, R. Adaptive RLS algorithms reference

implementations with custom arithmetic. Application note: ÚTIA AV ČR, v.v.i., 2017

[44] KADLEC, J., POHL, Z., STEVEN VAN DER VLUGT, JÄÄSKELÄINEN, P.,

KOSKINEN, L. Algorithms, design methods, and many-core execution platform for

low-power massive data-rate video and image processing. Almarvi, 2016

[45] KADLEC, J., POHL, Z., KOHOUT, L. Two serial connected evaluation versions

of FP03x8 accelerators for TE0820-03-4EV-1E module on TE0701-06 carrier board.

Application note: ÚTIA AV ČR, v.v.i., 2019

[46] KARKOOTI M., CAVALLARO J. R., DICK C. FPGA implementation of matrix

inversion using QRD-RLS algorithm. In: Conference Record of the Thirty-Ninth

Asilomar Conference on Signals, Systems and Computers, pp. 1625-1629, January,

2005, doi: 10.1109/ACSSC.2005.1600043.

[47] KÁRNÝ M. Bayesian estimation of model order. In: Problems of Control

and Information Theory, Vol. 9, No. 1, pp. 33-46, 1980, MR0561805.

https://doi.org/10.1002/(SICI)1520-6440(199904)82:4%3C26::AID-ECJC4%3E3.0.CO;2-B

157

[48] KÁRNÝ M., BÖHM J., GUY T. V., JIRSA L., NAGY I., NEDOMA P.,

TESAŘ L. Optimized Bayesian dynamic advising. In: Theory and Algorithms. Springer,

London: 2006.

[49] KIM J. Y., LEE Y. I., KIM K. J., NAM S. W., KO C. C. Utilization of a correlation

RLS algorithm for nonlinear echo cancellation. In: WSEAS Transactions on Circuits

and Systems, Vol. 5, No. 4, pp. 435-441, April, 2006. Available at

http://scholarbank.nus.edu.sg/handle/10635/57763

[50] KULHAVÝ R.: Směrové zapomínání a průběžná identifikace systémů s pomalu

se měnícími parametry. Výzkumná zpráva č. 1170, ÚTIA ČSAV 1983

[51] KUNG S. Y. VLSI array processing. Prentice.Hall; 1988.

[52] LEE D., MORF M., FRIDLANDER B. Recursive least-squares ladder estimation

algorithms. In: IEEE Transactions on Circuits and Systems, Vol. 28, No. 6,

pp. 467-481, June 1981, doi: 10.1109/TCS.1981.1085020.

[53] LEUNG H., HAYKIN S. Stability of recursive QRD-LS algorithms using finite-

precision systolic array implementation. In: IEEE Transactions on Acoustics, Speech,

Signal Processing, Vol. 37, No. 5, pp. 760-763, May 1989, doi: 10.1109/29.17570.

[54] LEV-ARI H., KAILATH T., CIOFFI J. Least squares adaptive lattice

and transversal filters: a unified geometric theory. In: IEEE Transactions on

Information Theory, Vol. 30, No. 2, pp. 222-236, March 1984,

doi: 10.1109/TIT.1984.1056882.

[55] LI TS., TIAN K., LI WX. Method for improving RLS algorithms. In: Journal

of Marine Science and Application, Vol. 6, No. 3, pp. 68-70, September, 2007,

doi: 10.1007/s11804-007-5077-x.

[56] LI ZHU, LI CHAO. LMS and RLS algorithms comparative study in system

identification. In: 2011 International Conference on Multimedia Technology,

pp. 5428-5430, 2011, doi: 10.1109/ICMT.2011.6002287.

[57] LIGHTBODY G. High performance VLSI architectures for recursive least squares

adaptive filtering. PhD Thesis Queen’s University Belfast, 1999.

[58] LIGHTBODY G., WOODS R., WALKE R. Design of a parameterizable silicon

intellectual property core for QR-based RLS filtering. In: IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 11, No. 4, pp. 659–678, August 2003,

doi: 10.1109/TVLSI.2003.816142.

[59] LIKHONINA, R., KOHOUT, L., KADLEC, J. Camera-to-touchscreen design.

Proceedings of 6th International Workshop on Mathematical Models and their

Applications (IWMMA’2017), pp. 94-99, 6th International Workshop on Mathematical

Models and their Applications (IWMMA’2017), Krasnoyarsk, 2017.

[60] LIKHONINA R., KADLEC, J. Noise Cancellation Using QRD RLS Algorithms.

Application Note: ÚTIA AV ČR, v.v.i., 2018.

158

[61] LIKHONINA R. Hand Gesture Recognition Based on Ultrasound Technology:

Pre-processing Stage. 2019 8th Mediterranean Conference on Embedded Computing

(MECO), pp. 1-6, 2019, doi: 10.1109/MECO.2019.8760063.

[62] LIKHONINA, R. QRD RLS Algorithm for Hand Gesture Recognition

Applications. 2019 International Conference on Systems, Signals and Image Processing

(IWSSIP), pp. 195-200, 2019, doi: 10.1109/IWSSIP.2019.8787283.

[63] LIKHONINA R. Hand detection algorithm: pre-processing stage. In: Proceedings

of the 17th international conference on informatics in control, automation and robotics,

pp. 695-701, ICINCO 2020 (17th international conference on informatics in control,

automation and robotics), 2020, doi: 10.5220/0009885206950701.

[64] LIKHONINA R., UGLICKICH E. Hand detection application based on QRD RLS

Lattice algorithm and its implementation on Xilinx Zynq Ultrascale+. In: Journal

“Neural Network World”, 32(2), pp. 73-93, 2022, doi: 10.14311/NNW.2022.32.005.

[65] LIU K. J. R., HSIEH S. F., YAO K. Recursive LS filtering using block

Householder transformations. International Conference on Acoustics, Speech,

and Signal Processing, Vol. 3, pp. 1631–1634, 1990,

doi: 10.1109/ICASSP.1990.115739.

[66] LIU K. J. R., HSIEH S. F., YAO K. Systolic block Householder transformations

for RLS algorithm with two-level pipelined implementation. In: IEEE Transactions

on Signal Processing, Vol. 40, No. 4, pp. 946–958, April 1992, doi: 10.1109/78.127965.

[67] LJUNG S., LJUNG L. Error propagation of recursive least squares adaptation

algorithms. In: IFAC Proceedings Volumes, Elsevier, Vol. 17, Issue 2, pp. 677-681,

July 1984, doi: https://doi.org/10.1016/S1474-6670(17)61049-8.

[68] LJUNG S., LJUNG L. Error propagation properties of recursive least squares

adaptation algorithms. In: Automatica, Elsevier, Vol. 21, Issue 2, pp. 157-167,

March 1985, doi: https://doi.org/10.1016/0005-1098(85)90110-4.

[69] MARTINEK R., KAHANKOVA R., NEDOMA J., FAJKUS M., SKACEL M.

Comparison of the LMS, NLMS, RLS, and QR-RLS algorithms for vehicle noise

suppression. In: ICCMS 2018, Proceedings of the 10
th

 International Conference

on Computer Modeling and Simulation, pp. 23-27, January, 2018,

doi: 10.1145/3177457.3177502.

[70] MATLAB. (9.7.0.1261785). (R2019b), Natick, Massachusetts: The MathWorks

Inc., 2019.

[71] MathWorks, Inc.: Parallel Computing Toolbox, 1994-2020. Available at

https://uk.mathworks.com/products/parallel-computing.html

[72] MATSUBARA K., NISHIKAWA K., KIYA H. Pipelined LMS adaptive digital

filter based on look-ahead delayed LMS algorithm. In: IEEE Transactions on Circuits

and Systems II: Analog and Digital Signal Processing, Vol. 46, No. 1, pp. 51-55,

January 1999, doi: 10.1109/82.749082.

https://doi.org/10.14311%2FNNW.2022.32.005

159

[73] MCWHIRTER J. G., KADLEC J., WALKE R. L. Normalised givens rotations

for recursive least squares processing. VLSI Signal Processing, VIII, pp. 313–332, 1995,

doi: 10.1109/VLSISP.1995.527502.

[74] MEYER-BAESE U. Digital signal processing with field programmable gate arrays.

Springer Berlin, Heidelberg, 2014, doi: https://doi.org/10.1007/978-3-642-45309-0.

[75] MOHAMMAD M., AL-SCHEBEILLI S.. Finite-precision analysis: Fast QR-

decomposition algorithm. In: The 10
th

 IEEE International Symposium on Signal

Processing and Information Technology, 2010, pp. 161-165,

doi: 10.1109/ISSPIT.2010.5711765.

[76] MOONEN M. Introduction to adaptive signal processing. K. U. Leuven, Leuven,

Belgium: 1999.

[77] MUNJAL A., AGGARWAL V., SINGH G. RLS algorithm for acoustic echo

cancellation. In: Proceedings of the 2
nd

 National Conference on Challenges

and Opportunities in Information Technology (COIT-2008) RIMT-IET, Mandi

Gobindgarh, March, 2008. Available at

https://www.researchgate.net/publication/228901207_RLS_algorithm_for_acoustic_ech

o_cancellation.

[78] NISHIKAWA K., KIYA H. Pipeline implementation of gradient-type adaptive

filters. In: Wiley Online Library, Electronics and Communications in Japan (Part III:

Fundamental Electronic Science), Vol. 84, Issue 5, pp. 33-42, January 2001,

doi: https://doi.org/10.1002/1520-6440(200105)84:5<33::AID-ECJC4>3.0.CO;2-5.

[79] NISHIKAWA K., KIYA H. Novel implementation technique of RLS algorithm

for improving throughput of adaptive filters. In: 10
th

 European Signal Processing

Conference, pp. 1-4, 2000. Available at

https://ieeexplore.ieee.org/document/7075545/metrics#metrics.

[80] OmniSci. Parallel Computing Definition, 2020. Available at

https://www.omnisci.com/technical-glossary/parallel-computing

[81] PETERKA V. Bayesian approach to system identification. In: Trends and Progress

in System Identificaion (P. Eykhoff, ed.), IFAC Series for Graduates, Research Workers

and Practicing Engineers, Pergamon Press, 1981.

[82] PILLAI R. V. K., AL-KHALILI D., AL-KHALILI A. J., SHAH S. Y. A. A low

power approach to floating point adder design for DSP applications. In: Journal of VLSI

Signal Processing. Vol. 27, Issue 3, pp. 195–213, 2001,

doi: 10.1023/A:1008140025773.

[83] PIRSCH P. Architectures for digital signal processing. Wiley; 1998.

[84] POHL Z., TICHY M., KADLEC J. Implementation of the Least-Squares Lattice

with order and forgetting factor estimation for FPGA. In: EURASIP Journal

on Advances in Signal Processing, 2008, 394201, doi: 10.1155/2008/394201.

160

[85] POHL, Z., KOHOUT, L.. UTIA Evaluation Board v1.7-v1.8 Beamforming Demo.

Application Note: UTIA AV CR, v.v.i., 2019

[86] PORAT B., FRIDLANDER B., MORF M. Square-root covariance ladder

algorithm. IEEE International Conference on Acoustics, Speech, and Signal Processing,

pp. 877-880, 1981, doi: 10.1109/ICASSP.1981.1171192.

[87] PORAT B., KAILATH T. Normalized lattice algorithms for least squares FIR

system identification. In: IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol. 31, No. 1, pp. 122-128, February 1983,

doi: 10.1109/TASSP.1983.1164012.

[88] RAGHUNATH K. J., PARHI K. K. Finite-precision error analysis of QRD-RLS

and STAR-RLS adaptive filters. In: IEEE Transactions Signal Processing, Vol. 45,

No. 5, pp. 1193-1209, May 1997, doi: 10.1109/78.575694.

[89] RAWAT D., KUMAR A., JOSHI S., KESTWAL M. Ch. Comparison and

simulation of adaptive equalizer of LMS, RLS algorithm using Matlab. ResearchGate:

March, 2013.

[90] REGALIA P. A. Numerical stability properties of a QR-based fast least squares

algorithm. In: IEEE Transactions on Signal Processing, Vol 41, No. 6, pp. 2096-2109,

June, 1993, doi: 10.1109/78.218139.

[91] SAKAI H. Recursive leaset-squares algorithms of modified Gram-Schmidt type for

parallel weight extraction. In: IEEE Transactions on Signal Processing, Vol. 42, No. 2,

pp. 429-433, February 1994, doi: 10.1109/78.275620.

[92] SAMSON L., REDDY V. V. Fixed point error analysis of normalized ladder

algorithm. IEEE International Conference on Acoustics, Speech, and Signal Processing,

pp. 1752-1755, 1982, doi: 10.1109/ICASSP.1982.1171689.

[93] SETHY PRABIRA. Noise cancellation in adaptive filtering through RLS algorithm

using TMS320C6713DSK. In: International Journal of Electronics and Communication

Engineering and Technology (IJECET), Vol. 3, Issue 1, January-June, 2012, pp. 154-

159. Available at

https://www.researchgate.net/publication/272175478_NOISE_CANCELLATION_IN_

ADAPTIVE_FILTERING_THROUGH_RLS_ALGORITHM_USING_TMS320C6713

DSK.

[94] SHANBHAG, N. R., PARHI, K. K. Pipelined adaptive digital filters. Springer

New York, NY, 1994, doi: https://doi.org/10.1007/978-1-4615-2678-0.

[95] SILENSE. About the project [online]. Available at https://silense.eu/project

[96] SLOCK D. T. M., KAILATH T. (1991) Numerically stable fast transversal filters

for recursive least least-squares adaptive filtering. In: Golub G. H., Van Dooren P. (eds)

Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms. NATO

161

ASI Series (Series F: Computer and Systems Sciences), Vol. 70, pp. 605-615, Springer,

Berlin, Heidelberg, doi: 10.1007/978-3-642-75536-1_49.

[97] StorAIge. Embedded storage elements on next MCU generation ready for AI on

the edge, 2022. Available at https://storaige.eu/

[98] Studytonight. Education simplified. Pipelining, 2020. Available at

https://www.studytonight.com/computer-architecture/pipelining

[99] SUKHUMALCHAYAPHONG S., BENJANGKAPRASERT C. Variable

forgetting factor RLS algorithm for adaptive echo cancellation. In: 14
th

 International

Conference on Control, Automation and Systems (ICCAS 2014), 2014, pp. 971-974,

doi: 10.1109/ICCAS.2014.6987926.

[100] THIBAULT S., PELLERIN D. Practical FPGA programming in C. 1st edition,

Prentice Hall, 2005, ISBN-13: 978-0-13-154318-8.

[101] THIRIPURASUNDARI C., SUMATHY V. Efficient FPGA architecture for RLS

algorithm based adaptive beam forming for smart antenna system. Asian Journal

of Information Technology. Vol. 15, Issue 16, pp. 3108-3124, January, 2016,

doi: 10.3923/ajit.2016.3108.3124.

[102] Trenz Electronic. UltraSOM+ MPSoC Module with Zynq UltraScale+ ZU15EG

and mounted Heat Spreader. Product description [online]. Available at

https://shop.trenz-electronic.de/en/TE0808-05-BBE21-AK-UltraSOM-MPSoC-Module-

with-Zynq-UltraScale-ZU15EG-and-mounted-Heat-Spreader

[103] Vitis v2019.2 (64-bit). Xilinx Vitis Development Environment. Xilinx, Inc.,

1986-2019.

[104] Vivado v2017.4 (64-bit). Xilinx Inc., 2010 Logic Drive, San Jose, CA 95124.

[105] WOLF W. FPGA-based system design. Prentice-Hall, New Jersey: 2004.

[106] WOODS R., MCALLISTER J., LIGHTBODY G., YI Y. FPGA-based

implementation of signal processing systems. Wiley, 2008.

[107] Xilinx. SDSoC environment user guide. UG1027 (v2017.2), pp. 6-9. August 2017

[online]. Available at https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1027-

sdsocuser-guide.pdf

[108] Xilinx SDK v2017.4 (64-bit). Xilinx Software Development Kit. Release Version:

2017.4. Eclipse contributors and others (2000, 2009), Apache Software Foundation,

Xilinx Inc., 2009-2017.

[109] Xilinx. Vitis Unified Software Platform Overview [online]. Available at

https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

https://storaige.eu/
https://shop.trenz-electronic.de/en/TE0808-05-BBE21-AK-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-ZU15EG-and-mounted-Heat-Spreader
https://shop.trenz-electronic.de/en/TE0808-05-BBE21-AK-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-ZU15EG-and-mounted-Heat-Spreader
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1027-sdsocuser-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;d=ug1027-sdsocuser-guide.pdf

162

[110] XU J., ZHOU W., GUO Y. A simplified RLS algorithm and its application

in acoustic echo cancellation. In: 2
nd

 International Conference on Information

Engineering and Computer Science, 2010, pp. 1-4, doi: 10.1109/ICIECS.2010.5678354.

163

APPENDICES

164

165

APPENDIX 1

Hypothesis Testing about the Order

of a Regression Model

Here it is shown that instead of using several algorithms with two or more different

orders, it is possible in some cases to use one algorithm with so-called nested orders.

Using the properties of the nested orders it can be shown that

Figure A.1: Example of nested order

It means that relation (2.21) can be rewritten as follows for 𝒏 = 𝟏, … , 𝑵:

�̅�𝑴[𝒏 + 𝟏] = 𝑽𝑴[𝒏 + 𝟏] + [
𝒁[𝒏]
𝒛𝑵+𝟏

] ∙ [
𝒁[𝒏]
𝒛𝑵+𝟏

]
𝑻

, (𝑨. 𝟏)

where 𝒛𝑵+𝟏 represents the output 𝒚𝒕.

The following equations are presented for an order n nested in 𝑵, for = 𝟏, … , 𝑵.

However, they are valid for order N too as it is obvious from Fig. A.1.

Using this decomposition and completion to the full squares, the conditional probability

density can be written in the following form [41]:

𝒑[𝜽, 𝝎𝒕|𝑫(𝒕 − 𝟏)] = 𝒌 ∙ 𝝎𝒕

𝓥+𝒏−𝟐
𝟐 ∙ 𝐞𝐱 𝐩 {−

𝝎𝒕

𝟐
∙ 𝜦} ∙

∙ 𝐞𝐱 𝐩 {−
𝝎𝒕

𝟐
∙ (𝜽 − 𝜽[𝒏])𝑻 ∙ 𝑪[𝒏] ∙ (𝜽 − 𝜽[𝒏])} , (𝑨. 𝟐)

166

where

𝑪[𝒏] = 𝑽𝑴
−𝟏[𝒏], (𝑨. 𝟑)

𝜽[𝒏] = 𝑪[𝒏] ∙ 𝑽[𝒏], (𝑨. 𝟒)

𝜦 = 𝐯 − 𝑽𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝑽[𝒏], (𝑨. 𝟓)

𝝎 = 𝓥 ∙ 𝜦−𝟏. (𝑨. 𝟔)

Vector 𝜽[𝒏] enables to express the conditional mean value by the probability

distribution of the unknown regression parameters. It is a vector of regression

coefficient estimates [40-41, 47-48, 50, 81].

𝜦 is a scalar, which enables to express the conditional mean value by the distribution

of unknown parameters. It is a residue after completion to the full

squares [40-41, 47-48, 50, 81].

𝒌 is a normalizing constant, while 𝝎𝒕 is an unknown degree of accuracy [40-41, 47-48,

50, 81].

Further, it will be shown how the update of the characteristics is performed. To simplify

notation, instead of (𝒕|𝒕)under the characteristics the upper line " ̅ " above the letter

is used to show that the corresponding characteristics is after updating with 𝒚𝒕.

The index (𝒕|𝒕 − 𝟏) is omitted under the characteristics, which means that

the corresponding characteristics is before updating with 𝒚𝒕 [40-41, 47-48, 50, 81].

�̅�𝑴[𝒏] = 𝑽𝑴[𝒏] + 𝒁[𝒏] ∙ 𝒁𝑻[𝒏], (𝑨. 𝟕)

�̅� = 𝐯 + 𝒛𝑵+𝟏
𝟐 , (𝑨. 𝟖)

�̅�[𝒏] = 𝑽[𝒏] + 𝒁[𝒏] ∙ 𝒛𝑵+𝟏, (𝑨. 𝟗)

�̅�[𝒏] = 𝑪[𝒏] −
𝑪𝑻[𝒏] ∙ 𝒁[𝒏] ∙ 𝒁𝑻[𝒏] ∙ 𝑪[𝒏]

𝟏 + 𝝃
 , (𝑨. 𝟏𝟎)

�̅�[𝒏] = 𝜽[𝒏] +
𝑪𝑻[𝒏] ∙ 𝒁[𝒏]

𝟏 + 𝝃
∙ 𝒆, (𝑨. 𝟏𝟏)

�̅� = 𝜦 +
𝒆 ∙ 𝒆

𝟏 + 𝝃
, (𝑨. 𝟏𝟐)

where

𝝃 = 𝒁𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝒁[𝒏], (𝑨. 𝟏𝟑)

𝒆 = 𝒛𝑵+𝟏 − 𝜽𝑻[𝒏] ∙ 𝒁[𝒏] = [−𝜽𝑻[𝒏], 𝟏] ∙ [
𝒁[𝒏]
𝒛𝑵+𝟏

], (𝑨. 𝟏𝟒)

167

𝒆 is a prior prediction error, 𝒛𝑵+𝟏 is the output 𝒚𝒕. It is the last element

in vector 𝒁[𝑵 + 𝟏].

Note also that the density 𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏), 𝑯𝒏) has the following

form [40-41, 47-48, 50, 81]:

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝑯𝒏) = 𝝅−𝟏/𝟐 ∙
𝜦(

𝝑−𝒏
𝟐

+𝟏)

�̅�
(

�̅�−𝒏
𝟐

+𝟏)
∙

|𝑽𝑴[𝒏]|
𝟏
𝟐

|�̅�𝑴[𝒏]|
𝟏
𝟐

∙
Г (

�̅� − 𝒏
𝟐 + 𝟏)

Г (
𝝑 − 𝒏

𝟐 + 𝟏)
, (𝑨. 𝟏𝟓)

where 𝝑 is the number of data samples accumulated in VM[n], |𝑽𝑴[𝒏]| is a determinant

of matrix 𝑽𝑴[𝒏], Г(∙) is a Gamma function.

This probability density has a Student distribution with 𝝑 − 𝒏 + 𝟐 degrees

of freedom [40-41, 47-48, 50, 81].

Using the analytical relations, there is no need to work with the whole probability

density, which is demanding on computer resources. The certain values of 𝒚𝒕 and 𝒖𝒕

can be obtained to calculate the probability of the hypothesis according to

the equation (1.14).

It means that it can be implemented inside one algorithm with nesting orders,

each hypothesis representing one of the nested orders within a large order.

However, it is valid if the exponential forgetting is used. Otherwise, it is necessary

to have several algorithms of different orders and compute them separately,

which is supposed to be implemented in the present work.

Note also that the summation of the computed probabilities has to be equal to one.

For the characteristics updates for further steps the forgetting factor is used. The main

requirement when implementing the forgetting technique is to keep parameters

and the degree of accuracy unchanged by the forgetting factor, i.e.

𝜽(𝒕|𝒕−𝟏) = 𝜽(𝒕−𝟏|𝒕−𝟏), (𝑨. 𝟏𝟔)

𝝎(𝒕|𝒕−𝟏) = 𝝎(𝒕−𝟏|𝒕−𝟏). (𝑨. 𝟏𝟕)

The equations for the characteristics updates for further steps of computation using

the exponential forgetting are the following [40-41, 47]:

�̅� = 𝜶 ∙ 𝓥, (𝑨. 𝟏𝟖)

�̅�𝑴[𝒏 + 𝟏] = 𝜶 ∙ 𝑽𝑴[𝒏 + 𝟏], (𝑨. 𝟏𝟗)

�̅�[𝒏] = 𝜶 ∙ 𝑽[𝒏], (𝑨. 𝟐𝟎)

�̅�𝑴[𝒏] = 𝜶 ∙ 𝑽𝑴[𝒏], (𝑨. 𝟐𝟏)

�̅� = 𝜶 ∙ 𝐯, (𝑨. 𝟐𝟐)

168

�̅�[𝒏] =
𝟏

𝜶
∙ 𝑪[𝒏], (𝑨. 𝟐𝟑)

�̅�[𝒏] = 𝜽[𝒏], (𝑨. 𝟐𝟒)

�̅� = 𝜶 ∙ 𝜦, (𝑨. 𝟐𝟓)

where 𝜶 is a forgetting factor ranging from 0 to 1.

It is obvious from these relations that the exponential forgetting keeps the mean value

of parameters [40-41, 47-48, 50, 81]:

𝑬[𝜽𝒕+𝟏, 𝝎𝒕+𝟏|𝑫(𝒕)] = 𝑬[𝜽𝒕, 𝝎𝒕|𝑫(𝒕)]. (𝑨. 𝟐𝟔)

The relations using the directional forgetting look as follows [40-41, 50]:

�̅� = 𝜶 ∙ 𝓥,

�̅� = 𝜶 ∙ 𝜦.

for 𝜉 > 0:

�̅�𝑴[𝒏] = 𝑽𝑴[𝒏] − 𝜹 ∙ 𝒁𝑻[𝒏], (𝑨. 𝟐𝟕)

 �̅�[𝒏] = 𝑽[𝒏] − 𝜹 ∙ 𝒛𝑵+𝟏 ∙ 𝒁[𝒏], (𝑨. 𝟐𝟖)

�̅� = 𝜶 ∙ 𝐯 − 𝜹 ∙ 𝒛𝑵+𝟏
𝟐 + (𝟏 − 𝜶) ∙ 𝑽𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝑽[𝒏], (𝑨. 𝟐𝟗)

�̅�[𝒏] = 𝑪[𝒏] +
𝑪𝑻[𝒏] ∙ 𝒁[𝒏] ∙ 𝒁𝑻[𝒏] ∙ 𝑪[𝒏]

(𝟏\𝜹) − 𝝃
, (𝑨. 𝟑𝟎)

�̅�[𝒏] = 𝜽[𝒏]. (𝑨. 𝟑𝟏)

for 𝜉 → 0 +:

�̅�𝑴[𝒏] = 𝑽𝑴[𝒏], (𝑨. 𝟑𝟐)

 �̅�[𝒏] = 𝑽[𝒏], (𝑨. 𝟑𝟑)

�̅� = 𝜶 ∙ 𝐯 + (𝟏 − 𝜶) ∙ 𝑽𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝑽[𝒏], (𝑨. 𝟑𝟒)

�̅�[𝒏] = 𝑪[𝒏], (𝑨. 𝟑𝟓)

�̅�[𝒏] = 𝜽[𝒏], (𝑨. 𝟑𝟔)

169

where

𝝃 = 𝒁𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝒁[𝒏], (𝑨. 𝟑𝟕)

𝜹 =
𝟏 − 𝜶

𝝃
, (𝑨. 𝟑𝟖)

�̅�𝑵+𝟏 = 𝜽𝑻[𝒏] ∙ 𝒁[𝒏], (𝑨. 𝟑𝟗)

�̅�𝑵+𝟏 is a posterior prediction of 𝒛𝑵+𝟏

Note that in case of the directional forgetting, the nesting of the orders is not valid

anymore. Therefore, to estimate parameters for different order models, it is necessary

to apply separate algorithms for each model.

170

171

APPENDIX 2

QRD RLS Lattice Algorithm

and Hypothesis Testing

As it is mentioned in Chapter 1, the RLS Lattice algorithm can be derived from

the QRD algorithm. The derivation of the algorithm is based on the below equations

multiplied with a data vector [40-41, 47-48, 50, 81].

For the purposes of more readability, the notation [“size”] of vectors and matrices

is omitted in this chapter. Instead, notation (“order/step of computation”) is applied

to note if the values are from the present or from the previous step of computation

are used.

�̂�𝒇(𝒏) = [
�̂�𝒇(𝒏 − 𝟏)

𝟎
] + [

−𝜽𝒃𝒛(𝒏)
𝟏

] ∙ 𝜦𝒛
−𝟏(𝒏) ∙ 𝑲(𝒏), (𝑨. 𝟒𝟎)

𝜽𝒃(𝒏) = [
𝟎

𝜽𝒃𝒛(𝒏)] + [
𝟏

−�̂�𝒇(𝒏 − 𝟏)] ∙ 𝜦𝒛
−𝟏(𝒏) ∙ 𝑲(𝒏), (𝑨. 𝟒𝟏)

�̅�𝒃𝒛(𝒏) = 𝜽𝒃(𝒏 − 𝟏), n=2,…N. (𝑨. 𝟒𝟐)

Note that �̂�𝒇 is a vector of autoregression coefficients in a forward direction,

𝜽𝒃 is a vector of regression coefficients in a backward direction calculated

from the decomposition of matrix 𝑽𝑴[𝑵 + 𝟏], 𝜽𝒃𝒛 is a vector of regression coefficients

in a backward direction calculated from the decomposition of matrix 𝑽𝑴[𝑵],

𝜦𝒛 are diagonal elements of matrix D in the matrix decomposition

𝑽𝑴
−𝟏[𝑵] = 𝑼[𝑵] ∙ 𝑫[𝑵] ∙ 𝑼𝑻[𝑵], where 𝑼 is an upper triangular matrix with units

on the main diagonal, 𝑫 is a diagonal matrix with positive elements

on the main diagonal. 𝜦 are scalars in N different decompositions

of 𝑽𝑴[𝑵 + 𝟏] = 𝑳[𝑵 + 𝟏] ∙ 𝑫[𝑵 + 𝟏] ∙ 𝑳𝑻[𝑵 + 𝟏], where 𝑳 is a low triangular matrix

with units on the main diagonal. 𝑲 stands for coefficients of response.

After this step, relations between prediction (resp. filtration) errors in forward

and backward directions can be obtained. On the basis of these variables, the update

of parameters 𝜦𝒛, 𝜦, 𝑲 is provided [40-41, 47-48, 50, 81].

172

The relations for the updates of the parameters 𝜦𝒛, 𝜦, 𝑲 are presented

below [40-41, 47-48, 50, 81]:

�̅�(𝒏) = 𝑲(𝒏) +
𝒉𝒛(𝒏) ∙ 𝒆(𝒏 − 𝟏)

𝟏 + 𝝃(𝒏 − 𝟏)
, (𝑨. 𝟒𝟑)

�̅�(𝒏) = 𝜶𝟐 ∙ �̅�(𝒏), 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵, (𝑨. 𝟒𝟒)

�̅�𝒛(𝒏) = 𝜦𝒛(𝒏) +
𝒉𝒛

𝟐(𝒏)

𝟏 + 𝝃(𝒏 − 𝟏)
, (𝑨. 𝟒𝟓)

�̅�𝒛(𝒏) = 𝜶𝟐 ∙ �̅�𝒛(𝒏), 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵, (𝑨. 𝟒𝟔)

�̅�(𝒏) = 𝜦(𝒏) +
𝒆𝟐(𝒏)

𝟏 + 𝝃(𝒏)
, (𝑨. 𝟒𝟕)

�̅� = 𝜶𝟐 ∙ �̅�, 𝒇𝒐𝒓 𝒏 = 𝟎, 𝟏, … , 𝑵, (𝑨. 𝟒𝟖)

𝒉𝒛 are prediction errors computed in a backward direction from the decomposition

of matrix 𝑽𝑴[𝑵], 𝒆 are prediction errors in a forward direction.

Let us remind also that for the initialization step the following equations

are valid [40-41, 47-48, 50, 81]:

𝒉𝟏 = 𝒚𝒕−𝟏; 𝒆𝟎 = 𝒚𝒕; 𝝃𝟎 = 𝟎. (𝑨. 𝟒𝟗)

To update parameters (A.43)-(A.48), it is necessary to know the forward prediction

errors 𝒆 and backward prediction errors 𝒉𝒛. They are defined as

follows [40-41, 47-48, 50, 81]:

𝒆(𝒏) = 𝒚𝒕 − �̂�𝒇(𝒏) ∙ 𝒁(𝒏), (𝑨. 𝟓𝟎)

𝒉𝒛(𝒏) = 𝒚𝒕−𝒏 − 𝜽𝒃𝒛
𝑻 (𝒏) ∙ 𝒁(𝒏 − 𝟏). (𝑨. 𝟓𝟏)

The interaction between the forward and backward prediction errors of order n-1 and n

without using vectors �̂�𝒇, 𝜽𝒃𝒛 is given by the equations [40-41, 47-48, 50, 81]:

𝒆 = 𝒚𝒕 − �̂�𝒇(𝒏) ∙ 𝒁(𝒏) = 𝒆(𝒏 − 𝟏) − 𝑲(𝒏) ∙ 𝜦𝒛
−𝟏(𝒏) ∙ 𝒉𝒛(𝒏) 𝒇𝒐𝒓 n=1,2,…,N (𝑨. 𝟓𝟐)

where 𝒆𝟎 = 𝒚𝒕.

𝒉𝒛(𝒏) = 𝒚𝒕−𝒏 − 𝜽𝒃𝒛
𝑻 (𝒏) ∙ 𝒁(𝒏 − 𝟏) = 𝒉(𝒏 − 𝟏), 𝒇𝒐𝒓 n=1,2,…,N, (𝑨. 𝟓𝟑)

where 𝒉 are backward prediction errors computed from the decomposition of matrix

𝑽𝑴[𝒏 + 𝟏] and 𝒉𝟎 = 𝒚𝒕−𝟏.

173

𝒉(𝒏) = 𝒉𝒛(𝒏) − 𝑲(𝒏) ∙ 𝜦−𝟏(𝒏 − 𝟏) ∙ 𝒆(𝒏 − 𝟏), 𝒇𝒐𝒓 n=1,2,…,N, (𝑨. 𝟓𝟒)

where 𝒆𝟎 = 𝒚𝒕.

Thus, the equations (A.52)-(A.54) define the prediction errors 𝒆, 𝒉𝒛,

which are necessary for updating parameters 𝜦𝒛, 𝜦, 𝑲 according to the equations

(A.43)-(A.48). It should be also noted that in this case there is no need to update

matrix 𝑽𝑴[𝑵] [40-41, 47-48, 50, 81].

To summarize, the algorithm in the form suitable for programming is presented below.

Note that 𝒆𝒖 stands for a prediction error calculated from the inputs 𝒖𝒕, while 𝒆𝒚

represents a prediction error calculated using the outputs 𝒚𝒕 (see Fig. A.2).

Start of the algorithm in time 𝒕𝟎 = 𝑵 + 𝟏

𝜹𝟎 > 𝟎, 𝜹𝟎 → 𝟎

𝜶𝟐𝝐(𝟎, 𝟏 >

Ʌ(𝒏) = 𝜹𝟎, 𝒇𝒐𝒓 𝒏 = 𝟎, 𝟏, … , 𝑵

Ʌ𝒛(𝒏) = 𝜹𝟎 , 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵

𝑲(𝒏) = 𝟎, 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵

Computation in time 𝒕 ≥ 𝒕𝟎

�̅�𝟎 = 𝜶𝟐 ∙ (Ʌ𝟎 + 𝒚𝒕
𝟐)

�̅� = 𝜶𝟐 ∙ (𝝂 + 𝟏)

𝝃𝟎 = 𝟎

𝒆𝒖(𝟎)
= 𝒉𝟎 = 𝒖𝒕

𝒆𝒚(𝟎)
= 𝒚𝒕

174

Cycle for n=1, 2, …, N

𝒉𝒛(𝒏) = 𝒉 (𝒏 − 𝟏)

�̅�𝒖(𝒏) = 𝜶𝟐 ∙ (𝑲𝒖(𝒏) +
𝒉𝒛(𝒏) ∙ 𝒆𝒖(𝒏 − 𝟏)

𝟏 + 𝝃(𝒏 − 𝟏)
)

�̅�𝒛(𝒏) = 𝜶𝟐 ∙ (Ʌ𝒛(𝒏) +
𝒉𝒛

𝟐(𝒏)

𝟏 + 𝝃(𝒏 − 𝟏)
)

𝒉(𝒏) = 𝒉𝒛(𝒏) − 𝑲(𝒏) ∙ Ʌ−𝟏(𝒏 − 𝟏) ∙ 𝒆𝒖(𝒏 − 𝟏)

𝒆𝒖(𝒏) = 𝒆𝒖(𝒏 − 𝟏) − 𝑲𝒖(𝒏) ∙ Ʌ𝒛
−𝟏(𝒏) ∙ 𝒉𝒛(𝒏)

𝝃(𝒏) = 𝝃(𝒏 − 𝟏) + Ʌ𝒛
−𝟏(𝒏) ∙ 𝒉𝒛

𝟐(𝒏)

�̅�(𝒏) = 𝜶𝟐 ∙ (Ʌ(𝒏) +
𝒆𝒖

𝟐(𝒏)

𝟏 + 𝝃(𝒏)
)

�̅�𝒚(𝒏) = 𝜶𝟐 ∙ (𝑲𝒚(𝒏) +
𝒉𝒛(𝒏) ∙ 𝒆𝒚(𝒏 − 𝟏)

𝟏 + 𝝃(𝒏 − 𝟏)
)

𝒆𝒚(𝒏) = 𝒆𝒚(𝒏 − 𝟏) − 𝑲𝒚(𝒏) ∙ Ʌ−𝟏(𝒏) ∙ 𝒉(𝒏)

Algorithm 1: Lattice with prediction errors [40]

Instead of 𝝃(𝒏) it is possible to make updating in the following

form [40-41, 47-48, 50, 81]:

𝝈𝟐(𝒏) = 𝟏 + 𝝃(𝒏). (𝑨. 𝟓𝟓)

For n=0

𝝈𝟎
𝟐 = 𝟏, (𝑨. 𝟓𝟔)

𝝈𝟐(𝒏) = 𝝈𝟐(𝒏 − 𝟏) + 𝒉𝒛
𝟐(𝒏) ∙ Ʌ𝒛

−𝟏(𝒏). (𝑨. 𝟓𝟕)

It is worth mentioning that the algorithm computes all necessary parameters for

calculating the probability density function 𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝒏𝒕) [40-41, 47-48, 50, 81].

175

The structure of the QRD RLS Lattice algorithm can be shown in the following

graph [40]:

Figure A.2: QRD RLS Lattice algorithm [40]

 means multiplication with a constant,

 stands for “memory cell”, with the help of which the following equation

is performed: 𝒉𝒛(𝒏) = 𝒉 (𝒏 − 𝟏), where 𝒉 (𝒏 − 𝟏) is from the previous time step.

Algorithm 1 can be changed to obtain the filtration errors instead of the prediction

errors. This change allows deriving the normalized forms of the algorithms performing

the computation in range (-1; 1) [40-41, 47-48, 50, 81], which decreases

the computational complexity and ensures the numerical stability of the algorithm.

The equations, which define relations between the filtration and prediction errors,

are as follows [40-41, 47-48, 50, 81]:

�̅�(𝒏) = 𝒆(𝒏) ∙ (𝟏 − �̅�(𝒏)), (𝑨. 𝟓𝟖)

�̅�𝒛(𝒏) = 𝒉𝒛(𝒏) ∙ (𝟏 − �̅�(𝒏 − 𝟏)). (𝑨. 𝟓𝟗)

It is also valid:

𝟏 + 𝝃(𝒏) =
𝟏

𝟏 − �̅�(𝒏)
 . (𝑨. 𝟔𝟎)

The detailed description of the derivation of the equations can be found

in [40-41, 47-48, 50, 81].

176

The algorithm can be written in the following form [40]:

Start of the algorithm in time 𝒕𝟎 = 𝑵 + 𝟏

𝜹𝟎 > 𝟎, 𝜹𝟎 → 𝟎

𝜶𝟐𝝐(𝟎, 𝟏 >

Ʌ̅ (𝒏) = 𝜹𝟎, 𝒇𝒐𝒓 𝒏 = 𝟎, 𝟏, … , 𝑵

Ʌ̅𝒛(𝒏) = 𝜹𝟎 , 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵

�̅� (𝒏) = 𝟎, 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵

Computation in time 𝒕 ≥ 𝒕𝟎

Ʌ̅̅𝟎 = 𝜶𝟐 ∙ Ʌ̅𝟎 + 𝒚𝒕
𝟐

�̿� = 𝜶𝟐 ∙ �̅� + 𝟏

�̅̅�𝟎 = 𝟎

�̅̅�𝒖𝟎 = �̅̅�𝟎 = 𝒖𝒕

�̅̅�𝒚𝟎 = 𝒚𝒕

Cycle for n=1, 2, …, N

�̅̅�𝒛(𝒏) = �̅�𝒛(𝒏 − 𝟏)

�̅̅�𝒖(𝒏) = 𝜶𝟐 ∙ �̅�𝒖(𝒏) +
�̅̅�𝒛(𝒏) ∙ �̅̅�𝒖(𝒏 − 𝟏)

𝟏 − �̅̅�(𝒏 − 𝟏)

Ʌ̅̅𝒛(𝒏) = 𝜶𝟐 ∙ Ʌ̅𝒛(𝒏) +
�̅̅�𝒛

𝟐(𝒏)

𝟏 − �̅̅�(𝒏 − 𝟏)
)

177

�̅̅�(𝒏) = �̅̅�𝒛(𝒏) − �̅̅�𝒖(𝒏) ∙ Ʌ̅̅−𝟏(𝒏 − 𝟏) ∙ �̅̅�𝒖(𝒏 − 𝟏)

�̅̅�𝒖(𝒏) = �̅̅�𝒖(𝒏 − 𝟏) − �̅̅�𝒖(𝒏) ∙ Ʌ̅̅𝒛
−𝟏(𝒏) ∙ �̅̅�𝒛(𝒏)

 �̅̅�(𝒏) = �̅̅�(𝒏 − 𝟏) + Ʌ̅̅𝒛
−𝟏(𝒏) ∙ �̅̅�𝒛

𝟐(𝒏)

Ʌ̅̅(𝑵 + 𝟏|𝒏) = 𝜶𝟐 ∙ Ʌ̅(𝑵 + 𝟏|𝒏) +
�̅̅�𝒖

𝟐(𝑵 + 𝟏|𝒏)

𝟏 − �̅̅�(𝒏)

�̅̅�𝒚(𝒏) = 𝜶𝟐 ∙ �̅�𝒚(𝒏) +
�̅̅�𝒛(𝒏) ∙ �̅̅�𝒚(𝒏 − 𝟏)

𝟏 − �̅̅�(𝒏 − 𝟏)

�̅̅�𝒚(𝒏) = �̅̅�𝒚(𝒏 − 𝟏) − �̅̅�𝒚(𝒏) ∙ Ʌ̅̅−𝟏(𝒏) ∙ �̅̅�(𝒏)

Algorithm 2: Lattice algorithm with filtration error [40]

Again instead of �̅�(𝒏), it is possible to make updating:

�̅�𝟐(𝒏) = 𝟏 − �̅�(𝒏). (𝑨. 𝟔𝟏)

For n=0:

�̅�𝟎
𝟐 = 𝟏, (𝑨. 𝟔𝟐)

�̅�𝟐(𝒏) = �̅�𝟐(𝒏 − 𝟏) − �̅�𝒛
𝟐(𝒏) ∙ Ʌ̅𝒛

−𝟏(𝒏). (𝑨. 𝟔𝟑)

The main difference between Algorithm 1 and Algorithm 2 is in the fact

that Algorithm 2 works with parameters Ʌ̅𝒛, �̅�, �̅�, which are already updated

by the filtration errors �̅� and �̅�𝒛 before using them in the equations. This property allows

normalizing variables in the algorithm. For example, due to the equations for updating

Ʌ̅, it is obtained [40-41, 47-48, 50, 81]:

Ʌ̅(𝒏) = 𝜶𝟐 ∙ Ʌ̅(𝒏) +
�̅�𝟐(𝒏)

𝟏 − �̅�(𝒏)
, (𝐀. 𝟔𝟒)

𝟎 < 𝟏 − �̅�(𝒏) ≤ 𝟏, (𝑨. 𝟔𝟓)

−𝟏 < �̅�(𝒏) ∙ Ʌ̅−
𝟏

𝟐(𝒏) < 𝟏. (𝑨. 𝟔𝟔)

As it was mentioned in Chapter 1, the QRD RLS Lattice algorithm is suitable

for incorporation of the hypothesis estimation.

178

Let us remind the equation for estimation of the hypothesis probability (1.14):

𝒑(𝑯𝒏|𝑫(𝒕)) =
𝒑𝒏(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏))

𝒑(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏))
𝒑(𝑯𝒏|𝑫(𝒕 − 𝟏)), 𝒇𝒐𝒓 𝒏 = 𝟏, … , 𝑵.

There are two stages of probability estimation. The first stage, which is presented

by the numerator in (1.14), computes the order update. In the second stage,

which is presented by the denominator of (1.14), the normalization of the updated

order estimates is performed [84]. These stages can be incorporated

into the QRD RLS Lattice algorithm.

It is obvious that to compute the probability estimates of the hypotheses, it is necessary

to know 𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏), 𝑯𝒏), which is calculated as follows (A.15):

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝑯𝒏) = 𝝅−𝟏/𝟐 ∙
𝜦((𝝑−𝒏)/𝟐+𝟏)

�̅�((�̅�−𝒏)/𝟐+𝟏)
∙

|𝑽[𝒏]|𝟏/𝟐

|�̅�[𝒏]|𝟏/𝟐
∙

Г((�̅� − 𝒏)/𝟐 + 𝟏)

Г((𝝑 − 𝒏)/𝟐 + 𝟏)
.

The equation for updating 𝝑 can be written in the following form [84]:

�̅� = 𝜶𝝑 + 𝟏. (𝑨. 𝟔𝟕)

Let us remind also that the above equation is valid only for the regression model

inherent to the hypothesis H as a conditional probability density function (1.15) [84]:

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏), 𝜣, 𝑯𝒏) =
𝝎𝒕

√𝟐𝝅
𝒆−(

𝝎𝒕
𝟐

)(𝒚𝒕−𝜽𝒕
𝑻𝒁[𝒏])𝟐

.

The part of the QRD RLS Lattice algorithm, which shows computation of incorporated

hypothesis estimation, is given in the following form:

Initialization:

j is a number of models, n is the order of a model.

𝒑𝒊,−𝟏 =
𝟏

(𝒋 + 𝟏)
 ∀𝒊

For i=1:j

𝝑𝒍𝒊𝒎 =
𝟏

𝟏 − 𝜶𝟐

𝒆𝟏𝒊 =
𝜶𝝑𝒍𝒊𝒎 − 𝒏𝒊

𝟐
+ 𝟏

179

𝒆𝟐𝒊 =
𝝑𝒍𝒊𝒎 − 𝒏𝒊

𝟐
+ 𝟏

𝝉𝒊 = �̅� + 𝟏 − 𝒏𝒊 = 𝜶𝝑 − 𝒏𝒊

// Approximation of division of gamma functions

𝒈𝒊𝟏 = (
𝝉𝒊 + 𝟏

𝝉𝒊
)

𝝉𝒊/𝟐

𝒈𝒊𝟐 = (
𝝉𝒊

𝟐
)

𝟏/𝟐

𝒈𝒊𝟑 = 𝒆−𝟏/𝟐 ∙ 𝒈𝒊𝟏 ∙ 𝒈𝒊𝟐

𝒈𝒊 = 𝝅−𝟏/𝟐 ∙ 𝒈𝒊𝟑

// Computation of other components of the equation (2.40)

𝒇𝒕𝒊 = (
𝜦𝒊

�̅�𝒊

)

(
𝝑𝒊−𝒏𝒊

𝟐
+𝟏)

∙
𝟏

�̅�𝒊
𝟏/𝟐

𝒔𝒕𝒊 =
𝟏

𝝈𝒊
𝟐

pi(yt|D(t-1), Hi)=fti*sti*gi;

fi_hypo=1e-20*(1.0/j);

p(𝑯𝒊)=pi(𝒚𝒕)∙p(𝑯𝒊);

p(Hs)=∑ 𝒑(𝑯𝒊)
𝒋
𝒊=𝟎

p(𝑯𝒊)=(p(𝑯𝒊)+fi_hypo)/(p(Hs)+fi_hypo*j);

end

Algorithm 3: Hypothesis estimation

180

Let us discuss Algorithm 3 in more details.

It is obvious from Algorithm 3 that before the first iteration, it is necessary to define

the initial hypothesis probability density function. It is chosen in the form

of the uniform distribution:

𝒑𝒊,−𝟏 =
𝟏

(𝒋 + 𝟏)
 ∀𝒊, (𝑨. 𝟔𝟖)

where 𝒑𝒊 is the probability of model i of order n at time t. Value t=-1 represents

the initialization step.

Initialization of other characteristics is given as follows [84]:

𝝑𝒍𝒊𝒎 = 𝐥𝐢𝐦
𝒏→∞

𝝑 =
𝟏

𝟏 − 𝜶
 (𝑨. 𝟔𝟗)

𝒆𝟏 =
𝜶𝝑𝒍𝒊𝒎 − 𝒏

𝟐
+ 𝟏 (𝑨. 𝟕𝟎)

𝒆𝟐 =
𝝑𝒍𝒊𝒎 − 𝒏

𝟐
+ 𝟏 (𝑨. 𝟕𝟏)

𝒈 = 𝝅−𝟏/𝟐
Г(𝒆𝟐)

Г(𝒆𝟏)
 (𝑨. 𝟕𝟐)

In Algorithm 3 equation (A.15) is not used in its direct form due to the numerical

problems.

The problematic part is the first division
𝜦((𝝑−𝒏)/𝟐+𝟏)

�̅�((�̅�−𝒏)/𝟐+𝟏) in the equation (A.15). It should be

rewritten to avoid the potential numerical underflow or overflow in case

of the implementation in the floating point with a limited data range. As far as (A.67),

the equation can be re-arranged into the following form:

𝜦
(

𝝑−𝒏
𝟐

+𝟏)

�̅�
(

�̅�−𝒏
𝟐

+𝟏)
= (

𝜦

�̅�
)

(
𝝑−𝒏

𝟐
+𝟏)

∙
𝟏

�̅�
𝟏
𝟐

 (𝑨. 𝟕𝟑)

The division of determinants in the second part of equation (A.15) can also cause

an algorithm failure and should be reformulated. Using relations

in [40-41, 47-48, 50, 81], it can be rewritten as follows:

|𝑽[𝒏]|𝟏/𝟐

|�̅�[𝒏]|𝟏/𝟐
= ∏

𝜦(𝒏)

�̅�(𝒏)

𝑵

𝒏=𝟏

=
𝟏

𝟏 + 𝝃
=

𝟏

𝝈𝟐
 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵 (𝑨. 𝟕𝟒)

181

Moreover, there is a need to perform the division of gamma functions in a better way.

In [40-41, 47-48, 50, 81] for the approximation of the division of gamma functions,

the Stirling equation is used:

Г (
𝒙

𝟐
) = √𝟐𝝅𝒆−

𝒙
𝟐 (

𝒙

𝟐
)

(𝒙−𝟏)/𝟐

 𝒙 > 𝟎 (𝑨. 𝟕𝟓)

If the numerator of argument of gamma function in (A.15) is denoted as:

𝝉𝒏 = 𝝑 + 𝟏 − 𝒏 = 𝜶𝝑 − 𝒏 (𝑨. 𝟕𝟔)

Then for the division of gamma function, it is obtained:

Г (
𝝉𝒏 + 𝟏

𝟐)

Г (
𝝉𝒏

𝟐)
= �̅�(𝒏) = 𝒆−

𝟏
𝟐 (

𝝉𝒏 + 𝟏

𝝉𝒏
)

𝝉𝒏
𝟐

∙ (
𝝉𝒏

𝟐
)

𝟏
𝟐

 (𝑨. 𝟕𝟕)

where 𝝉𝟎 = �̅� + 𝟏.

Summarizing all approximations, which have been made above, the equation (A.15)

can be rewritten in the following way:

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝑯𝒏) = 𝝅−
𝟏
𝟐 ∙

𝜦(
𝝑−𝒏

𝟐
+𝟏)

�̅�
(

�̅�−𝒏
𝟐

+𝟏)
∙

|𝑽[𝒏]|
𝟏
𝟐

|�̅�[𝒏]|
𝟏
𝟐

∙
Г (

�̅� − 𝒏
𝟐 + 𝟏)

Г (
𝝑 − 𝒏

𝟐 + 𝟏)
=

= 𝝅−𝟏/𝟐 ∙ (
𝜦

�̅�
)

(
𝝑−𝒏

𝟐
+𝟏)

∙
𝟏

�̅�
𝟏
𝟐

 ∙
𝟏

𝝈𝟐
∙ 𝒆−

𝟏
𝟐 (

𝝉 + 𝟏

𝝉
)

𝝉
𝟐

∙ (
𝝉

𝟐
)

𝟏
𝟐

 (𝑨. 𝟕𝟖)

Moreover, it should be noted that there are certain limits, within which the value

of the forgetting factor 𝜶𝟐 can be chosen. These limits are conditioned by the maximum

order of the model and can be written as follows:

𝟏 −
𝟏

𝑵+𝟑
< 𝜶𝟐 < 𝟏 (𝑨. 𝟕𝟗)

For detailed information about the derivation of the above formula as well as a

definition of time, from when it is possible to start the recursive updating

of the probability density function of the order of a regression model, please,

refer to [40-41].

182

After the values of 𝒑𝒕−𝟏 have been updated, the normalization step follows to obtain

updated probabilities 𝒑𝒕. The probability density function is given by the equation

for hypothesis testing and is extended with the forgetting of the hypotheses [84]:

𝒑𝒊 =
𝒑𝒊

𝒅 + 𝝋

∑ (𝒑𝒊
𝒅 + 𝝋)

𝒋
𝒊=𝟎

 (𝑨. 𝟖𝟎)

where 𝒑𝒊
𝒅 is an updated, but not normalized probability of model i of order n,

for i=1,…, j. The value 𝝋 is the forgetting factor of the hypotheses.

The sum of updated probabilities 𝒑𝒊
𝒔𝒅 can be calculated as [84]:

𝒑𝒊
𝒔𝒅 = ∑ (

𝒋
𝒊=𝟎 𝒑𝒊

𝒅 + 𝝋) = (𝒋 + 𝟏)𝝋 + ∑ 𝒑𝒊
𝒅𝒋

𝒊=𝟎 (𝑨. 𝟖𝟏)

Then, the value of 𝒑𝒊
𝒅 is calculated using the update of 𝒑𝒊

𝒅 from its initial

value 𝒑−𝟏
𝒅 = (𝒋 + 𝟏)𝝋.

