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INTRODUCTION 
 

 

The present work is devoted to Fast Recursive Bayesian Algorithms and their 

implementation on hardware platforms with Field Programmable Gate Array (FPGA) 

programmable logic. The area of algorithm application is very wide, especially 

in digital signal processing applications, and includes, but is not limited to, parameter 

estimation, echo suppression, beam-forming, radar applications, equalization, etc. 

However, there are certain difficulties in implementing the algorithms under 

consideration on hardware platforms due to their high computational complexity 

and problems with numerical stability. 

In turn, FPGA platforms are also well known and commonly used in aerospace 

and automotive industries, bioinformatics, high performance computing, medical 

and industrial applications. One of the reasons for its popularity is in the fact that they 

are faster for some applications, which is due to their parallel capabilities and optimality 

in terms of the number of gates used for a certain process. The FPGA platforms are 

frequently used during development of pre-defined applications, before implementing 

them on Application Specific Integrated Circuits (ASIC) [100]. 

The work under consideration is motivated and supported by the European project 

called “SILENSE” standing for (ultra)Sound Interfaces and Low Energy iNtegrated 

Sensors. The project started from the 1
st
 of May, 2017 and lasted for 36 months. 

Its main field was acoustic technologies used for activation and control of devices 

by gesture as well as for data communication and indoor positioning. The domains, 

which were targeted by the project, were wearables, automotive and smart home 

applications. Within the project and in respect to these domains, it was planned 

to achieve such important goals as to create intuitive user interfaces in mobile 

and wearable devices, to improve hygiene due to touchless control, to increase safety 

by developing gesture recognition applications for in-car system control 

and for machinery control in industrial applications, to increase security by gestural 

authentication and to improve the quality of life for disabled and old people. The project 

comprised development of acoustic technology on all levels, i.e. hardware, software 

and the system. In terms of hardware, it was supposed to develop new micro-acoustic 

transducers to decrease the cost and energy consumption as well as to improve 

performance of the end devices. Besides, it was planned to develop more specifically 

heterogeneously and monolithically integrated arrays of micro-acoustic transducers 

with their supporting electronics and to provide a dedicated low-power Integrated 

Circuits (IC) design. As far as software is concerned, the project aimed at developing 

smart algorithms for acoustic data communication, sensing and gesture   

recognition [26, 95]. 

The present work is connected with that part of the project, which is targeted 

to the development of new algorithms for gesture recognition applications. Examples 
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of such applications can be in-car applications for controlling audio and video systems, 

dashboards or applications used for navigation and entertainment purposes or air-

conditioning control settings. In this case it is supposed that gesture-based applications 

will improve safety as the time, when the driver’s attention is distracted from the road, 

will be significantly reduced. The passengers can also benefit from such kind 

of a system by easily interacting control elements, which are far or even unreachable 

for them [26]. 

The system is supposed to be based on a network of ultrasound transducers with 

an integrated pre-processing unit (see Fig. 1). These transducer arrays will be integrated 

behind the screen or on the flexible foil, which will be placed at an optimal position 

in the interior of the car (headliners, door panels, seats, etc.) [26]. 

The ultrasound impulses are supposed to be transmitted by the system, reflected 

from a hand and returned back to the system. On the basis of responses and their 

characteristics, the device should be able to detect the presence, position and distance 

of the hand. Because the hand will not be necessarily perpendicular to the surface 

of the display, it is supposed that microphones will be turning to the direction of hand 

movement. Therefore, in a final application an adaptive beamforming technique may be 

used for directional signal reception [105]. 

However, it is obvious that there will be also reflections from the objects in 

the environment other than the hand (see Fig. 2). These undesired responses can present 

a great challenge for a recognition process and, therefore, should be removed 

from the target signal. 

 

Figure 1: Thin flexible foil with a matrix of ultrasound transceivers for gesture recognition [26] 
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Figure 2: Example of a hand detection application [60-61] 

It follows that for pre-processing of incoming data in a way of reducing acoustic noise, 

it is necessary to develop the corresponding algorithms based on the noise cancellation 

technique. These algorithms have to be numerically robust and fast, being capable 

to provide user interaction in low-power, low-cost situations and to process incoming 

data in real-time. Therefore, the main goal of the thesis is to develop appropriate 

algorithms for such kind of applications. 

The work is also supported by the ECSEL project “StorAIge”, which stands 

for “Embedded storage elements on next MCU generation ready for AI on the edge”. 

It focuses on increasing high performance of new platforms and decreasing the energy 

consumption. It targets automotive, industrial and security markets [97]. 

State of the Art 

The main interest of the thesis is the adaptive Recursive Least Squares (RLS) 

algorithms used for system identification [40-41, 76]. These algorithms can be derived 

from Bayesian theory for adaptive system identification in real time and will be 

extended with hypothesis testing to identify the probability of an identification model 

best suited for a particular situation (hand presence/absence) [40-41, 81]. 

It is worth noting that the adaptive RLS filters are already widely used in many real 

applications including speech analysis, video compression, noise and echo cancellation, 

equalization, mobile and multimedia systems, beam-formers, system identification 

and radar applications [21]. It is clear that the research made in this field is enormous 

and very profound. 

However, while attempting to implement the algorithms on hardware platforms, 

it appeared that there were certain problems due to their high computational complexity 

and numerical stability issues [76]. To deal with the computational complexity, the fast 

versions of the RLS algorithms were developed. To name a few investigations in this 

area, the following works should be mentioned [15, 29, 76]. To solve the issue with 

the numerical stability, a so-called QR decomposition of recurring updated matrices was 

proposed [11, 76, 90, 96]. 
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Hereby, let us give a short insight into studies of the RLS algorithms and their 

development to understand what is already done and what requires further 

investigations. 

One of the first practically applicable algorithms from this group was so-called 

Levinson-Durbin recursion, which represented an effective method for parameter 

estimation of one-step predictor of a stationary random process monitored on a finite 

time interval. This algorithm was well described in a work by Markel [40]. 

Itakura F. and et al continued to work with this algorithm and replaced the gradual 

calculation of a predictor of an increasing order with corresponding relations between 

prediction errors. The relations were represented in the form of a lattice structure and 

the parameters of the algorithms ranged from -1 to 1. This property was very important 

and contributed to further development of the algorithms with the same structure [40]. 

A work by Lee D., Morf M. and Fridlander B. had a great importance for the RLS 

algorithm development in identification of an autoregression model [52]. The authors 

developed the lattice algorithms equivalent with the least squares methods, a so-called 

LS lattice, and for the first time they used normalization of the variables in the range 

from -1 to 1. So the normalized algorithms had several benefits as compared with 

the non-normalized: mainly in a fewer storage and lower computational requirements. 

Besides, they could be easily implemented in a fixed-point arithmetic [52]. This work 

was very popular and a number of scientists continued to work in this direction. Among 

them are Lev-Ari [54], Ljung [67-68], Porat [86-87]. 

Porat B. and co-authors at this time explored the square root normalized ladder 

algorithms, where they developed the growing memory and sliding memory covariance 

ladder algorithms and used the estimated reflection coefficients for computing 

the model parameters [86]. The other work from 1983 was devoted to the least squares 

identification of the finite impulse response (FIR) models and to the development 

of the square-root normalized lattice algorithms both for the time-invariant models 

and for tracking the time-varying parameters [87]. 

Lev-Ari H. and et al described the least squares adaptive lattice and transversal filters 

using a unified geometric theory [54]. The filters described in these works were 

applicable for the nonstationary processes. The authors also described the windowed 

fast transversal filters adaptive algorithms with normalization and discussed the trade-

off between the growth rate of numerical errors and the computational requirements 

for the fixed-order algorithms. 

At the same time the other algorithms of a recursive parameter identification 

of an autoregression model, which were equivalent to the least squares method, were 

developed. The algorithms were called the fast Kalman and the fast lattice and some 

of them also allowed the normalization of the variables by their time varying 

ranges [40]. 

At this time Ljung S. and Ljung L. focused on the analysis of the recursive algorithms 

and the error propagation of the RLS adaptation algorithms [67-68]. In their work 

the authors proved the exponential stability of the conventional LS algorithms 

and the fast lattice algorithms in terms to such errors and that the base of the decay 
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was equal to the forgetting factor. However, the fast least squares algorithms or the fast 

Kalman algorithms were shown to be numerically unstable. 

Cioffi J. and et al made a great contribution to investigation in this field. Their works 

were dedicated to the fast RLS transversal filters for adaptive filtering, where 

the authors offered substantial reductions in the computational requirements relative 

to the fast RLS algorithms such as the fast Kalman algorithms of Morf M., Ljung L. and 

Falconer D. and the fast lattice algorithms of Morf M. and Lee D. [15-16]. Besides, 

Cioffi J. focused on the limited-precision effects in adaptive filtering and discussed 

the problem of the overflow due to the accumulating errors [18]. In the work [17] 

the author proposed to replace the Givens rotations used for the fast QR algorithms with 

the Householder transformation to significantly reduce the computation. 

The work by Samson L., Ardalan S. H. and Bottomley G. E. were devoted to 

the analysis of the algorithm errors. Assuming rounding arithmetic, Samson made 

the analysis of fixed point errors of the normalized lattice algorithm used for 

autoregressive system identification [92]. 

Bottomley also focused on the round-off errors of the fixed-point RLS and stated 

that they caused the instability [11]. The solution proposed by the author was to bias 

these round-off errors. 

Ardalan S. H. investigated both the floating point errors of the RLS and Least Mean 

Squares (LMS) adaptive filters and the fixed-point round-off errors of the exponentially 

windowed RLS algorithms used for time-varying systems [4-5]. In both cases the author 

concluded that the forgetting factor lambda played a very important role and influenced 

the resulting noise. The researcher stated that to reduce the algorithm sensitivity 

to the additive noise, it was necessary to set lambda close to one. But, on the other hand, 

the round-off error would increase as lambda -> 1. 

Farbre P. and et al in their work offered to use normalization to improve the fast RLS 

algorithms [29]. The results were shown on the example of the fast Kalman algorithm. 

The stability problem was also discussed in works [38, 53, 96]. 

Leung H. and Haykin S. analyzed the stability of the recursive QRD-LS algorithms 

in regards to the finite precision systolic array implementation [53]. 

Slock D. T. M. developed the numerically stable fast transversal filters with exponential 

weighting for the RLS adaptive filtering [96]. The stability was achieved due to 

the feedback gains, which became possible with introducing redundancy into 

the algorithms. 

Horita E. and et al offered a new RLS criterion to solve a numerical stability problem 

resulted from the finite precision errors [38]. This criterion included a strong parameter 

energy factor, which contributed to the algorithm stability. 

The QRD-based RLS algorithms are proved to be stable, but due to the square-root 

computations for the Givens rotations they can cause a problem of a so-called 

computational bottleneck. This was investigated by Hsieh S. F. and et al in their work, 



28 
 

where the authors tried to develop a unified approach for the QRD-based RLS 

estimation without computing the square roots [37]. 

An interesting work from this point is one by Sakai H. and et al, where the RLS 

algorithm of a modified Gram-Schmidt type of the parallel extraction is presented [91]. 

These algorithms are the counterpart of the algorithms using an inverse 

QR decomposition based on the Givens rotations and do not contain the square root 

operations. Thus, the problem of a bottleneck is also solved. 

The probability approach to identification of stochastic systems was formulated in 

works by Peterka V., Kárný M. and Kulhavý R. [47-48, 50, 81]. Unknown parameters 

of a model in these works were supposed to be random variables. After data being 

measured, it was possible to calculate the posterior probability distributions conditioned 

by the data from the prior probability distributions. The technique used for the recursive 

parameters identification and described in these works was based on actualization 

of a root matrix decomposition of the positive definitive symmetric matrices. 

This resulted in the excellent numerical properties, so there was no risk of instability 

due to the loss of the positive definiteness. The Bayesian approach to the algorithm 

development enabled to solve the problem of a selection of the initial conditions and 

to use forgetting factors. Kárný M. implemented an exponential forgetting in 

the algorithms [47] and Kulhavý R. described and showed the advantages 

of a directional forgetting [50]. Moreover, Kulhavý R. formulated identification of time 

varying systems in independence to a model of the parameter development. The weak 

point of these algorithms was the difficulty to implement them in a fixed-point 

arithmetic; therefore, the calculations were to be held in a floating-point   

arithmetic [47-48, 50, 81]. 

Kadlec J. tried to solve the above mentioned problem in the work [40], where the author 

developed the algorithm of probability identification for a model of the vocal tract. 

Both the model parameters and the model order could be time varying. The algorithm 

had a lattice structure and, therefore, could benefit from the parallel implementation. 

Considering a recursive actualization of the order probability distribution, it was 

possible to decide about the number of parameters describing the vocal tract. Moreover, 

the variable normalization was proposed, which allowed implementing the algorithm in 

a fixed-point arithmetic and using then fast microprocessors [40]. 

In work [41] Kadlec J. continued the investigation and tried to find a method 

of the recursive probability identification of a regression model. This method had 

to allow the variable normalization using the time varying ranges from -1 to 1 in such 

a way that the algorithms could be easily implemented in a fixed-point arithmetic. 

The method had similar numerical properties as the square root algorithms 

of the probability identification implemented in floating–point arithmetic [41]. 

Besides, Kadlec J., McWhirter J. G. and Walke R. L. in 1995 proposed the normalized 

Givens rotation algorithm for the RLS processing and showed an important 

consequence of the normalization as for the algorithms being implemented in fixed 

point arithmetic [73]. This fact allows performing a design of a simpler application 

on the specific integrated circuits for the adaptive filtering and beamforming. 
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Zhu Li and Chao Li perform a comparative study of the LMS and RLS algorithms [56] 

in terms of a convergence rate in the system identification applications. Another 

comparative analysis is presented in [89]. 

There is also an interesting work by Gaensler T. and Bensty J. giving insights into the 

RLS algorithm and discussing the fast versions of the RLS algorithm [7]. 

The fast versions of the RLS algorithms, their modifications, the methods for increasing 

the throughput, the precision analysis are also described in works [3, 22-23, 55, 75, 79]. 

Due to the fact that the algorithms allow the parallel pipelined implementation, 

there are a lot of works dedicated to this topic. 

Shanbhag N. R. and et al developed the pipelined adaptive digital filters, which were 

suitable for the low-power, low-area and higher-speed applications [94]. In their work 

the authors described the pipelined adaptive lattice filter architecture, the relaxed look-

ahead pipelined LMS adaptive filters and quantizers, the pipelined adaptive differential 

vector quantizer architecture, the pipelined Kalman filter architecture and different 

applications [94]. 

The finite-precision error analysis of the QRD-RLS and STAR-RLS adaptive filters was 

made by Raghunath K. J. [88]. The author supposed that the QRD RLS adaptive 

filtering algorithm was suitable for the Very-Large-Scale-Integration (VLSI) 

implementation due to its numerical properties. Thus, the researcher developed a new 

fine-grain pipelinable STAR-RLS algorithm suitable for the high-speed applications. 

It was claimed that the algorithm could be implemented with as few as 8 bits 

for the fractional part, depending on the filter size and the forgetting factor used [88]. 

Matsubara K. and et al in the same year developed the pipelined LMS adaptive digital 

filter based on the look-ahead delayed LMS algorithm and proposed an efficient 

architecture for the hardware implementations [72]. 

Another works devoted to the pipelined adaptive filters are a paper by Douglas S. C. 

and et al discussing a pipelined architecture for the LMS adaptive FIR filter architecture 

without the adaptation delay [25], and a work by Nishikawa K. and et al describing 

the pipeline implementation of the gradient-type adaptive filters [78]. 

A new approach to the householder transformation (HT) for the RLS filters was 

described by Liu K. J. R. and et al. This approach made the HT suitable for the VLSI 

implementation and applicable to the real-time signal processing applications [65]. 

In their further work the authors modified the HT algorithms in a way that it became 

possible to perform a two-level pipelined implementation of the systolic block 

householder transformations at both the vector and the word levels [66]. 

Djigan V. I. describes a family of the sliding window RLS adaptive filtering algorithms 

with the regularization of the adaptive filter correlation matrix fitted for the parallel 

computations. The author claims that this approach can be used in all traditional 

applications of the adaptive filters [24]. 
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There are also a number of books with a comprehensive description of the current 

situation in the adaptive filtering and with different examples of the algorithm 

applications. Among them it is worth mentioning [21, 30, 36]. In [36] the author 

examines both the mathematical theory behind various linear adaptive filters 

with the FIR and the elements of the supervised neural networks. 

Due to the fact that the algorithms proposed in the thesis will be implemented on 

the HW platform with the FPGA programmable logic, it is worth mentioning several 

publications devoted to this field and areas connected. 

Bondalapati K. and Prasanna V. in [9] discuss the advantages of the reconfigurable 

computing systems and the methodologies used for developing the configurable 

computing models. 

Kung S. Y. provides a general overview of the VLSI array processors and a unified 

treatment for the algorithm, architecture and their application [51]. 

Pirsch P. also investigates this field and provides a very detailed description of basic 

architectures for the VLSI implementations of the Digital Signal Processing (DSP) tasks 

including a description of the parallel processing and pipelining, the applications 

of the specific array processors and the programmable digital signal processors [83]. 

Lightbody G. has several works devoted to the VLSI and Intellectual Property (IP) 

cores development. In the early work the author describes the VLSI architectures in 

connection to the RLS adaptive filtering algorithms [57]. In the work from 2003 

in cooperation with Woods R. and Walke R. the researcher develops a parameterizable 

generic architecture for the RLS filtering in the form of a hardware description 

language (HDL) [58]. 

The synthesis and optimization of the DSP algorithms are covered in a work 

by Constantinides G. and et al, where the authors focused on the digital design 

and architectural synthesis, the signal scaling, the methodologies of the DSP design, 

the precision optimization, the importance of the scheduling, the allocation and binding 

problems [19]. The authors also described the trade-off between the numerical accuracy 

for the area and power-consumption advantages. 

A very detailed description and analysis of the FPGAs can be found in works by Goslin 

G., Meyer-Baese U., Wolf W. and Woods R. and et al. [31, 74, 105-106]. 

Other works devoted to the FPGA architecture for the RLS algorithms can be found           

in [2, 10, 46, 101]. 

It should be noted as well that to be able to use the discussed algorithms 

for the applications running on the small platforms, the problem of the power 

consumption should be solved. 

A general description of a low power digital design can be found in work [13] 

by Chandrakasan A. and Brodersen R. and in work [14] by Chen C. S. and et al. 

Besides, there are several works devoted to a floating-point design for the low-power 
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signal processing applications. Among them are works by Pillai R. V. K. and et al and 

Fang F. and et al. [28, 82]. 

As it was stated before, the RLS algorithms are very often used for the noise/echo 

cancellation applications. The most popular applications are those in the area 

of telecommunication and mobile speech recognition application. In this respect 

the works [8, 49, 77, 93] are worth of attention. 

Other works in this field solve the problem of a variable forgetting factor [33, 99], 

the simplified versions of the RLS algorithms for the acoustic echo cancellation [110], 

and provide a comparison of the performance of the LMS, NLMS, RLS and QR-RLS 

in the noise suppression [69]. 

A very interesting work in the field of using the RLS algorithms for the noise 

cancellation is the one by Iglesias M. E. [39], who describes a noise reduction technique 

based on the QRD RLS algorithm and the ways of its implementation on the FPGA-

based platform. The researcher performs a simulation in MATLAB and in the FPGA 

and discusses the obtained results [39]. However, in this case there is no parallel 

architecture being used. 

As far as the ultrasound technology and RLS algorithms concern, only one more or less 

related article was found [1]. In their work the authors try to use a new method based on 

the RLS adaptive filtering to eliminate the effect of the blurring of the tissue reflectivity, 

which deteriorates the biomedical ultrasound image quality. The experiments proved 

that due to the RLS algorithms it is possible to improve the contrast and resolution 

of the image and the algorithm itself can be considered reliable. The authors also 

managed to reduce the dimensionality, which led to the computational complexity 

decrease [1]. 

From the above description it follows that there is a lot of publications devoted 

to different areas of the field under consideration. However, the major interest 

for the thesis is presented by the following works: 

o Works [40-41] by Kadlec J. – the work about the probability identification 

of an autoregression model with an unknown order with the help of lattice 

structures [40] and the work about the probability identification of a regression 

model in a fixed point arithmetic [41]. 

o Work [76] by Moonen M. about the adaptive signal processing, where the author 

performs different adaptive algorithms based on the RLS and LMS 

and considers their complexity, convergence and stability [76]. The author 

shows how these algorithms can be implemented for the parallel processing 

with the help of Signal-Flow Graph (SFG) diagrams and how the complexity 

or a number of operations per iteration can be decreased. This is very important 

for the fast identification and decrease of the power consumption. Among 

the algorithms described in the book are LMS, RLS NLMS, QRD-RLS, square-

root free QRD, RLS with the inverse updating, fast transversal filters, lattice 

algorithms, QRD least squares lattice, fast QR algorithms. All algorithms are 

implemented on the example of FIR filters, where the exponential forgetting 

is considered [76]. 
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o Work [81] by Peterka V., where a Bayesian approach to system identification 

and hypothesis testing are presented. 

o Work [43] by Kadlec J. and Likhonina R. about the adaptive RLS algorithm 

implementations with a custom arithmetic and work [60] by Kadlec J. 

and Likhonina R. about the noise cancellation using the QRD RLS algorithms. 

Both works are related to the project SILENSE. The work [43] describes 

the algorithms created by Kadlec J. and discusses the results obtained 

from the MATLAB simulation, while the work [60] describes the simulation 

results using the noise cancellation technique. 

Challenges, Goals and Contributions 

It is worth mentioning several challenges, which exist in the research area, 

and underlining the contributions of the thesis. 

Firstly, though literature analysis clearly shows that the field of investigation is well 

studied and profoundly described in many works, and that the existing algorithms 

function very efficiently on large computers; however, there is still a problem 

to implement them on small area chips. The microprocessors have usually a small 

memory footprint. Processing a large amount of data, which is often the case in acoustic 

signal processing, can cause slow performance. 

Secondly, this particular work is performed within the project focused on ultrasound 

technology. It can be noticed that there is a gap in the research area. Only one more 

or less related work, which is dealing with ultrasonic diagnostics and improvement 

of diagnostics with the help of the RLS algorithm, was found [1]. Still no work 

was found, which would describe how to use the RLS algorithms for hand detection 

applications based on ultrasound. 

Thirdly, there is a large amount of scientific investigations focusing on noise 

cancellation techniques using the RLS algorithms, e.g. [8, 49, 77, 93, 110]. However, 

they mainly concentrate on telecommunication and mobile speech recognition 

applications, which are not the case for the present research, where the algorithms 

are supposed to pre-process incoming data in a way to remove undesired ultrasound 

responses from the target signal, subject to use for hand detection. 

Last, but not least is the fact that the algorithms, which constitute the basis of the thesis 

and will serve as a reference model for further development, were already proposed 

in [40-41, 47-48, 50, 81]. They were supplemented with estimation of the order 

of a regression model, which is based on recursive Bayesian hypothesis testing. 

The algorithms were successfully tested for RLS Lattice in an application for speech 

coding [40-41]. However, hand detection applications based on ultrasound technology 

have their specific features. In this context hypothesis testing is supposed to be applied 

in a different way. As far as the signals can come to microphones at different angles 

(not necessarily perpendicular) and with different delay, it seems to be more appropriate 

and important to identify the structure of a regression model and to choose a particular 

identification model, which corresponds better to a real-time situation, rather than 

to estimate only the order. Such kind of a solution in the field under consideration 

was not found in literature. 
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To summarize the last four points, it would mean that there is a strong need within 

the project to propose such kind of algorithms, which will deal with ultrasound signals, 

efficiently remove undesired responses from the target signal (noise reduction), ensure 

fast execution and processing of a large amount of data in real time, and guarantee high 

reliability and low power consumption on small platforms. 

This and all previously mentioned challenges and considerations specify the main goals 

of the thesis, which can be formulated as follows: 

1. to develop a numerically robust adaptive signal processing algorithm 

of recursive identification of regression models for ultrasound signals, 

performing noise cancellation and measuring hand distance from the device in 

real time. 

It is supposed that there will be several models, which will correspond to different 

situations, e.g. whether a hand is present or not in front of the device. Using recursive 

hypothesis testing and calculated probabilities, it will be possible to decide, 

which model suits better for incoming data. The final goal is to use recursive Bayesian 

hypothesis testing to improve the functionality of an ultrasound hand detection 

application by reducing undesired responses (noise cancellation) and measuring hand 

distance from the device. The latter will be possible due to the special nature 

of the input signal (chirps). Though such kind of a signal is challenging as far as 

it refers to weakly exciting types and, thus, it requires numerically robust computation; 

however, it enables to compute the distance between the hand and the device as soon as 

the response from the hand, i.e. the exact moment the hand appears, is known. 

After being supplemented with recursive probability estimation, the algorithm will 

come through verification process. For these purposes data corresponding to several 

regression models of different orders will be modelled and fed to the algorithm. At first 

the algorithm will be tested and verified in MATLAB R2019b [70] in double precision 

arithmetic. When the results are satisfactory, i.e. the algorithm is proved to identify 

correctly the most appropriate regression model and to estimate its parameters, then, 

it will be tested in floating-point representation. 

After the algorithm pass the verification successfully both in double precision 

in MATLAB R2019b and in C code with single precision in MATLAB R2019b, 

real data from an ultrasound microphone are supposed to be used to verify the validity 

of the proposed models and correct performance of the algorithm. 

It is also worth comparing the performance of different algorithms in terms 

of computational time, memory usage and other metrics, and, thus, to prove 

that a chosen algorithm for the present work is more suitable for the implementation 

on the HW platform. 

Overall, the innovation shall lead to a newly improved, optimized algorithm with good 

numerical properties, capabilities of identification of regression models and distance 

computation based on incoming data. The algorithm, moreover, shall ensure low power 

consumption as well as sufficiently accurate performance in real time. 
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2. to implement the algorithm on an embedded hardware platform, potentially used 

for applications for hand detection with data processing from a microphone. 

It should not be forgotten that the existing algorithm [40-41] serving as a reference 

model for testing the correct performance of the C coded implementation was already 

implemented in MATLAB R2019b and the C simulation environment. However, 

there is still a need to implement it for systolic, pipelined System on Chip (SoC) IP core 

(28 nm, 20 nm, possibly 16 nm); to be more specific, on the integrated circuit Xilinx 

Zynq Ultrascale+ with the multi-core processor ARM Cortex A53 and the FPGA 

programmable logic part [34-35]. 

After the new algorithm is developed and specified and its functionality is verified using 

MATLAB, the next step is to convert and to map it on the Xilinx Zynq Ultrascale+ 

device. It will be necessary to test how the algorithm performs on the processor; 

therefore, there will be experiments performed in a way that data corresponding 

this or that regression model will come to Xilinx Zynq Ultrascale+ from a flash memory 

card or from a computer. On the basis of the mapped algorithm, Xilinx Zynq 

Ultrascale+ will identify the structure of the regression models and choose the most 

appropriate one. In the end the information about power consumption, time 

of calculations and other characteristics can be obtained and a conclusion about 

the algorithm performance on small platforms can be made. 

As far as the algorithm has high computational complexity, it is very probable that such 

kind of SW implementation will not be fast enough for real-time processing. Therefore, 

the next step will be to parallelize the computation process in a way that each core 

of the quad-core ARM Cortex A53 processor will be busy with computation of a certain 

part of the algorithm at each time step. In this case it will be possible to reach efficiency 

of the computation process and to decrease the computational time. 

The parallel version of the HW implementation will be tested and verified 

with the golden model received from MATLAB R2019b. If verification tests 

are successfully fulfilled and if the computational time corresponds to the real-time 

processing, then the SW implementation will be considered successful. The prototype 

device in this case will represent an FPGA-based HW platform, where FPGA 

programmable logic will be responsible for providing data from an ultrasound 

microphone and the ARM part of the FPGA-based HW platform will compute 

the algorithm on four cores of ARM Cortex A53 and provide identification results: 

the presence or the absence of the hand in front of the device. 

However, if the computation of the algorithm is slow and does not correspond to real-

time processing, further modification will be needed. In this case the accelerators 

in the FPGA part of the device will be used and the algorithm will be mapped on 

the accelerators. 

The SW implementation using four cores of ARM Cortex A53 processor is supposed 

to be done both in double and single precision arithmetic, while the HW implementation 

using FPGA accelerators is supposed to be fulfilled only in single precision arithmetic 

due to limited computational resources, which can be mapped to the programmable 

logic. The FPGA implementation of the algorithm is supposed to be performed using 

8xSIMD FP03x8 accelerators designed in ÚTIA [42]. 
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This new solution area promises to have a great potential for touchless device control 

using an operator’s hand detection based on the digital processing of responses 

of ultrasound signals. 

3. to apply the developed algorithm for tracking of hand movement-based gestures 

(possibly). 

The final goal within the project SILENSE, which supports the present research, 

is to create a functional prototype of a gesture recognition device, which can be used as 

a Human Machine Interface (HMI) in the automotive industry or smart home/building 

domain. This goal is out of the scope of the thesis, because the algorithm presented in 

this work are only a part of the hand detection application and aim at eliminating 

undesired ultrasound responses and cleaning the target signal for further processing. 

However, if succeeded it can be good evidence and a spectacular example of a practical 

value of the algorithm. 

To summarize the main steps for achieving the above mentioned goals, the following 

steps should be mentioned: 

1. to achieve goal 1: 

a. implementation of a hypothesis testing algorithm for identification 

of regression models (within considered context) based on a Bayesian approach 

with recursive estimation, 

b. incorporation of hypothesis testing into existing algorithms, 

c. pipelining and parallelizing the chosen algorithm, 

d. validation experiments both with modelled and real data from an ultrasound 

microphone: 

i. verification in MATLAB R2019b in double precision, 

ii. verification in MATLAB R2019b using C code in single precision, 

iii. verification of a parallelized version of the algorithm in MATLAB 

R2019b using MATLAB Parallel Computing Toolbox. 

e. comparing the performance of different algorithms. 

2. to achieve goal 2: 

a. converting the algorithm to the Xilinx Zynq Ultrascale+ device (computation 

is performed on a single core of the multi-core ARM Cortex A53 processor), 

b. pipelining and parallelizing the algorithm for computing on four cores 

of the ARM Cortex A53 processor, 

c. verification of the algorithm mapped on Zynq Ultrascale+ on the basis 

of the golden model from MATLAB R2019b to prove its functionality 

and to test it in terms of power consumption, time of computation, and other 

metrics, 

d. implementation of the algorithm on the FPGA programmable logic part 

of Xilinx Zynq Ultrascale+, 

e. verification of the algorithm mapped to FPGA accelerators on the basis 

of the golden model from MATLAB R2019b. 

3. to achieve goal 3: 

a. application of the developed algorithm for hand tracking and identification 

of simple gestures possible due to the measurement of the hand distance 

from the device, i.e. creating a functional prototype, verification and final 

version (possibly). 
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To summarize the expected contributions, the following should be mentioned: 

1. A newly designed structure of regressions models, which is chosen in a way 

enabling to compare the models and to obtain information for the predetermined 

goals of the specified application, i.e. a) noise cancellation, b) distance 

computation between the hand and the device. 

2. Application of recursive Bayesian identification to the defined problem, 

i.e. incorporation of hypothesis testing to the algorithm so that on the basis 

of computed probabilities it is possible to compare the structures of regression 

models and to make a decision between two use-cases (“there is a hand 

in front of the device” vs “there is no hand in front of the device”) at a certain 

computation step. It results in determining the exact moment when there is 

a response from the hand and due to the specific form of the input signal (chirps) 

to measure the distance between the hand and the device. 

3. Implementation of the algorithm: a) in the MATLAB R2019b environment, 

b) in parallel in the MATLAB R2019b environment using the Parallel 

Computing Toolbox, c) in C code, d) in parallel in C code on four threads. 

4. Simulation close to the real situation, i.e. the models used for simulation 

in MATLAB R2019b will be retrospectively recalibrated in a way 

that the parameters from identification with real data will be used to create 

regression models for simulation purposes. 

5. Algorithm implementation on an embedded HW platform, on the ARM 

Cortex A53 processor with four cores using real data from an ultrasound 

microphone and performing computation in real time. 

6. Algorithm implementation in the FPGA programmable logic part of the Xilinx 

Zynq Ultrascale+ device using 8xSIMD FP03x8 accelerators to accelerate 

the computation process. 

 

Structure of the Work 

To conclude this introductory description, the structure of the present work is described. 

The first chapter is devoted to mathematical methods including description of RLS 

algorithms and FIR filters, the Bayesian approach to system identification problems, 

modification of existing algorithms and their optimization. It also presents techniques 

and SW tools needed for the implementation of the algorithm on the HW platform. 

In the second chapter the algorithm implementation on a PC, in MATLAB R2019b 

is provided. Simulation results as well as experiments with real data are discussed 

and a comparison of two algorithms is performed. 

The third chapter describes steps of algorithm optimization on a PC. It includes 

the pipelining and parallel processing technique as well as a discussion 

of parallelization of the algorithms using the Parallel Computing Toolbox in 

the MATLAB R2019b environment. 
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The algorithm implementation on the Trenz Electronic board is presented in Chapter 4, 

while the Conclusion section of the work provides a short summary of the work and 

analyzes the obtained results. 

The remaining two parts of the work shortly describe potential applications 

of the algorithm and future prospects. 

There are also appendices to Chapter 1, which describe the applied algorithm in more 

details. 
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CHAPTER 1 

Mathematical Methods, Tools 

and Techniques 
 

 

This part describes the RLS algorithms, the Bayesian approach to system identification 

and the incorporation of hypothesis testing in the chosen algorithm. The mathematical 

tools and methods presented in this chapter serve as a basis for further implementation 

of the chosen algorithm first in the MATLAB R2019b environment [70] and then on 

the HW platform. More detailed information together with the derivation of equations 

presented in this chapter can be found in Appendices. 

Moreover, some basic information about the FPGA-based platforms including 

the FPGA technology, tools and techniques used for programming on microprocessors 

and on the FPGA chips are provided in the following sections of the chapter. 

Finally, in the last section the main outputs of this stage of the research and the related 

publications are mentioned. 

1.1. Bayesian Approach to System Identification: Estimation 

of the Model Parameters 

To continue the discussion about the development of the chosen RLS algorithm 

with probability estimation of a corresponding model, it is worth giving a brief insight 

into the Bayesian approach to system identification and the recursive least square 

estimation from the viewpoint of the probabilistic theory [81]. 

In contrast to the classical statistics, the Bayesian statistics observes the probability 

as the subjective experience of the uncertainty and unknown parameters being uncertain 

and random, described by a probability distribution [20, 81]. 

T. Bayes underlines three basic components, which constitute the Bayesian statistics: 

the prior distribution, the information in the data themselves and the posterior 

inference [20]. 

The prior distribution is represented by the previous knowledge available before testing. 

It can be, for example, in the form of a normal distribution. Its variance defines the level 

of uncertainty about the value of the parameter under consideration. It is obvious 

that the larger variance the more uncertainty the value of the parameter has. The prior 

variance in this case is defined as the precision, which is the inverse of the variance. 
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The smaller the prior variance, the more confidence there is that the prior mean reflects 

the mean [20]. 

The second component, the information in the data, presents what is observed. 

It is defined by the likelihood function of the data given the parameters [20]. 

The posterior inference is based on combining the prior distribution and the observed 

evidence via the Bayes’ theorem, which is a fundamental theorem in the Bayesian 

statistics. As the result, a so-called posterior distribution is obtained, which reflects the 

knowledge updated on the basis of new data [20]. 

The Bayes’ theorem can be written as follows [20]: 

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 =  
𝒑𝒓𝒊𝒐𝒓 𝒙 𝒍𝒊𝒌𝒆𝒍𝒊𝒌𝒉𝒐𝒐𝒅

𝒎𝒂𝒓𝒈𝒊𝒏𝒂𝒍 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅
, 

or in the form of the equation for parameter estimation [81]: 

𝒑(𝜽|𝒚) =
𝒑(𝜽) ∙ 𝒑(𝒚|𝜽)

𝒑(𝒚)
,                                                                                                      (𝟏. 𝟏) 

where 𝒑(∙) denotes the probability, 𝒚 is the output, 𝜽 are parameters. 

The equation can be simplified by dropping 𝒑(𝒚), which represents a normalizing 

constant for 𝒑(𝜽|𝒚) sums to 1. In this case it is obtained [81]: 

𝒑(𝜽|𝒚)~𝒑(𝜽) ∙ 𝒑(𝒚|𝜽),           (𝟏. 𝟐) 

where ~ means proportionally. 

Summarizing the points mentioned above, the Bayes’ theorem states that the updated 

knowledge about the parameters of the interest given the current data depends on 

the prior knowledge about the parameters weighted by the current information given 

those parameters [20]. 

The probabilistic approach gives a path between the probabilistic theory and the least 

square error estimation. It allows extending the estimation task by the hypotheses 

probability estimation [84]. 

The Bayesian approach provides a different view of hypothesis testing as far as it uses 

the background knowledge for the analyses [20]. It is emphasized in [81] that using 

the Bayesian approach for hypothesis testing the uncertainty of the hypotheses should 

be described by a probability distribution on the set of hypotheses. These hypotheses are 

priori considered as possibly true. Then, the solution is presented in the form 

of the posterior probability distribution. This probability distribution is defined 

on the set of hypotheses conditional on the input-output data observed on 

the system [81]. 
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Obviously, the probability of the hypotheses 𝑯𝒏 will be equal to the probability 

that a true system model 𝑴𝒕𝒓𝒖𝒆 belongs to the class 𝑪𝒏, which represents the subset 

of the models. 

In this case the probability distribution is determined as follows [81]: 

𝒑(𝑯𝒏|𝑫(𝒕)) = 𝑷𝒓[𝑴𝒕𝒓𝒖𝒆 ∈ 𝑪𝒏|𝑫(𝒕)], 𝒏 = 𝟏, 𝟐, … , 𝑵                                           (𝟏. 𝟑) 

where 𝑫 is a set of data. 

Note also that the notation 𝑫(𝒕) means all data up to time 𝒕. 

Usually, when there is no need explicitly to choose the model structure, the calculation 

can be made simultaneously with all model structures, setting weights for each 

structure. The weights determine the probability of the individual models [81]. 

To determine the posterior probability distribution, the prior probability distribution 

on the entire set of all models has to be defined. The prior probability is usually 

assigned to each of the hypotheses 𝒑(𝑯𝒏) (for 𝒏 = 𝟏, 𝟐, … , 𝑵) and the prior probability 

distribution is determined on the set of the possible parameter values within each 

of the hypotheses 𝒑(𝜽𝒏|𝑯𝒏) (for 𝒏 = 𝟏, 𝟐, … , 𝑵). Note that 𝒑(𝑯𝒏) represents the prior 

uncertainty about the validity of the hypotheses before the knowledge is updated with 

the new data, while 𝒑(𝜽𝒏|𝑯𝒏) is the prior uncertainty about the values of an unknown 

parameter 𝜽𝒏 given the hypothesis 𝑯𝒏 was true. Thus, the product of these two 

probabilities 𝒑(𝜽𝒏|𝑯𝒏) ∙ 𝒑(𝑯𝒏) determines the prior probability for every subset 

of the models within the corresponding class [81]. 

According to [81], the assumption is  

𝐏𝐫[𝑴 ∈ 𝑪𝒏 ∩ 𝑪𝒎] = 𝟎 ∀𝒏, 𝒎 ≠ 𝒏         (𝟏. 𝟒) 

where 𝑴 is a system model, 𝒎 = 𝟏, 𝟐, … , 𝑵. 

This formula shows that the model classes can overlap with a zero probability, 

as a subset of the models common for two or more classes may obtain a nonzero prior 

probability and posterior probability only through one of the hypotheses [81]. 

It should be noted that while the choice of the prior 𝒑(𝑯𝒏) is obvious assuming that all 

hypotheses are equally likely, the choice of the prior 𝒑(𝜽𝒏|𝑯𝒏) is quite difficult in 

the case of hypothesis testing [81]. 

Further, given 𝒑(𝑯𝒏|𝑫(𝒕𝒔)) and 𝒑(𝜽𝒏|𝑯𝒏, 𝑫(𝒕𝒔)) for some 𝒕𝒔 ≥ 𝟎 and 𝒏 = 𝟏, 𝟐, … , 𝑵, 

it is possible to calculate 𝒑(𝑯𝒏|𝑫(𝒕)) for 𝒕 >  𝒕𝒔. The assumption of the natural 

conditions of control is made [81]: 

𝒑(𝑯𝒏|𝑫(𝒕)) =
𝒑(𝑫𝒕𝑺+𝟏(𝒕)|𝑫(𝒕𝑺), 𝑯𝒏) ∙ 𝒑(𝑯𝒏|𝑫(𝒕𝑺))

∑ 𝒑(𝑫𝒕𝑺+𝟏(𝒕)|𝑫(𝒕𝑺), 𝑯𝒎) ∙ 𝒑(𝑯𝒎|𝑫(𝒕𝑺))𝑵
𝒎=𝟏

,                                  (𝟏. 𝟓) 
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where 𝑫𝒕𝑺+𝟏(𝒕) are data observed at the unknown system output from time 𝒕𝑺 + 𝟏 to 𝒕, 

variables 𝑫(𝒕) and 𝑫(𝒕𝑺) are data observed up to and including the time-index 𝒕 and 𝒕𝑺 

respectively, hypothesis 𝑯𝒏 is an unknown identification model with a certain structure 

and an order, term 𝒑(𝑫𝒕𝑺+𝟏(𝒕)|𝑫(𝒕𝑺), 𝑯𝒏) is a probabilistic description of the modelled 

system with the identification model given by hypothesis 𝑯𝒏. 

Then applying the chain rule to the above equation, the first factor in the numerator 

can be written in the following way [81]: 

𝒑(𝑫𝒕𝑺+𝟏(𝒕)|𝑫(𝒕𝑺), 𝑯𝒏) = ∏ 𝒑(𝒚𝝉|𝒖𝝉,𝑫(𝝉 − 𝟏), 𝑯𝒏) ∙ 𝒑(𝒖𝝉|𝑫(𝝉 − 𝟏), 𝑯𝒏)

𝒕

𝝉=𝒕𝒔+𝟏

, (𝟏. 𝟔) 

where 𝝉 is a certain time interval, 𝝉 = 𝒕𝟎 + 𝟏,  𝒕𝟎 + 𝟐, … , 𝒕, 𝒖𝝉 is the input in time 𝝉, 𝒚𝝉 

is the output in time 𝝉, 𝑫(𝝉 − 𝟏) are data observed up to and including time 𝝉 − 𝟏. 

Moreover, if the natural control conditions are considered, then the following 

simplifications can be made [81]: 

𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) = 𝒑(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏), 𝑯𝒏).        (𝟏. 𝟕) 

And finally the formula for computing the hypothesis probability takes the form [81]: 

𝒑(𝑯𝒏|𝑫(𝒕)) =
∏ 𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) ∙ 𝒑(𝑯𝒏|𝑫(𝒕𝑺))𝒕

𝝉=𝒕𝒔+𝟏

∑ ∏ 𝒑𝒎(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) ∙ 𝒑(𝑯𝒎|𝑫(𝒕𝑺))𝒕
𝝉=𝒕𝒔+𝟏

𝑵
𝒎=𝟏

.                       (𝟏. 𝟖) 

Further, under the assumption of the natural conditions of control it can be written [81]: 

𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) = ∫ 𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏), 𝜽𝒏) ∙ 𝒑𝒏(𝜽𝒏|𝑫(𝝉 − 𝟏))𝒅𝜽𝒏.   (𝟏. 𝟗) 

There the simplified notation is used [81]: 

𝒑𝒏(𝜽𝒏|𝑫(𝝉 − 𝟏)) = 𝒑𝒏(𝜽𝒏|𝑫(𝝉 − 𝟏), 𝑯𝒏).                (𝟏. 𝟏𝟎) 

It is obvious that in order to test, which hypothesis is more likely to be true, it is 

necessary to estimate the probabilities of the models and on the basis of the probabilities 

to make a decision. The equation for computing the hypothesis probability leads to 

the fact that for the posterior probability ratio for any two of the N hypotheses it is 

valid [81]: 

𝒑(𝑯𝒏|𝑫(𝒕))

𝒑(𝑯𝒎|𝑫(𝒕))
= ∏

𝒑𝒏(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) ∙ 𝒑(𝑯𝒏|𝑫(𝒕𝑺))

𝒑𝒎(𝒚𝝉|𝒖𝝉, 𝑫(𝝉 − 𝟏)) ∙ 𝒑(𝑯𝒎|𝑫(𝒕𝑺))

𝒕

𝝉=𝒕𝒔+𝟏

.                                   (𝟏. 𝟏𝟏) 

The left-hand side is a so-called Bayes factor. By this factor our prior beliefs about 

the hypotheses are updated to yield the posterior beliefs, about which hypothesis is 

more likely [20, 81]. 
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The entire probability distribution on the set of N hypotheses is uniquely determined 

by any 𝑵 − 𝟏 finite ratios for 𝒏 ≠ 𝒎 and by the following condition [81]: 

∑ 𝒑(𝑯𝒌|𝑫(𝒕))𝑵
𝒌=𝟏 = 𝟏.                   (𝟏. 𝟏𝟐) 

 

Using the likelihood function the posterior probability ratio equation can be rewritten 

as follows [81]: 

𝒑(𝑯𝒏|𝑫(𝒕))

𝒑(𝑯𝒎|𝑫(𝒕))
=

∫ 𝑳𝒏(𝒕)(𝜽𝒏)𝒅𝜽𝒏

∫ 𝑳𝒎(𝒕)(𝜽𝒎)𝒅𝜽𝒎

∙
𝝐𝒏

𝝐𝒎
∙

𝒑(𝑯𝒏)

𝒑(𝑯𝒎)
,                                                          (𝟏. 𝟏𝟑) 

where  
𝝐𝒏

𝝐𝒎
∙

𝒑𝒏(𝜽𝒏)

𝒑𝒎(𝜽𝒎)
 is a prior distribution. 

From the above formula it can be concluded that by the choice of a prior distribution 

the posterior probability of any of compared hypotheses can be heavily influenced. 

However, it is not so determining. With growing 𝒕 the ratio of integrals over 

the likelihood diverges very fast, if the hypothesis 𝑯𝒏 is true. It is the reason why 

the ratio of integrals begins dominating any reasonably chosen ration of 
𝝐𝒏

𝝐𝒎
∙

𝒑𝒏(𝜽𝒏)

𝒑𝒎(𝜽𝒎)
. 

It means that with growing 𝒕 the posterior probability of the true hypothesis is 

converging to one in any case. However, this property holds only for the large data 

sizes. For small or medium data sizes the choice of prior distributions should be made 

carefully [81]. 

The recursion for the real-time updating of the probability distribution on 

the hypotheses can be written from the general formula for computing the hypothesis 

probability for 𝒕𝒔 = 𝒕 − 𝟏 [81]: 

𝒑(𝑯𝒏|𝑫(𝒕)) =
𝒑𝒏(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏))

𝒑(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏))
∙ 𝒑(𝑯𝒏|𝑫(𝒕 − 𝟏)),                                            (𝟏. 𝟏𝟒) 

where 𝒑𝒏(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏)) is a conditional probability distribution within the n-th 

hypotheses determined according to the formula (1.9). The denominator here is 

the ordinate of the overall predictive probability density from the previous step 

for the newly observed output [81]. It is a normalizing constant. 

The last thing, which should be mentioned in this connection, is that the Bayes factors 

condition on the observed data. This fact gives benefits in increasing the flexibility in 

data collection and in the robustness of the inferences [20]. 
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1.2. Hypothesis Testing about the Order of a Regression 

Model 

Generally, in the Bayesian RLS regression model approaches including           

works [40-41, 47-48, 50, 81], several assumptions for performing hypothesis testing 

in regards to the least square computation are proposed. First of all, it was assumed 

that a stochastic system can be described by a parametrized system in the form 

of a conditional probability density function: 

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝒖𝒕, 𝜽, 𝝎𝒕) = 𝒌 ∙ 𝝎𝒕

𝟏
𝟐 ∙ 𝐞𝐱𝐩 {−

𝝎𝒕

𝟐
∙ (𝒚𝒕 − 𝜽𝑻 ∙ 𝒁[𝑵])𝟐},                   (𝟏. 𝟏𝟓) 

where 𝜽 is a vector of unknown regression parameters, it is a random variable of size 𝑵; 

𝒁[𝑵] is a data vector of size 𝑵 consisting of the delayed output values and input data 

𝒖𝒕, which directly influence the output 𝒚𝒕; 𝒌 is a normalizing constant;  𝝎𝒕 is 

an unknown degree of accuracy, it is a random variable, which can be defined as 

a reciprocal to the variance 𝝈𝒕
𝟐 [40-41, 47-48, 50, 81]: 

𝝎𝒕 =
𝟏

𝝈𝒕
𝟐

.                                                                                                                                 (𝟏. 𝟏𝟔) 

Note that the upper index 𝑻 means the transpose of a vector. 

Note also that the conditional probability density (1.15) corresponds to the description 

of a system by a regression model in the form [40-41, 47-48, 50, 81]: 

𝒚𝒕 = 𝜽𝑻 ∙ 𝒁[𝑵] + 𝒆𝒕,                             (𝟏. 𝟏𝟕) 

where 𝒆𝒕 is a sequence of random variables, which are mutually independent on the past 

measured data and on the last input and which have a normal distribution with a zero 

mean value and an unknown variance. This unknown variance is defined through 

the degree of accuracy 𝝎𝒕 in equation (1.15) [40-41, 47-48, 50, 81]. 

The second important assumption is that the prior conditional probability density 

of the parameters 𝜽, 𝝎𝒕 for time 𝒕 = 𝑻, 𝑻 + 𝟏, … has the form of Gaussian-Wishart 

distribution [40-41, 47-48, 50, 81]: 

𝒑(𝜽, 𝝎𝒕|𝑫(𝒕 − 𝟏)) = 𝒌 ∙ 𝝎𝒕

𝓥+𝑵−𝟐
𝟐 ∙ 𝐞𝐱 𝐩 {−

𝝎𝒕

𝟐
∙ [

−𝜽
𝟏

]
𝑻

∙ 𝑽𝑴[𝑵 + 𝟏] ∙ [
−𝜽
𝟏

]} ,       (𝟏. 𝟏𝟖) 

where 𝑽𝑴[𝑵 + 𝟏] is a positive definitive symmetric matrix of size N+1, 𝑽𝑴[𝑵 + 𝟏] >
𝟎; 𝓥 is a real positive value, which represents the number of degrees of freedom 

in the Gaussian-Wishart distribution, 𝓥 > 𝟎. 
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The important point is that the form of the conditional probability density 

of the parameters is replicated during the recursive update [40-41, 47-48, 50, 81]: 

𝒑(𝜽|𝑫(𝒕)) =
𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝒖𝒕, 𝜽)

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝒖𝒕)
∙ 𝒑(𝜽|𝑫(𝒕 − 𝟏)).                                                (𝟏. 𝟏𝟗) 

It means that the update of the conditional probability density (1.15) can be fully 

described by the algebraic relations for the development of characteristics  𝑽𝑴[𝑵 + 𝟏], 
𝓥. These characteristics constitute the sufficient statistics of the probability 

identification [40-41, 47-48, 50, 81]. 

𝑽𝑴[𝑵 + 𝟏] = [
𝑽𝑴[𝑵] 𝑽[𝑵]

𝑽𝑻[𝑵] 𝐯
],               (𝟏. 𝟐𝟎) 

where 𝑽𝑴[𝑵] is a square symmetric positive definite matrix of size 𝑵𝒙𝑵, 

𝑽[𝑵] is a column vector of size 𝑵, 𝑽𝑻[𝑵] is a transposed vector 𝑽[𝑵] of size 𝑵, 

𝐯 is a positive scalar. 

Note that the lower notation 𝑴 under the letter means “matrix” to differentiate 

between a matrix 𝑽𝑴[𝑵] and a vector 𝑽[𝑵] in further discussion of the algorithm. 

The update of the characteristics is as follows [40-41, 47-48, 50, 81]. To simplify 

the notation, instead of (𝒕|𝒕)under the characteristics the upper line " ̅ " above the letter 

is used to show that the corresponding characteristics is after updating with 𝒚𝒕. 

The index (𝒕|𝒕 − 𝟏) is omitted under the characteristics, which means that 

the corresponding characteristics is before updating with 𝒚𝒕 [40-41, 47-48, 50, 81]: 

𝑽̅𝑴[𝑵 + 𝟏] = 𝑽𝑴[𝑵 + 𝟏] + 𝒁[𝑵 + 𝟏] ∙ 𝒁𝑻[𝑵 + 𝟏],              (𝟏. 𝟐𝟏) 

𝓥̅ = 𝓥 + 𝟏,                    (𝟏. 𝟐𝟐) 

where 𝒁[𝑵 + 𝟏] is an extended data vector of size 𝑵 + 𝟏, i.e. a vector [
𝒁[𝑵]
𝒛𝑵+𝟏

]=[
𝒁[𝑵]

𝒚𝒕
]. 

The a prior statistics 𝑽𝟎𝑴
 and 𝓥𝟎 are outputs from a priori probability density function 

𝒑(𝜽|𝑫(𝒕𝟎) and used for the start of the recursion. 

The letter 𝑵 gives the order of the system. 

Another form of the statistics update is given in Appendix 1. This form has been used in 

the experimental part of the work. Besides, in Appendix 1 the algorithm used for 

programming is presented in details as it is used in a code. It is decided not to give it 

here due to its complexity and a great number of equations, which can be hard readable 

and which can complicate the understanding of the main point of the chapter. 

The characteristics updates for further steps are performed with a forgetting factor. 

The most common forgetting techniques are exponential [47] and directional 

forgetting [50]. The simplest one from these two for the implementation is 

the exponential forgetting, which assumes the memory to be infinite. It gives small 



46 
 

weights to the old data and larger weights for the latest data points [76]. A weighting 

factor ranges from 0 to 1. Actually there is only one additional step in the exponential 

weighting RLS: the weighting of the covariance matrix. The benefit of this step is 

that it leads to the extremely simple RLS algorithms, which are stable, because both 

the old data and errors are wiped out by the exponential forgetting [76]. 

However, the exponential weighting can face a problem in case of ill-excited systems. 

If the input and output signals do not bring sufficient information, the previous 

information is gradually wiped out with the exponential forgetting. The solution 

is to discount the old data only when a new information is available, i.e. to make 

forgetting in the certain directions. This approach was offered by Kulhavý R. 

and was called the directional forgetting [50]. 

However, as far as the QRD RLS Lattice algorithm is supposed to be used for the noise 

cancellation for the hand detection applications and due to the fact that the latter 

algorithm does not use the directional forgetting, the exponential forgetting will be 

preferred in this work. 

The characteristics updates using both the exponential and directional forgetting can be 

found in Appendix 1. 

1.3. Types of the RLS Algorithms 

This chapter gives a brief insight into types of the RLS algorithms to show 

their advantages and disadvantages. Finally, the reason of our choice of the QRD RLS 

Lattice algorithm used for hypothesis testing is given. 

In [76], the adaptive filtering problems are introduced, the standard RLS algorithms 

are described and other RLS-based types of the algorithms, which have some specific, 

beneficial features, are derived. 

The algorithms are often used in the applications, where a real-time processing 

is the requirement. In this case the signal processing device needs to be as fast as 

the sampling devices that produce new data in each time step. Thus, the new data 

should be used for re-computation and for the update of the previous information. 

The RLS algorithms do not perform parameter estimation and prediction error 

computation from the very beginning: only the data from the previous step are used 

for re-computation. It saves time and decreases the complexity [76]. 

The standard recursive least square algorithm is given by M. Moonen in the following 

form [76]: 

𝜽̅[𝑵] = 𝜽[𝑵] + 𝒌 ∙ (𝒛𝑵+𝟏 − 𝒁𝑻[𝑵] ∙ 𝜽[𝑵]) = 

= 𝜽[𝑵] + (𝑽𝑴[𝑵])−𝟏 ∙ 𝒁[𝑵] ∙ (𝒛𝑵+𝟏 − 𝒁𝑻[𝑵] ∙ 𝜽[𝑵]),            (𝟏. 𝟐𝟑) 

where (𝑽𝑴[𝑵])−𝟏 = (𝑼𝑻[𝑵] ∙ 𝑼[𝑵])−𝟏 is an autocorrelation matrix of the filter input 

signal; 𝒌 = (𝑽𝑴[𝑵])−𝟏 ∙ 𝒁[𝑵] is a Kalman gain vector, which contributes to better 

performance of the algorithm and gives the direction, in which 𝜽[𝑵] should be 

modified [76]. 
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From the above formula it is obvious that 𝜽̅[𝑵] is computed from 𝜽[𝑵] and it uses only 

𝑶(𝑵𝟐) arithmetic operations [76]. 

However, the standard RLS algorithms are usually used only for the theoretical 

purposes, as far as they can be potentially unstable due to the numerical round-off 

errors. The problem consists in computation of a covariance matrix 𝑽𝑴[𝑵], 
which due to the numerical errors can lose its positive definiteness [76]. 

The stable variants of the RLS algorithms are based on the QR decomposition (QRD) 

of the matrix 𝑼[𝑵]. The decomposition itself is made in the following form [76]: 

𝑼 = 𝑸 ∙ 𝑹,                      (𝟏. 𝟐𝟒) 

where 𝑼 is a long matrix of size 𝑳𝒙𝑵, where 𝑳 comprises all measured data, 

𝑸 is an orthogonal matrix of size 𝑳𝒙𝑵, 𝑹 is an upper triangular matrix of size 𝑵𝒙𝑵 

with positive diagonal elements. 

The matrix 𝑹 is also called as a Cholesky factor of the normal matrix of 𝑼𝑻 ∙ 𝑼 

and it is valid that [76] 

𝑼𝑻 ∙ 𝑼 = 𝑹𝑻 ∙ 𝑹.                      (𝟏. 𝟐𝟓) 

The compound matrix 𝑼[𝑵 + 𝟏] = [
𝒁𝟏[𝑵] …
𝒛𝑵+𝟏(𝟏)

𝒛𝑵+𝟏(𝟐)
…

𝒁𝑳[𝑵]
     𝒛𝑵+𝟏(𝑳)

] has the following 

QR decomposition [76]: 

[𝑼𝑳−𝟏[𝑵 + 𝟏]|
𝒁𝑳[𝑵]
𝒛𝑵+𝟏(𝑳)

] = [𝑸|𝒒] ∙ [
𝑹 𝒛
𝟎 𝜻

],                  (𝟏. 𝟐𝟔) 

where matrix [𝑼𝑳−𝟏[𝑵 + 𝟏]|
𝒁𝑳[𝑵]
𝒛𝑵+𝟏(𝑳)

] has size of 𝑳𝒙(𝑵 + 𝟏), [𝑸|𝒒] is an orthogonal 

matrix of size 𝑳𝒙(𝑵 + 𝟏), the last term is a triangular matrix of size                           

(𝑵 + 𝟏)𝒙(𝑵 + 𝟏) [76]. 

The QR decomposition can be made by using different methods, among which are 

the Givens, Householder and Gram-Schmidt methods. 

The equation for a so-called square-root information RLS (SRI RLS), which avoids 

forming the product 𝑼𝑻 ∙ 𝑼, is given by M. Moonen in the following way [76]: 

[𝑹̅ 𝒉̅
𝟎 ∗

] ← 𝑸̅𝑻 ∙ [
𝑹 𝒉

𝒁𝑻[𝑵] 𝒛𝑵+𝟏
].                   (𝟏. 𝟐𝟕) 

Taking into considerations all previous points, the equation for computing 𝜽 looks 

as follows [76]: 

𝜽 = 𝑹−𝟏 ∙ 𝒉,                     (𝟏. 𝟐𝟖) 
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or for the next step of computation [76]: 

𝜽̅ = 𝑹̅−𝟏 ∙ 𝒉.̅                     (𝟏. 𝟐𝟗) 

Basically, the algorithm consists of two computational steps per time update. The first 

step is a triangular updating and the second one is a triangular back-substitution 

(optional). Due to the fact that both steps require 𝑶(𝑵𝟐) computations, the algorithm 

itself has the computational complexity equal to 𝑶(𝑵𝟐) [76]. 

One more benefit of this algorithm consists in the fact that it is possible to calculate 

the error signal without explicitly computing 𝜽 at each time step. This is referred 

to as a residual extraction and it is used in many applications, where only the error 

computation is needed [76]. In this work this feature of the algorithm is considered 

to be of a great importance as far as only the computed errors will be used to eliminate 

the undesired responses from the environment, i.e. for the noise cancellation. 

One more point to be also mentioned is a need to avoid the computation of the square-

root, performed when making the QR decomposition with the Givens transformation. 

It is beneficial in the hardware implementations, because it prevents the computational 

bottleneck. To avoid the square-root computation, one can make a particular 

factorization of the R-matrix. This leads to the square-root free Givens rotations [76]. 

To summarize the advantages of the SRI RLS algorithms, its numerical stability 

and easiness to be applied on a sequential processor should be underlined. Besides, 

when there is only a need for a residual extraction and, therefore, the back-substitution 

can be skipped, the algorithm can be pipelined for the parallel processing. 

However, without skipping the back-substitution and a weight vector computation, 

the algorithm can result in the data contraflow and cannot be easily pipelined. In this 

case the alternative algorithm can be used, which is based on the ‘inverse QRD updating 

and referred to the square-root covariance (SRC) algorithms by M. Moonen [76]. 

Though the square-root RLS algorithms have better numerical properties than 

the standard RLS algorithms, the computational complexity of 𝑶(𝑵𝟐) per time update is 

quite large and there is a need to make it smaller in some applications. 

There are a number of the fast RLS algorithms described in literature. Among them, 

for example, is a fast version of the QRD-updating based on a residual extraction 

algorithm called the QRD least squares lattice (QRD-LSL) algorithm. This algorithm 

is very useful when only a residual extraction is needed. In this case the back-

substitution step is avoided and the algorithm can be easily pipelined. Because 

the QRD-LSL has only orthogonal transformations, it results in its good numerical 

properties and, therefore, in the long term stability [76]. 

Other fast algorithms based on the QRD-LSL include the Lattice algorithms without 

the orthogonal transformations. They are cheaper as far as their computational 

complexity is concerned, but could suffer from the numerical problems [76]. 
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Another algorithm, which uses the orthogonal transformations, but has the same 

computational complexity as the QRD-LSL does, is a so-called “fast QR” 

algorithm [76]. 

As far as the computational complexity is concerned, the most efficient RLS Lattice 

algorithm requires 24N operations per time update and can be pipelined for 

the increased rate of operations [76]. 

The above mentioned fast algorithms are good and suitable for the residual extraction 

problems. However, some applications require the weight computation. In this case 

the fast versions of the inverse updates based RLS algorithms can be applied. 

One of them is a so-called ‘fast transversal filter’ (FTF). The problem of this algorithm 

is that it cannot be used for continuous operations with very large amounts of data, 

because it suffers from the numerical instability. As far as the computational complexity 

is concerned, the FTF requires 8N operations per time update, but it cannot be easily 

pipelined due to the data contraflow; thus, the computation cannot be accelerated by 

the parallel processing [76]. 

As far as in this work the noise cancellation is performed based on the residual 

extraction, the next chapter describes the incorporation of hypothesis testing 

into the QRD RLS Lattice algorithms, which was chosen due to its modular structure, 

reliability and computational speed. 

1.4. QRD RLS Lattice Algorithm and Hypothesis Testing 

Due to convenience in the implementation and the computational speed as it was shown 

in the previous section, the QRD RLS Lattice in the error feedback form is chosen 

for the implementation on the HW platform. 

The RLS Lattice algorithm can be derived from the QRD algorithm, more detailed 

information of which can be found in [40-41, 47-48, 50, 81]. However, a short 

description of the most important equations is given in Appendix 2. 

Due to its modular structure, the QRD RLS Lattice algorithm is suitable for 

the incorporation of the hypothesis estimation. In this case each module can perform 

the order update. It allows obtaining estimations of all orders during the computation 

process [84]. 

The hypothesis estimation is performed using (1.14). There are two stages of probability 

estimation. The first stage computes the order update. It means that the old probability 

estimates are updated by the new data during the first stage. In the second stage 

the normalization of the updated order estimates is performed. The second stage fulfills 

the forgetting of the hypothesis probability density function [84]. These stages 

can be incorporated into the QRD RLS Lattice algorithm. 
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However, to compute the probability estimates of the hypotheses, it is necessary 

to know 𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏), 𝑯𝑵), which is calculated using (A.15): 

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝑯𝑵) = 𝝅−𝟏/𝟐 ∙
𝜦((𝝑−𝑵)/𝟐+𝟏)

𝜦̅((𝝑̅−𝑵)/𝟐+𝟏)
∙

|𝑽[𝑵]|𝟏/𝟐

|𝑽̅[𝑵]|𝟏/𝟐
∙

Г((𝝑̅ − 𝑵)/𝟐 + 𝟏)

Г((𝝑 − 𝑵)/𝟐 + 𝟏)
 

The initial hypothesis probability density function is chosen in the form of the uniform 

distribution. 

It is worth noting that the equation (A.15) is not used in its direct form in the algorithm, 

because it needs some approximations due to the numerical problems. 

The approximation of the equation and the update of probabilities are presented 

in Appendix 2. 

The implementation of N QRD RLS Lattice estimations to test each hypothesis can be 

parallelized. For each estimation of an identification model by hypothesis testing, 

one QRD RLS Lattice instance can be computed in parallel. It can be implemented on 

the multi-core ARM A53 Cortex processor of the Xilinx Zynq Ultrascale+ device and 

on the FPGA accelerators [34-35]. 

1.5. FPGA, Tools and Techniques 

The prototype of the device, where the algorithm will be running, will receive 

the signals from the ultrasound microphones. This part will be programmed in the 

FPGA programmable logic of the Xilinx Zynq Ultrascale+ device. Besides, as far as 

the algorithm itself will be also implemented on the FPGA programmable logic part 

of the hardware platform, it is not out of the point to give a definition of the FPGA 

and describe the tools and techniques used for the FPGA design development. 

The present section reveals these issues. 

The term FPGA stands for a field-programmable gate array. It is a large-scale integrated 

circuit, which can be reprogrammed after being produced. The fact 

that the configuration of the device and its operation can be changed is obvious 

from the word combination “field-programmable”. The phrase “gate array”, on the other 

hand, explains what kind of internal architecture the device has to have the ability 

of being reprogrammed “in the field” [100]. 

The FPGA structure is shown in Figure 1.1. 

The common FPGA architecture comprises an array of small blocks of programmable 

logic, reconfigurable or programmable interconnects, which wire the blocks together, 

and I/O blocks [6]. 

The logic blocks are usually called configurable logic blocks (CLB) or logic array block 

(LAB) depending on a vendor. Generally, a logic block includes a number of logical 

cells, consisting of up to 5-input lookup tables, a full adder cell, some multiplexers 

and a D-type flip-flop. The memory elements can be also represented by more complex 

blocks of memory instead of simple flip-flops. Besides, modern FPGA devices 

comprise some on-chip memory resources, such as, for example, Static Random Access 
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Figure 1.1: FPGA architecture [6] 

Memory (SRAM). Thus, the local memory within each logic element can be combined 

with globally shared memory blocks [6]. 

The lookup table (LUT) is formed out of one or two single-bit registers and some logic 

elements such as clock enables and multiplexers. The LUTs represent small 8-bit 

RAMs, which can implement any combinational function of their inputs. 

The complexity of the function performed can be configured in the FPGA [6]. 

It is good to take in mind that routing is very crucial for the FPGA. It can influence 

performance of the whole design; therefore, a compromise between the programming 

flexibility and the area efficiency should be found when thinking over about the number 

of routing channels, which have to be placed in the FPGA. The routing channels can be 

made as high-speed long lines across the chips or as flexible local lines, connecting 

the separate blocks. The interconnections can run vertically and horizontally. There are 

also programmable switches in the FPGA architecture, which are shown as a gray 

square in Figure 1.1. The switches are implemented with MOSFET transistors 

and connect the orthogonal lines of interconnections according to the digital circuit 

designed in the FPGA. They can be SRAM-based, electrically erasable, or one-time-

programmable [6]. 

In more complex FPGAs the logic blocks are combined with higher-level arithmetic 

and control structures, such as multiplexers and counters [6]. 

Moreover, because the FPGA-based applications have many different system-level 

interface requirements, the FPGAs usually contain configurable I/O blocks, which can 

be configured as TTL, CMOS, PCI and etc. The majority of FPGAs are also equipped 

with dedicated high-speed I/Os for clocks and global resets as well as PLLs and clock 

management schemes [6]. 

It should be also noted that besides basic features the modern FPGA families include 

also a higher level functionality. It results in reducing the required area and increasing 

speed in computation of the common embedded functions. The examples of such higher 

level functionality can be multipliers, generic DSP blocks, embedded processors, high 

speed I/O logic, embedded memories and etc. [6]. 

Nowadays the FPGAs also contain so-called IP cores such as processor cores, external 

memory controllers and etc. These cores have ASIC level performance and power 
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consumption, though they exist alongside the programmable fabric. This results in more 

free space for the application-specific logic [100]. 

The behavior of the FPGA is usually defined by using a hardware description language 

(HDL) such as VHDL or Verilog or by arranging blocks of pre-existing functions using 

block diagram-oriented design tools such as Vivado [104] from the Xilinx. 

The advantage of specifying the FPGA behavior with the HDL is in fact that it allows 

working with large structures, because it is possible to specify them numerically. 

On the other hand, schematic way of specifying the FPGA behavior is more user-

friendly and better for visualization purposes [100]. 

However, the key for the success of the project development is to define, which parts 

of the design should be implemented on the hardware and which parts should be made 

in the form of the software on a traditional processor. The important problem 

in the early phases of the design is connected with an effective partitioning 

of the algorithm when applying the parallel programming techniques as well as 

with the mapping of the application to the hardware resources through the use 

of the automated compiler and hardware synthesis tools. These two points greatly 

influence the finally achieved system performance [100]. 

Speaking about the advantages of using the FPGA compared with the ASICs, one can 

emphasize its ability of being reconfigured after being manufactured, a partial re-

configuration of a part of the design, the lower non-recurring engineering costs, 

the reduced development time, and a lower risk during the development. Besides, using 

the FPGA the designer can incrementally port and verify the algorithms previously 

prototyped in the software. Moreover, the FPGA can serve as a prototyping mechanism 

with further goal to implement the design on the ASIC-based platform [100]. 

It should be also noted that the use of the FPGA in the DSP domain is increasing. 

Talking about the DSP applications in respect to the FPGA, it is good to say 

that in many DSP applications the mixed processor design is preferred. In such a design 

the application’s less-performance-critical components such as an operating system, 

a network stack and the user interface are placed on a host microprocessor such 

as the ARM, whereas more computationally intensive components are served 

by the dedicated hardware in the FPGA [100]. 

The main producers of the FPGA platforms are companies Xilinx and Altera. 

They provide the Windows and Linux design software, which is used to design, 

analyze, simulate and compile the designs [6]. 

During the present work the software tools from the Xilinx company are supposed to be 

used: Vivado Design Suite [104], Software Development Kit (SDK) [107] and Software 

Defined System on Chip (SDSoC) tools [108]. 

The Vivado Design Suite is a software tool produced by the Xilinx for synthesis 

and analysis of the HDL designs. It has additional features for the SoC development 

and high-level synthesis and enables C, C++ and SystemC programs to be directly 

targeted into the Xilinx devices without manually creating the Register-Transfer 

Level (RTL) [59]. 
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The Vivado Design Suite has a library of predefined complex functions and circuits, 

which can be used for the design. These predefined circuits are called IP cores and they 

simplify the design process [59]. 

This software tool can be used for the hardware design preparation, which includes 

several phases. The first step is to create the hardware design using the IP Integrator 

and a list of the available IP cores, thus creating the RTL description in the VHDL 

or Verilog. The design has to be validated. The validation process helps to find 

the errors in the design that could prevent the hardware from working properly. 

The most frequent errors can appear in connections between the blocks or 

in the parameter settings for the individual blocks [59]. 

If the validation is successful, then a so-called HDL wrapper can be generated. 

It is basically a top-level description of the system. Then the synthesis process generates 

all source files for the IP blocks as well as any relevant constraint files and maps 

the design to a netlist. The netlist is translated to a gate level description. On this stage 

the simulation is made once again to confirm that the synthesis is fulfilled 

without errors [59]. 

The next step is the design implementation, where the netlist is placed and routed onto 

the FPGA device resources and a bitstream file (a binary file) with the configuration 

data for the implementation in the programmable logic is generated. The designer can 

validate the map, place and route the results using a timing analysis, a simulation and 

other verification methodologies. After it the hardware image is complete and 

the hardware platform can be exported to the SDK environment. The SDK supports 

creation of the software applications for the specified hardware platform [59]. 

One more tool, which will be possibly used during the present work, is the SDSoC 

environment. The SDSoC is a system level compiler, which targets a base platform 

and is capable to compile C/C++ functions into the programmable logic. It works one 

level above the Vivado HLS compiler. After analyzing a program and determining 

the data flow between the software and hardware functions, it generates an application 

specific SoC including a complete boot image with the firmware, operating system, 

and application executable. The Xilinx HLS compiles the transformed C/C++ 

to the HDL code. The HDL code and the corresponding cores are automatically packed 

into the IP-XACT format and serve as the input for the Vivado IP integrator. 

The SDSoC environment automatically generates the compatible data-mover IP-cores 

and the interface IP-cores for the programmable logic part of the Zynq Ultrascale+ 

device. This can result in the automated generation of a new SoC system with new 

HW accelerators, which replace the original SW-based system. The SDSoC supports 

compilation of the Xilinx versions of OpenCV libraries, which comprise different 

mathematical functions such as Gaussian, Median, Bilateral, Canny edge detection, 

SVM, LK Optical Flow and etc. [44, 107]. 

More detailed description of the design development using the mentioned software tools 

will be provided in the practical part of the work. 
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1.6. Results and Related Publications 

During the research stage presented in the previous sections the analysis and 

comparison of the existing adaptive RLS algorithms were performed. The results of this 

stage of the research are the following released publically accessible Application note 

and Evaluation package: 

1. Kadlec J., Likhonina R. Adaptive RLS Algorithms Reference Implementations. 

Application note, ÚTIA, 2017. 

Abstract: This software presents set of adaptive recursive least squares system 

identification algorithms based on the Bayesian extensions of real-time adaptive 

system identification as well as extending the existing recursive least square 

adaptive algorithms for estimation of time varying parameters in the applications 

of acoustic signal processing. The included reference adaptive algorithms 

are implemented in Matlab 2016b. Algorithms serve as „golden“ reference models 

for the embedded implementations on dedicated processors like Arm Cortex A9 

and the FPGA programmable logic accelerators in devices the Xilinx Zynq. 

Algorithms are numerically robust. Algorithms are implemented in double 

precision floating point (64bit), single precision floating point (32bit) 

and in logarithmic arithmetic with precision 32bit and 19bit. This software also 

presents adaptive recursive least squares system identification algorithms taking 

advantage of dynamic normalization of the core of the algorithm into the guarantied 

range <1-, 1> for all variables. These algorithmic cores are suitable for the fixed-

point implementation (14bit). 

2. Evaluation package including .m scripts with the DSP algorithms pre-compiled 

as .mexw64 files for MATLAB R2016.b (or higher) and two standalone 

SW applications for Win7 64b or Win10 64b (for users without MATLAB). 

These standalone SW applications have been created by compilation of .m scripts 

and .mex functions in the MATLAB R2019b compiler toolbox. 

Both the application note and the evaluation package are available for downloading 

at http://sp.utia.cz/index.php?ids=results&id=dsp_1_6  

Moreover, the tools and techniques for programming in the FPGA part of the Xilinx 

Zynq were investigated. The outputs of this investigation are the following: 

1. Functional demonstrator of the camera-to-touchscreen device prepared using 

the Xilinx Vivado 2015.2 and SDK 2015.2 tools and showing how to get a full HD 

color image from the camera module with a higher resolution to a touch display 

with a smaller resolution and to move along the image by touching the screen. 

 

2. Likhonina R., Kohout L., Kadlec J. Camera to Touchscreen Demonstration 

for MicroZed 7020 carrier board, Avnet 7-inch Zed Touch Display and Avnet 

Toshiba Industrial 1080P60 Camera Module. Application note, ÚTIA, 2016. 

Abstract: This application note describes a camera-to-touchscreen demonstrator, 

which has been created using MicroZed 7020 carrier board, Avnet 7-inch Zed 

Touch Display and Avnet Toshiba Industrial 1080P60 Camera Module. 

http://sp.utia.cz/index.php?ids=results&id=dsp_1_6
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The Camera Module sends full HD (1080p high-definition) image at 60 fps, 

which is processed by MicroZed 7020 carrier board and transferred to the 7-inch 

LCD display with active area 800x480 pixels. Thus, there is a part of full HD image 

displayed on the LCD display. The full image can be looked through moving along 

the active area by touching the screen. 

The application note and the demonstrator are available for downloading 

at http://sp.utia.cz/index.php?ids=results&id=Avnet_TCM_LCD. 

3. Likhonina R., Kohout L., Kadlec J. Camera-to-touchscreen design. In: 6th 

International Workshop on Mathematical Models and their Applications 

(IWMMA’2017), Krasnojarsk, RU, 20171113. 

Abstract: The present paper describes an FPGA design of a camera-to-touchscreen 

demonstrator that has been prepared using Xilinx Vivado 2015.2 and SDK 2015.2 

tools. The demonstrator consists of MicorZed 7020 Carrier Board, Avnet 7-inch 

Zed Touch Display and Avnet Toshiba Industrial 1080P60 Camera Module. 

The camera transmits a full HD video signal at 60 frames per seconds to MicroZed 

7020 board, which processes it and sends to the LCD display with active area 

of 800x480 pixels. As the display has smaller resolution, only a fragment 

of the whole video frame can be seen at once on the display, whereas the full image 

is stored in the memory. By touching the screen one can travel along the stored 

video frame and look through the whole image. The design can be used, 

for example, as a car rear view mirror monitor benefiting from touchscreen 

technologies. 

The conference article is available at 

http://library.utia.cas.cz/separaty/2017/ZS/likhonia-0484186.pdf 

http://sp.utia.cz/index.php?ids=results&id=Avnet_TCM_LCD
http://library.utia.cas.cz/separaty/2017/ZS/likhonia-0484186.pdf
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CHAPTER 2 

Algorithm Implementation 

in the MATLAB R2019b Environment 
 

 

This chapter describes an approach, which is supposed to be applied as a pre-processing 

stage for hand detection and gesture recognition problems. 

It comprises three sections. The first section describes simulation results performed in 

the MATLAB R2019b simulation environment [70] and compares two algorithms – 

the QRD RLS algorithm and the QRD RLS Lattice algorithm – in terms 

of the computational accuracy and time. 

In the second part of this chapter the experimental results with real data are performed. 

Firstly, it presents the simulation experiments based on the parameters obtained during 

the identification process with the real data. Such kind of a simulation is closer 

to the reality and presents a safe step to the experiments with the real data, which proves 

that the algorithms function in a reliable way. It can also serve as a golden model 

for further experiments on different devices. Finally, the results of experiments 

with the real data obtained from the device equipped with ultrasound transducers 

including the experiments both with the QRD RLS algorithm and the QRD RLS Lattice 

algorithm are discussed and the algorithms are compared again in terms 

of the computational accuracy and time. 

The last two sections provide a short summary of the whole chapter and a comparative 

analysis of the outputs including contributions on this stage of the research and 

the related publications. 

2.1. Simulation in MATLAB R2019b 

This section provides a description of the simulation results as well as a comparison 

of the computation results of the QRD RLS algorithm and the QRD RLS Lattice 

algorithm. The computation is performed in the MATLAB R2019b environment 

on a PC. 

2.1.1. Experiments with the QRD RLS Lattice Algorithm 

The proposed approach, subject to a detailed description in this section, is based on 

a noise cancellation technique and uses the QRD RLS Lattice algorithm 

with the exponential forgetting (EF) [40-41, 47-48, 50, 81]. 
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The basic concept of a hand recognition application is straightforward: the device 

equipped with a network of ultrasound transducers and an integrated pre-processing unit 

transmits ultrasound impulses, which are reflected from a hand and returned back 

to the system. The received responses and their characteristics such as, for example, 

time needed to come back to the system, are used to detect the hand presence and 

position or even the distance from the hand to the device [60-63]. 

However, a seemingly simple concept of a hand detection application faces a couple 

of challenges in the real environment as far as inevitable undesired responses from other 

objects in the environment apart from the hand can cause a significant problem 

for an identification process (see Fig. 2). In this case an undesired response can be 

considered to be a static response. Obviously it has to be removed or at least suppressed 

in the target signal, which is the subject for the next stage of the data        

processing [60-63]. 

According to [76], a noise cancellation method assumes two types of signals: 

o one is the desired signal, which is composed both from the temporary present 

short distance reflection signal and from the reflection signal mixed 

with the environment; 

o the other one is the reference ultrasound source signal. 

It is also assumed that a stochastic nature of the environment can be modelled 

by an additive uncorrelated noise. Based on the static relation of the environment 

reflection signal and the ultrasound source signal, it is possible to reconstruct 

the temporary present short distance reflection signal as a prediction/filtration error 

of the adaptive QRD RLS Lattice algorithm. It is constructed as a residual from the 

model of the static environment. As it was stated in the previous chapter, the QRD RLS 

Lattice algorithm allows computing the error signal without explicitly calculating the 

estimates of the parameters of a regression model at each time step [76]. It is a key and 

very important feature, which is supposed to be used to deal with a hand detection 

problem and with the suppression of the undesired responses. 

During a simulation process, it is assumed that the hand appears only for a short period 

of time. Therefore, the reflections from the hand represent an additional short period 

disturbance. In this particular case the noise cancellation technique is applied using 

the QRD RLS Lattice algorithm with the EF, which is extended with hypothesis testing. 

It allows estimating a model, which suits best for this or that situation given 

the incoming data. Figure 2.1 shows a block diagram of the modelling process [60-64]. 



59 
 

 

Figure 2.1: Block diagram 

It is obvious from the diagram in Fig. 2.1 that the modelling process of a noise 

cancellation case comprises four main parts: 

o the environment model producing the undesired noise and serving as a reference 

signal; 

o the hand model simulating a hand, which appears for a short period of time 

and causes the additional disturbance; 

o two identification blocks representing regression models of two different orders, 

one of which has a certain time delay. 

Generally, a hand detection problem is modelled with so-called linear finite impulse 

response (FIR) based regression models [76]; thus, all four models – the environment 

and hand models, and two identification blocks – are the linear FIR models having 

a common input u. Given the input data, the environment and hand models compute 

the outputs y1 and y2 respectively. Later on, these outputs are summed up to receive 

the output y. The result of the summation y is sent to identification block 1 and 

identification block 2. The identification blocks perform parameter estimation 

of the hand model (if needed) recursively and calculate prediction and filtration 

errors [60-64]. 

As it was mentioned before, the hand reflection signal is reconstructed as 

a prediction/filtration error of the algorithm. Therefore, it is clear that the development 

of the prediction error e should estimate the development of the output y2 (see Fig. 2.1), 

as far as it is the hand, which causes the additional disturbance and, therefore, 

the increase of the prediction/filtration error. Using prediction resp. filtration errors, 

the hand appearance can be detected [60-64]. 

To make the detection even more precise and reliable, the algorithm is supplemented 

with the estimation of the probability of two hypotheses about one or another 

identification model suitable for the given situation. Thus, on its basis an appropriate 

identification model suited better to the given situation can be chosen. Basically, 
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due to the computation complexity and limited time for computation, only two 

identification models are considered (see Fig. 2.2). 

Both models, subject to estimation, use the same incoming data. However, the first 

model has a higher order and learns using all available data during a specific time 

period. The second model has a smaller order and a certain time delay (TD) 

(see Fig. 2.2). It ensures that the second model works on the data where there is no hand 

presence possible as far as the hand is assumed to appear only in the area of the time 

delay. In this way a certain assumption about a possible distance of the hand from 

the device is made. 

Using this principle, it can be assumed that if there is no hand in front of the device, 

the identification model with a higher order would have a higher probability; otherwise, 

the identification model of a smaller order with the time delay is supposed to suit better 

for an estimation process as far as it describes better and more accurately the given 

situation. 

The assumption can be explained in the following way. As it was mentioned above, 

both models – a model of a higher order and a model of a smaller order – have the same 

input and are trained on the same data. However, the first model with a higher order 

is set in the way that it takes all available data and tries to perform the echo cancellation 

as precise as it is possible. It learns on the situation, when there is no hand, and creates 

a certain relation between its FIR parameters and the input/output data. Therefore, 

when there is no hand, it performs the filtration very well, but when the hand appears, 

the relation between the parameters of the model and the input/output data is strongly 

affected and the model has to learn again, so it becomes inappropriate for the given 

situation. However, it still computes the prediction/filtration errors based on 

its parameter estimates, which only start changing. 

Contrarily, the second model with a smaller order is set in a way that it has the input 

time delayed data and it works with the input/output from the part, where it is assumed 

that there is no hand appearance possible. Due to the fact that it does not have all 

available data, it cannot compute the prediction/filtration errors in a right way, 

but  the  estimation  process  is  always  in  the  same  situation,  i.e.  there  is  a constant 

 

Figure 2.2: Hypothesis testing model [64] 
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problem to make estimation. When there is a hand, nothing will change for the second 

model, because the hand is out of the area where the model has its FIR parameters, 

so the relation between its FIR parameters and the input/output will not change for 

the second model, though there will be a higher dispersion on the output due to more 

noise related to the reflections from the hand, which are not compressed. Due to this 

fact, the second model with a smaller order and the time delay will have a higher 

probability when the hand appears in front of the device, because its parameters do not 

change. And in this way it will get a higher probability than the first model, which is 

greatly affected by the hand appearance. 

Thus, using the output probabilities of the recursive model probability estimation, 

the hand presence in front of the device is clearly identified. 

During investigation, a series of experiments using both time-invariant and time-variant 

environment models have been fulfilled. As far as their outputs are very similar, 

only several of them have been chosen to illustrate the challenges and the final results 

of the simulation (see Fig. 2.3-2.7). 

Let’s start with the time-invariant environment model. 

The signal u, the input to the environment and hand models as well as to two 

identification blocks, is built in a way to correspond to the input signal provided 

by the ultrasound device, which real data will be used in the experiments described in 

the next section. It is in the form of a set of chirps represented by a sinusoid wave with 

a period of 5 samples and 880 samples space between them (see Fig. 2.3). 

Such kind of the input signal is considered to provide the ill-excitation of the system, 

which means that it affects the numerical sensitivity and complicates the estimation 

process; however, it enables to calculate the hand distance to the device, which 

represents further contribution of the present approach. It will be described and 

experimentally shown in the section devoted to the experiments using the real data from 

the ultrasound device. 

 

Figure 2.3: Input signal 
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The environment model is represented by a FIR model with order 880 to cover all 

available data (the inputs/outputs). It has constant random coefficients for 

the experiments in Fig. 2.4 and Fig. 2.5 and random coefficients with slowly changing 

values for the experiments in Fig. 2.6 and Fig. 2.7. 

The hand model is represented by a FIR model having order 300. The hand absence 

is modelled by setting the coefficients in the columns of the model matrix to zero 

values. The columns of the matrix correspond to the time development of the signal. 

To simulate a short-term appearance of the hand, the coefficients of the hand model 

are set to non-zero values. To simulate a certain distance of the hand to the device, 

the first 50 rows and the last 150 rows of the matrix of the hand model are set to zero. 

It should be also noticed that both the environment and hand models operate with 

the uncorrelated additional output noise to make the simulation closer to a real situation. 

During the simulation, three cases of the hand appearance are analyzed: 

o two short-term appearances at time step 10 000 and 50 000, both lasting 

for 2000 samples; 

o a longer-term hand appearance at time step 80 000, lasting for 10 000 samples. 

It is worth mentioning that to model the system, there should be made certain 

assumptions about the distance between the hand and the device, which is supposed 

to be known. Given it, the assumptions about the orders of the identification models and 

the time delay for hypothesis testing are made. Based on them, the implemented 

hypothesis order probability estimation identifies, which identification system is better 

for the parameter estimation for this or that period of the identification process. 

Both identification models are also represented by the FIR models. The first model has 

the order set to 880 to ensure that it covers all available data during the one pulse 

of the input signal, which lasts for 880 samples. The order of the second model is 300. 

However, it takes only a limited number of the remote data, where the hand is unlikely 

to appear. Therefore, there is the time delay set to 580. 

Due to the implemented hypothesis, the final results of estimation are not strongly 

dependent on a value of the EF factor; thus, one optimal value can be set for both 

the time-invariant and time-variant systems. However, a choice of the optimal value 

of the EF factor depends on the order of the system and should be made within certain 

limits given by the equation (A.79) in Appendix 2. 

The value of the EF factor for the performed experiments is set to 0.99998. 

The time scale for all experiments is 100 000 samples. Further, to make the simulation 

experiments closer to the experiments with the real ultrasound data, where the signals 

are transmitted with a frequency 40 kHz, but then it is sampled with a sampling 

frequency of 192 kHz, it is also assumed that the sampling frequency of 192 kHz 

is used, i.e. a maximum distance, from where the objects can be seen given the order 

of the model 880 is approximately 78.6 cm. Adding TD=580 samples to the second 

identification model, we, thereby, make an assumption that the hand can occur within 

the range of 0 – 51.8 cm from the device. 
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Now let us discuss the results of the experiments with the time-invariant (Fig. 2.4-2.5) 

and time-variant environment models (Fig. 2.6-2.7) in more details. 

Figure 2.4 shows the results of the experiments given the time-invariant environment 

model. The prediction error development is shown in magenta (see Fig. 2.4-2.7). 

In the very beginning of the estimation process there is an increase of a prediction error. 

It can be explained by the fact that the system needs some time to learn to estimate 

the parameters correctly and to converge to the right values. The character of the hand 

output and, therefore, the development of the hypothesis in the place of the hand 

presence, i.e. its form “short peak-nothing-short peak”, is conditioned by the character 

of the input signal, described above. 

Figure 2.4 shows three peaks of the prediction error at time step 10 000, 50 000 and 

80 000. It is the moment when the hand appears. It is also clear from Fig. 2.4 that after 

the hand disappears there is still an increase of the prediction error preserved for some 

time. Especially it is obvious for the third hand appearance, when it stays a longer 

period in front of the device. These slowly decreasing errors are caused by the fact that 

the value of the EF factor is close to 1 and the system adapts to a new situation very 

slowly. Therefore, the development of the prediction error and the output y2 (presented 

in blue), though it should be similar, differs from time to time (see Fig. 2.4). From this, 

it is obvious that based only on the prediction error results; it is hard to identify when 

the hand disappears, especially, in case of the long-term presence. By implementing 

hypothesis testing in the algorithm, the results can be improved and become more 

precise. 

In Fig. 2.4 the identification model of the 880
th

 order is shown by a red curve, while 

the identification model of the 300
th

 order with the time delay (TD) of 580 samples 

is presented in a green curve. 

 

Figure 2.4: Simulation results: a time-invariant environment model 
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It is clear from the graphs in Fig. 2.4 that when the hand is present in front 

of the device, the identification model of a smaller order is winning. Contrarily, if there 

is no hand in front of the device, the identification model of a higher order is applied by 

the algorithm. It is obvious that the results are in correspondence with the assumption 

made in the beginning of this section, which states that the smaller order model should 

have a higher probability, if there is a hand in front of the device. Thus, hypothesis 

testing determines the exact moment of the hand appearance, which due to the nature 

of the input signal can be used for calculating the hand distance from the device. 

To show the results in more details, a fragment for the second hand appearance 

is chosen (see Fig. 2.5). 

To bring the simulation more in a line with the reality, in further series of experiments 

a time-variant environment model is used. In this case it is not static anymore and 

it simulates the situation when there are some slowly moving objects present 

in the environment. 

Similarly to figures for the time-invariant environment model, the results for the time-

variant environment model are presented in Fig. 2.6. 

 

Figure 2.5: Simulation results: a time-invariant environment model (detailed fragment) 
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Figure 2.6: Simulation results: time-variant environment model 

 

 

Figure 2.7: Simulation results: a time-variant environment model (detailed fragment) 

All parameters are set exactly alike as in the previous experiments, except for 

the coefficients in the environment model, which are slowly changing-in-time random 

values. 

It is clear from Fig. 2.6 that the prediction error in the very beginning is very high due 

to using the time-variant environment model and the first hand appearance is almost 

undetectable if using only the development of the prediction error. However, the hand is 

accurately recognized by the application of hypothesis testing. The results of estimation 

for the second and the third hand appearance are very precise as well. 
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More detailed results for the second hand appearance are shown in the fragment 

in Fig. 2.7. 

From the graphs above it is obvious that the assumption about the smaller order model 

best suited for a description of the hand presence in front of the device is valid. Besides, 

this simulation model corresponds better to the real situation and, therefore, 

the assumption is supposed to be valid for the experiments with the real ultrasound data 

as well. 

2.1.2. Comparison of Computation Results of the QRD RLS Algorithm 

and the QRD RLS Lattice Algorithm 

To show the advantages of the QRD RLS Lattice algorithm chosen 

for the implementation on the hardware platform, let us compare the results 

of the experiments for the time-variant environment model for the QRD RLS algorithm 

and for the QRD RLS Lattice algorithm. The comparison is made in terms 

of the accuracy and computational time. 

The settings of the experiments are the same as those described in the previous sections. 

The results of the QRD RLS algorithm are shown in Figure 2.8, while the results 

of the QRD RLS Lattice algorithm are shown in Figure 2.9. 

 

Figure 2.8: Results of the estimation process using the QRD RLS algorithm 
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Figure 2.9: Results of the estimation process using the QRD RLS Lattice algorithm 

It is obvious from the graphs in Fig. 2.8 and in Fig. 2.9 that the outputs for both 

the QRD RLS algorithm and the QRD RLS Lattice algorithm in terms of the quality 

of estimation and its accuracy are practically the same. However, as far as 

the computational time is concerned, the gap between two compared algorithms is quite 

large. For the QRD RLS Lattice algorithm, the computational time is within 15s 

on a PC with Intel® Core™ i7-4770 CPU, 3.5GHz: the variable initialization is made 

in the MATLAB R2019b environment and the algorithm itself is calculated in C code 

using .mexw64. However, for the QRD RLS algorithm, it constitutes 580s 

or approximately 10 min of computation. 

Thus, given N=100000 and the number of operations for one computation step 34850, 

the QRD RLS Lattice algorithm requires approximately 58 MFLOP/s to be processed 

in real time. In the experiments the PC (single core) delivered 232 MFLOP/s 

for the QRD RLS Lattice algorithm in the DP performance, i.e. it can successfully 

compute the algorithm in the range of the real-time processing. 

As for the QRD RLS algorithm, given N=100000 and the number of operations for one 

computation step 2301952, it requires approximately 3837 MFLOP/s to be processed 

in real time. However, in the experiments the PC (single core) delivered only 

397 MFLOP/s for the QRD RLS algorithm in the DP performance. 

According to the experiments performed during the simulation in the MATLAB 

R2019b environment, it can be concluded that the proposed approach to system 

identification using the QRD RLS Lattice algorithm is promising and it can provide 

the sufficiently precise outputs. It has its limitations in terms of making the assumptions 

about the distance between the hand and the device. These limitations should be 

carefully considered before the implementation of the algorithm. 

However, it is also obvious that though the QRD RLS Lattice algorithm is fast 

in comparison with the QRD RLS algorithm, still it might be insufficient       

for the real-data processing and there might be a need to accelerate the performance 
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of the algorithm. The means for the algorithm acceleration will be discussed in the next 

chapters. 

The next section describes the results obtained while using the real ultrasound data 

from the device equipped with the ultrasound transducers and microphones. Performing 

these experiments, we would be able to say if the computation speed of the algorithm 

is sufficient or if it needs the acceleration. 

2.2. Experiments with Real Data 

This section describes the experimental results with real data taken from a device 

equipped with ultrasound sensors. The results of the experiments using QRD RLS 

Lattice algorithm are provided in section 2.2.1, while comparison between QRD RLS 

algorithm and QRD RLS Lattice algorithm is described in section 2.2.2. 

2.2.1. Experimental Results Using the QRD RLS Lattice Algorithm 

The ultrasound data were provided by the device developed in ÚTIA. The detailed 

description of the device and its functions can be found in [85]. In the present section 

only a short description is provided. 

Figure 2.10 shows the design of the ultrasound device and its components. 

Three basic components of the hardware platform are represented by the TE0720 FPGA 

SoM module, the TE0706 carrier board and the ÚTIA evBoard v1.7. 

The board comprises a linear microphone array, a dual piezo ultrasound speaker, 

a common clock distribution to all microphones and the ultrasound speaker driving 

the circuit. The microphone array consists of 32 digital microphones, one of which 

is used to provide the control signal. The distance between the microphone acoustic 

ports constitutes 3.8 mm. The frequency range of a microphone is from 0 to 80 kHz, 

while the array maximal frequency is 40 kHz [85]. 

It should be also noted that the ultrasound speaker works on 40 kHz frequency. 

The responses after it are sampled and decimated to obtain the Pulse-Code Modulation 

(PCM) samples, which sampling frequency is 192 kHz. 
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Figure 2.10: ÚTIA evBoard with the FPGA module and the carrier board [85] 

The beam-former was designed in the FPGA part of the hardware module by the ÚTIA 

team. The block diagram is shown in Fig. 2.11. 

There are three dark-green blocks on the left side from the memory block, 

which process the data from the microphones and store them in the memory [85]: 

o block “Packetize”, which adds end markers to the stream of the microphone 

data, i.e. on this stage the data are divided into blocks, 

o block “Capture”, which stores the data blocks to the double data rate (DDR) 

memory, 

o block “Chirp Generator”, which generates chirps. Using this block, the chirp 

frequency, its length and the number of reverse phase periods at the end of each 

chirp are adjustable [85]. 

Blue blocks on the right side from the memory block are responsible for adjustments 

of the microphones and the signal from the microphones. There are six blocks [85]: 

o block “Adjust Phase”, which adjusts the phase of the signal taking into 

consideration the steering direction of the beam-former. It is possible to set 

the initial angle and the number of sectors of the view field. 

o block “Decimate and Sum”, which define the microphones for beam-forming 

and the order and subsampling/decimation factor, 

o block “BP Filter”, which applies the bandpass filtering to the delay-and-sum 

(DAS) beam-former output, 

o block “RMS Envelope”, which uses a running window to compute the route 

mean square (RMS). Besides, it optionally subsamples the output. The window 

length and the subsampling factor are adjustable. 
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o block “Max Detection”, which is responsible for the detection of the position 

and the value of the global maximum in the output data, 

o block “Conversion to Img”, which has two modes – Normalization on and off. 

When the Normalization mode is turned on, the compensation of the strength 

of the recorded ultrasound depending on the distance is performed by using 

the exponential function. When the Normalization mode is turned off, 

the minimal and maximal values are used for the conversion of the RMS 

envelope data to the value between 0-255 [85]. 

For more details refer to [85]. 

At this point let’s describe the output signal, which is subject to processing 

by the algorithms in this work. 

As it was mentioned above, the output signal is obtained from 31 microphones situated 

on the ultrasound device. The ultrasound speaker sends chirps 600 times on the 40 kHz 

frequency, whereby in-between sending the preceding signal and the following one 

there is a certain waiting period or a delay, during which nothing is sent. Each signal 

has 880 PCM samples, which are obtained by sampling with the sampling 

frequency of 192 kHz. 

The raw output signal is presented in Figure 2.12. It has 11520000 samples, lasts for 60s 

and after each pulse there is a certain time delay, which constitutes 18320 samples 

or 0.095s. 

On the upper graph in Fig. 2.12 there is a raw uncompressed signal, where it is 

impossible to differentiate by a human eye if there is a hand. On the bottom graph the 

enlarged pulses are presented to show the waiting period between two measurements. 

For illustration purposes, the signal was processed in a way that the large peaks, 

which correspond to the cross-talks, are removed, so that it became obvious, in which 

time moment the hand was present in front of the device (see Fig. 2.13). 

 

Figure 2.11: ÚTIA FPGA implementation of the beam-former accelerators [85] 
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Figure 2.12: Raw uncompressed output signal from the ultrasound device [64] 

 

 

Figure 2.13: Raw uncompressed output signal from the ultrasound device (without cross-talks) 

Besides, in Fig. 2.13 the time scale was converted to seconds to illustrate that the total 

measurement time was 60s.  

The principle of functioning of the algorithm is in the way illustrated in Fig. 2.14. 

In the beginning the algorithm works with a priori initial conditions. It performs 

estimation in stage S1 up to the waiting period and in the end it has some outputs. 

Its outputs represent initial conditions for identification for the following stage, 

i.e. for stage S2 (see Fig. 2.14). During the waiting period the algorithm stops 

and does not compute anything. When stage S2 starts, the algorithm begins 
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its estimation process again, but with the inputs calculated in stage S1. In this way 

it performs the identification process and computes all data up to stage Sn where 

the final results are computed. Due to the waiting period, practically the algorithm has 

more time for computation in each stage. 

However, for the practical and computational purposes the raw signal from Fig. 2.12 

is compressed by removing delays between the preceding and the following signals. 

The compressed raw signal is illustrated in Fig. 2.15. 

It should be also noted that during the experiments described below the data from only 

one microphone are used. It differs from the current approach, which is used 

by the ÚTIA team for hand detection on the ultrasound device described above. 

In the current approach the data from all microphones are used and the beam-forming 

is made. In the approach presented in this section it is illustrated that even on the basis 

of the data taken from one microphone it is possible to detect the hand presence 

and the distance between the hand and the device. 

If we look at the signal in more details (see Fig. 2.16), we can clearly see that in 

the bottom part of the figure, which illustrates a detailed graph for one pulse sent during 

the measurement, there is a high peak in the beginning when the speaker sends 

the signal (outlined in a red rectangle in Fig. 2.16). It is due to the fact that the device 

listens to itself. Then there are smaller peaks, which represent the resonance. 

The response from the hand is outlined in a green rectangle. 

 

 

 

Figure 2.14: QRD RLS Lattice principle 
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Figure 2.15: Raw compressed output signal from the ultrasound device 

 

 

Figure 2.16: Fragment of the output signal 

 

The input signal provided by the ultrasound speaker is a set of chirps represented 

by a sinusoid wave with a period of 5 samples, a sampling frequency 192 kHz, 

and 880 samples space between them. It is not possible to measure it directly; thus, 

the reconstruction of the input signal from the raw output signal was performed. 

As far as the microphone and the speaker are situated close to each other, it is possible 

to do it in a way that the reconstructed input signal is very similar to the real one. 

As it was shown above, the first high peak in the raw output signal is actually the input 

signal listened out by the device (see Fig. 2.16 and Fig. 2.17). From the graphs, 

it is obvious that the peak occurs every time the speaker sends the pulse and, therefore, 



74 
 

it has a certain period of its occurrence. It can be used for the reconstruction of the input 

signal in the experiments with the real data as far as we know the beginning, the length 

of the input signal (140 samples), and the duration of one pulse (880 samples). 

Everything in-between the preceding peak and the next one are set to zero 

(see Fig. 2.17). 

In this way the input signal is taken from the raw output signal and reconstructed 

in a separate input, which is used in the experiments with the Lattice identification 

hypothesis testing algorithm. The reconstructed input signal is shown in Fig. 2.18. 

 

Figure 2.17: Input reconstruction 

 

 

Figure 2.18: Input signal [64] 
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The raw output signal is modified in a way that the self-listened inputs (high peaks used 

for the reconstruction of the input signal) are replaced by zeros. It is possible to make it 

without affecting the validity of the experiments, because the period of its occurrence 

is known. The final output signal used in the experiments is illustrated in Fig. 2.19. 

The higher peaks on the graph in Fig. 2.19 represent the responses from the hand, 

while the smaller peaks are signals coming back from other objects in the environment 

and considered to be noise. From the graph in Fig. 2.19, it is clear that during 

the measurements there are six hand appearances on different distances from the device. 

Moreover, the development of the third hand presence is different from the others. It is 

due to the fact that in this case the hand was moving forwards and backwards from the 

device. 

The goal of the algorithms using hypothesis testing is to identify the presence 

of the hand and its distance from the device. 

But as the first step before applying hypothesis testing on the real data, it is reasonable 

to bring the simulation more in a line with the reality and to ensure that the algorithms 

function in a way it has to function. In the simulation described in the previous section, 

the artificial models were used. They were based on the random parameters generated 

in the MATLAB R2019b environment. In case described below the simulation is based 

on the measured data and uses the real input signal. 

As the first phase of performing the simulation, it is necessary to perform 

the identification process using the QRD RLS algorithm, which will compute 

parameters of the models. Taking one of the parameters when there is no hand and 

the other one when there is a hand, it is possible to reproduce the simulation close 

to the reality. These parameters represent the environment and hand models. 

 

 

Figure 2.19: Output signal [64] 
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The parameters are taken in the area, where the identification process is stable. 

The difference of the simulation from the real situation is in the fact that the hand 

is always the same - constant and static - because it is simulated using one parameter 

only. Thus, its distance to the device is also constant. Otherwise, the simulation is as 

close to the reality as it is possible. 

The principle of the simulation is similar as it was described in the section devoted 

to the simulation with the random values. There are four models: the environment 

model, the hand model and two identification models. This time, however, the order 

of the identification models are set to 768 and 256 with the time delay of 512 as it is 

supposed to be done in the experiments with the real data using hypothesis testing. 

The choice of the orders is explained in more details later on. The EF factor is set 

to 0.99999988. 

The time period of the simulation is 528000 samples as it will be in the experiments 

with the real data with the application of hypothesis testing. 

To make the simulation experiments close to the reality, there are also six occurrences 

of the hand simulated. They have more or less the same period of the presence in front 

of the device as in the experiments with the real data provided hypothesis testing. 

During the simulation one hand appearance is close to the preceding hand occurrence. 

It is made for the purpose to complicate the computation for the algorithm and to see 

if the algorithm is able to detect hand appearances closely coming one after another. 

The results of the simulation are presented in Fig. 2.20. 

It is obvious from the graph in Fig. 2.20 that the QRD RLS Lattice algorithm functions 

precisely enough in the situation when the parameters from the real data computation 

are used for the generation of the environment and hand models. It accurately switches 

between two hypotheses when the hand appears. It means that hypothesis testing can be 

safely applied to the real data computation, which is described below. 

Let us remind first the basic concept of the algorithm for the real data computation. 

The idea is the same as it was in the case of testing the algorithm with the simulated 

data (see Fig. 2.21). 
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Figure 2.20: Estimation results using the QRD RLS Lattice algorithm (simulation with real data 

parameters) 

 

 

Figure 2.21: Block diagram 

However, in this case there are three blocks only (see Fig. 2.21): 

o the block representing the real data coming from a microphone, 

o two identification blocks standing for the regression models of two different 

orders, one of which has a certain time delay. 

The output of the algorithm of our interest is the estimated probability of hypotheses 

of the regression model: if there is a hand in front of the device, the algorithm 

should choose the regression model structure appropriate for this situation and different 

from the one in case there is no hand. 

The identification models are set in the following way. The order of the first model 

is set to n1=768. This order is enough to cover the available data for the one pulse 
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and at the same time it is good for pipelining into 3 or 6 processes, which will be 

described in the section about the optimization of the algorithm and its HW 

implementation. 

The order of the second model is set to n2=256 and there is a time delay of 512 samples. 

Thus, there is an assumption made that the second identification system makes 

estimation on the data, where there is no hand appearance possible, i.e. on the distance 

in the range from 0 cm to 46 cm. Besides, this order is also easily divided 

by 1 or 2 processes. 

After fulfilling a set of the experiments, the optimal value of the EF factor was found, 

which is 0.99997. As far as the compressed output signal is used, the experiments work 

on N=528000 data samples. 

Knowing the sampling frequency and the number of data samples, it is possible 

to calculate time, during which the algorithm has to perform the outputs to be able 

to process the data in real time. 

𝑻𝒓𝒆𝒂𝒍 =
𝑵

𝒇𝒔
=

𝟓𝟐𝟖𝟎𝟎𝟎

𝟏𝟗𝟐𝟎𝟎𝟎
= 𝟐. 𝟕𝟓𝒔.                                                                                        (𝟐. 𝟏) 

However, we also need to consider the fact that the real time of the measurement 

of the hand responses by the ultrasound device differs from it due to the waiting period 

before sending each signal by the speaker as it was described in the beginning 

of this section. Thus, considering this time of silence and the real size of the measured 

data, i.e. 11520000 samples, the real 𝑇𝑟𝑒𝑎𝑙 = 60s. It means that the algorithm has 

to perform estimation within 60s, in order it was possible to apply it for the real-time 

data processing applications. Moreover, considering the number of operations during 

one step of computation equal to 34850 and the number of steps N=528000, it is 

possible to calculate the number of operations per second, which are required to be 

performed. It is equal to approximately 307 MFLOP/s. 

Figure 2.22 shows the results of computation. 

On the graph in Fig. 2.22 there are the computed filtration errors (blue curves) 

and the hypothesis development during time (green and red curves in the bottom 

of the graph). In the beginning of the estimation process, the algorithm needs some time 

to estimate parameters in a right way. It is the learning stage of the algorithm. 

Therefore, there is some uncertainty, which identification model to choose. However, 

after the learning stage, i.e. after approximately 6000 samples, the estimation process 

converges to the correct values and the algorithm accurately recognizes the hand 

appearance by switching between two hypotheses. 

In case when there is a hand, which causes the additional disturbance, the system 

switches into the identification model with a smaller order and with the time delay 

(green coloured). Contrarily, if there is no hand, the identification model with a higher 

order (red coloured) learnt on all available data has a higher priority. Thus, it is obvious 

from the graph that the assumption made in the beginning of the section is valid 

for the real ultrasound data the same as it was valid for both simulations. 
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Figure 2.22: Hand detection [64] 

 

As it was stated before, the filtration errors computed by the identification model 

trained on all available data, i.e. the identification model with a higher order, 

are accurately estimated and can be used along with the hypotheses to detect the hand 

presence (see Fig. 2.23). 

The upper graph in Fig. 2.23 represents the output signal y, while the bottom graph 

shows the development of the filtration error. It is clear from Fig. 2.23 that the signal 

is cleaned out from the unwanted responses from the environment and can be used 

for further data processing. The hypotheses help to define the precise moment the hand 

appears and disappears and in this way they allow to say from where further signal 

analysis should be started. 

As it was mentioned above, due to the fact that the input signal is in the form of pulses 

(chirps) (see Fig. 2.24), it is possible to calculate the distance of the hand from 

the device. 
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Figure 2.23: Hand detection (filtration errors) 

 

Figure 2.24: Distance computation 

It is clear from the graph in Fig. 2.24 that there is a certain delay between the chirp and 

the hand response. Thus, knowing the number of samples between the input (the chirp) 

and the response from the hand, it is possible to calculate the hand distance 

from the device according to the well-known equation: 

𝒔 =
𝒗 ∙ 𝒕

𝟐
                                                                                                                                     (𝟐. 𝟐) 

where s is the distance [m]; v is the speed of the ultrasound in the air, which is 343 m/s; 

t is time [s]. 
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In the equation time is divided by 2, because it should be taken into consideration 

that the signal goes from and back to the device. 

Time can be calculated according to the following equation: 

𝒕 =
𝑵

𝒇𝒔
,                                                                                                                                        (𝟐. 𝟑) 

where N is the number of samples between the input and a hand response, 

𝒇𝒔 is a sampling frequency [kHz], which is 192 kHz in our case. 

The final results are presented in Fig. 2.25 and Fig. 2.26. 

From the graph in Fig. 2.25 it is obvious that during the measurement five hand 

occurrences were more or less in the same position and their distance was 

approximately the same, i.e. approximately 40-45 cm. There are some minor changes 

in the position of Hand 2, which constitutes only several centimetres. However, in case 

of Hand 3 the changes in the position are more visible. They can be explained by 

the fact that during the measurement the operator was moving the hand towards and 

backwards from the device; therefore, its distance varies from 27 cm to 50 cm. Though 

the assumption about the maximal possible distance of the hand from the device, that is 

46 cm, is not valid for Hand 3 as far as it was moving in the range from 27 cm to 50 cm, 

still the algorithm proves to be robust and hypothesis testing functioned reliable 

in this case too. 

Moreover, from the graph in Fig. 2.25 it is easy to obtain the information about 

the duration, during which the hand was present in front of the device, because time is 

converted from samples to seconds. More detailed information about time as well as 

about the precise hand distance to the device is presented in Table 2.1. 

 

Figure 2.25: Hand distances (uncompressed signal) 
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However, because in Fig. 2.25 the signal is uncompressed and very long, it is not very 

visible from the graph, the moment the hand appears and disappears. Therefore, 

the graph illustrating the compressed output signal along with the results for the hand 

distance computation is presented in Fig. 2.26. 

Figure 2.26 illustrates the compressed signal and the hypothesis development during 

the computation process along with the calculated distance of the hand to the device. 

In this case time is presented in samples. 

Table 2.1 shows the precise values of the distance and time for each hand 

appearance [64]. 

 

 

Figure 2.26: Hand distances (compressed signal) [64] 

 

Table 2.1: Hand distances 

Hand Distance [cm] Time [s] 

Hand 1 44 1.9 

Hand 2 40-45 3.9 

Hand 3 27-50 6.7 

Hand 4 41 1.7 

Hand 5 40 2.6 

Hand 6 45 3.7 

 

 

 



83 
 

Finally, it can be concluded that the experiments with the real data obtained from 

the ultrasound device show that the algorithm based on hypothesis testing functions 

reliably and precisely enough and can be used for dealing with a noise cancellation 

problem. Moreover, using this method, it is possible both to detect the hand and 

to calculate its distance from the device on the basis of the data only from one 

microphone. The distance calculation is considered to be the additional contribution 

to the solution of the hand detection problem. 

2.2.2. Comparison of Computation Results of the QRD RLS Algorithm 

and the QRD RLS Lattice Algorithm 

The ultrasound data were also used for the experiments using the QRD RLS algorithm 

to compare its performance with the algorithm chosen for the implementation on 

the hardware platform. 

The results of the experiments using the QRD RLS algorithm are shown in Fig. 2.27, 

while the outputs of the QRD RLS Lattice algorithm are presented in Fig. 2.28. 

 

 

Figure 2.27: Estimation results using the QRD RLS algorithm 
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Figure 2.28: Estimation results using the QRD RLS Lattice algorithm 

In the beginning of the estimation process both algorithms need some time for learning. 

After approximately 6000 samples, the estimation process converges to the right values 

and both algorithms function reliably and precisely recognizing the hand in places 

where it factually appears. 

It is obvious from the graphs in Fig. 2.27 and in Fig. 2.28 that both algorithms have very 

similar results and are equally accurate. However, the advantages of the QRD RLS 

Lattice algorithm become more visible and relevant, when the computational time is 

compared. 

The computation was made again on a PC with Intel® Core™ i7-4770 CPU, 3.5GHz: 

the variable initialization is made in the MATLAB R2019b environment and 

the algorithm itself is calculated in C code using .mexw64. For the QRD RLS Lattice 

algorithm, the time of computation considering N=528000 and the highest order n1=768 

is approximately 45s. For the QRD RLS algorithm with the same settings, it is 

approximately 2330s, i.e. 39 min of computation. It should be noted that 

the computation was performed on the single core. 

As it was mentioned in the beginning, to use the algorithm in the real-time applications, 

the algorithm has to make computations within 60s. The QRD RLS algorithm has 

2301952 operations for one step of computation. The QRD RLS Lattice algorithm has 

34850 operations for one step of computation. To process the algorithms in real-time, 

a PC needs to deliver approximately 20257 MFLOP/s for the QRD RLS algorithm and 

approximately 307 MFLOP/s for the QRD RLS Lattice algorithm. During 

the experiments it was found out that given the described setup, the PC (single core) 

delivered approximately 522 MFLOP/s for the QRD RLS algorithm and approximately 

409 MFLOP/s for the QRD RLS Lattice algorithm, computation in the DP arithmetic. 

It means that in case of the QRD RLS algorithm, it is approximately 39 times slower 

than it is required for the real-time processing. In case of the QRD RLS Lattice 

algorithm the PC (single core) manages to compute the algorithm in the range 

of the real-time processing. 
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However, it is assumed that the computational speed of the QRD RLS Lattice algorithm 

will be slowed down while being used on small platforms as far as they have 

a processor frequency only 1.05GHz and a programmable logic max. 240MHz. Thus, 

to process the data on a small platform in real time, the QRD RLS Lattice algorithm 

is not fast enough and still needs accelerating. The methods of the acceleration 

and the hardware implementation are proposed in the next chapters. 

2.3. Discussion 

This chapter is devoted to the experiments with the algorithms used for the noise 

cancellation, speaking more precisely, for a hand detection problem. The experiments 

are based both on simulations and on the real data from the ultrasound device. 

The contribution of the algorithm on this stage is that it computes 

the prediction/filtration errors and makes the output signal cleaner for further data 

processing. Moreover, using hypothesis testing the moment of the hand appearance 

and disappearance can be precisely identified. Another benefit is in the fact that 

it allows computing the distance of the hand to the device. Thus, only on the basis 

of the data measured on one microphone, it is possible to obtain the valuable results 

such as the accurate detection of the hand presence and its distance to the device. 

Besides, taking the parameters computed during the experiments with the real data, 

the simulation close to the reality was performed. It proved that hypothesis testing could 

be safely applied on the real data measured on the ultrasound device. 

The chapter also provides a comparison between the QRD RLS algorithm and the QRD 

RLS Lattice algorithm and shows why the latter is supposed to be used for 

the implementation on the HW platform. One of the reasons is that the QRD RLS 

Lattice algorithm proves to be faster than the QRD RLS algorithm. Besides, the QRD 

RLS Lattice algorithm has a particular structure, which is easily pipelined and, thus, 

the algorithm can be accelerated and implemented on the HW platform. 

Table 2.2 gives an insight into the computational time of both algorithms during 

different experiments. 

The first number of MFLOP/s in Tab. 2.2 refers to MFLOP/s delivered by the PC 

(single core) given the described computation settings. The second number 

of MFLOP/s, which is compared with the first one, is MFLOP/s required for 

the algorithm to be computed in the range of the real-time processing. 

It is obvious from Tab. 2.2 that the computation of the QRD RLS algorithm is very slow 

and unsatisfactory, especially in case of the real data processing, which constitutes 

approximately one hour of computation. 

As far as the QRD RLS Lattice algorithm is concerned, its computation can be made 

in real time given the same or faster PC. It is valid both for the simulation and real data 

experiments. 

However, it was a bit slower than it is required during the experiments concerning 

the simulation based on the real data parameters (the third set of the experiments). It can 
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Table 2.2: Comparison of algorithms in terms of their computational time 

Type of experiments 
QRD RLS algorithm 

QRD RLS Lattice 

algorithm 

Time [s] MFLOP/s Time [s] MFLOP/s 

Simulation 580 397 vs 3837 15 232 vs 58 

Real data 2330 522 vs 20257 45 409 vs 307 

Simulation using the 

real data parameters 

---- 71 259 vs 307 

 

be explained by the fact that the inputs based on the real data parameters are computed 

for the purposes of the simulation. Contrarily, in the real time experiments the inputs 

are provided by the real measurements. 

If compared with the simulation based on the random parameters, the time scale is much 

longer for the third set of experiments (the simulation with the real data parameters). 

It constitutes 528000 data samples vs 100000 data samples for the experiments 

with the random parameters. Therefore, the computational time for the third set 

of experiments is also longer than for the first one (see Tab. 2.2). 

The next chapter describes the method of pipelining and parallel processing of the QRD 

RLS Lattice algorithm for the purposes of its acceleration and implementation 

on the HW platform. 

2.4. Results and Related Publications 

To summarize the main contributions on this stage of investigation, the following 

outputs should be mentioned: 

1. A new approach for hand detection is proposed, where a specific structure 

of the regression models was designed in a way, which enables not only 

to eliminate the undesired responses from the objects in the environment, 

but also to determine the exact moment of the hand appearance. 

 

The structure of the regression models is proposed in the following way: one 

regression model has a higher order and analyses all incoming data, while 

the other regression model has a smaller order and a predefined time delay. 

 

The assumption is: if there is no hand in front of the device, the model with 

a higher order has a higher probability as far as the relations between its FIR 

parameters correspond to the incoming data. When the hand appears in front 

of the device, the model with a smaller order and the time delay has a higher 

probability, because the change does not affect the relations between its FIR 

parameters, whereas in case of the model with a higher order the relations of its 

FIR parameters are corrupted and do not correspond anymore to the incoming 

data. 
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2. The exact moment of the hand occurrence is determined due to incorporated 

hypothesis testing choosing between two structures of two regression models 

best appropriate for a description of the present situation. 

 

3. Knowing the exact moment of the hand appearance and due to the nature 

of the input signal, which is in the form of chirps, it is possible to calculate 

the distance between the hand and the device. 

 

4. This approach – a new structure of the regression models, hypothesis testing, 

the distance calculation – was implemented both for the QRD RLS algorithm 

and the QRD RLS Lattice algorithm for the purpose of a comparison and 

choosing the more suitable algorithm for the implementation on the HW 

platform. 

 

5. The principle of the algorithm computation corresponds to the provided output 

signal, where there is a certain waiting period between the chirps. Thus, 

the algorithm functions in such a way that in the beginning the algorithm works 

with a priori initial conditions, then it performs estimation and saves state 

parameters for the next stage of computation. During the waiting period 

the algorithm does not compute anything. After the waiting period, it starts 

again, but using the state parameters saved in the previous stage of computation. 

Due to the waiting period, the algorithm practically has more time for 

computation on each stage. 

Source codes are available in MATLAB R2019.b and SciLab: 

- simulation package for modelling of echo cancellation for ultrasound hand-

gesture recognition in form of MATLAB scripts or compiled Win 64bit 

applications (MATLAB 2018.b (or higher) or Win7 64bit or Win10 64bit 

are required): http://sp.utia.cz/index.php?ids=results&id=noise-cancellation 

- QRD RLS Lattice algorithm : 

o simulation with parameters generated in the MATLAB environment: 

 time-invariant environment model 

 time-variant environment model 

o simulation with parameters calculated from the real ultrasound data 

o experiments with the real ultrasound data 

 hand detection 

 distance computation 

- QRD RLS algorithm: 

o simulation with parameters generated in the MATLAB environment: 

 time-invariant environment model 

 time-variant environment model 

o experiments with the real ultrasound data 

 hand detection 

QRD RLS algorithms are available 

at https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina 

 

http://sp.utia.cz/index.php?ids=results&id=noise-cancellation
https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina
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Publications related to the research topic are the following: 

1. Likhonina R., Kadlec J. Noise cancellation using QRD RLS algorithms. 

Application note, ÚTIA, 2018. 

Abstract: This Application Note aims to simulate a noise cancellation problem 

with MATLAB tools. This is purposed for pre-processing process for final 

gesture recognition application. It also shows advantages and disadvantages 

of an approach used for a noise cancellation. In applications for gesture 

recognition the signals can reflect and be detected not only from a desired source 

(a hand), but from the environment as well, which creates undesired noise 

and hardens the process of precise gesture identification. Therefore, 

it is essential to eliminate the signals, which come from other static sources 

than a hand. For these purposes echo cancellation methods can be used. Echo 

cancellation is widely and successfully applied in telephony in a way 

of preventing echo from being created or removing it after it is already present. 

We will assume that a hand will appear just for a short time period 

and the additional reflections will act as an additional short period “disturbance”. 

The echo cancellation in this specific case will be based on QRD algorithm 

with double precision arithmetic and exponential forgetting. The QRD algorithm 

is also called as an information filter without square root operations. It is based 

on QRD decomposition of the input/output information matrix. The recursively 

updated QRD factorization of the information matrix helps to avoid the problem 

with loss of positive definiteness of the information matrix due to rounding 

errors and, thus, provides a numerically stable solution. The exponential 

forgetting is used instead of directional forgetting to keep the perspective 

of reduction of the computation time by applying the QRD version of the Lattice 

algorithm. QRD Lattice works only with the exponential forgetting 

with a constant exponential forgetting factor. 

The application note together with the simulation package is available 

at http://sp.utia.cz/index.php?ids=results&id=noise-cancellation . 

2. Likhonina R. QRD RLS algorithm for hand gesture recognition applications. 

In: Proceedings of IWSSIP 2019, pp. 195-201, Eds: Žagar Drago, Rimac-Drlje 

Snježana, Martinović Goran, Galić Irena, Vranješ Denis, Habijan Marija, 

International Conference on Systems, Signals and Image Processing 2019 

(IWSSIP 2019), (Osijek, HR, 20190605), DOI: 10.1109/IWSSIP.2019.8787283. 

Abstract: The work is focused on algorithmic technique for detection of hand 

presence and distance from a hand to a device transmitting ultrasound signals. 

The described method is based on QRD Recursive Least Squares (RLS) 

algorithm with double precision arithmetic and exponential forgetting (EF). 

Modelling of a hand detection problem is based on linear Finite Impulse 

Response (FIR) based regression models and performed using MATLAB tools. 

The modelled system comprises an environment model, a hand model 

and an identification block. A series of experiments testing both time-invariant 

and time-variant environment models and time-variant hand models show 

the importance of a correct choice of the EF factor. The experiments prove 

the accuracy of the algorithm and the possibility to calculate a distance 

http://sp.utia.cz/index.php?ids=results&id=noise-cancellation
https://doi.org/10.1109/IWSSIP.2019.8787283
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from the hand to the device. The final version of the algorithm is supposed to be 

implemented on the embedded Xilinx Zynq device equipped with a microphone 

and ultrasound transducers. 

The article is available at http://library.utia.cas.cz/separaty/2019/ZS/likhonina-

0505584.pdf  

3. Likhonina R. Hand gesture recognition based on ultrasound technology:        

pre-processing stage. In: Proceedings - Research monograph: 2019 8th 

Mediterranean Conference on Embedded Computing (MECO), pp. 354-360, 

Eds: Stojanović Radovan, Jóźwiak Lech, Jurišić Dražen, Lutovac Budimir, 

Mediterranean Conference on Embedded Computing - MECO'2019 /8./, (Budva, 

ME, 20190610), DOI: 10.1109/MECO.2019.8760063. 

Abstract: This paper describes an approach, which can be used as a pre-

processing stage for a hand detection and gesture recognition problem. 

The approach is based on noise cancellation using QRD Recursive Least Squares 

(RLS) algorithm with double precision arithmetic and exponential forgetting 

(EF). The paper discusses algorithmic techniques and presents experiments 

showing how it is possible to calculate the distance between a hand and a device. 

A series of experiments were performed. During them a time-variant 

environment regression model and a time-variant hand model as well as different 

values of the EF factor were used. 

The article is available at http://library.utia.cas.cz/separaty/2019/ZS/likhonina-

0505586.pdf  

4. Likhonina R. Hand detection algorithm: pre-processing stage. In: Proceedings 

of the 17th international conference on informatics in control, automation and 

robotics, pp. 695-701, Eds: Gusikhin Oleg, Madani Kurosh, Zaytoon Janan, 

ICINCO 2020 (17th international conference on informatics in control, 

automation and robotics), (online conference, FR, 20200707), 

DOI: 10.5220/0009885206950701. 

Abstract: The present work describes a new approach to hand detection based 

on QRD Recursive Least Squares (RLS) Lattice algorithm and probabilistic 

approach to system identification. The described method is supposed to be used 

as a pre-processing stage for a hand gesture recognition application based on 

ultrasound technology. The approach includes a noise cancellation concept and 

uses linear Finite Impulse Response (FIR) based regression models in MATLAB 

environment. Within the algorithm the hypothesis testing technique is 

implemented. The work shows the results of computation using real data from 

an ultrasound device. The final version of the algorithm is supposed to be 

implemented on the embedded Xilinx Zynq device. 

The article is available at http://library.utia.cas.cz/separaty/2020/ZS/likhonina-

0532163.pdf  

http://library.utia.cas.cz/separaty/2019/ZS/likhonina-0505584.pdf
http://library.utia.cas.cz/separaty/2019/ZS/likhonina-0505584.pdf
https://doi.org/10.1109/MECO.2019.8760063
http://library.utia.cas.cz/separaty/2019/ZS/likhonina-0505586.pdf
http://library.utia.cas.cz/separaty/2019/ZS/likhonina-0505586.pdf
https://doi.org/10.5220/0009885206950701
http://library.utia.cas.cz/separaty/2020/ZS/likhonina-0532163.pdf
http://library.utia.cas.cz/separaty/2020/ZS/likhonina-0532163.pdf
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CHAPTER 3 

Algorithm Optimisation on a PC 
 

 

The present chapter is devoted to the optimization of the QRD RLS Lattice algorithms 

and to the implementation of its pipelined version on a PC. It also analyses the obtained 

results from the viewpoint of computational time and the number of operations per 

second for different pipe-line versions of the algorithm. In the end the main 

contributions of this stage of the research and the related publications are discussed. 

3.1. Batch Version of the Algorithm 

As it was described in the previous section, though the algorithm manages to calculate 

the outputs within 60s, which corresponds to the duration of the real data obtained from 

the ultrasound device; still there is a need to optimize and accelerate it as far as it is 

supposed to be used on a hardware platform with a small memory footprint and with 

a lower processor frequency. 

The version of the algorithm, which was used in the previous experiments, functions 

in a way that all variables needed for computation, i.e. the inputs, are initialized and 

saved in the global memory in the MATLAB R2019b environment [70], while 

the computation is made in the С code using .mexw64 files. Each time step 

the programme needs to take the variable, to allocate the memory for it, to make 

computation and to return the variable back. It takes time and slows down 

the computation process. 

In a batch version of the algorithm the computation is performed in a way that during 

the initialisation, all necessary inputs are prepared in the MATLAB R2019b 

environment and after that they are copied to the locally allocated memory, which 

is not moved and which is not allocated all the time. The C functions have pointers on 

the data and work with the local data only. The programme takes all variables prepared 

in advance, computes the algorithm and returns the outputs to MATLAB R2019b. 

After it the hypotheses are calculated. In this way the time of computation can be 

reduced. 

After fulfilling these changes, the computational time is substantially reduced from 45s 

of a non-batch version to 19s of a batch version of the algorithm, which is almost 

two times. 

The next change, which has to be done in the structure of the algorithm, is to perform 

computation in the single precision (SP) arithmetic. The point is that the Xilinx Zynq 

Ultrascale+ hardware platform is best suited for computing the floating point (FP) 
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operations, which results in the worse accuracy, but in the higher speed. The previous 

version of the algorithm uses the double precision (DP) arithmetic both during 

computation in the MATLAB R2019b environment and in C code using .mexw64 files. 

Therefore, the next step is to use the SP FP operations instead, while computing 

the algorithm in C code and to control if the accuracy of the outputs is still satisfactory 

for our purposes. 

It is obvious from Fig. 3.1 that the hand presence is detected precisely by switching 

between the model of a higher order (red coloured), when there is no hand, and 

the model of a smaller order (green coloured), when the hand appears. Thus, the results 

obtained during performing the computation in the SP FP arithmetic are very similar to 

those made in the DP arithmetic and can be considered to be accurate. 

As far as the computational time is concerned, it does not decrease very much and 

constitutes approximately 16s (compared to 19s in the DP arithmetic). 

This small decrease of the computational time can be explained by the fact 

that all inputs are calculated in the MATLAB R2019b environment in DP. After that 

they are converted into variables in SP FP and the algorithm is computed in C code 

using .mexw64 files. After the main computation is made, the outputs in SP FP are 

converted into the outputs in DP and returned to MATLAB R2019b. The DP-SP-DP 

conversion performed before and after the main computation slows down the process. 

However, when the algorithm is mapped on the ARM Cortex A53 device, all operations 

will be made in SP FP and, therefore, it is supposed that the computational time will be 

potentially decreased. 

To be able to implement the algorithm on the ARM Cortex A53 device and to use 

the benefits of the parallel computation, there is a need to perform several steps. 

 

Figure 3.1: QRD RLS Lattice algorithm – single precision arithmetic 
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As the first step, it is necessary to pipeline it, i.e. to divide it into a number of processes, 

where the output of one process will be the input for the next one. The systolic structure 

of the QRD RLS Lattice algorithm allows doing it more or less easily. 

Such kind of processes can be executed sequentially or in parallel. The latter is the final 

goal of the algorithm modification in this chapter. 

3.2. Pipelining and Parallel Processing 

Since it is necessary to optimize and to accelerate the QRD RLS Lattice algorithm 

to make it suitable for the implementation on the ARM Cortex A53 device, a pipelining 

and a parallel processing comes into consideration. 

It should be noted that the pipelining and parallel techniques come along with each 

other. It means that if the algorithm can be pipelined, it can also be processed 

in parallel. 

The pipelining is a technique where a problem is divided into several stages. Each stage 

is separately executed and is connected with other stages. The block diagram in Fig. 3.2 

illustrates the process of the pipelining [27, 98]. 

It is clear from the block diagram in Fig. 3.2 that each stage S1-Sn has an input register, 

which contains the data necessary for processing. The output of the preceding stage 

serves as the input to the following stage. The computation process in this case is made 

sequentially from S1 to Sn, where in the last stage the final computation results 

are available. 

It should be noted, however, that in case with the QRD RLS Lattice algorithm, which 

has a systolic array structure, the time is fixed. The computation begins from order 0 

and runs up to the pre-defined order n, where variables of a higher order are fully 

dependent on the variables of a lower order. It is not possible to cut the algorithm at any 

time, but it is possible to define a certain boundary, where the state variables can be 

saved and moved to the next stage of computation starting from the order n+1. It is also 

possible to compute the vector of such state variables for each time step t, t+1, t+2…t+n 

and to save them for the next stage of the computation process. 

This systolic property of the algorithm enables to do the pipelining and parallel 

processing, which will be described in more details in the next sections of this chapter. 

 

Figure 3.2: Block diagram of the pipelining process [98] 
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The purpose of the pipelining is to reduce the throughput of the system and make 

the computation possibly faster [27]. Due to the increase of the system throughput, 

the power consumption can be also reduced. All this is very critical for 

the implementation of the algorithm on the Xilinx Zynq Ultrascale+ hardware platform. 

However, there are a number of risks connected with the pipelining, which should be 

considered while performing it. 

One of the risks associated with the pipelining is possible conflicts between instructions 

using the data. Thus, it is important to ensure that the following instruction is not 

allowed to access the data if the preceding one is working on them [27, 98]. 

This issue leads to the problem of the data dependency, when the results 

of the following stage are dependable on the outputs of the previous one [27, 98]. 

The parallel processing differs from the pipelining in a way that during the pipelining 

the independent stages are executed in an interleaved manner (see Fig. 3.2), while 

in the parallel processing it is achieved by duplicating the hardware (see Fig. 3.3) [27]. 

It means to build a parallel processing structure, the Single-Input-Single-Output (SISO) 

system needs to be converted into a Multiple-Input-Multiple-Output (MIMO) 

system [27]. 

The block diagram in Fig. 3.3 shows that in the parallel processing a problem is also 

divided into several smaller independent parts, or blocks as it was made in 

the pipelining; however, they are processed concurrently by multiple processors. 

The processors communicate via a shared memory [80]. 

 

Figure 3.3: Block diagram of the parallel processing [80] 
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It is also shown in Fig. 3.3 that each part is further divided into the sequences 

of instructions. The execution of the instructions is coordinated by the control unit. 

After all stages are executed, the computation results are combined as a part 

of the whole algorithm [80]. 

As far as several inputs can be processed at the same time, the sampling rate is reduced. 

It decreases the power consumption and speeds up the computational time [80]. 

Thus, the pipelining and parallel processing techniques can be combined to make 

the QRD RLS Lattice algorithm faster and to decrease the power consumption. 

Due to its systolic structure, it is possible to divide the algorithm under consideration 

into several stages for processing it in an interleaved manner. Further on, these stages 

can be processed in parallel on multiple processors. The next section describes 

the mentioned approach in more details. 

3.3. Parallel Computing Toolbox in MATLAB R2019b 

To perform the parallel computation there is a special toolbox in MATLAB R2019b, 

which is called the Parallel Computing Toolbox. It aims at dividing a large 

computationally and data intensive problem into smaller parts, after which these parts 

can be computed using multicore processors. The toolbox comprises high-level 

constructs such as parallel for-loops, special array types, and parallelized numerical 

algorithms. It enables to run programmes in both interactive and batch modes. 

The applications are executed on so-called workers, which run locally. The workers 

represent the MATLAB R2019b computational engines [71]. 

To compute in parallel, it is necessary to use “parfor loop”, which allows independent 

iterations to run in parallel on multicore central processing units (CPUs). The parallel 

pools are automatically created by “parfor”. The file dependencies are automatically 

managed [71]. 

The safest way to test this tool with the algorithm under consideration is to compute two 

identification models of different orders simultaneously. It can be done without large 

changes in the algorithm as far as there is no dependency between the models. 

There is a need only to provide both models with the input data (see Fig. 3.4). 

By applying the MATLAB R2019b Parallel Computing Toolbox, two identification 

models M1 (the identification model of a higher order) and M2 (the identification model 

of a smaller order) are computed as two processes on two cores in parallel. 

For these purposes MATLAB creates two server MATLABs on two cores of a PC, i.e. 

MATLAB worker 1 and MATLAB worker 2 in Fig. 3.4. It copies all necessary input 

data for the model M1 and for the model M2 to both of its workers. After receiving 

the necessary inputs, both workers process the data independently and simultaneously. 

As soon as the computation is fulfilled, the results are sent to the main programme, 

where, based on the outputs, hypothesis testing is performed. 
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Figure 3.4: Parallel processing in MATLAB R2019b 

The final computation results are the same as they were discussed in the section 

about computing the real data using the QRD RLS Lattice algorithm. 

As far as the computational time is concerned, it is 16s for the computation in DP 

and 14s for the computation in SP FP on the same PC described in the previous 

sections. If compared with the previous results, which was 19s for the computation 

in DP and 16s for the computation in SP FP, it is obvious that the algorithm is not much 

faster than it was before without using the Parallel Computing Toolbox. It is due to 

the fact that there is still a very large volume of the data, which has to be duplicated 

for the parallel processes. Thus, there is a need to divide the problem into smaller parts 

to reduce the amount of the data for each core of the processor. 

To accelerate the algorithm, each identification model should be pipelined into more 

parts. There are several versions of the pipelining and parallel processing considered 

and analysed in this section in terms of the computational time and the number 

of operations per seconds. These versions are the following: 

1. Two processor cores: 

a. one process of 256 for M2; one process of 768 for M1, 

b. one process of 256 for M2; three processes for M1, each of 256. 

The first case is to process the data on two cores of the processor. It has two 

possibilities. The first one is to process two identification models, - one of which 

is of order 256 and another one is of order 768, - on two separate processor cores 

as it was described above, which does not speed the computation very much. 

The second possibility is to divide computation for M1 into 3 parts, each of which 

will be 256 (see Fig. 3.5). 

Thus, there will be one process T1=256 for M2 and three processes T2, T3, T4 for M1, 

each of which is of size 256. The process T1 is processed on one processor core 

and the processes T2…T4 are processed on another processor core sequentially. 
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Figure 3.5: Parallel processing (2 processor cores) 

 

2. Four processor cores: 

a. one process of 256 for M2 processed by one processor core; 

three processes, each of size 256, for M1 are processed by three 

processor cores. 

b. two processes, each of 128, for M2 processed by one processor core; 

six processes, each of 128, for M1 processed by three processor cores. 

As far as M1 was already pipelined into three smaller parts, it is logically to try 

to compute each part in parallel (see Fig. 3.6). 

Thus, in case of four processor core processing, there is one processor core, 

which computes the identification model M2 of order 256 and there are other three 

processor cores, which perform the computation of three processes, each of 256, 

for the identification model M1 of order 768. The difference with the two processor core 

version is that in case of four processor core computation, all processes can be 

processed in parallel. 

The second variant of four processor core version of the computation has both models 

M1 and M2 pipelined into smaller parts, each of which is equal to 128. The block 

diagram of this case is shown in Fig. 3.7. 
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Figure 3.6: Parallel processing (4 processor cores) 

 

 

Figure 3.7: Parallel processing (4 processor cores, 8 processes) 

It is obvious from the block diagram that M2 is divided into two processes T1 and T2, 

each of which has size of 128. Both processes are computed on one processor core 

sequentially. 

M1 is divided into six processes T3…T8 and can be processed on three processor cores. 

Each processor core can process two processes. Thus, processor 2 will process T3 

and T4 sequentially, processor 3 will process T5 and T6 sequentially and finally 
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processor 4 will process T7 and T8 sequentially. In the final implementation 

the processor cores can execute their operations in parallel. 

This variant of four processor core computation leads to the last case considered 

in this section – eight processor core processing. 

3. Eight processor cores: two processes, each of 128, for M2 processed 

by two processor cores; six processes, each of 128, for M1 processed by six 

processor cores. 

As far as both identification models are already pipelined and the total number 

of processes is 8, they can be logically executed on the eight core PC (see Fig. 3.8). 

 

Figure 3.8: Parallel processing (8 processor cores) 
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Figure 3.8 illustrates that each thread of size 128 is executed on a separate processor 

core. Thus, the computation can be parallelized in this way. 

However, to make cores run simultaneously, the algorithm should be divided not only 

in terms of its size, but also in terms of time. It is necessary to prescribe time for each 

process, to decide, which data from the preceding stage of computation will be 

the inputs for the next stage of the algorithm and to ensure the data independency 

while processing separate parts of the algorithm. 

The matrix of the state parameters in our case, i.e. the outputs, which will be the inputs 

for the next stage of computation, comprises 9 elements. These parameters should be 

transferred from one stage of the computation process to another as it is shown 

in Fig. 3.9. 

In terms of time the algorithm time step, i.e. N=528000 samples, was divided into 10, 

20, 50, 100 and 200. Due to the pipelining and parallel processing, there is no need to 

copy the whole matrix of the input data for each process, but only the data this or that 

process is supposed to work on at that certain moment (see Fig. 3.10). It decreases 

the amount of the data each processor should deal with. 

 

 

 

Figure 3.9: State parameter transmission 
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Figure 3.10: Data transfer for parallel processing 

It should be noticed that the smaller step is, the faster the algorithm should be. 

It is logical to divide time into smaller steps. However, it is not always the case, because 

the data communication is also increasing. It results in slowing down the computation 

process. So, there is a need to analyse, which is more appropriate for the situation under 

consideration, and to find a golden middle. The results of experiments of the parallel 

processing are illustrated in Tables 3.1-3.5 and in Fig. 3.11-3.12. 

Let us remind that in order the algorithm could be used for the real time applications, 

it should compute outputs within 60s and deliver at least 307 MFLOP/s. Table 3.1 

shows the number of MFLOP per second for each version of the pipelined processing 

given N=528000. 

Figure 3.11 shows the computational time needed for processing the algorithm 

in different versions of the parallel implementation when time step N is divided 

into smaller parts. The graph in Fig. 3.11 illustrates the example of the computational 

time received while computing in the SP FP arithmetic. 
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Table 3.1: Number of operations per second (for N=528000) 

Number of processors MFLOP/s 

1 307 

2 (1 processor) 307 

2 (2 processors) 307 

4 316 

8 316 

 

 

Figure 3.11: Time needed for the algorithm computation given a different number of processors 

It is obvious that the fastest version of the algorithm for the final results of computation 

is when time step N is divided by 10. The time of computation is increasing 

with the increase of the amount of the data needed to be processed at each stage. 

However, up to N divided by 140 (for 8 cores), the algorithm is computed 

within required 60s. 

More detailed results for the computation both in the DP and SP FP arithmetic are 

presented in Tab. 3.2 and Tab. 3.3 respectively. 

From the tables it is clear that when N is divided by 200, for the eight processor core 

versions the final computational time is not sufficient as far as it constitutes 83s and 81s 

for the computation in DP and SP FP respectively. For other versions of the parallel 

processing, it is still within 60s. 

However, we should also consider the computational time for each separate output, 

which is presented in the last columns of the tables. Thus, for the fastest version 

of the algorithm, i.e. N/10, it is 6s. It means that only once in 6s the hypotheses 

can obtain the necessary data and decide if there is a hand or there is no hand in front 

of the device. It is obvious that for the real-time applications this case is not appropriate. 
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Table 3.2: Computational time (DP arithmetic) (for N divided into smaller parts) 

Time step 
Time [s] Time [s] Time [s] Time [s] Time [s]  

Outputs [s] 

1DP 2DP1 2DP2 4DP 8DP  

10 16 15 10 8 7  6 

20 16 16 12 11 13  3 

50 16 21 18 18 25  1.2 

100 16 29 27 30 45  0.6 

200 16 44 45 54 83  0.3 

 

Table 3.3: Computational time (SP arithmetic) (for N divided into smaller parts) 

Time step 
Time [s] Time [s] Time [s] Time [s] Time [s]  

Outputs [s] 

1FP 2FP1 2FP2 4FP 8FP  

10 12 12 8 7 6  6 

20 13 14 11 10 12  3 

50 12 18 16 17 24  1.2 

100 12 26 25 28 44  0.6 

200 12 41 43 53 81  0.3 

 

In the second case N is divided by 20, i.e. that the outputs are available every 3s, 

which is also not enough for the real-time applications. 

For N divided by 50, it constitutes 1s, which is already close to what is required. 

And only when N is divided by 100 or a higher number, it gives a less than 1s period 

of the identification process, where the data needed for hypothesis testing are provided 

and, thus, the hand presence is detected. 

Figure 3.12 shows the number of operations per second, which each analyzed version 

of the algorithm requires. It is clear from the graph that the number of operations 

per second is decreasing with the higher amount of the data needed to be duplicated 

from MATLAB for performing the parallel processing given a higher number 

of processors, which are available. Thus, the least MFLOP/s is for the eight processor 

core version of the algorithm given N/200. 

More detailed information both for the DP and SP FP computation is given in Tab.3.4 

and Tab.3.5. 



104 
 

 

Figure 3.12: Number of operations per second given a different number of processors 

 

 

Table 3.4: Number of operations per second for the algorithm in the DP arithmetic 

Time 

steps 

MFLOP/s MFLOP/s MFLOP/s MFLOP/s MFLOP/s  
Outputs [s] 

1DP 2DP1 2DP2 4DP 8DP  

10 1150 1227 1840 2629 2629  6 

20 1150 1150 1533 1840 1416  3 

50 1150 876 1022 1082 736  1.2 

100 1150 635 682 657 409  0.6 

200 1150 418 409 347 222  0.3 
 

 

Table 3.5: Number of operations per second for the algorithm in the SP FP arithmetic 

Time 

steps 

MFLOP/s MFLOP/s MFLOP/s MFLOP/s MFLOP/s  
Outputs [s] 

1FP 2FP1 2FP2 4FP 8FP  

10 1533 1533 2300 2629 3067  6 

20 1416 1314 1673 1840 1533  3 

50 1533 1022 1150 1082 767  1.2 

100 1533 708 736 657 418  0.6 

200 1533 449 428 347 227  0.3 
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Because hypothesis testing has to be in real time and because the algorithm is supposed 

to be processed on more than two cores, the parallel version of the algorithm given N 

divided by 100 is the best variant from the described cases so far. 

Thus, the four processor PC delivered the SP FP performance for the QRD RLS Lattice 

algorithm constitutes 657 MFLOP/s, while for eight processors it is only 418 MFLOP/s. 

In both cases it is enough for the real-time processing. 

According to the experiments presented above, it is clear from Tab. 3.4 and Tab. 3.5 

that the MATLAB R2019b Parallel Toolbox does not parallelize well as far as 

the processing on eight processors is slower than the processing on four processors (44s 

vs 28s respectively). It can be explained by the fact that MATLAB needs to duplicate 

all necessary variables and functions to all its created workers. It means that given N 

divided by 10, MATLAB copies data 10 times for each its worker. With the higher 

division number and the higher number of created workers, the data duplication, 

i.e. the communication overhead, is increasing and it slows down the computation 

process significantly. Therefore, in this particular case parallel processing was not very 

efficient. However, it should be noted that all possible steps for the optimization 

of the algorithm on a PC including converting from DP to SP, using a batch structure, 

the pipelining and parallel processing, were made. 

The next step is to implement one of the pipelined versions of the algorithm on 

the ARM Cortex A53 device. As the golden model, the four processor core version 

is considered to be used as far as the Xilinx Zynq Ultrascale+ has the quad-core ARM 

Cortex A53 processor. 

In this case the algorithm acceleration is supposed to be substantial, because the data 

communication will not be so demanding. There will be one shared memory, 

where the data will be stored. To process the algorithm in parallel, a number of threads 

will be created. They will work with the exact area of the memory, so there will be 

no need to duplicate all data to each thread. Only the state parameters are required 

to be copied. It will decrease the load of the data communication. 

However, in case the HW implementation does not give satisfactory results in terms 

of the computational speed, there will be a need to use the accelerators in the FPGA 

logic of the device. Then, the version of the algorithm with more cores will come 

into consideration. 

3.4. Results and Related Publications 

The outputs and contributions of the research on the present stage of the algorithm 

development are the following: 

1. The QRD RLS Lattice algorithm is pipelined for parallel processing on 2, 4 

and 8 processor cores using the MATLAB R2019b Parallel Toolbox. 

2. The algorithm is able to give the complete development of all necessary 

variables including hypothesis probabilities every 0.6s. It means that it enables 

to reconstruct what the hand did in the time period of 0.6s. It can be beneficial 

for the applications when on the basis of the hand distance from the device 

simple gestures can be identified. 
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The following source codes are available (MATLAB R2019b or a higher version 

and the MATLAB Parallel Toolbox are required) 

at https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina: 

- QRD RLS Lattice algorithm - batch version: 

o double precision arithmetic 

o single precision arithmetic 

- QRD RLS Lattice algorithm – 1 processor core 

o 1 core, 1 process, double precision arithmetic 

o 1 core, 1 process, single precision arithmetic 

- QRD RLS Lattice algorithm – 2 processor cores 

o 2 processor cores, 2 processes, double precision arithmetic 

o 2 processor cores, 2 processes, single precision arithmetic 

o 2 processor cores, 4 processes, double precision arithmetic 

o 2 processor cores, 4 processes, single precision arithmetic 

- QRD RLS Lattice algorithm – 4 processor cores 

o 4 processor cores, 4 processes, double precision arithmetic 

o 4 processor cores, 4 processes, single precision arithmetic 

o 4 processor cores, 8 processes, double precision arithmetic 

o 4 processor cores, 8 processes, single precision arithmetic 

- QRD RLS Lattice algorithm – 8 processor cores 

o 8 processor cores, 8 processes, double precision arithmetic 

o 8 processor cores, 8 processes, single precision arithmetic 

Publications related to the research topic are the following: 

1. Likhonina R., Uglickich E. Hand detection application based on QRD RLS 

Lattice algorithm and its implementation on Xilinx Zynq Ultrascale+. In: Neural 

Network World, 32(2), pp. 73-92, 2022, 10.14311/NNW.2022.32.005. 

Abstract: The present paper describes hand detection application implemented 

on Xilinx Zynq Ultrascale+ device, comprising multi-core processor ARM 

Cortex A53 and FPGA programmable logic. It uses ultrasound data and is based 

on adaptive QRD RLS Lattice algorithm extended with hypothesis testing. 

The algorithm chooses between two use-cases: (1) “there is a hand in front of the 

device” vs (2) “there is no hand in front of the device”. For these purposes a new 

structure of the identification models was designed. The model presenting use-

case (1) is a regression model, which has the order sufficient to cover all 

incoming data. The model responsible for use-case (2) is a regression model, 

which has a smaller order than the model (1) and a certain time delay, covering 

the maximal distance where the hand can possibly appear. The offered concept 

was successfully verified using real ultrasound data in MATLAB optimized 

for parallel processing and implemented in parallel on four cores of ARM 

Cortex A53 processor. It was proved that computational time of the algorithm 

is sufficient for applications requiring real-time processing. 

The article is available at nnw.cz/obsahy22.html  

https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina
https://doi.org/10.14311%2FNNW.2022.32.005
http://nnw.cz/obsahy22.html
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CHAPTER 4 

Algorithm Implementation on the Xilinx 

Zynq Ultrascale+ Cortex A53 ARM 

4 Cores, 1.05 GHz Platform 
 

 

This chapter describes the implementation of the QRD RLS Lattice algorithm 

on the HW platform from the Trenz Electronic, a German provider of the development 

services in the electronics industry. 

The first section is devoted to the device used for the implementation, while 

the following sections present the implementation steps and the ways of the algorithm 

acceleration. Finally, the main outputs of the research on this stage of the development 

are discussed. 

4.1. Trenz Electronic Platform Description 

For the purposes of the implementation of the QRD RLS Lattice algorithm, the Trenz 

Electronic TE0808 SoC and the Trenz Electronic TEBF0808 carrier board are used. 

A short description of the platform together with the implementation steps is presented 

below. 

The Trenz Electronic TE0808 is an industrial MPSoC module, which comprises 

the Zynq UltraScale+ ZU9EG-ES1, the four core ARM processor of frequency 

1.05 GHz, the programmable logic max. 240 MHz, 64-bit DDR4 (max. 4GB), dual SPI 

boot Flash in parallel (512MB maximum), user I/Os, B2B connectors. 

It is of size 52x76 mm and it requires 3.3V power supply. The TE0808 module 

equipped with the components is illustrated in Fig. 4.1 in more details [34]. 
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Figure 4.1: Trenz Electronic TE0808 MPSoC module [34] 

1 - Xilinx Zynq UltraScale+ XCZU9EG MPSoC, 4-7 – 256Mx16 DDR4-2400 

SDRAM, 17-18 - 256Mb serial NOR Flash memory. 

Here only several components of the module are mentioned. For more details about 

the TE0808 MPSoC module components, please, refer to [34]. 

The Trenz Electronic TEBF0808 carrier board is a baseboard, which is used for 

the module described above. It comprises on-board components, which serve for testing 

and evaluating the modules compatible with this board. The board can be fitted into 

a PC enclosure. Fig. 4.2 illustrates the carrier board and its components [35]. 

The TEBF0808 carrier board has several JTAG interfaces, which serve for 

programming both the System Controller CPLDs and the Zynq Ultrascale+ MPSoC. 

It is also equipped with two System Controller CPLDs, which is the central system 

management unit. They control signals, which are logically linked by the implemented 

logic of the CPLD firmware. The CPLD firmware generates the output signals 

to control the system, the on-board peripherals and the interfaces. The System 

Controller also monitors the power-on sequence and displays the programming state 

of the FPGA module [35]. 

The TEBF0808 carrier board has also several EEPROMs for configuration and general 

user purposes, an embedded MMC memory with a memory density of 32Gb (4GB) 

and an on-board Gigabit Ethernet PHY [35]. 

The carrier board size is 170mm x 170 mm [35]. 
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Figure 4.2: Trenz Electronic TEBF0808 carrier board [35] 

7 – FMC HPC connector, 13 – MMC Card socket, 14-17 – a place for a module. 

Here only several parts of the carrier board are mentioned. For more detailed 

information about the TEBF0808 carrier board, please, refer to [34] 

The working prototype of the device used for the algorithm computation is presented 

in Fig. 4.3. 

As it is shown in Fig. 4.3, the prototype consists of the Trenz Electronic platform, 

a computer, a display where the computation results can be viewed, a ventilator to cool 

the Xilinx Zynq Ultrascale+ Cortex A53 ARM processor and other accessories. 
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Figure 4.3: Prototype for the QRD RLS Lattice algorithm computation 
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The board is connected via the Ethernet cable to a mini computer UMAX U-Box N41 

with Intel Celeron Quad Core N4100 (Gemini Lake) 2.4 GHz, Intel UHD Graphics 600, 

4GB DDR4 RAM, 64GB eMMC. The prototype device allows performing 

the algorithm computation, viewing the results on the display and making necessary 

changes of the host SW by cross-compilation of the host code for the ARM processor. 

Besides, it is portable and, thus, it enables a certain level of flexibility and convenience 

while working with it. 

4.2. Algorithm Implementation on the Xilinx Zynq 

Ultrascale+ Cortex A53 ARM Processor, 4 Cores, 1.05 GHz 

The first step of the implementation is to use a batch version of the algorithm, 

which is not parallelized yet and is computed on one core. It is a safe way to implement 

the algorithm on the Xilinx Zynq Ultrascale+ Cortex A53 ARM device and to ensure 

that it functions in a way it is supposed to do. 

Initially, the TE0808 is equipped with the SciLab SW interpret, which is similar 

to MATLAB R2019b [70] and which allows computing the algorithm under 

consideration on the HW platform. 

During the experiments it was shown that the computational time was very long and 

constituted approximately 196s for DP and 189s for SP FP for the data length of 60s. 

Moreover, this time is only for computing two identification models and 

does not consider hypothesis testing. Due to some specificity of the computation 

of some functions in the SciLab SW interpret, the hypothesis computation lasts very 

long: 729s and 727s in DP and SP FP respectively. 

Even taking the computational time for computing the identification models only, 

it is much than twice slower than it is necessary for the real-time processing. 

For a comparison, the computational time on a PC for a batch version of the algorithm 

was 19s. 

The slowdown of the computational time was expectable as far as the Xilinx Zynq 

Ultrascale+ Cortex A53 ARM processor has only 1.05 GHz processor frequency 

compared with 3.5 GHz of the PC, Intel® Core™ i7-4770 CPU. 

It is also necessary to note that for the QRD RLS Lattice algorithm the ARM device 

delivers only 94 MFLOP/s (for DP) and 98 MFLOP/s (for SP) instead of 307 MFLOP/s 

required for the real-time computation. It is obvious that the acceleration 

of the algorithm is needed. 

To optimize and to accelerate the algorithm under consideration, it is necessary to fulfil 

a number of steps. 

Firstly, it is reasonable if the Xilinx Zynq Ultrascale+ Cortex A53 ARM device 

does not use the SciLab SW interpret for generation of the input values. Instead,         

so-called header files, .h, can be created, where all input data will be saved. These 

header files are then copied to the local memory of the Xilinx Zynq Ultrascale+ Cortex 
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A53 ARM device and the processor can work with the necessary data addressing 

to its local memory. It should be kept in mind, however, that the local memory 

is limited in its size and, therefore, it is necessary to ensure that there is enough space 

for the data needed for the computation. 

After the data are copied, the Xilinx Zynq Ultrascale+ Cortex A53 ARM processor runs 

appropriate functions, which compute the algorithm. The computation was presented 

both in the DP and SP FP arithmetic to compare the results. 

Differently from the data processing in MATLAB R2019b, in case of SP FP 

computation, there is no need to convert DP into SP in the beginning and in the end 

of the computation process. It may potentially accelerate the process of computation 

too, but not substantially. 

For the verification purposes, the output values computed in MATLAB R2019b 

were saved as .h files and used as the reference values while verifying the outputs 

computed on the Xilinx Zynq Ultrascale+ Cortex A53 ARM device. 

The computational time for the algorithm in the DP and SP arithmetic constitutes 

approximately 200s and 188s respectively; however, in this case including the 

hypothesis testing computation. It means the Xilinx Zynq Ultrascale+ Cortex A53 ARM 

device delivers only 92 MFLOP/s (for DP) and 98 MFLOP/s (for SP) instead of 307 

MFLOP/s required for the real-time computation. 

Secondly, as far as the Xilinx Zynq Ultrascale+ Cortex A53 ARM device under 

consideration has four processor cores, it means there is a great potential already on this 

stage of the development that the algorithm can be processed in parallel and 

the computational time can be decreased substantially, i.e. approximately up to 3.5x. 

It could be sufficient for the real-time processing. 

However, there are a number of challenges, which should be taken into consideration 

while making the implementation. 

The first challenge is in the data distribution and data storage. The parallel processing 

means that the processors should communicate the data locally. Thus, it is necessary 

to think about how large a separate stage of the algorithm can be to ensure 

that all necessary data are located in the local memory. 

The second challenge is to control that the algorithm parallelization functions in a way 

it should function and the obtained results are correctly computed. During the algorithm 

implementation, it is possible to stop the computation process at any time except for 

processing a microinstruction and to see what there is in the beginning and in the end 

of a computation step. Thus, in this way it is possible to develop and to debug the whole 

computation process. 

The algorithm optimization at this stage of development is performed in two main steps. 

The first step is to divide the QRD RLS Lattice algorithm into smaller parts and to make 

computation run in parallel. When succeeded, the next step is to perform hypothesis 

testing also in parallel and in a way that their outputs, i.e. the probabilities for each 

model, are available at time step corresponding to the real-time processing. 
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In the beginning, the algorithm was split into two parts. One core makes 

the computation for a long identification model (M1, T1 = 768 for H1), whereas the other 

core computes a regression model of a smaller order (M2, T2 = 256 for H2). 

Again, the computation was made both in DP and SP FP and the outputs were verified 

with the results obtained in MATLAB R2019b. 

According to the experiments, this step allows decreasing the computational time 

from 200s to 151s for DP and from 188s to 139s for SP. It means that the Xilinx Zynq 

Ultrascale+ Cortex A53 ARM device delivers 122 MFLOP/s (for DP) 

and 133 MFLOP/s (for SP FP) on this stage of the algorithm optimization process. 

It is not enough for the real-time processing, but already on this stage the algorithm 

can serve as a golden model, which proves that it functions correctly and which can be 

used as a sample for further optimization of the algorithm. 

The next step is to implement the four core pipelined version of the algorithm 

on the Xilinx Zynq Ultrascale+ Cortex A53 ARM device using the computational 

resources of all four processors. 

Again, the input parameters are copied to the local memory via header files prepared 

in advance. Once they are in the local memory, one core computes the QRD RLS 

Lattice algorithm with order n2=256 and time delay TD=512 for a hypothesis H2, 

which has a higher probability when the hand appears in front of the device. 

Other three cores compute the QRD RLS Lattice algorithm with order n1=768 

for a hypothesis H1, which states that there is no hand in front of the device. 

However, the second algorithm is split into three threads T2=T3=T4=256 and each part 

is processed separately by a separate core. 

The results of computation were verified with the reference model provided 

by MATLAB R2019b. 

The experiments show that the computational time is substantially reduced while using 

the four core pipelined version of the algorithm. It constitutes approximately 58s for DP 

and 55s for SP. It means that the Xilinx Zynq Ultrascale+ Cortex A53 ARM device 

delivers 318 MFLOP/s for the DP version of the algorithm and 335 MFLOP/s for the SP 

FP version of the algorithm. This is already sufficient to process the data in real time. 

Figure 4.4 compares the computational time and MFLOP/s for one core (1), two 

core (2) and four core (4) versions of the algorithm on the Xilinx Zynq Ultrascale+ 

Cortex A53 ARM device. The example is given for the SP FP arithmetic 

and for computing with the data blocks equal to 528, i.e. there are the outputs ready 

for hypothesis testing each 60ms, which corresponds to 1000 results in 60s. 

Table 4.1 shows the computational time for four cores given the data divided 

into smaller blocks, where ns is a division factor [64]. 
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Figure 4.4: Computational time and MFLOP/s for different core versions of the algorithm (SP FP 

arithmetic, ns=1000) 

 

Table 4.1: Computational time for different division factors [64] 

ns Time [s] for DP Time [s] in SP 

10 66.57 62.74 

20 62.18 62.70 

50 59.40 56.40 

100 58.57 55.77 

200 58.22 55.23 

1000 57.51 54.85 

2000 57.66 55.25 

4000 57.83 55.33 

8000 57.89 55.13 

16000 58.82 55.56 

 

It is obvious from the table that the best computational time is achieved when the data 

are divided by a division factor ns = 1000 (outlined in green). 

To make the comparison clearer, Figure 4.5 represents an example of the computational 

time for the four core version of the algorithm for the SP FP arithmetic. 

From the graph in Fig. 4.5 it is also clear that the computational time is decreasing 

by making smaller data blocks purposed for the computation and reaches its best value 

at ns = 1000, i.e. a block contains 528 samples at each step of the computation process. 
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Figure 4.5: Computational time for four core version of the algorithm given SP FP arithmetic [64a] 

However, after this value it begins increasing again as far as the communication 

also increases. Thus, a division factor ns = 1000 is considered to be optimal for this case 

of the data processing. 

In the version of the algorithm described above each processor has its own local set 

of variables and there is a need to move the data back and forth between the processors 

to ensure that the following process has all necessary data for the next stage 

of the computation. This has been a source of slowing down in the computation process. 

Another way to ensure that each core has the valid data for the next step of the data 

processing is to apply a so-called cache ping-pong technique. 

Let us remind that the longer algorithm M1 is divided into three threads T2=T3=T4=256. 

To avoid a large data amount movement back and forth between the processors, 

it is possible to create a pair of threads for each part of the algorithm, 2Ta, 3Ta, 4Ta 

and 2Tb, 3Tb, 4Tb, which are fully identical. However, there are twice as much registers, 

which require twice as much memory and which are accessed as group A and group B 

in turns. Thus, when group A is ready with the computation, the data are saved 

in the memory and group B can access them to compute the next step. Applying this 

method, we will ensure that the threads will have the appropriate data for each 

computational step without the additional copy of the data. It eliminates the need to wait 

until the valid data are copied by the single ARM core from T2 to T3 or T3 to T4 

respectively. The principle of the ping-pong technique is schematically presented 

in Fig. 4.6. 

The experiments proved that the method functions well in terms of the accuracy 

and avoidance of the data conflicts. However, it did not succeed to decrease 

the computational time, which remained approximately 58s and 55s for the DP and SP 

FP arithmetic respectively. 
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Figure 4.6: Ping-pong data sharing 

It can explained by the fact that the data transfer is so fast that it does not contribute 

greatly to the time decrease, because the number of variables in this case is growing 

and it potentially slows down caching by a frequent cache-miss. However, 

this technique is supposed to be used on the stage of the QRD RLS Lattice algorithm 

implementation in the FPGA part of the Xilinx Zynq Ultrascale+ Cortex A53 ARM 

device. 

The last step of the optimization at this point is to incorporate hypothesis testing 

into the parallelized algorithm and to see if the computational time increases 

and if the algorithm needs further acceleration or not. 

As it was mentioned above, the optimal division factor ns is equal to 1000. It gives 

the best results in terms of the computational time and it ensures that there will be 

the appropriate data for hypothesis testing each 60ms, which is more than sufficient 

for the real-time processing applications. It should be also noted that the algorithm 

provides the whole information about the identification process including 

the probabilities of each model for 528 samples every 60ms. It helps to reconstruct 

what the hand did during this period of time. 

Thus, the hypothesis computation should be applied in a way that the algorithm gives 

the probabilities of each model every 60ms. For these purposes, two additional threads 

were created: Th1 and Th2. Thread Th1 computes all necessary values for hypothesis H1 

and thread Th2 – for hypothesis H2. They run independently of each other after all 

necessary data needed for the computation are received from thread T1 of model M2 

(for hypothesis H2) and thread T4 of model M1 (for hypothesis H1). 

After threads Th1 and Th2 finish their computation at a certain time step, the probabilities 

of M1 and M2 are calculated. This process is running each 60ms. The whole 

computational time increases, but not critically. After incorporating the hypothesis 

computation, it constitutes precisely 58s for the DP version of the algorithm and 55.24s 

for the SP FP version of the algorithm. It means that the optimization of the algorithm 

was successfully fulfilled and it reaches its main goal: the algorithm can be applied 

for the real-time processing applications. 
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If compared with the computation of the QRD RLS Lattice algorithm 

in MATLAB R2019b with the Parallel Toolbox, the Xilinx Zynq Ultrascale+ Cortex 

A53 ARM implementation has the computational time from 156.27s to 67.13s 

(1 processor to 4 processors) approximately, whereas in the MATLAB environment 

it takes from 12.4s to 6.2s (1 CPU core to 4 CPU cores) approximately to perform 

the whole computation of the algorithm for the computation in 10 steps. 

However, with the increasing number of the processors and with the increasing value 

of the computation steps, the computational time in MATLAB with the Parallel 

Toolbox is increasing, while in the case of the Xilinx Zynq Ultrascale+ Cortex A53 

ARM implementation it is decreasing. Thus, for the Xilinx Zynq Ultrascale+ Cortex 

A53 ARM implementation with four processor cores computing in 1000 time steps, 

the computational time reaches 54.85s, whereas in the MATLAT with four processor 

cores and the computation in 1000 time steps it constitutes approximately 231s. 

The reduced performance of the MATLAB Parallel Toolbox is due to the overhead 

related to the frequent copy of the data and the start of the parallel processes. More 

detailed comparison for one CPU, two CPU and four CPU implementations in terms 

of the computational time and MFLOP/s is provided in Tab. 4.2 and Tab. 4.3. 

Table 4.2: Comparison of the computational time for the MATLAB and ARM implementations (SP 

FP arithmetic, for N divided into smaller parts) 

Time 

step 

(ns) 

MATLAB 

Time [s] 

ARM 

Time [s] 

MATLAB 

Time [s] 

ARM 

Time [s] 

MATLAB 

Time [s] 

ARM 

Time [s] 
 

Outputs 

[s] 
1FP 1FP 2FP 2FP 4FP 4FP  

10 12.41 156.27 9.90 139.06 6.20 67.13  6 

20 12.51 156.44 12.41 138.97 9.59 63.09  3 

50 12.38 156.30 18.08 138.86 16.76 56.79  1.2 

100 12.34 156.19 27.15 139.02 28.41 56.16  0.6 

200 12.35 156.25 44.60 138.79 53.05 55.62  0.3 

1000 12.37 156.09 156.23 138.91 231.31 54.85  0.06 

2000 12.78 187.92 284.50 139.12 421.28 55.25  0.03 

 

Table 4.3: Comparison of the number of operations per second for the MATLAB and ARM 

implementations (SP FP arithmetic, for N divided into smaller parts) 

Time 

step 

(ns) 

MATLAB 

MFLOP/s 

ARM 

MFLOP/s 

MATLAB 

MFLOP/s 

ARM 

MFLOP/s 

MATLAB 

MFLOP/s 

ARM 

MFLOP/s 
 Outputs 

[s] 
1FP 1FP 2FP 2FP 4FP 4FP  

10 1484 118 1861 133 2971 274  6 

20 1472 118 1484 133 1921 292  3 

50 1488 118 1019 133 1099 324  1.2 

100 1493 118 679 133 648 328  0.6 

200 1492 118 413 133 347 331  0.3 

1000 1489 118 118 133 80 336  0.06 

2000 1441 98 65 132 44 333  0.03 
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The rows in green in Tab. 4.2 and Tab. 4.3 are the computational time and MFLOP/s 

respectively given the time step ns = 1000 for different versions of the algorithms 

implemented both in the PC MATLAB R2019b with the Parallel Toolbox 

and on the ARM cores. In case of the computation for 1000 time steps the outputs 

are available each 60ms. 

4.3. Algorithm Implementation in the FPGA Programmable 

Logic 

The previously described steps of the optimization and implementation of the QRD 

RLS Lattice algorithm on the Xilinx Zynq Ultrascale+ Cortex A53 ARM processor 

proved to be successful. However, the computational time is very close to the upper 

threshold for the real-time processing. Thus, for less powerful SoC platforms 

the algorithm will function slower and the efficiency of the proposed solution will 

decrease. 

Therefore, in this section there is a try to convert the algorithm to the FPGA part 

of the Trenz Electronic platform to accelerate the computation and to reach 

the increased performance in respect to the real-time processing. 

In the present chapter the ways of the algorithm transformation to the FPGA 

are described and a comparison with the previously described solutions in terms 

of the computational time and MFLOP/s is presented. 

4.3.1. FPGA Accelerators 

In the previously described SW experiments and implementations the Xilinx Zynq 

Ultrascale+ ZU09-EG-ES1 device has been used. This device has been located 

on the Trenz Electronic TE0808 MPSoC with the Cortex A53 4-core ARM, 

1.05 GHz [34-35]. 

The Xilinx Zynq Ultrascale+ ZU09-EG-ES1 is an evaluation sample of the device. 

It requires the Xilinx Vivado 2017.4 [104] and SDSoC 2017.4 design tools [107-108]. 

The SDSoC 2017.4 design tools are supported by Xilinx only up to the version 2019.1. 

Starting from the Xilinx tools release 2019.2, the Xilinx decided to support a new Vitis 

toolchain [103]. 

Therefore, the perspective development of the HW accelerators mapping to the HW 

acceleration required to migrate from the Xilinx SDSoC toolchain to the Xilinx Vitis 

acceleration flow, starting from the Xilinx 2019.2 tools. 

It is the reason why in this section, we will target: 

o the Xilinx Zynq Ultrascale+ ZU09-EG-1E device on the TE0808-09EG-1E 

module with 2GBytes of DDR4 memory and the 4-core A53 ARM processor 

(1.05 GHz), 

o the Xilinx Zynq Ultrascale+ ZU15-EG-1E device on the TE0808-15EG-1E 

module with 2GB of DDR4 memory and the 4-core A53 ARM processor 

(1.05 GHz). 
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The Xilinx Zynq Ultrascale+ ZU09EG device supports only BRAMs, whereas 

the Xilinx Zynq Ultrascale+ also supports URAMs. 

The Xilinx Zynq Ultrascale+ ZU09EG device is a direct replacement           

of the ZU09-EG-ES1 device. It can implement eight HW Data Processing Units (DPUs) 

in the programmable logic. These units use BRAMs (1K x 32b). 

The Xilinx Zynq Ultrascale+ ZU15EG device can also implement eight HW DPUs 

in the programmable logic. These units use 112 URAMs (4K x 64b) and also some 

BRAMs (1K x 32b). The HW module works with 4GB 64-bit DDR4 SDRAM, 128MB 

SPI Boot Flash (dual parallel) [102]. 

Both devices are supported by the Xilinx High Level Synthesis (HLS 2019.2) 

and by the Xilinx Vitis 2019.2 acceleration design flow. This is a software platform 

developed by the Xilinx and released first in year 2019. The Vitis acceleration flow 

design methodology enables portability from a platform to a platform (standard Xilinx 

development boards or custom boards) and also a platform reuse, i.e. it is possible to 

swap different acceleration applications with the same platform [109]. 

The ZU09-EG-ES1, ZU09-EG-1E and ZU15-EG-1E have the same speed grade 

of the programmable logic and the same performance of the 4-core 1.05 GHz A53 ARM 

processor. Therefore, the SW implementation results made in the previous chapters can 

be compared with the implementation results in the FPGA obtained in this chapter. 

The HW version of accelerators, which can be used for the computation 

of a parallelized version of the QRD RLS Lattice algorithm, uses eight Single 

Instruction Multiple Data (SIMD) DPUs developed in ÚTIA, the signal processing 

department. The detailed information about these HW accelerators can be found   

in [42, 45]. In this section only a short description is presented. 

The internal structure of the Zynq Ultrascale+ SoC with eight accelerators is illustrated 

in Fig. 4.7. 
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Figure 4.7: Zynq Ultrascale+ SoC with eight 8xSIMD HW accelerators [45] 

The HW acceleration is represented by eight accelerators and a direct memory access 

(DMA) input/output [45]. 

There is a possibility to develop the SW firmware, which uses the accelerator. 

This firmware can be compiled by the user application running in Petalinux 

or Debian OS on the A53 processor [42, 45]. 

The Debian OS can be configured for an automatic boot of the X11 Desktop after 

the Power On. It contains the SciLab SW interpret with a graphical GUI. The SciLab 

can be used autonomously without a PC [42, 45]. 

The HW of the floating point accelerators is fixed. The reconfiguration can be made 

by reprogramming the firmware code. The firmware defines the function 

of the programmable finite state machine (FSM) inside the accelerator and the function 

of the communication logic [42, 45]. 

The input comprises the programme firmware data, the configuration registers for 

the scalar control and the floating point single precision data. Both the program 

firmware data and the floating point single precision results are transmitted via the AXI 

stream interface from the ARM processor [42, 45]. 
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The outputs have two parts: dedicated interrupt lines indicating the end of the data 

movement operation, and the floating point single precision result data, 

which are received in the data buffers in DDR4 memory via the AXI stream interface 

generated in the SDSoC [42, 45] or in the Vitis [103] acceleration flow. 

Data communication is implemented as an AXI-stream. The connectivity is represented 

with the AXI stream input, the AXI stream output and the AXI-lite configuration 

registers [42, 45]. 

The AXI stream input has input FIFO 512x256b and supports the AXI stream side 

channel indicating the last transferred word sent to the component via the DMA 

transaction from the ARM processor [42, 45]. 

The AXI stream output has output FIFO 512x256b and supports the output side channel 

indicating the last transferred word sent from the component via the DMA to the ARM 

processor [42, 45]. 

The interfaces of the accelerators include the data streaming I/O, which is AXI-S 256b 

at 240 MHz and the firmware programme VLIW 128b at 240 MHz. [42]. 

The 8xSIMD HW accelerator firmware is a simple sequence of VLIW vector 

instructions, which is stored in the accelerator programme memory. The accelerator 

does not support for-loops, if-else, and similar constructs as well as it does not perform 

checking overflow/underflow in the floating point operations [42, 45]. 

The firmware can be first defined in the host software and then downloaded via 

the streaming interface to the accelerator. It is re-programmable in run-time by the data 

streaming. The computation and data streaming can be performed in parallel [42, 45]. 

The accelerator has two parts. One side is responsible for the data communication 

and the other is responsible for the computation. The computation and stream-based 

data communication can be overlapped. This is controlled by the user-space host 

software running on the ARM core. It can be used for the run-time reconfiguration by 

loading a new VLIW instruction sequence to the accelerator programme memory 

while the computation is in progress [42, 45]. 

The architecture allows designing a time configurable set of SP FP data-flow operations 

driven by the predefined state machines. Possible variants are the following [42, 45]: 

o 8xSIMD_v10 Operations: SP FP Vector ADD, SUB, MUL, DIV operations, 

o 8xSIMD_v20 Operations: (1) + SP FP MAC (chained multiply and add 

operation), 

o 8xSIMD_v30 Operations: (1) + (2) + SP FP vector by vector dot product 

operation, 

o 8xSIMD_v40 Operations: (1) + (2) + (3) + SP FP extended vector by vector dot 

product operation. 

The data communication support HW is determined at the design time and cannot be 

changed at the runtime. The HW data movers are generated by the Xilinx 
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Vitis 2019.2 [42, 45]. In the application described below the DMA HW interrupt based 

API is used. 

As far as the memory of the accelerator is concerned, the data are stored in dual-ported 

blocks. Speaking more precisely, the 8xSIMD HW accelerator has 12 dual-ported 

4096x64b URAMs Blocks (0…11) in case of ZU15EG device or 48 dual-ported 

1024x32b BRAMs in case of ZU09EG device, which are used as 24 Data RAM 

1024x32b A1…A8, B1…B8 and Z1…Z8. 

The 8xSIMD HW accelerator has two 4096x128b Blocks (12, 13), which are used 

as programme RAM 4096x128b P1…P3 (see Tab. 4.4) [42, 45]. The ZU15EG uses two 

URAM memory blocks and the ZU09EG uses 16 BRAM memory blocks 

for a programme. 

Thus, for the algorithm implementation purposes there is an environment with the four 

core A53 ARM, which has Linux running on the ARM core and the HW acceleration, 

i.e. eight 8xSIMD accelerators in the programmable logic part of the device [42]. 

The golden model MATLAB .mex functions are used to verify both the results   

of the 4-core ARM SW implementation and those of the HW acceleration part. 

The results obtained from MATLAB, from SW implementation and from HW 

implementation are then compared in terms of computational time and number 

of operations per second. 

 

Table 4.4: Internal block rams of accelerators [42, 45] 
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4.3.2. Algorithm Implementation in the FPGA Logic Part of the Device 

This chapter describes the computation of two FIR filters based on the QRD RLS 

Lattice algorithm and their probabilities in the programmable logic part of the Xilnix 

Zynq Ultrascale+ device. The computation results are compared and verified with 

the golden model from MATLAB R2019b. The implementation is performed in 

a hardware pipeline and benefits from the parallel processing. The communication uses 

a ping-pong sharing technique, the principle of which was described in the previous 

chapters. 

Let us remind the design used for the four core ARM computation. 

There are four cores working in parallel and computing two regression models, M1 and 

M2. M1 is of order 768, M2 has a smaller order of 256 and a time delay of 512. Both 

models are internally systolic arrays. This allows the algorithm implementation on four 

SW threads – T1=256 for the computation of M2 and T2=T3=T4=256 – 

for the computation of M1. It means that the system order for a large Lattice is 768 

and the system order for a small Lattice is 256 (see Fig. 3.6). 

In order to cut the QRD RLS Lattice algorithm into several parallel processed, system-

order related stages, it is necessary to define, to store and to transfer the outputs, 

which will be the inputs for the next stage of the computation. They should be 

transferred from one stage of the computation process to another stage. Nine 

input/output variables were defined (see Fig. 3.9). 

Besides, it should be kept in mind that there is a certain phase of a run-up 

of the algorithm before the parallel computation and a certain phase of a wind-up 

of the algorithm after the parallel computation. 

The run-up phase is needed to ensure that all cores will have data for starting 

the computation in parallel. The wind-up phase finishes the computation and gradually 

frees the parallel computed cores (see Fig. 4.8). 

 

Figure 4.8: Run-up – parallel computation – wind-up 



124 
 

In case of the ARM processor the algorithm is divided only into four stages, while 

the ARM processor has only four cores and a large memory to keep a large amount 

of data there. The computational capabilities of four cores were fully used and, thus, 

the computation itself was very efficient. Besides, the ARM processor works at 

1.05 GHz frequency. As the result the computational time of the algorithm was enough 

for the real-time data processing. 

However, in case of the FPGA implementation there are certain limitations. Firstly, 

the local memories of the HW device are small and it is impossible to move such a large 

amount of data there. Secondly, it works at 240 MHz frequency. 

On the other side, there are eight accelerators in the FPGA. Each accelerator has eight 

layers, i.e. 8x8=64. It means there are 16x more threads, which can process the data 

in parallel. It gives a great potential to accelerate the algorithm if it is specially 

optimized for the HW application. 

To fulfil it, the first step is to divide the algorithm into smaller parts in order to meet 

memory limitations of the HW device and to use fully all eight DPUs and eight layers 

in them. 

For these purposes, the algorithm is divided in a way that each stage computes four 

orders at each time step. It means a smaller identification model M2 is divided 

into 64 pthreads (64 pthreads x 4 orders = 256 order) and a larger identification model 

M1 is divided into 192 pthreads (192 pthreads x 4 orders = 768 order). 

It was the maximal possible amount of data, which can be put in the local memories 

of the device in the present HW design. 

This solution was firstly proposed and verified in the SW on the ARM processor. 

The SW version can be executed in pthreads started from the user host application. 

The pthreads, similarly as it was in the previous implementation, run in parallel 

under control of the ARM Linux kernel and on four cores of the ARM A53 processor. 

However, the computational time considerably increases from 55s to approximately 

120s. This increase is due to the following reasons: 

(a) the communication traffic between pthreads substantially increased, 

(b) the overhead related to starting and stopping pthreads increased, 

(c) the volume of the computation in each pthread decreased by the move 

from 4 pthreads to 256 pthreads. 

It results in slowing down of the SW version of the algorithm. 

The computation process for the FPGA implementation of the algorithm 

is schematically presented in Fig. 4.9. The ARM part is presented in yellow colour, 

while the FPGA logic part is coloured in green. 
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Figure 4.9: Block diagram of the computation process 
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As it is obvious from Fig. 4.9 the design works with three HW data movers, – 

memory_read, memory_write and memory_move, - and eight 8xSIMD FP03x8 

accelerator HW IPs. All kernels are interfaced using OpenCL C++ API and compiled 

to the HW by the Xilinx Vitis 2019.2 toolchain. 

Before starting the computation process, the SW OpenCL utility functions find a HW 

image in the HW archive on the SD card and verify what kind of devices exist and what 

kind of functions they can fulfil. 

Moreover, the parameters should be defined and the registers should be set up 

in the SW to launch the HW kernels and to start the current stage of computation 

in the HW cores. The registers are set up via the AXI-lite to make the HW kernels know 

the amount of data and their destination. After it all kernels are ready to be started. 

The memory_read kernel sends the input data from DDR4 device buffers A to eight 

8xSIMD HW accelerators sequentially. It works on 240 MHz. The communication 

width is 256b, i.e. 8x32 words. 

The memory_write kernel sends the output data from eight 8xSIMD HW accelerators 

to device buffers in the DDR4. It also works on 240 MHz. The communication width 

is 256b, i.e. 8x32 words. 

The memory_move kernel connects the QRD RLS Lattice algorithm stages by moving 

the outputs from the output data buffers Z in the DDR4 to the input data buffers A 

in the DDR4. 

In the ARM host SW the OpenCL function “migrate” is used to migrate the data 

from the host Global Memory into the Linux part of the DDR4 to the linear address 

space device buffers in the DDR4. 

The device buffers A, B and Z contain the data for all eight 8xSIMD HW accelerators. 

The data in A, B and Z device buffers are divided into 8 parts, i.e. A1…A8, B1…B8, 

Z1…Z8, for eight 8xSIMD HW accelerators. 

The device buffers A are used for the inputs, whereas the device buffers Z are used 

for the outputs. 

The device buffers B are used for the internal state of both Lattice filters (lattice 

coefficients), which are then stored and updated inside of eight 8xSIMD HW 

accelerators. There is no need to copy them to the DDR4 device buffers during 

the algorithm computation. 

There are four memory block types inside each 8xSIMD accelerator: A, B, Z and P. 

Memories A, B, Z are the data blocks, where A1…A8 is for the inputs, B1…B8 

is for the state variables and Z1…Z8 is for the outputs. These are the local memories 

in the FPGA, which are not accessible by the ARM processor. 

P is a programme block, where the instructions for the computation are saved. 

The composition of blocks A, B, Z, P is presented in Tab. 4.4. 
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The data blocks and the programme block are composed with URAMs in case 

of the ZU15EG device and with BRAMs in case of the ZU09EG device. 

Eight 8xSIMD HW accelerators need in total 112 URAMs, i.e. 12 for A, B, Z 

blocks + 2 for P block for each DPU. Each DPU has four URAMs, which are of size 

4095x64b. It is possible to work with URAMs for A, B, Z blocks as with two halves 

of 32b. Besides, for A, B, Z blocks only 1K Word is needed, remaining space 

is not used. However, 4K Words is the minimal increment for URAM (see Tab. 4.4). 

The programme block P consists of two URAMs, i.e. it is 4096x128b. The number 

of Very Large Instruction Words (VLIW) for the Lattice programme is 2774 VLIW. 

The maximal limitation for a programme is 4K Words. 

In case of the ZU15EG device the data blocks are composed of BRAMs and use 3x64 

memories, each memory is 1024x32b. The programme block uses 2x8 memories, 

each of 4096x64b. 

The host ARM application forms the VLIW program instructions in the DDR4 memory 

as two 64b words. The C programme defines sequences of VLIW programme 

instructions in the DDR4 memory and writes them to the eight 8xSIMD HW accelerator 

programme memories. The programme is autonomously executed by the accelerators. 

Thus, all eight 8xSIMD HW accelerators have the same program P and compute 

the same algorithms, but on the separate stages, i.e. using different data in blocks A, B 

and Z. 

In the experiments there are 528000 data samples in total. They are divided into 

2000 time steps, i.e. each computation step has to process 264 time samples. There is no 

enough space in the 8xSIMD internal memory to move data for all 264 time samples. 

Only 12 samples can be processed as a batch. Therefore, each 264 data sample block 

is further divided into 22 data sub-blocks 12x22=264. 

The data sub-blocks are coming in a form of 8x9x4x12 blocks, where 8 is the number 

of SIMD layers of each 8xSIMD HW, 9 is the number of I/O variables needed for each 

time sample, 4 is a vector length related to the number of threads computed in each 

layer of 8xSIMD accelerator and 12 is the number of time steps. 

The data from the device buffers are coming for 4 threads for each layer of each 

accelerator. Also, there are 22 blocks of data for A1…A8 inputs and Z1…Z8 outputs 

in the device buffers, i.e. from _a to _v. It allows benefiting from the ping-pong sharing 

technique. 

It means when A_a is being computed, A_b can be simultaneously prepared for the next 

step of the computation. When A_b is being computed, A_c is being prepared, etc. 

After A_a is received via the output FIFOs from the accelerator URAMs or BRAMs, 

it is written to the output memory buffer in the DDR4. Simultaneously A_b is being 

processed inside of eight 8xSIMD accelerators and A_c is being copied from 

the memory buffer in the DDR4 via the input FIFOs to the accelerator URAMs or 

BRAMs. 
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The HW accelerators receive the data blocks for the computation via the input FIFOs. 

It is necessary to send 9x12=108 words for one thread or 108x4=432 words 

for 4 threads at each computational batch of each 8xSIMD HW accelerator computation 

layer. The input and output FIFOs of each 8xSIMD HW accelerator have depth 512 

of 256b wide words. These input and output FIFOs are separate for each 8xSIMD HW 

accelerator. 

The 8xSIMD HW accelerators are programmed as the Lattice computation kernels 

to execute 256 threads. Computation is started from the user host application. 

It is supposed that all 192+64=256 threads will run in parallel. However, to launch 

the parallel computation of all 256 threads at the same time, a run-up phase should be 

done first (see Fig. 4.8). It is performed in the SW on the ARM processor. 

After computing the first 191 steps, there are already data available for 192 threads 

of a larger identification model M1 and for 64 threads of a smaller identification model 

M2. Thus, the parallel computation of all 256 threads can be started from time step 192. 

The parallel computation is fulfilled by the SW pthreads or by the HW accelerators. 

As it was mentioned before, each 8xSIMD HW accelerator has 8 layers inside. The first 

6 layers of each accelerator, i.e. L1…L6, compute the parts of the QRD RLS Lattice 

of order 768, while the last 2 layers, i.e. L7…L8, compute the parts of the QRD RLS 

Lattice of order 256 (see Fig. 4.10). 

Each 8xSIMD HW accelerator layer computes 4 threads by the execution 

of the sequences of vector instructions with a vector length equal to 4. 

Each thread computes 4 order-related steps of the algorithm and, therefore, the QRD 

RLS Lattice algorithm with order 768 = 4*192 and the QRD RLS Lattice algorithm 

with order 256 = 4*64 are computed. 

Eight 8xSIMD HW accelerators work in parallel under the control of the pre-loaded 

firmware. The accelerators perform the processing of a batch of 12 input data samples 

for both Lattice filters samples and generate 12 output data samples for both 

Lattice filters. There are registers on each of the accelerators, which prescribe the 

address: from where to where the inputs/outputs should be moved. 

In parallel to the HW computation, the ARM processor SW prepares new input data for 

the processing of the next 12 data samples and finally waits for an interrupt. At the end 

of each batch of 12 data samples, the HW accelerators generate an interrupt. It serves 

for synchronisation of the SW with the HW processing. 

As it was mentioned above, during the computation the accelerators are able to copy 

the data via the FIFOs from/to the DDR4 device buffers. This leads to the possibility 

to compute and to transmit the data in parallel. It is made to provide a larger efficiency, 

i.e. to use the computational and communication resources of the accelerators as much 

as possible. 
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Figure 4.10: 8 SIMD HW accelerator layers 

It is possible due to the fact that the RAM inside the programmable logic has two 

addresses, i.e. it is dual-ported as it was described above. The memory is divided into 

two parts: one part is for reading and writing for the present step (a computation part) 

and the second part is for the data preparation for the next step (a communication part). 

The communication is able to read and to write one 256b wide word in single clock 

cycle (240 MHz). The data needed for the computation should be divided in a way 

that in one part the computation is performed and in the other part the communication 

(input and output) is made in parallel. 

This copy to/from the accelerator in parallel with the accelerator execution of its 

sequence of VLIW instructions requires avoiding data race-conditions. This has to be 

avoided by the user application, by writing to the data which are not used for writing 

by the currently executed sequence of the VLIW instructions [42]. 

Therefore, the HW computation should be shorter than communication. When it is not, 

then it is necessary to use the SW hand-shake of the ARM with the HW (it is supported 

for the array of up to eight 8xSIMD accelerators) to ensure that the computation 

programme batch is finished before a new data transmission is started. 

When the first outputs are ready, they are sent to the linear address space device buffers 

in the DDR4 via the output FIFOs and memory_write kernel (see Fig. 4.10). The data 
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outputs can be reused for the next step of the computation or they can be migrated 

to the Linux host Global Memory part of the DDR4, where the data can be accessible 

to the ARM processor host SW application. 

It should be noted that eight 8xSIMD HW accelerators are independent. 

The computation layers are not connected with each other (see Fig. 4.10). 

However, it is necessary to transmit the Lattice-order-state related input/output variables 

between the HW accelerator units for the next step of computation (see Fig. 3.9). 

It means that a part of the outputs stored in the device buffer Z have to be transmitted 

on the right place as the inputs of the device buffer A for the next stage of computation. 

In the first stage of the HW accelerator development, it was made in this way: 

o The outputs from Z were migrated from the device buffer in the DDR4 back 

to the ARM host Global Memory in the DDR4. 

o Copying from Z to A in the host Global Memory was performed by the ARM 

in the SW. 

o After it, the new inputs in A were migrated from the host Global Memory back 

to the linear address device space buffers. 

The process of copying to and from between the host Global Memory and the linear 

address space device buffers was slow and due to it the computational time was 

approximately 140s. 

To make it faster and more efficient, the Vitis HLS toolchain was used to create 

the single HW memory_move kernel for all 8xSIMD HW accelerators (see Fig. 4.11). 

The memory_move kernel has access to both linear address space device buffers A 

and Z. It has also a mechanism for reading and writing. The goal of the memory_ move 

kernel is to take the outputs from the device buffer Z and to move them on a certain 

address in the device buffer A. The communication data path is 256b wide 

(to accommodate 8x32=256b). 

 

Figure 4.11: MOVE kernel 
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Besides, there are two small buffers “in” and “out”. The “in” buffer serves for giving 

the input data for each time step of the computation. The “out” buffer keeps the outputs 

of each step of the computation, which are migrated then to the host Global memory. 

The communication data path is 512b wide (to accommodate 9x32=288b > 256b). 

The remaining bits of each 512b wide word are unused. 

Thus, the memory_move kernel performs the HW supported data communication, 

i.e. the connectivity in a way that the outputs of the algorithm, which are in the device 

buffer Z in the DDR4, are connected in a right way to the new inputs, which 

are in the device buffer A in the DDR4. 

Briefly speaking, the memory_move kernel makes an application-specific data 

connection of the outputs into the inputs for all eight 8xSIMD HW accelerators. 

Figure 4.12 illustrates the principle of data communication for one 8xSIMD in more 

details. 

The ARM part is coloured in yellow, while the FPGA logic part is in green and 

comprises three HW kernels, one 8xSIMD HW accelerator and the input/output FIFOs. 

As it was stated before, the data are divided into 22 blocks, i.e. from A_a to A_v for 

the inputs and from Z_a to Z_v for the outputs. When the first block A_a, which 

contains 12 data samples, are processed by the 8xSIMD unit, the output Z_a is sent to 

the device buffer. The memory_move kernel takes the output Z_a and transforms it into 

the input A_b, which is then sent for processing by the 8xSIMD unit. In this way 

the data communication is supported by HW (see Fig. 4.12). 

It is good to remind that during the computation the ping-pong communication 

technique is applied and the parallel computation of the Lattice stages in all eight 

8xSIMD HW accelerators is performed in parallel with data movement. All operations 

are performed 2000 times to complete computation of all 528000 data samples. 

To resume, in the present design there are three tasks performed in parallel 

(see Fig. 4.9): 

o memory_read for 8 accelerators, 

o computation for 8 accelerators and 8 layers in each accelerator, i.e. 8x8=64, 

o memory_write for 8 accelerators. 

However, the process of the computation is still slowed down by the time overheads 

in the SW part. 

Let us remind that in the algorithm computation there are two for-cycles: 

o the outer one computes 2000 time steps, i.e. 12*22*2000=528000 data samples, 

o the inner one processes 264 time steps, i.e. 12*22=264 data samples. 

The average time needed for performing one step of the inner for-cycle 

is shown in Fig. 4.13. 



132 
 

 

Figure 4.12: Data sharing via memory_move 
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Figure 4.13: Computation of one step of the inner for-cycle 

Figure 4.13 illustrates the following processes: 

(1) defining parameters and starting the current stage of computation in the HW 

cores (average time), 

(2) migrating the inputs for the next stage of computation (average time), 

(3) migrating the results from the previous stage of computation (average time), 

(4) waiting for the end of the HW supported data movement and the HW 

computation (average time), 

(5) mem_read1 HW data mover for 8 8xSIMD (DDR4 device buffer A     

to 8x AXI-S), 

(6) mem_write1 HW data mover for 8 8xSIMD (8x AXI-S to DDR4 device 

buffer Z), 

(7) mem_move1 HW data mover for 8 8xSIMD (device buffers Z and I/O to device 

buffer A), 

(8) eight 8xSIMD HW accelerators computing 12 time steps in 256 Lattice threads. 

It is obvious from Fig. 4.13 that there is a large overhead caused in the SW part. 

The first step of a parameter definition and starting the current stage of the computation 

process in the HW cores (1) lasts 80µs. The migration of the inputs for the next stage 

of computation (2) and the migration of the outputs from the previous stage 
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of computation (3), which are performed in parallel with the computation process, last 

30µs each. 

The HW kernels are launched in the ARM SW by calling to the Xilinx XRT run-time 

support. After the HW kernels are ready with their work, they should be finished 

by the ARM. For these purposes, the ARM creates three processes (4) for three kernels. 

These processes wait for the interrupts from the HW kernels to finish them. Creating 

these processes lasts 260µs in the SW in average. This overhead is related to the current 

implementation of the OpenCL and XRT API. 

However, in the future development, it will be possible to reduce its impact by making 

the HW computation more efficient, e.g. by providing the 8xSIMD HW accelerators 

with a larger amount of data for the computation or by making the programme batch 

longer (for more details see Future prospects). 

After the HW accelerated computation process is over and the outputs are migrated 

to the host Global Memory, the results of the algorithm computation are verified 

and compared with the golden SW model. The results are proved to be identical. 

The computational time reaches in average 16s for the HW accelerated QRD RLS 

Lattice algorithm, it means 

- 3.4x acceleration is achieved in comparison to the 4 thread SW implementation 

on the four core A53 processor, 

- 7.5x acceleration is achieved in comparison to the 256 thread SW implementation 

on the four core A53 processor. 

The comparison of the optimal implementations of the algorithm on 

o PC Intel® CoreTM i7-4770 CPU in MATLAB R2019b, 

o Xilinx Zynq Ultrascale+ Cortex A53 4 core ARM processor, 4 threads, 

o Xilinx Zynq Ultrascale+ Cortex A53 4 core ARM processor, 256 threads, 

o Eight 8xSIMD HW accelerators, 256 threads, 

are presented in Fig 4.14 and Fig. 4.15. 
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Figure 4.14: Performance comparison in terms of the computational time 

 

 

Figure 4.15: Performance comparison in terms of MFLOP/s 
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Let us remind that the QRD RLS Lattice based filters require 34850 floating point 

operations for each time step. The operations include +, -, *, /. From 34850 floating 

point operations there are 8200 floating point division. These operations are computed 

by eight layers of the 8xSIMD HW accelerators on the ZU09EG or ZU15-EG. 

The accelerators are controlled by the single SW thread running on the ARM A53. 

The SW optimized (-O3) four-thread implementation of the algorithm on the Xilinx 

Zynq Ultrascale+ Cortex A53 ARM processor was executed on four A53 cores 

with 1.05 GHz clock frequency. It gives approximately 55s of the computational time. 

However, the SW implementation of the algorithm on the Xilinx Zynq Ultrascale+ 

Cortex A53 ARM processor with the same number of threads as the HW 

implementation has, i.e. with 256 threads, gives only 120s for the parallel processing. 

The reason is that the ARM processor has only four cores and it needs to share 256 

tasks between these four cores. It results in slowing down the computation process. 

The HW accelerators on the Zynq system with eight 8xSIMD HW accelerators running 

at 240 MHz accelerate the SW implementation with 4 threads 3.4x and the SW 

implementation with 256 threads 7.5x. 

It is also clear from Fig. 4.14 and Fig. 4.15 that using the HW accelerators 

the performance is more or less similar to the single-thread optimized implementation 

on PC Intel® CoreTM i7-4770 CPU in MATLAB R2019 (13s on PC vs 16s 

in the FPGA). 

The FPGA version of the algorithm is a bit slower; however, it is good to keep in mind 

that the PC works at 3.5 GHz, whereas the eight 8xSIMD HW accelerators work 

at 240 MHz, i.e. on 16.7x smaller frequency. 

It is also good to note that for the present HW implementation it delivers about 

1 GFLOP/s (see Fig. 4.15). However, theoretically the HW device might deliver up to 

16 GFLOP/s peak. 

The reason of delivering less GFLOP/s is that the HW implementation does not use 

the whole time for the computation during the overheads described. Besides, a half 

of the instructions inside are just “copying”, which is an operation, but it does not 

deliver GFLOPs. Moreover, there is some loss in GFLOPs due to the sequential 

streaming to the 8xSIMD by the memory_read kernel and due to the sequential 

streaming out from the 8xSIMD by the memory_write kernel. 

For the future development, it is expected that it will be possible to reach up to 

4 GFLOP/s on a larger Zynq Ultrascale+ ZU15 device by increasing the amount of data 

processed by the 8xSIMD or by increasing the size of the programme, or by increasing 

the number of order-related steps inside of each layer of the 8xSIMD. Each 

of the variants has its limitations. However, the better efficiency can be achieved. 

The algorithm under consideration was also implemented using the identical HW design 

on the ZU09-EG device to prove the portability of the HW design described above 

and to show that it will really give the similar computational time. The SIMD units 

were configured with the smallest memories and are still compatible with the host SW. 
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The computational time for this implementation is similar to the implementation 

on the ZU15-EG, i.e. it constitutes in average 16s. 

The power consumption of the platform under consideration was measured using 

the Agilent MSO6034A MegaZoom III Technology 300-MHz Oscilloscope, the voltage 

probe Agilent 10073C and the current probe Agilent N2783A with the amplitude 

accuracy ±1.05 of reading ±10 mA at 23 °C ± 3 °C. 

Figure 4.16 shows the values of the current (yellow curve), voltage (green curve) and 

power (magenta curve) when there is no computation, while Fig. 4.17 illustrates the 

course of the current (yellow curve), voltage (green curve) and power (magenta curve) 

when the algorithm is being computed. 

 

Figure 4.16: Current, voltage and power in a stand-by mode 
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Figure 4.17: Current, voltage and power during the computation in SP 

The power for a stand-by mode constitutes max. 13.53W. The power during 

the algorithm computation is max. 13.94W. Thus, the difference in the power 

consumption between the stand-by and computation modes is 0.41W. The small 

increase of the power while starting the computation is due to the fact that the Xilinx 

Zynq Ultrascale+ Cortex A53 ARM is set in a way that even in a stand-by mode it runs 

on the full power and does not decrease either clock frequency or voltage. 

 

4.3.3. Portability to Different Platforms 

There are several Xilinx devices, where the proposed design can be used without large 

changes (see Tab. 4.5). 
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Table 4.5: Compatible Xilinx Zynq devices 

Device Characteristics and limitations 

ZU9-EG-ES An evaluation version supported only with the old toolchain 

Vivado 2017.4 and SDSoC 2017.4, which are no longer supported 

by the Xilinx. 

It has the Cortex A53 4x core ARM processor, 8x DPUs, BRAMs. 

The HW design should be made in the SDSoC, but it will have 

the identical memory_read, memory_write and memory_move 

DMA and A, B, Z, P blocks. 

There could be a problem in data communication, because it uses 

256b AXIS. The SDSoC 2017.4 is supporting integration of only 

32b AXIS interfaces. 

 

ZU9-EG The same platform as the previous one, but not an evaluation 

version. It is already supported with the Xilinx Vitis 2019.2 

and has the HLS Acceleration Flow. It has the Cortex A53 4x core 

ARM processor, 8x DPUs, BRAMs, 256b and 512b AXIS. 

The proposed design is compatible with the platform, but blocks A, 

B, Z and P should be made of BRAMs instead of URAMs. 

For the implementation of the algorithm data blocks A, B, Z 

were designed as 3x64 memories, each of 1024x32b, the 

programme block P has 2x8 memories, each of 4096x64b. 

There are also 2x8 FIFOs, each of 512x256b. 

From the point of view of the SW and firmware the design 

is identical and from the point of view of the OpenCL it is 

compatible. During the experiments it was proved 

that the implementation of the algorithm has the same acceleration 

as the ZU15-EG. 

 

ZU15-EG A platform, which is used for the described HW implementation 

of the QRD RLS Lattice algorithm. It has the Cortex A53 4x core 

ARM processor, 8x DPUs, URAMs, BRAMs and the HLS 

Acceleration Flow. 

It is supported with the Xilinx Vitis 2019.2. It has a great potential 

for further acceleration of the algorithm when enlarging 

the memory data blocks, the programme block and FIFOs. It also 

gives a possibility for a more complex design with 2x HW to solve 

two different tasks. 
 

 



140 
 

Table 4.5: Compatible Xilinx Zynq devices (continuation) 

ZU04-EG A small chip. It has only 3x DPUs, BRAMs. In respect 

to the considered algorithm, it is possible to use 2x DPUs on this 

chip, but each layer of each DPU will compute 16 threads instead 

of 4 threads. 

It can have the Cortex A53 4x core ARM processor or the Cortex 

A53 2x core ARM processor. The computation in the SW part 

with the 2x core ARM processor will take more time, 

but the computation from the viewpoint of the OpenCL will be 

identical, while it is actually a relation between the HW and one 

core of the ARM processor. 

In case of this platform the acceleration is supposed to be smaller. 

 

ZU07-EG 

(ZCU104) 

A university reference module. It has the Cortex A53 4x core 

ARM processor, 6x DPUs, URAMs and BRAMs. The SW 

and firmware will be identical to those for the ZU15-EG. 

 

 

4.4. Results and Related Publications 

The last stage of the research work provides the following contributions: 

1. The parallel implementation of the QRD RLS Lattice algorithm on four cores 

of the ARM Cortex A53 processor of the Xilinx Zynq Ultrascale+ device, 

which succeeds to compute the algorithm using the real ultrasound data 

within required 60s and delivers 335 MFLOP/s, i.e. it is suitable for the real-

time applications. Besides, the algorithm provides the complete information 

about the identification process including the probabilities for every 528 samples 

each 60ms. It means that the reconstruction of the hand behavior is possible 

for a simple gesture identification based on the calculated distance between 

the hand and the device. 

 

2. The FPGA implementation of the QRD RLS Lattice algorithm using eight 

8xSIMD HW accelerators including memory_read, memory_write and 

memory_move HLS HW kernels for data moving processes. 

The implementation computes 256 threads in parallel and performs the data 

communication between eight 8xSIMD HW accelerators. The ping-pong 

communication technique is applied. The algorithm provides the complete 

information about the identification process for every 264 samples (each 30ms). 

The computational time reaches 16s, i.e. it delivers 1150 MFLOP/s. 

In comparison with the implementation on four cores of the Cortex A53 ARM 

processor, 4 threads, and with the implementation on four cores of the Cortex 

A53 ARM processor, 256 threads, the HW acceleration reaches 3.4x and 7.5x 

respectively. The computational time of the FPGA implementation is already 
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comparable with the computation on the single threaded PC Intel® CoreTM i7-

4770 CPU in MATLAB R2019b, which constituted 13s for the best optimized 

version of one core delivering outputs each 30ms. 

The implemented HW/SW system and the related Poster has been presented 

by the ÚTIA team at the Embedded World conference, Nurnberg, 21-23.6.2022. 

It is available at http://storaige.eu/utia-at-demonstrators-at-the-embedded-world-2022-

conference/ 

 

The following source code is available (the implementation on the Xilinx Zynq 

Ultrascale+ Cortex A53 ARM processor) 

at https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina: 

- QRD RLS Lattice algorithm – one core: 

o double precision arithmetic 

o single precision arithmetic 

- QRD RLS Lattice algorithm – two cores core: 

o double precision arithmetic 

o single precision arithmetic 

- QRD RLS Lattice algorithm – four cores core: 

o double precision arithmetic, hypothesis testing 

o single precision arithmetic, hypothesis testing 

o single precision arithmetic, ping pong sharing technique 

- QRD RLS Lattice algorithm – 256 pthreads: 

o double precision arithmetic 

- Implementation in the FPGA part of Xilinx Zynq Ultrascale+ device: 

o QRD RLS Lattice algorithm – 256 threads in parallel (including SW 

single precision implementation) 

 

Publications related to the research topic are the following: 

1. Likhonina R., Uglickich E. Hand detection application based on QRD RLS 

Lattice algorithm and its implementation on Xilinx Zynq Ultrascale+. In: Neural 

Network World, 32(2), pp. 73-92, 2022, 10.14311/NNW.2022.32.005. 

Abstract: The present paper describes hand detection application implemented 

on Xilinx Zynq Ultrascale+ device, comprising multi-core processor ARM 

Cortex A53 and FPGA programmable logic. It uses ultrasound data and is based 

on adaptive QRD RLS Lattice algorithm extended with hypothesis testing. 

The algorithm chooses between two use-cases: (1) “there is a hand in front 

of the device” vs (2) “there is no hand in front of the device”. For these purposes 

a new structure of the identification models was designed. The model presenting 

use-case (1) is a regression model, which has the order sufficient to cover all 

incoming data. The model responsible for use-case (2) is a regression model, 

which has a smaller order than the model (1) and a certain time delay, covering 

the maximal distance where the hand can possibly appear. The offered concept 

was successfully verified using real ultrasound data in MATLAB optimized 

http://storaige.eu/utia-at-demonstrators-at-the-embedded-world-2022-conference/
http://storaige.eu/utia-at-demonstrators-at-the-embedded-world-2022-conference/
https://zs.utia.cas.cz/index.php?ids=projects/storaige/disertace_Raissa_Likhonina
https://doi.org/10.14311%2FNNW.2022.32.005
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for parallel processing and implemented in parallel on four cores of ARM 

Cortex A53 processor. It was proved that computational time of the algorithm 

is sufficient for applications requiring real-time processing. 

The article is available at nnw.cz/obsahy22.html 

2. Kadlec J., Likhonina R. DTRiMC tool for TE0808-09-EG-ES1 module 

on TEBF0808 carrier board. Application note, ÚTIA, 2021. 

Abstract: Evaluation package for the Design Time Resource integration 

of Model Composer DTRiMC tool. It serves for integration of eight 8xSIMD, 

FP03x8, floating-point, run-time-reconfigurable accelerators for Zynq 

Ultrascale+ TE0808-09EG-ES1 module on TEBF0808 carrier board. It provides 

SW projects and two designs containing the HW design bitstreams and API 

interface for SW developer in form of shared linux libraries. The SW developer 

can program ARM host application in C and compile by gcc compiler or in C++ 

and use the g++ compiler. User can use the Xilinx SDK for compilation 

and debug of provided SW projects on a PC (Linux or Windows 10, 64bit). 

The “make” utility can be also used for compilation of host applications directly 

on the embedded Zynq Ultrascale+ ZU09-EG-ES1 system. All designs presented 

in this evaluation package contain four independent twins of serial connected 

FP03x8 accelerators in the programmable logic part of the device. The HW data 

movers supporting the data communication are represented for the SW 

developer as shared C/C++ library with simple SW API. The API is identical 

for several alternatives of HW data movers. The evaluation package includes 

8xSIMD FP32 accelerators with HW license enabling only restricted number 

of operations. If these licensed operations are all used, user has to reset complete 

system. This will enable to use the licensed count of operations again. 

The application note is available at  

http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mul

f64_DTRiMC 

  

http://nnw.cz/obsahy22.html
http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
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CONCLUSION 
 

 

The present work is devoted to the QRD RLS algorithms and the implementation 

of a chosen algorithm on the HW platform from Trenz Electronic. The platform 

comprises the multi-core processor ARM Cortex A53 and FPGA programmable logic. 

The work is supported by the European project called SILENSE, which aimed at using 

ultrasound technology for different kind of applications in automotive, smart home, 

wearables and other domains. 

The algorithm in this work is supposed to solve a hand detection problem using noise 

cancellation techniques. 

After making a research of the state of the art in this field, the novelty was stated out, 

which can be summarized as follows: 

- though the algorithms function well on large PCs, still there exists a problem 

of their implementation on small area chips with small memory footprints; 

- there is a gap in the research area what the algorithm implementation for hand 

detection applications based on ultrasound is concerned; 

- the presented research uses noise cancellation techniques based on the RLS 

algorithm to pre-process incoming ultrasound data by removing undesired 

ultrasound responses from the target signal, subject to use for hand detection 

applications; 

- hypothesis testing is applied in a context different from previous      

research [40-41, 47-48, 50, 81]: it is used to identify the structure of a regression 

model and to choose a particular identification model, which corresponds better 

to a real-time situation; 

- the approach described in the work enables to compute distance 

between the hand and the device. 

The main goals of the work were defined as follows: 

- to develop a numerically robust adaptive signal processing algorithm 

of recursive identification of regression models for ultrasound signals, 

performing noise cancellation and computing hand distance from the device, 

- to implement the algorithm on embedded hardware platform, using the data 

processed from a microphone, 

- possibly, to apply the developed algorithm for tracking of hand movement-based 

gestures. 

The 2D tracking of hand movement-based gestures was not in the scope of the work 

and was not implemented. Instead, it focuses on gestures based on 1D distance 

measurement. 
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Before the very algorithm implementation, the work described mathematical tools 

and techniques needed to achieve stated goals. The theoretical description included 

the recursive Bayesian approach to system identification, types of the RLS algorithms, 

incorporation of hypothesis testing, FPGA techniques and tools used for the HW 

implementation. 

The research had several stages to achieve the final goal of the algorithm 

implementation on the HW platform. The first large stage was to modify the existing 

algorithm and to incorporate hypothesis testing so that it was appropriate for making 

the experiments in the MATLAB R2019b environment. For these purposes, 

from the family of the RLS algorithms the QRD RLS Lattice algorithm was chosen. 

The choice was conditioned by the inner structure of the algorithm, which allowed 

pipelining and parallel processing. This property was essential during the algorithm 

implementation on the HW platform. 

Besides, in the course of the experiments the QRD RLS Lattice algorithm proved to be 

much faster in comparison with the QRD RLS algorithm - 45s for the QRD RLS Lattice 

algorithm via 2330s for the QRD RLS algorithm while processing the real data 

from an ultrasound microphone – and to deliver more MFLOP/s. It meant that the QRD 

RLS Lattice algorithm after its optimization might be fast enough to work on a small 

HW platform and to process the data in real time. 

During the first stage of investigation, the experiments with simulated data as well 

as the experiments with real data from an ultrasound microphone were performed. 

The experiments showed that using only prediction/filtration errors for detecting 

the hand was not sufficient. Therefore, the algorithm was incorporated with hypothesis 

testing. For these purposes, a special structure of regression models was proposed. 

Thus, two identification models corresponding to two different use-cases (“there is 

a hand in front of the device” and “there is no hand in front of the device”) were 

designed. It was assumed that a regression model with a higher order describes 

the situation when there is no hand in front of the device, while a regression model 

with a smaller order has a higher probability when there is a hand in front of the device. 

In this way hypothesis testing applied to two regression model structures helps to make 

results of hand detection more accurate. 

The orders of the models were not chosen occasionally. The model with a higher order 

processes all incoming data at each time step. The model with a smaller order works 

only with a certain amount of incoming data. Besides, the model with a smaller order 

has a certain time delay, which defines the distance, after which the appearance 

of the hand is not already possible. The choice of the order was also conditioned 

by further steps of the research, i.e. pipelining and parallel processing. 

On this stage of the algorithm development, the experiments showed that hypothesis 

testing helped to make results of hand detection more accurate. The assumptions made 

about the structure of the regression models were also fully proved by the experiments. 

Moreover, an additional value of the developed algorithm was the possibility 

to compute the distance between the hand and the device. 
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Another output of this stage of investigation was the simulation in MATLAB R2019b, 

which was made close to the real situation by applying parameters calculated 

by the QRD RLS algorithm during the identification process using real ultrasound data. 

During the first stage of the research, it was also stated that in order the QRD RLS 

Lattice algorithm could be used in the real-time applications, it should compute 

the outputs from the provided ultrasound data within 60s. It means that it should deliver 

at least 307 MFLOP/s. 

The second big stage of the research was the algorithm optimisation on a PC. 

For these purposes a batch version of the algorithm was created and pipelining 

and parallel processing techniques were used. The computation was made in 

the MATLAB R2019b environment using the Parallel Computing Toolbox. Different 

versions of the algorithm were presented: for two, four and eight core processing. 

The experiments showed that all versions computed accurately, but parallel processing 

in MATLAB R2019b in this particular case did not function as required, because 

it did not accelerate the computation process, so that the eight core version computed 

slower than four core version of the algorithm: 45s vs 30s respectively for time step 

equal to 100. It was explained by the complexity of the data communication process. 

Also, on this stage of the research both the double precision and single precision 

floating point versions of the algorithm were investigated. As it was assumed the single 

precision version was faster, but not substantially: 28s (single precision floating point 

arithmetic) vs 30s (double precision arithmetic) for the four core version 

of the algorithm with time step equal to 100. 

Though the computational time seemed to be sufficient for the real-time applications 

on this stage of the development, but it was necessary to remember that at this point 

the algorithm was computed on a PC with Intel® Core™ i7-4770 CPU, 3.5 GHz. 

However, the HW platform, which was used on further stage of investigation, 

has a processor frequency of only 1.05 GHz and a programmable logic max. 240 MHz. 

It meant that the computational time might be insufficient. 

During the experiments it was stated that for further research stage the four core version 

of the algorithm will be used as a golden model as far as the ARM processor has four 

cores. Besides, the time step should be at least 100 to ensure that the hypotheses have 

data every 0.6s and, thus, they are able to provide the outputs in real time with only 0.6s 

delay. 

After the second stage of the research was successfully fulfilled and the results 

were verified, the QRD RLS Lattice algorithm was implemented on the four cores 

of the ARM processor in a way that the hypotheses had appropriate data for further 

computation every 60ms, i.e. the optimal time step in the case of the implementation 

on the HW platform proved to be 1000. 

The whole computational time on the third stage of the algorithm development 

constituted 58s (double precision arithmetic) and 55.24s (single precision arithmetic). 

As far as the real data measurement was 60s, the algorithm implementation on the HW 

platform was considered to be fast enough to process data in real time and to deliver 

the results every 60ms. 
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In terms of MFLOP/s, the ARM device delivered 317 MFLOP/s for the double 

precision version of the algorithm and 333 MFLOP/s for the single precision floating 

point version of the algorithm. In the beginning it was stated that in order the algorithm 

was able to compute in real time, it was needed to ensure at least 307 MFLOP/s. Thus, 

this requirement was fulfilled as well. 

As the last step the QRD RLS Lattice algorithm was implemented in the FPGA part 

of the Xilinx Zynq Ultrascale+ device, on the ZU09EG and ZU15EG. There are eight 

8xSIMD HW accelerators, each of which has 8 layers, i.e. there are 64 parallel 

computing data paths. The HW accelerator data paths can process a separate part 

of the algorithm in parallel at each time step. The larger identification model 

was divided into 192 parts, while the smaller identification model has 64 parts. The first 

six layers of each accelerator process threads for the larger identification model, the two 

remaining layers of each accelerator process threads for the smaller identification 

model. Each layer processes 4 threads, each thread computes 4 orders. The system order 

of the first Lattice filter is 768. The system order of the second Lattice filter is 256. Data 

- the inputs, state variables and outputs - are saved in the linear address space device 

buffers in the DDR4memory. 

The HW accelerator local memories for the data and for the programme are composed 

from URAMs 4096x64b for the ZU15EG device or BRAMs 1024x64b for the ZU09EG 

device, the FIFO is composed from BRAMs, 512x256b. There are eight HW blocks, 

which fulfil the algorithm processing including the computation and data 

communication. The HW supported data communication is performed by the HLS HW 

unit memory_read, HLS HW unit memory_write and HLS HW unit memory_move. 

The computation is performed by eight 8xSIMD HW accelerators. The computational 

time is 16s. It delivers 1150 MFLOP/s. 

It means a 3.4x acceleration in comparison with the optimized 4-pthread SW 

implementation on the Xilinx Zynq Ultrascale+ Cortex A53 4 core ARM device 

is achieved. 

It is a 7.5x acceleration in comparison with the optimized 256-pthread SW 

implementation on the Xilinx Zynq Ultrascale+ Cortex A53 4 core ARM device. 

It should be also noted that each modification of the algorithm and each small step 

of its implementation both in MATLAB R2019b and on the HW platform on every 

stage of the development were always accompanied with verification tests to ensure 

that the results were equal to the reference values. 

To summarize the main outputs and contributions of the research, the following 

should be mentioned: 

o Hypothesis testing is based on identification of the structure of a regression 

model, after which a decision-making process is performed. The structure 

of each regression model is chosen in a way that it corresponds to a certain 

situation: a regression model with a larger order analyses all incoming data and 

has higher probability when there is no hand in front of the device; 

while a regression model with a smaller order works with a limited amount 

of data. It has a certain time delay and a higher probability in the moment 
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the hand appears in front of the device. On the basis of the probabilities 

of the identification models, a decision is made. In comparison to [76], 

this approach uses recursive Bayesian identification. However, differently from 

[40-41, 47-48, 50, 81], Bayesian identification is applied specifically for 

achieving a specific goal – hand detection and distance determination – as it was 

described previously. 

o The algorithm allows determining the distance between the hand and the device. 

It is due to the form of the input signal (chirps) used in the experiments. 

Using the distance computation, simple types of gestures can be identified. 

o The simulation in the MATLAB R2019b environment was made close 

to the reality by using parameters calculated during the identification process 

using the real ultrasound data. 

o The developed algorithm was implemented both in the MATLAB R2019b 

environment and in C code using real data from an ultrasound microphone. 

Pipelining and parallel processing techniques were applied. 

o The QRD RLS Lattice algorithm combined with hypothesis testing was mapped 

on the embedded quad-core ARM Cortex A53 processor. 

o The computation of the developed algorithm was conditioned by the specificity 

of the HW platform, its computational resources. It was required to compute 

528000 data samples within 60s. Due to the pipelining and parallel processing 

technique, this goal was achieved and the algorithm implementation 

on the HW platform can be used for the real-time processing applications. 

o The FPGAs are prepared for ultrasound microphones by the ÚTIA team and can 

be used in the same Xilinx Zynq Ultrascale+ application. 

o The FPGA implementation of the QRD RLS Lattice algorithm is performed 

on eight 8xSIMD HW accelerators prepared in ÚTIA. It was implemented 

and tested on the Xilinx ZU09EG and ZU15EG. The computational time is 16s 

and a 3.4x acceleration is achieved in comparison to the 4 pthread SW 

implementation on the 4-core A53 ARM processor. A 7.5x acceleration 

is achieved in comparison to the 256 pthread SW implementation on the 4-core 

A53 ARM processor. 

o The power consumption is low and constitutes 13.53W in a stand-by mode 

and 13.94W for the single precision floating point computation. 

To conclude, the proposed method for hand detection based on the noise cancellation 

technique and using the QRD RLS Lattice algorithm functions reliably and accurately 

and fulfils its goals. The algorithm implementation on the HW platform functions 

as reliably and sufficiently accurately as the version of the algorithm on a PC does 

and can be used for the real-time applications. Therefore, the research and investigation 

results can be considered achieving their goals successfully in the scope defined 

in the beginning of the work. 
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POTENTIAL APPLICATIONS 
 

 

Touchless technologies are a natural stage of HMI development. In recent years 

they have become more and more frequently used and more diverse. 

According to Grand View Research, Asia Pacific region, mainly China, India 

and Japan, dominated the market in 2017 and it is supposed that the situation 

will remain the same at least up to 2025. In Europe the dominance in this market is held 

by Germany, U.K. and France. It is forecasted that the gesture recognition market 

will reach $30.6 billion in 2025 [9, 12, 32]. 

The reason why people are inclined more and more to use gesture recognition and hand 

tracking applications are their intuitive and user-friendly mastering and easy usage. 

Not the least is better ergonomics of the devices. Besides, touchless technologies also 

contribute to more safety, e.g. what automotive and health care applications 

are concerned. In the light of the coronavirus pandemic, the hygiene concerns are also 

becoming more and more acute. 

The major areas where gesture recognition and hand tracking technologies are used 

nowadays are automotive, consumer electronics and healthcare fields [9, 12, 32]. 

The algorithm under analysis can be potentially used anywhere where noise cancellation 

for such kind of applications is required. It means it can be used in [12, 32]: 

1. automotive including lighting system, biometric access, HUD (heads-up 

display), music and incoming calls control, etc., 

2. healthcare including sign language, lab & operating rooms, checking imagery 

with simple gestures without touching the display, etc., 

3. consumer electronics including smart home applications, smart TV, gaming 

consoles, smartphones, etc., 

4. others, e.g. educational hubs, hospitality, advertisement & communication, etc. 
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FUTURE PROSPECTS 
 

 

As far as Xilinx ZU15-EG has enough URAMs, it is possible in the future to enlarge 

the amount of data sent and received at each time step. For these purposes, it is 

necessary to enlarge memory blocks A, B, Z as well as a programme block P and FIFO. 

In this case the P device buffer will be 8K Words long and 128b wide, device buffers 

for A, B, Z will be 2K Words and FIFO 1K Word. It will result in working with a larger 

amount of data (24x9 instead of present 12x9) and in less communication between 

units. Thus, it will lead to higher acceleration, possibly to the 5x acceleration 

in comparison with performance of the ARM 4 core processor implementation. 

However, such kind of a design will not be compatible with Xilinx ZU09-EG due to 

the size of the latter platform. 

Another way leading to even a higher acceleration is to compute two tasks in parallel. 

For example, it is possible to have four hypotheses instead of 2 or to have two variants 

of the algorithm with different forgetting factors. It means the amount of communicated 

data will increase from 24x9 to 24x18. In this case the P device buffer will remain 

the same, i.e. 8K Words long and 128b wide; device buffers A, B and Z will be 4K 

Words each and FIFO 2K Words. The HW units will be fully used and the best 

efficiency will be achieved. It is supposed that the acceleration will be at least 10x 

in comparison with the 4 thread implementation in SW or at least 30x in comparison 

with the 256 thread SW implementation. 

The presented HW implementation delivers approximately 1 GFLOP/s for Zynq 

Ultrascale+ ZU09 (with BRAMs) as well as for the ZU15 device (with only partially 

utilized URAMs). 

In the future development, we will focus on increasing of the amount of computing 

(batch size) for eight 8xSIMD units. We would like to reach up to the 4 GFLOP/s 

performance in case of the large Zynq Ultrascale+ ZU15 device for the HW accelerated 

Lattice filter. This performance increase will be possible due to the optimally utilised 

URAM memories and large FIFO memories and due to the extension of HW computing 

batch length. The fixed SW overhead related to the XRT and OpenCL API will have 

a relatively smaller impact on the final performance of HW accelerated Lattice 

algorithm in comparison to the current implementation. 

The gained knowledge related to the implementation of the Lattice algorithm will be 

applied to HW accelerations of other DSP algorithms with an internal systolic array 

structure. 
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Further work in this direction could include making a device prototype, which would 

comprise both ultrasound microphones and beam-former FPGA design and a hand 

detection application on one HW platform. This prototype could be equipped with 

the display, which would provide graphic output of the computation and allow tracking 

of hand movement-based gestures. 
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APPENDIX 1 

Hypothesis Testing about the Order 

of a Regression Model 
 

 

Here it is shown that instead of using several algorithms with two or more different 

orders, it is possible in some cases to use one algorithm with so-called nested orders. 

Using the properties of the nested orders it can be shown that 

 

Figure A.1: Example of nested order 

It means that relation (2.21) can be rewritten as follows for 𝒏 = 𝟏, … , 𝑵: 

𝑽̅𝑴[𝒏 + 𝟏] = 𝑽𝑴[𝒏 + 𝟏] + [
𝒁[𝒏]
𝒛𝑵+𝟏

] ∙ [
𝒁[𝒏]
𝒛𝑵+𝟏

]
𝑻

,                  (𝑨. 𝟏) 

where 𝒛𝑵+𝟏 represents the output 𝒚𝒕. 

The following equations are presented for an order n nested in 𝑵, for = 𝟏, … , 𝑵. 

However, they are valid for order N too as it is obvious from Fig. A.1. 

Using this decomposition and completion to the full squares, the conditional probability 

density can be written in the following form [41]: 

𝒑[𝜽, 𝝎𝒕|𝑫(𝒕 − 𝟏)] = 𝒌 ∙ 𝝎𝒕

𝓥+𝒏−𝟐
𝟐 ∙ 𝐞𝐱 𝐩 {−

𝝎𝒕

𝟐
∙ 𝜦} ∙ 

∙ 𝐞𝐱 𝐩 {−
𝝎𝒕

𝟐
∙ (𝜽 − 𝜽[𝒏])𝑻 ∙ 𝑪[𝒏] ∙ (𝜽 − 𝜽[𝒏])} ,                                                            (𝑨. 𝟐) 
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where 

𝑪[𝒏] = 𝑽𝑴
−𝟏[𝒏],                     (𝑨. 𝟑) 

𝜽[𝒏] = 𝑪[𝒏] ∙ 𝑽[𝒏],                      (𝑨. 𝟒) 

𝜦 = 𝐯 − 𝑽𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝑽[𝒏],                    (𝑨. 𝟓) 

𝝎 = 𝓥 ∙ 𝜦−𝟏.                      (𝑨. 𝟔) 

Vector 𝜽[𝒏] enables to express the conditional mean value by the probability 

distribution of the unknown regression parameters. It is a vector of regression 

coefficient estimates [40-41, 47-48, 50, 81]. 

𝜦 is a scalar, which enables to express the conditional mean value by the distribution 

of unknown parameters. It is a residue after completion to the full                 

squares [40-41, 47-48, 50, 81]. 

𝒌 is a normalizing constant, while  𝝎𝒕 is an unknown degree of accuracy [40-41, 47-48, 

50, 81]. 

Further, it will be shown how the update of the characteristics is performed. To simplify 

notation, instead of (𝒕|𝒕)under the characteristics the upper line " ̅ " above the letter 

is used to show that the corresponding characteristics is after updating with 𝒚𝒕. 

The index (𝒕|𝒕 − 𝟏) is omitted under the characteristics, which means that 

the corresponding characteristics is before updating with 𝒚𝒕 [40-41, 47-48, 50, 81]. 

𝑽̅𝑴[𝒏] = 𝑽𝑴[𝒏] + 𝒁[𝒏] ∙ 𝒁𝑻[𝒏],                    (𝑨. 𝟕) 

𝐯̅ = 𝐯 + 𝒛𝑵+𝟏
𝟐 ,                      (𝑨. 𝟖) 

𝑽̅[𝒏] = 𝑽[𝒏] + 𝒁[𝒏] ∙ 𝒛𝑵+𝟏,                    (𝑨. 𝟗) 

𝑪̅[𝒏] = 𝑪[𝒏] −
𝑪𝑻[𝒏] ∙ 𝒁[𝒏] ∙ 𝒁𝑻[𝒏] ∙ 𝑪[𝒏]

𝟏 + 𝝃
 ,                                                                 (𝑨. 𝟏𝟎) 

𝜽̅[𝒏] = 𝜽[𝒏] +
𝑪𝑻[𝒏] ∙ 𝒁[𝒏]

𝟏 + 𝝃
∙ 𝒆,                                                                                       (𝑨. 𝟏𝟏) 

𝜦̅ = 𝜦 +
𝒆 ∙ 𝒆

𝟏 + 𝝃
,                                                                                                                     (𝑨. 𝟏𝟐) 

where 

𝝃 = 𝒁𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝒁[𝒏],                   (𝑨. 𝟏𝟑) 

𝒆 = 𝒛𝑵+𝟏 − 𝜽𝑻[𝒏] ∙ 𝒁[𝒏] = [−𝜽𝑻[𝒏], 𝟏]  ∙ [
𝒁[𝒏]
𝒛𝑵+𝟏

],               (𝑨. 𝟏𝟒) 
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𝒆 is a prior prediction error, 𝒛𝑵+𝟏 is the output 𝒚𝒕. It is the last element   

in vector 𝒁[𝑵 + 𝟏]. 

Note also that the density 𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏), 𝑯𝒏) has the following                        

form [40-41, 47-48, 50, 81]: 

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝑯𝒏) = 𝝅−𝟏/𝟐 ∙
𝜦(

𝝑−𝒏
𝟐

+𝟏)

𝜦̅
(

𝝑̅−𝒏
𝟐

+𝟏)
∙

|𝑽𝑴[𝒏]|
𝟏
𝟐

|𝑽̅𝑴[𝒏]|
𝟏
𝟐

∙
Г (

𝝑̅ − 𝒏
𝟐 + 𝟏)

Г (
𝝑 − 𝒏

𝟐 + 𝟏)
,                   (𝑨. 𝟏𝟓) 

where 𝝑 is the number of data samples accumulated in VM[n], |𝑽𝑴[𝒏]| is a determinant 

of matrix 𝑽𝑴[𝒏], Г(∙) is a Gamma function. 

This probability density has a Student distribution with 𝝑 − 𝒏 + 𝟐 degrees 

of freedom [40-41, 47-48, 50, 81]. 

Using the analytical relations, there is no need to work with the whole probability 

density, which is demanding on computer resources. The certain values of 𝒚𝒕 and 𝒖𝒕 

can be obtained to calculate the probability of the hypothesis according to 

the equation (1.14). 

It means that it can be implemented inside one algorithm with nesting orders, 

each hypothesis representing one of the nested orders within a large order. 

However, it is valid if the exponential forgetting is used. Otherwise, it is necessary 

to have several algorithms of different orders and compute them separately, 

which is supposed to be implemented in the present work. 

Note also that the summation of the computed probabilities has to be equal to one. 

For the characteristics updates for further steps the forgetting factor is used. The main 

requirement when implementing the forgetting technique is to keep parameters 

and the degree of accuracy unchanged by the forgetting factor, i.e. 

𝜽(𝒕|𝒕−𝟏) = 𝜽(𝒕−𝟏|𝒕−𝟏),                   (𝑨. 𝟏𝟔) 

𝝎(𝒕|𝒕−𝟏) = 𝝎(𝒕−𝟏|𝒕−𝟏).                   (𝑨. 𝟏𝟕) 

The equations for the characteristics updates for further steps of computation using 

the exponential forgetting are the following [40-41, 47]:  

𝓥̅ = 𝜶 ∙ 𝓥,                     (𝑨. 𝟏𝟖) 

𝑽̅𝑴[𝒏 + 𝟏] = 𝜶 ∙ 𝑽𝑴[𝒏 + 𝟏],                  (𝑨. 𝟏𝟗) 

𝑽̅[𝒏] = 𝜶 ∙ 𝑽[𝒏],                    (𝑨. 𝟐𝟎) 

𝑽̅𝑴[𝒏] = 𝜶 ∙ 𝑽𝑴[𝒏],                    (𝑨. 𝟐𝟏) 

𝐯̅ = 𝜶 ∙ 𝐯,                     (𝑨. 𝟐𝟐) 
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𝑪̅[𝒏] =
𝟏

𝜶
∙ 𝑪[𝒏],                    (𝑨. 𝟐𝟑) 

𝜽̅[𝒏] = 𝜽[𝒏],                    (𝑨. 𝟐𝟒) 

𝜦̅ = 𝜶 ∙ 𝜦,                     (𝑨. 𝟐𝟓) 

where 𝜶 is a forgetting factor ranging from 0 to 1. 

It is obvious from these relations that the exponential forgetting keeps the mean value 

of parameters [40-41, 47-48, 50, 81]: 

𝑬[𝜽𝒕+𝟏, 𝝎𝒕+𝟏|𝑫(𝒕)] = 𝑬[𝜽𝒕, 𝝎𝒕|𝑫(𝒕)].                 (𝑨. 𝟐𝟔) 

The relations using the directional forgetting look as follows [40-41, 50]: 

𝓥̅ = 𝜶 ∙ 𝓥, 

𝜦̅ = 𝜶 ∙ 𝜦. 

 

for 𝜉 > 0: 

𝑽̅𝑴[𝒏] = 𝑽𝑴[𝒏] − 𝜹 ∙ 𝒁𝑻[𝒏],                  (𝑨. 𝟐𝟕) 

 𝑽̅[𝒏] = 𝑽[𝒏] − 𝜹 ∙ 𝒛𝑵+𝟏 ∙ 𝒁[𝒏],                 (𝑨. 𝟐𝟖) 

𝐯̅ = 𝜶 ∙ 𝐯 − 𝜹 ∙ 𝒛𝑵+𝟏
𝟐 + (𝟏 − 𝜶) ∙ 𝑽𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝑽[𝒏],                                                 (𝑨. 𝟐𝟗) 

𝑪̅[𝒏] = 𝑪[𝒏] +
𝑪𝑻[𝒏] ∙ 𝒁[𝒏] ∙ 𝒁𝑻[𝒏] ∙ 𝑪[𝒏]

(𝟏\𝜹) − 𝝃
,                                                                  (𝑨. 𝟑𝟎) 

𝜽̅[𝒏] = 𝜽[𝒏].                    (𝑨. 𝟑𝟏) 

 

for 𝜉 → 0 +: 

𝑽̅𝑴[𝒏] = 𝑽𝑴[𝒏],                   (𝑨. 𝟑𝟐) 

 𝑽̅[𝒏] = 𝑽[𝒏],                    (𝑨. 𝟑𝟑) 

𝐯̅ = 𝜶 ∙ 𝐯 + (𝟏 − 𝜶) ∙ 𝑽𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝑽[𝒏],                 (𝑨. 𝟑𝟒) 

𝑪̅[𝒏] = 𝑪[𝒏],                    (𝑨. 𝟑𝟓) 

𝜽̅[𝒏] = 𝜽[𝒏],                         (𝑨. 𝟑𝟔) 
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where 

𝝃 = 𝒁𝑻[𝒏] ∙ 𝑪[𝒏] ∙ 𝒁[𝒏],                 (𝑨. 𝟑𝟕) 

𝜹 =
𝟏 − 𝜶

𝝃
,                                                                                                                             (𝑨. 𝟑𝟖) 

𝒛̅𝑵+𝟏 = 𝜽𝑻[𝒏] ∙ 𝒁[𝒏],                   (𝑨. 𝟑𝟗) 

𝒛̅𝑵+𝟏 is a posterior prediction of 𝒛𝑵+𝟏 

Note that in case of the directional forgetting, the nesting of the orders is not valid 

anymore. Therefore, to estimate parameters for different order models, it is necessary 

to apply separate algorithms for each model. 
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APPENDIX 2 

QRD RLS Lattice Algorithm 

and Hypothesis Testing 
 

 

As it is mentioned in Chapter 1, the RLS Lattice algorithm can be derived from 

the QRD algorithm. The derivation of the algorithm is based on the below equations 

multiplied with a data vector [40-41, 47-48, 50, 81]. 

For the purposes of more readability, the notation [“size”] of vectors and matrices 

is omitted in this chapter. Instead, notation (“order/step of computation”) is applied 

to note if the values are from the present or from the previous step of computation 

are used. 

𝜽̂𝒇(𝒏) = [
𝜽̂𝒇(𝒏 − 𝟏)

𝟎
] + [

−𝜽𝒃𝒛(𝒏)
𝟏

] ∙ 𝜦𝒛
−𝟏(𝒏) ∙ 𝑲(𝒏),              (𝑨. 𝟒𝟎) 

𝜽𝒃(𝒏) = [
𝟎

𝜽𝒃𝒛(𝒏)] + [
𝟏

−𝜽̂𝒇(𝒏 − 𝟏)] ∙ 𝜦𝒛
−𝟏(𝒏) ∙ 𝑲(𝒏),             (𝑨. 𝟒𝟏) 

𝜽̅𝒃𝒛(𝒏) = 𝜽𝒃(𝒏 − 𝟏), n=2,…N.                                     (𝑨. 𝟒𝟐) 

Note that 𝜽̂𝒇 is a vector of autoregression coefficients in a forward direction, 

𝜽𝒃 is a vector of regression coefficients in a backward direction calculated 

from the decomposition of matrix 𝑽𝑴[𝑵 + 𝟏], 𝜽𝒃𝒛 is a vector of regression coefficients 

in a backward direction calculated from the decomposition of matrix 𝑽𝑴[𝑵], 

𝜦𝒛  are diagonal elements of matrix D in the matrix decomposition                   

𝑽𝑴
−𝟏[𝑵] = 𝑼[𝑵] ∙ 𝑫[𝑵] ∙ 𝑼𝑻[𝑵], where 𝑼 is an upper triangular matrix with units 

on the main diagonal, 𝑫 is a diagonal matrix with positive elements 

on the main diagonal. 𝜦  are scalars in N different decompositions                 

of 𝑽𝑴[𝑵 + 𝟏] = 𝑳[𝑵 + 𝟏] ∙ 𝑫[𝑵 + 𝟏] ∙ 𝑳𝑻[𝑵 + 𝟏], where 𝑳 is a low triangular matrix 

with units on the main diagonal. 𝑲 stands for coefficients of response. 

After this step, relations between prediction (resp. filtration) errors in forward 

and backward directions can be obtained. On the basis of these variables, the update 

of parameters 𝜦𝒛, 𝜦, 𝑲 is provided [40-41, 47-48, 50, 81]. 
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The relations for the updates of the parameters 𝜦𝒛, 𝜦, 𝑲 are presented                 

below [40-41, 47-48, 50, 81]: 

𝑲̅(𝒏) = 𝑲(𝒏) +
𝒉𝒛(𝒏) ∙ 𝒆(𝒏 − 𝟏)

𝟏 + 𝝃(𝒏 − 𝟏)
,                                                                                 (𝑨. 𝟒𝟑) 

𝑲̅(𝒏) = 𝜶𝟐 ∙ 𝑲̅(𝒏),                    𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵,              (𝑨. 𝟒𝟒) 

𝜦̅𝒛(𝒏) = 𝜦𝒛(𝒏) +
𝒉𝒛

𝟐(𝒏)

𝟏 + 𝝃(𝒏 − 𝟏)
,                                                                                     (𝑨. 𝟒𝟓) 

𝜦̅𝒛(𝒏) = 𝜶𝟐 ∙ 𝜦̅𝒛(𝒏),               𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵,                                                         (𝑨. 𝟒𝟔) 

𝜦̅(𝒏) = 𝜦(𝒏) +
𝒆𝟐(𝒏)

𝟏 + 𝝃(𝒏)
,                                                                                                 (𝑨. 𝟒𝟕) 

𝜦̅ = 𝜶𝟐 ∙ 𝜦̅,                                𝒇𝒐𝒓 𝒏 = 𝟎, 𝟏, … , 𝑵,              (𝑨. 𝟒𝟖) 

𝒉𝒛 are prediction errors computed in a backward direction from the decomposition 

of matrix 𝑽𝑴[𝑵], 𝒆 are prediction errors in a forward direction. 

Let us remind also that for the initialization step the following equations            

are valid [40-41, 47-48, 50, 81]: 

𝒉𝟏 = 𝒚𝒕−𝟏; 𝒆𝟎 = 𝒚𝒕;   𝝃𝟎 = 𝟎.                  (𝑨. 𝟒𝟗) 

To update parameters (A.43)-(A.48), it is necessary to know the forward prediction 

errors 𝒆 and backward prediction errors 𝒉𝒛. They are defined as                     

follows [40-41, 47-48, 50, 81]: 

𝒆(𝒏) = 𝒚𝒕 − 𝜽̂𝒇(𝒏) ∙ 𝒁(𝒏),                   (𝑨. 𝟓𝟎) 

𝒉𝒛(𝒏) = 𝒚𝒕−𝒏 − 𝜽𝒃𝒛
𝑻 (𝒏) ∙ 𝒁(𝒏 − 𝟏).                (𝑨. 𝟓𝟏) 

The interaction between the forward and backward prediction errors of order n-1 and n 

without using vectors 𝜽̂𝒇, 𝜽𝒃𝒛 is given by the equations [40-41, 47-48, 50, 81]: 

𝒆 = 𝒚𝒕 −  𝜽̂𝒇(𝒏) ∙ 𝒁(𝒏) = 𝒆(𝒏 − 𝟏) − 𝑲(𝒏) ∙ 𝜦𝒛
−𝟏(𝒏) ∙ 𝒉𝒛(𝒏) 𝒇𝒐𝒓 n=1,2,…,N  (𝑨. 𝟓𝟐) 

where 𝒆𝟎 = 𝒚𝒕. 

𝒉𝒛(𝒏) = 𝒚𝒕−𝒏 − 𝜽𝒃𝒛
𝑻 (𝒏) ∙ 𝒁(𝒏 − 𝟏) = 𝒉(𝒏 − 𝟏),                   𝒇𝒐𝒓 n=1,2,…,N,   (𝑨. 𝟓𝟑) 

where 𝒉 are backward prediction errors computed from the decomposition of matrix 

𝑽𝑴[𝒏 + 𝟏] and    𝒉𝟎 = 𝒚𝒕−𝟏. 
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𝒉(𝒏) = 𝒉𝒛(𝒏) − 𝑲(𝒏) ∙ 𝜦−𝟏(𝒏 − 𝟏) ∙ 𝒆(𝒏 − 𝟏),                   𝒇𝒐𝒓 n=1,2,…,N,    (𝑨. 𝟓𝟒) 

where 𝒆𝟎 = 𝒚𝒕. 

Thus, the equations (A.52)-(A.54) define the prediction errors 𝒆, 𝒉𝒛, 

which are necessary for updating parameters 𝜦𝒛, 𝜦, 𝑲 according to the equations 

(A.43)-(A.48). It should be also noted that in this case there is no need to update 

matrix 𝑽𝑴[𝑵] [40-41, 47-48, 50, 81]. 

To summarize, the algorithm in the form suitable for programming is presented below. 

Note that 𝒆𝒖 stands for a prediction error calculated from the inputs 𝒖𝒕, while 𝒆𝒚 

represents a prediction error calculated using the outputs 𝒚𝒕 (see Fig. A.2). 

Start of the algorithm in time 𝒕𝟎 = 𝑵 + 𝟏 

 

𝜹𝟎 > 𝟎, 𝜹𝟎 → 𝟎 

𝜶𝟐𝝐(𝟎, 𝟏 > 

Ʌ(𝒏) = 𝜹𝟎, 𝒇𝒐𝒓   𝒏 = 𝟎, 𝟏, … , 𝑵 

Ʌ𝒛(𝒏) = 𝜹𝟎 ,      𝒇𝒐𝒓   𝒏 = 𝟏, 𝟐, … , 𝑵 

𝑲(𝒏) = 𝟎, 𝒇𝒐𝒓    𝒏 = 𝟏, 𝟐, … , 𝑵 

 

Computation in time 𝒕 ≥ 𝒕𝟎 

 

𝜦̅𝟎 = 𝜶𝟐 ∙ (Ʌ𝟎 + 𝒚𝒕
𝟐) 

𝝂̅ = 𝜶𝟐 ∙ (𝝂 + 𝟏) 

𝝃𝟎 = 𝟎 

𝒆𝒖(𝟎)
= 𝒉𝟎 = 𝒖𝒕 

𝒆𝒚(𝟎)
= 𝒚𝒕 
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Cycle for n=1, 2, …, N 

 

𝒉𝒛(𝒏) = 𝒉 (𝒏 − 𝟏) 

𝑲̅𝒖(𝒏) = 𝜶𝟐 ∙ (𝑲𝒖(𝒏) +
𝒉𝒛(𝒏) ∙ 𝒆𝒖(𝒏 − 𝟏)

𝟏 + 𝝃(𝒏 − 𝟏)
 ) 

𝜦̅𝒛(𝒏) = 𝜶𝟐 ∙ (Ʌ𝒛(𝒏) +
𝒉𝒛

𝟐(𝒏)

𝟏 + 𝝃(𝒏 − 𝟏)
) 

𝒉(𝒏) = 𝒉𝒛(𝒏) − 𝑲(𝒏) ∙ Ʌ−𝟏(𝒏 − 𝟏) ∙ 𝒆𝒖(𝒏 − 𝟏) 

𝒆𝒖(𝒏) = 𝒆𝒖(𝒏 − 𝟏) − 𝑲𝒖(𝒏) ∙ Ʌ𝒛
−𝟏(𝒏) ∙ 𝒉𝒛(𝒏)  

𝝃(𝒏) = 𝝃(𝒏 − 𝟏) + Ʌ𝒛
−𝟏(𝒏) ∙ 𝒉𝒛

𝟐(𝒏) 

𝜦̅(𝒏) = 𝜶𝟐 ∙ (Ʌ(𝒏) +
𝒆𝒖

𝟐(𝒏)

𝟏 + 𝝃(𝒏)
) 

𝑲̅𝒚(𝒏) = 𝜶𝟐 ∙ (𝑲𝒚(𝒏) +
𝒉𝒛(𝒏) ∙ 𝒆𝒚(𝒏 − 𝟏)

𝟏 + 𝝃(𝒏 − 𝟏)
 ) 

𝒆𝒚(𝒏) = 𝒆𝒚(𝒏 − 𝟏) − 𝑲𝒚(𝒏) ∙ Ʌ−𝟏(𝒏) ∙ 𝒉(𝒏)  

 

Algorithm 1: Lattice with prediction errors [40] 

Instead of 𝝃(𝒏) it is possible to make updating in the following                          

form [40-41, 47-48, 50, 81]: 

𝝈𝟐(𝒏) = 𝟏 + 𝝃(𝒏).                   (𝑨. 𝟓𝟓) 

For n=0 

𝝈𝟎
𝟐 = 𝟏,                   (𝑨. 𝟓𝟔) 

𝝈𝟐(𝒏) = 𝝈𝟐(𝒏 − 𝟏) + 𝒉𝒛
𝟐(𝒏) ∙ Ʌ𝒛

−𝟏(𝒏).               (𝑨. 𝟓𝟕) 

It is worth mentioning that the algorithm computes all necessary parameters for 

calculating the probability density function 𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝒏𝒕) [40-41, 47-48, 50, 81]. 
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The structure of the QRD RLS Lattice algorithm can be shown in the following 

graph [40]: 

 

Figure A.2: QRD RLS Lattice algorithm [40] 

 means multiplication with a constant, 

 stands for “memory cell”, with the help of which the following equation 

is performed: 𝒉𝒛(𝒏) = 𝒉 (𝒏 − 𝟏), where 𝒉 (𝒏 − 𝟏) is from the previous time step. 

Algorithm 1 can be changed to obtain the filtration errors instead of the prediction 

errors. This  change allows deriving the normalized forms of the algorithms performing 

the computation in range (-1; 1) [40-41, 47-48, 50, 81], which decreases 

the computational complexity and ensures the numerical stability of the algorithm. 

The equations, which define relations between the filtration and prediction errors, 

are as follows [40-41, 47-48, 50, 81]: 

𝒆̅(𝒏) = 𝒆(𝒏) ∙ (𝟏 − 𝝃̅(𝒏)),                 (𝑨. 𝟓𝟖) 

𝒉̅𝒛(𝒏) = 𝒉𝒛(𝒏) ∙ (𝟏 − 𝝃̅(𝒏 − 𝟏)).                (𝑨. 𝟓𝟗) 

It is also valid: 

𝟏 + 𝝃(𝒏) =
𝟏

𝟏 − 𝝃̅(𝒏)
 .                                                                                                        (𝑨. 𝟔𝟎) 

The detailed description of the derivation of the equations can be found                       

in [40-41, 47-48, 50, 81]. 
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The algorithm can be written in the following form [40]: 

Start of the algorithm in time 𝒕𝟎 = 𝑵 + 𝟏 

 

𝜹𝟎 > 𝟎, 𝜹𝟎 → 𝟎 

𝜶𝟐𝝐(𝟎, 𝟏 > 

Ʌ̅ (𝒏) = 𝜹𝟎, 𝒇𝒐𝒓 𝒏 = 𝟎, 𝟏, … , 𝑵 

Ʌ̅𝒛(𝒏) = 𝜹𝟎 , 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵 

𝑲̅ (𝒏) = 𝟎, 𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵 

 

Computation in time 𝒕 ≥ 𝒕𝟎 

 

Ʌ̅̅𝟎 = 𝜶𝟐 ∙ Ʌ̅𝟎 + 𝒚𝒕
𝟐 

𝝂̿ = 𝜶𝟐 ∙ 𝝂̅ + 𝟏 

𝝃̅̅𝟎 = 𝟎 

𝒆̅̅𝒖𝟎 = 𝒉̅̅𝟎 = 𝒖𝒕 

𝒆̅̅𝒚𝟎 = 𝒚𝒕 

 

Cycle for n=1, 2, …, N 

 

𝒉̅̅𝒛(𝒏) = 𝒉̅𝒛(𝒏 − 𝟏) 

𝑲̅̅𝒖(𝒏) = 𝜶𝟐 ∙ 𝑲̅𝒖(𝒏) +
𝒉̅̅𝒛(𝒏) ∙ 𝒆̅̅𝒖(𝒏 − 𝟏)

𝟏 − 𝝃̅̅(𝒏 − 𝟏)
  

Ʌ̅̅𝒛(𝒏) = 𝜶𝟐 ∙ Ʌ̅𝒛(𝒏) +
𝒉̅̅𝒛

𝟐(𝒏)

𝟏 − 𝝃̅̅(𝒏 − 𝟏)
) 
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𝒉̅̅(𝒏) = 𝒉̅̅𝒛(𝒏) − 𝑲̅̅𝒖(𝒏) ∙ Ʌ̅̅−𝟏(𝒏 − 𝟏) ∙ 𝒆̅̅𝒖(𝒏 − 𝟏) 

𝒆̅̅𝒖(𝒏) = 𝒆̅̅𝒖(𝒏 − 𝟏) − 𝑲̅̅𝒖(𝒏) ∙ Ʌ̅̅𝒛
−𝟏(𝒏) ∙ 𝒉̅̅𝒛(𝒏) 

 𝝃̅̅(𝒏) = 𝝃̅̅(𝒏 − 𝟏) + Ʌ̅̅𝒛
−𝟏(𝒏) ∙ 𝒉̅̅𝒛

𝟐(𝒏) 

Ʌ̅̅(𝑵 + 𝟏|𝒏) = 𝜶𝟐 ∙ Ʌ̅(𝑵 + 𝟏|𝒏) +
𝒆̅̅𝒖

𝟐(𝑵 + 𝟏|𝒏)

𝟏 − 𝝃̅̅(𝒏)
 

𝑲̅̅𝒚(𝒏) = 𝜶𝟐 ∙ 𝑲̅𝒚(𝒏) +
𝒉̅̅𝒛(𝒏) ∙ 𝒆̅̅𝒚(𝒏 − 𝟏)

𝟏 − 𝝃̅̅(𝒏 − 𝟏)
  

𝒆̅̅𝒚(𝒏) = 𝒆̅̅𝒚(𝒏 − 𝟏) − 𝑲̅̅𝒚(𝒏) ∙ Ʌ̅̅−𝟏(𝒏) ∙ 𝒉̅̅(𝒏) 

 

Algorithm 2: Lattice algorithm with filtration error [40] 

Again instead of 𝝃̅(𝒏), it is possible to make updating: 

𝝈̅𝟐(𝒏) = 𝟏 − 𝝃̅(𝒏).                  (𝑨. 𝟔𝟏) 

For n=0: 

𝝈̅𝟎
𝟐 = 𝟏,                   (𝑨. 𝟔𝟐) 

𝝈̅𝟐(𝒏) = 𝝈̅𝟐(𝒏 − 𝟏) − 𝒉̅𝒛
𝟐(𝒏) ∙ Ʌ̅𝒛

−𝟏(𝒏).               (𝑨. 𝟔𝟑) 

The main difference between Algorithm 1 and Algorithm 2 is in the fact 

that Algorithm 2 works with parameters Ʌ̅𝒛, 𝜦̅, 𝑲̅, which are already updated 

by the filtration errors 𝒆̅ and 𝒉̅𝒛 before using them in the equations. This property allows 

normalizing variables in the algorithm. For example, due to the equations for updating 

Ʌ̅, it is obtained [40-41, 47-48, 50, 81]: 

Ʌ̅(𝒏) = 𝜶𝟐 ∙ Ʌ̅(𝒏) +
𝒆̅𝟐(𝒏)

𝟏 − 𝝃̅(𝒏)
,                                                                                         (𝐀. 𝟔𝟒) 

𝟎 < 𝟏 − 𝝃̅(𝒏) ≤ 𝟏,                  (𝑨. 𝟔𝟓) 

−𝟏 < 𝒆̅(𝒏) ∙ Ʌ̅−
𝟏

𝟐(𝒏) < 𝟏.                 (𝑨. 𝟔𝟔) 

As it was mentioned in Chapter 1, the QRD RLS Lattice algorithm is suitable 

for incorporation of the hypothesis estimation. 
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Let us remind the equation for estimation of the hypothesis probability (1.14): 

𝒑(𝑯𝒏|𝑫(𝒕)) =
𝒑𝒏(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏))

𝒑(𝒚𝒕|𝒖𝒕, 𝑫(𝒕 − 𝟏))
𝒑(𝑯𝒏|𝑫(𝒕 − 𝟏)),             𝒇𝒐𝒓 𝒏 = 𝟏, … , 𝑵. 

There are two stages of probability estimation. The first stage, which is presented 

by the numerator in (1.14), computes the order update. In the second stage, 

which is presented by the denominator of (1.14), the normalization of the updated 

order estimates is performed [84]. These stages can be incorporated 

into the QRD RLS Lattice algorithm. 

It is obvious that to compute the probability estimates of the hypotheses, it is necessary 

to know 𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏), 𝑯𝒏), which is calculated as follows (A.15): 

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝑯𝒏) = 𝝅−𝟏/𝟐 ∙
𝜦((𝝑−𝒏)/𝟐+𝟏)

𝜦̅((𝝑̅−𝒏)/𝟐+𝟏)
∙

|𝑽[𝒏]|𝟏/𝟐

|𝑽̅[𝒏]|𝟏/𝟐
∙

Г((𝝑̅ − 𝒏)/𝟐 + 𝟏)

Г((𝝑 − 𝒏)/𝟐 + 𝟏)
. 

The equation for updating 𝝑 can be written in the following form [84]: 

𝝑̅ = 𝜶𝝑 + 𝟏.                   (𝑨. 𝟔𝟕) 

Let us remind also that the above equation is valid only for the regression model 

inherent to the hypothesis H as a conditional probability density function (1.15) [84]: 

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏), 𝜣, 𝑯𝒏) =
𝝎𝒕

√𝟐𝝅
𝒆−(

𝝎𝒕
𝟐

)(𝒚𝒕−𝜽𝒕
𝑻𝒁[𝒏])𝟐

. 

The part of the QRD RLS Lattice algorithm, which shows computation of incorporated 

hypothesis estimation, is given in the following form: 

Initialization: 

j is a number of models, n is the order of a model. 

𝒑𝒊,−𝟏 =
𝟏

(𝒋 + 𝟏)
  ∀𝒊 

 

For i=1:j 

𝝑𝒍𝒊𝒎 =
𝟏

𝟏 − 𝜶𝟐
 

𝒆𝟏𝒊 =
𝜶𝝑𝒍𝒊𝒎 − 𝒏𝒊

𝟐
+ 𝟏 
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𝒆𝟐𝒊 =
𝝑𝒍𝒊𝒎 − 𝒏𝒊

𝟐
+ 𝟏 

𝝉𝒊 = 𝝑̅ + 𝟏 − 𝒏𝒊 = 𝜶𝝑 − 𝒏𝒊 

// Approximation of division of gamma functions 

𝒈𝒊𝟏 = (
𝝉𝒊 + 𝟏

𝝉𝒊
)

𝝉𝒊/𝟐

 

𝒈𝒊𝟐 = (
𝝉𝒊

𝟐
)

𝟏/𝟐

 

𝒈𝒊𝟑 = 𝒆−𝟏/𝟐 ∙ 𝒈𝒊𝟏 ∙ 𝒈𝒊𝟐 

𝒈𝒊 = 𝝅−𝟏/𝟐 ∙ 𝒈𝒊𝟑 

// Computation of other components of the equation (2.40) 

𝒇𝒕𝒊 = (
𝜦𝒊

𝜦̅𝒊

)

(
𝝑𝒊−𝒏𝒊

𝟐
+𝟏)

∙
𝟏

𝜦̅𝒊
𝟏/𝟐

 

𝒔𝒕𝒊 =
𝟏

𝝈𝒊
𝟐
 

 

pi(yt|D(t-1), Hi)=fti*sti*gi; 

fi_hypo=1e-20*(1.0/j); 

 

p(𝑯𝒊)=pi(𝒚𝒕)∙p(𝑯𝒊); 

p(Hs)=∑ 𝒑(𝑯𝒊)
𝒋
𝒊=𝟎  

p(𝑯𝒊)=(p(𝑯𝒊)+fi_hypo)/(p(Hs)+fi_hypo*j); 

 

end 

Algorithm 3: Hypothesis estimation 
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Let us discuss Algorithm 3 in more details. 

It is obvious from Algorithm 3 that before the first iteration, it is necessary to define 

the initial hypothesis probability density function. It is chosen in the form 

of the uniform distribution: 

𝒑𝒊,−𝟏 =
𝟏

(𝒋 + 𝟏)
  ∀𝒊,                                                                                                        (𝑨. 𝟔𝟖) 

where 𝒑𝒊 is the probability of model i of order n at time t. Value t=-1 represents 

the initialization step. 

Initialization of other characteristics is given as follows [84]: 

𝝑𝒍𝒊𝒎 = 𝐥𝐢𝐦
𝒏→∞

𝝑 =
𝟏

𝟏 − 𝜶
                                                                                                    (𝑨. 𝟔𝟗) 

𝒆𝟏 =
𝜶𝝑𝒍𝒊𝒎 − 𝒏

𝟐
+ 𝟏                                                                                                        (𝑨. 𝟕𝟎) 

𝒆𝟐 =
𝝑𝒍𝒊𝒎 − 𝒏

𝟐
+ 𝟏                                                                                                           (𝑨. 𝟕𝟏) 

𝒈 = 𝝅−𝟏/𝟐
Г(𝒆𝟐 )

Г(𝒆𝟏 )
                                                                                                           (𝑨. 𝟕𝟐) 

In Algorithm 3 equation (A.15) is not used in its direct form due to the numerical 

problems. 

The problematic part is the first division 
𝜦((𝝑−𝒏)/𝟐+𝟏)

𝜦̅((𝝑̅−𝒏)/𝟐+𝟏) in the equation (A.15). It should be 

rewritten to avoid the potential numerical underflow or overflow in case 

of the implementation in the floating point with a limited data range. As far as (A.67), 

the equation can be re-arranged into the following form: 

𝜦
(

𝝑−𝒏
𝟐

+𝟏)

𝜦̅
(

𝝑̅−𝒏
𝟐

+𝟏)
=  (

𝜦

𝜦̅
)

(
𝝑−𝒏

𝟐
+𝟏)

∙
𝟏

𝜦̅
𝟏
𝟐

                                                                                           (𝑨. 𝟕𝟑) 

The division of determinants in the second part of equation (A.15) can also cause 

an algorithm failure and should be reformulated. Using relations                              

in [40-41, 47-48, 50, 81], it can be rewritten as follows: 

|𝑽[𝒏]|𝟏/𝟐 

|𝑽̅[𝒏]|𝟏/𝟐
= ∏

𝜦(𝒏)

𝜦̅(𝒏)

𝑵

𝒏=𝟏

=
𝟏

𝟏 + 𝝃
=

𝟏

𝝈𝟐
                   𝒇𝒐𝒓 𝒏 = 𝟏, 𝟐, … , 𝑵                       (𝑨. 𝟕𝟒) 

 



181 
 

Moreover, there is a need to perform the division of gamma functions in a better way. 

In [40-41, 47-48, 50, 81] for the approximation of the division of gamma functions, 

the Stirling equation is used: 

Г (
𝒙

𝟐
) = √𝟐𝝅𝒆−

𝒙
𝟐 (

𝒙

𝟐
)

(𝒙−𝟏)/𝟐

  𝒙 > 𝟎                                                                                (𝑨. 𝟕𝟓) 

If the numerator of argument of gamma function in (A.15) is denoted as: 

𝝉𝒏 = 𝝑 + 𝟏 − 𝒏 = 𝜶𝝑 − 𝒏                      (𝑨. 𝟕𝟔) 

Then for the division of gamma function, it is obtained: 

Г (
𝝉𝒏 + 𝟏

𝟐 )

Г (
𝝉𝒏

𝟐 )
= 𝒈̅(𝒏) = 𝒆−

𝟏
𝟐 (

𝝉𝒏 + 𝟏

𝝉𝒏
)

𝝉𝒏
𝟐

∙ (
𝝉𝒏

𝟐
)

𝟏
𝟐

                                                           (𝑨. 𝟕𝟕) 

where 𝝉𝟎 = 𝝑̅ + 𝟏. 

Summarizing all approximations, which have been made above, the equation (A.15) 

can be rewritten in the following way: 

𝒑(𝒚𝒕|𝑫(𝒕 − 𝟏); 𝑯𝒏) = 𝝅−
𝟏
𝟐 ∙

𝜦(
𝝑−𝒏

𝟐
+𝟏)

𝜦̅
(

𝝑̅−𝒏
𝟐

+𝟏)
∙

|𝑽[𝒏]|
𝟏
𝟐

|𝑽̅[𝒏]|
𝟏
𝟐

∙
Г (

𝝑̅ − 𝒏
𝟐 + 𝟏)

Г (
𝝑 − 𝒏

𝟐 + 𝟏)
= 

= 𝝅−𝟏/𝟐 ∙ (
𝜦

𝜦̅
)

(
𝝑−𝒏

𝟐
+𝟏)

∙
𝟏

𝜦̅
𝟏
𝟐

 ∙
𝟏

𝝈𝟐
∙ 𝒆−

𝟏
𝟐 (

𝝉 + 𝟏

𝝉
)

𝝉
𝟐

∙ (
𝝉

𝟐
)

𝟏
𝟐

                                               (𝑨. 𝟕𝟖) 

Moreover, it should be noted that there are certain limits, within which the value 

of the forgetting factor 𝜶𝟐 can be chosen. These limits are conditioned by the maximum 

order of the model and can be written as follows: 

𝟏 −
𝟏

𝑵+𝟑
< 𝜶𝟐 < 𝟏                 (𝑨. 𝟕𝟗) 

For detailed information about the derivation of the above formula as well as a 

definition of time, from when it is possible to start the recursive updating 

of the probability density function of the order of a regression model, please, 

refer to [40-41]. 
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After the values of 𝒑𝒕−𝟏 have been updated, the normalization step follows to obtain 

updated probabilities 𝒑𝒕. The probability density function is given by the equation 

for hypothesis testing and is extended with the forgetting of the hypotheses [84]: 

𝒑𝒊 =
𝒑𝒊 

𝒅 + 𝝋

∑ (𝒑𝒊 
𝒅 + 𝝋)

𝒋
𝒊=𝟎

                                                                                                          (𝑨. 𝟖𝟎) 

where 𝒑𝒊 
𝒅 is an updated, but not normalized probability of model i of order n,              

for i=1,…, j. The value 𝝋 is the forgetting factor of the hypotheses. 

The sum of updated probabilities 𝒑𝒊 
𝒔𝒅 can be calculated as [84]: 

𝒑𝒊 
𝒔𝒅 = ∑ (

𝒋
𝒊=𝟎 𝒑𝒊 

𝒅 + 𝝋) = (𝒋 + 𝟏)𝝋 + ∑ 𝒑𝒊 
𝒅𝒋

𝒊=𝟎               (𝑨. 𝟖𝟏) 

Then, the value of 𝒑𝒊 
𝒅 is calculated using the update of 𝒑𝒊

𝒅 from its initial     

value 𝒑−𝟏 
𝒅 = (𝒋 + 𝟏)𝝋. 


