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Abstract—This paper is focused on parameter identification
for Model Predictive Control (MPC). Two identification tech-
niques for parameters of Auto Regressive model with eXogenous
input (ARX model) are considered: namely the identification
based on Particle Swarm Optimisation (PSO) and Least Square
(LS) method. PSO is investigated and LS is presented in square-
root form as a reference method for comparison, respectively.
The following points are elaborated and discussed: i) parameters’
estimation of ARX model; ii) design of PSO and LS procedures;
iii) design of data-driven MPC algorithm in square-root form;
iv) concept of possible use of PSO for semiautomatic fine
tuning or retuning of MPC parameters. The proposed theoretical
procedures are demonstrated using simply reproducible simula-
tion experiments. Application possibilities are discussed towards
robotics and mechatronics.

Index Terms—data-driven modelling, parameter estimation,
particle swarm optimisation, predictive control

I. INTRODUCTION

The introduction of modern control approaches into practice
requires a detailed knowledge of controlled system. Despite
the existence of various identification methods, the model
composition and its possible adaptation still represents a chal-
lenge. For many systems such as mechanical ones, it is suf-
ficient to define the relevant model of the controlled sys-
tem at the initial phase and consider it to be constant
during the control process. Such a model can be obtained
by a thoroughgoing mathematical and physical analysis.

To take into account time-varying model parameters,
it is possible to implement some sophisticated identification
method into the control algorithm, but this can increase the al-
gorithm complexity (more advanced mathematical operations
such as matrix inversion) and demands on the used target
processor platforms. Thus, it is useful to have a simpler
or sub-optimal identification algorithm that can run either fully
in parallel or just occasionally to improve the model used
in control design.

One of such algorithms is Particle Swarm Optimisation
(PSO). It is a promising optimisation algorithm due to a simple
implementation, only three setting parameters and flexibility
in combination with other optimisation algorithms [1].
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In [2], Model Predictive Control (MPC) with PSO for ARX
model with varying parameters is proposed for greenhouse
applications such as optimisation of air temperature control.
The paper [3] presents a method for tuning a MPC-based
quadrotor trajectory using cooperative PSO, where two swarms
exchange information to more efficiently explore the search
space and find tuning parameter values that improve trajectory
tracking performance. Applications in photovoltaic and smart
systems are investigated in [4], [5]. These examples repre-
sent specific potential for real-world applications in addition
to the theoretical PSO utilisation such as in [6], [7].

In this paper, we investigate PSO principle within MPC
to detect changes in model parameters. In contrast to the works
cited above, such a task represents an online computation
in fast MPC sampling. PSO can also be used to identify
isolated parameters. For instance, if some parameter of a phys-
ically based model cannot be simply determined by a measure-
ment such as mechanical parameters (e.g. moments of inertia,
the positions of centres of gravity) or electro-mechanical
parameters (e.g. electromagnetic constant), then some auxil-
iary identification is needful. The proposed PSO algorithm
is compared with the standard Least Square (LS) method,
presented in a computationally optimised square-root form [8].

The paper is organised as follows. Firstly, a model used
for control design is defined in Section II. Then, the principle
of PSO procedure is introduced in Section III. The comparative
LS procedure is outlined in Section IV. A design of MPC
is presented in Section V. Finally, Section VI and Section VII
summarise and demonstrate introduced theoretical results,
respectively. The paper concludes with a summary and outline
of possible future work in Section VIII.

II. PRELIMINARIES

Mathematical models used in control design are either
based on physical analysis (rational, theoretically based, so-
called white box models) or on targeted measurements (data-
driven approach, black box models). The former, ‘analytical’
models have usually a form of differential equations. They are
subsequently discretised and transformed in state-space forms
with determined physical relations. In contrast, the latter, ‘em-
pirical’ models use outer description expressed by difference
equations with link to discrete state-space models.



For purposes of parameter identification or parameter
change detection, the Auto Regressive model with eXogenous
input (ARX model) is considered as representative data-driven
model of the controlled system in the following form:

yk =

n∑
i=0

bi uk−i −
n∑

i=1

ai yk−i + ek

= ϑk fk + ek (1)
ϑk = [ b0 b1 · · · bn − a1 − a2 · · · − an ]

fk = [uk uk−1 · · · uk−n yk−1 · · · uk−n ]
T

where n is the order of the system, y and u are its outputs
and inputs and e is an error - noise influencing the output y.

III. PSO ALGORITHM

In PSO, a swarm of S particles moves in a D-dimensional
search space and search for an optimal solution. Each particle
represents a candidate solution to the solved optimisation
problem and keeps a current velocity vector vm and a current
position vector xm, where index m = 1, 2, · · ·, S.

The PSO process starts by randomly initialising all vectors
vm and xm. In every iteration, the best solution of each particle
as well as the best solution of the swarm is updated based
on the value of some fitness function f . The PSO process stops
when reaching a global optimum or maximum of iterations.

In this paper, we use a basic PSO variant [9] that consists
in the following evolution of m-th velocity and particle
position at the i-th iteration:

vm, i+1 = wi vm, i + c1,i r1(pbm, i − xm, i)

+ c2,i r2 (gb i − xm, i) (2)
xm, i+1 = xm, i + vm, i+1 (3)

where i denotes iteration number, w represents inertia weight,
c1 is a cognitive acceleration parameter, c2 is a social accel-
eration parameter, r1, r2 ∈ ⟨0, 1⟩ are random numbers,
pbm,i is the best location found by the m-th particle
and gb i is the global best location of all the particles
at the i-th iteration.

pbm, i =

{
pbm, i−1, if f(xm, i) ≥ f(pbm, i−1)
xm, i, if f(xm, i) < f(pbm, i−1)

(4)

gb i = arg min
xm, i

f(xm, i), 1 ≤ m ≤ S (5)

The tuning parameters of PSO algorithm, i.e. c1, c2 and w
maintain the balance between global discovery and local
detection. We have used the following approved setting [10]:

• time-varying acceleration coefficients

c1,i = 2.5− 2 i/nit (6)
c2,i = 0.5 + 2 i/nit (7)

where nit denotes the total number of iterations.
• linearly decreasing inertia weights

wi = wmax − (wmax − wmin) i/nit (8)

where wmax and wmin denote the maximal
and minimal inertia weight, respectively.

Algorithm summary - steps 1) - 7):

1) Initialise the PSO algorithm parameters,
i.e., the swarm size S, inertia weight w,
acceleration coefficients c1, c2, maximum
number of iterations nit, and maximum
velocity Vmax.

2) Set a swarm that has S particles.
3) Initialise the position xm,1 and velocity vm,1,

and pbm,1 of each particle (m = 1, 2, · · · , S);
and initialise gb 1 of the swarm.

4) Calculate each particle’s fitness value.
5) Update the pbm,i of each particle and gb i

of the swarm.
6) Update the velocity vm,i and the position xm,i

of each particle given by (2) and (3).
7) If maximum iterations are met or fitness value

reaches the threshold then algorithm is in end,
else it goes to the step 4).

The algorithm itself provides iteration on a specific set
of data and selects the best one individuals for specific gen-
erated parameters. The individuals form the basis of searched
model parameters.

IV. LS ALGORITHM

For comparison, we have chosen LS algorithm in square-
root form [8]. Let us proceed from (1) with the reversed order
of data vector fk and model parameters ϑk:

yk = fTk ϑT
k + ek (9)

A relevant set of equations corresponding to the number
of parameters is composed as:

yk = Fk ϑ
T
k + ek (10)

ek = yk − Fk ϑ
T
k = [Fk yk ] [−ϑk 1 ]T (11)

Fk = [ fTk fTk−1 · · · fTk−2n ]
T

yk = [ yk yk−1 · · · yk−2n ]
T

ek = [ ek ek−1 · · · ek−2n ]
T

Then, the cost function can be defined as follows

Jk = eTk ek → min
ϑT
k

Jk = ||J̄k||22 = ||ek||22 (12)

The criterion (12) can be minimised over searched parameters
ϑk using orthogonal-triangular decomposition as follows:

J̄k =Q [Fk yk ] [−ϑk 1 ]T = [ 0 cl ]
T (13)

Q [Fk yk ] = R =

@
@
@
@

RPP RPR

@
@@

cl

(14)

−RPP ϑk +RPR = 0 (15)



where individual sub-matrices are defined as follows:

RPP = R 1:2n, 1:2n (16)
RPR = R 1:2n, 2n+1 (17)

cl = R 2n+1, 2n+1 (18)

Then, the parameter estimates can be obtained solving (15).
Initialisation of LS algorithm is realised as follows:

R = k0 I2n+1 (19)

where k0 is initial diagonal element and I is identity matrix
of order 2n+1, with specific set of initial values of parameters.

V. MPC ADAPTIVE ALGORITHM

This section introduces specific model reorganisation and its
application in a structure of equations of predictions. Let us
consider the deterministic part of (1) with b0 = 0 for usual
cases of mechanical systems in predictive form:

ŷk+1 =

n∑
i=1

bi uk−i+1 −
n∑

i=1

ai yk−i+1 (20)

It can be rearranged into a specific observable canonical form
of a state-space model:

yk−n+2

...
yk

ŷk+1

 =


0 1 · · · 0
...

. . .
0 1

−an · · · −a1



yk−n+1

...
yk−1

yk



+


0 · · · 0
...

...
0 · · · 0
bn · · · b1



uk−n+1

...
uk−1

uk

 ⇒

xk+1 = A xk + B0 uk (21)

yk = [ 0 · · · 0 1 ]xk ⇒ yk = C xk (22)

This rearrangement is provided in every time step according
to parameters obtained from identification procedure.

A. Structure of Equations of Predictions

Structure of equations of predictions follows from (21)
and (22), on which recursive substitution and expansion over
prediction horizon N is applied: ŷk+1

...
ŷk+N

=

C A
...

C AN


yk−n+1

...
yk

+
C B0 · · · 0

. . .
...

C BN−1


uk−n+1

...
uk+N−1

 (23)

ŷ = f̄ + Ḡ uk−n+1 : k+N−1 (24)

ŷ = f̄ +Gp uk−n+1 : k−1 +G uk : k+N−1 (25)

ŷ = f +G uk : k+N−1 (26)

where initial matrix Ḡ represents forced response to mixture
of control actions both known past and unknown future.

Rows of Ḡ or matrices B0, B1, · · ·, BN are constructed as:

B1 = [AB0 0 ] + [ 0 B0 ] (27)
B2 = [AB1 0 ] + [ 0 0 B0 ] (28)

... =
...

BN−1 = [ABN−2 0 ] + [ 0n,N−1 B0 ] (29)

Therefore, this matrix can be decomposed into two sub-
matrices: Gp (for known past) and G (for unknown future).
Then, Gp with known path control actions uk−n+1 : k−1 can
be connected to the known free response f̄ to obtain the known
past f separated from unknown forced response Guk : k+N−1.

B. Minimisation of the Cost Function

Let the criterion with square-root decomposed cost function
be defined as follows:

Jk = min
uk:k+N−1

J T J (30)

J =
[
Qyw 0
0 Qu

][
ŷ − w
u

]

=

[
Qyw G Qyw (w − f )
Qu 0

]
︸ ︷︷ ︸

A b

[
u
−1

]
(31)

Then, square-root J (31) can be minimised using orthogonal-
triangular decomposition similarly to LS (14):

Q [A b ] = R =

@
@
@
@

R1 c1

@
@@

cz

(32)

−R1 u+ c1 = 0 (33)

where the vector cz represents a loss vector. Its Euclidean
norm ∥cz||2 corresponds to the square-root of the minimum
of the cost function (30), i.e., Jk = cTz cz .

Note that only the first element uk from the computed vector
u (33) is used for control. Furthermore, note that the pre-
sented MPC adaptive algorithm with varying parameters
ϑk = [ b0 b1 · · · bn − a1 − a2 · · · − an ] can be rearranged
into incremental form in control actions point of view. In such
case, the penalisation of control is applied only to increments
of control actions. It is indicated in the corresponding cost
function:

Jk =

[
Qyw 0
0 Q∆u

][
ŷ − w
∆u

]
(34)

The incremental property, in view of control actions, can
solve overshoots and constraints in general. The incremental
algorithm concept is discussed in [11], [12] and [13].
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Fig. 1. Flow chart of used procedures.

VI. MAIN RESULTS

The paper presents a PSO procedure applied to param-
eter estimation implemented in an MPC design as shown
in the flowchart in Fig. 1. Block initialisation represents the
setup of necessary parameters for identification and control as
well, see Table I. There is also an initialisation of visualisation
and other supporting subroutines.

The main cycle loop represents one discrete time step k
of simulation, where true time is t = k Ts. The identification
block represents the same position for both PSO (Section III)
and comparative LS (Section IV) algorithms. PSO and LS
algorithms are interchangeable. They contain a sliding data
window utilised in an appropriate identification procedure.
PSO can be executed in specific times only or can run con-
tinuously like LS.

Then, MPC block follows (Section V). This block includes
computation of control actions (33) with equations of predic-
tions (26) based on data-driven model (20). The application
of MPC actions to the controlled system is simulated using
numerical integration (MATLAB ode45 function: Dormand-
Prince method [14]) or this position represents a real object.

The overview flowchart (Fig. 1) contains also supporting
blocks for running and final visualisations and for evaluation.
The corresponding MATLAB code of the main PSO cycle is
in Alg. 1, where parameter setup is on lines 3 and 4, update
of velocity and particle position at the i-th iteration on lines
6-10, data window shift on lines 14 and 15, prediction error
on line 17, computation of fitness function is on line 18,
evaluation over one iteration is on lines 21-28 and the best
global values are selected on line 31.

Alg. 1. MATLAB code of main PSO cycle.

1 for i = 1:max_iter % main PSO cycle
2 for j = 1:S
3 r1 = rand(D,1); r2 = rand(D,1);
4 w = 0.0005*(ones(D,1)+rand(D,1)); % or eq. (6)
5 % evaluate v_m_id(j+1) using eq. (2)
6 v_m(1:D,j) = w.*v_m(1:D,j) ...
7 + c1*r1.*(Pbest(1:D,j) - x_m(1:D,j)) ...
8 + c2*r2.*(Gbest(1:D) - x_m(1:D,j));
9 % update x_m_id(i+1) using eq. (3)

10 x_m(1:D,i) = x_m(1:D,j) + v_m(1:D,j);
11 x_m_ext = [x_m(1:2,j); 0; x_m(3:4,j)];
12 fval = 0; % prediction error => fitness function
13 for jit = 3:ndat
14 psi = [DATA(2,jit-1:-1:jit-2)'; ...
15 DATA(1,jit:-1:jit-2)'];
16 y = DATA(2,jit);
17 yp = x_m_ext'*psi; % theta_est = x_m_ext;
18 fval = fval + abs(y-yp); % sum of absolute errors
19 end
20
21 % evaluation of whole window - 1 it.
22 if fval < Pfun(j)
23 Pbest(:,j) = X(:,j); Pfun(j) = fval;
24 end
25 % selection of the best from window - 1 it.
26 if Pfun(j) < Gfun
27 Gbest = Pbest(:,j); Gfun = Pfun(j);
28 end
29 end
30 % the best candidates from window and iterations
31 Gbest_all(:,i) = Gbest; Gfun_all(i) = Gfun;
32 end

VII. EXPERIMENTS

In this paper, data-driven model type is considered. To pro-
vide easily repeatable experiments, the following single-input
single-output second order stable system is considered

Gs(s) =
1

s2 + 2s+ 1
(35)

For control design, transfer function (35) can be transformed
into discrete time domain, i.e. for Ts = 0.1 s is as follows:

Gs(z
−1) =

0.0047 z−1 + 0.0044 z−2

1− 1.8097 z−1 + 0.8187 z−2
(36)

and yk = 0.0047uk−1 + 0.0044uk−2

+ 1.8097 yk−1 − 0.8187 yk−2 (37)

where the correspondence between values above and the model
parameters is as follows:

Gs(z
−1) =

b1 z
−1 + b2 z

−2

a1 z−1 + a2 z−2
(38)

and yk = b1 uk−1 + b2 uk−2 − a1 yk−1 − a2 yk−2 (39)

The model parameters ϑ = [ b1 b2 −a1 −a2 ] are estimated
by PSO and LS procedures. The algorithm setup is charac-
terised by parameters in Table I. There are realised two types
of experiments with PSO:
i) one-shot estimation, see Fig. 2 and ii) online estimation
in combination with MPC algorithm, see Fig. 3 and Fig. 4.
The selected experiments are run under normal disturbances
with standard deviation σ = 0.01.



TABLE I
ADJUSTABLE PARAMETERS: PSO, LS AND MPC

description parameter considered range

PSO swarm size S 50− 100

swarm dimension D ≡ no. of model prms

no. of iterations nit 50− 500

no. of data in data set ndat 20− 100

cognitive accel. coef. c1 ε− 5, ε > 0

social acceleration coef. c2 ε− 5, ε > 0

inertia weight w ε− 2, ε > 0

LS forgetting factor fi 0.9− 1

initial diag. coef. k0 10−4 − 10−8

MPC prediction horizon N > n (system order), 10

penalty factor qu 0 (hard) −1 (soft)

The one-shot experiment (Fig. 2) shows profiles of parame-
ter searching convergence over PSO iterations for one specific
data window. The last sub-figure in the column shows the de-
creasing trend of prediction deviation ‘Gfun’ as the accuracy
of the model parameters increases, i.e. trend of fitness function.

The run of MPC with PSO versus MPC with LS is doc-
umented by the resulting values of identified parameters
in Table II and by the above-mentioned Fig. 3 and Fig. 4.
Fig. 3 shows controlled system behaviour along sin and rect-
angle shape reference signal under random disturbance.
Fig. 4 demonstrates PSO convergence over the whole simula-
tion time interval. The convergence speed depends on the ex-
citation signal and amount of information contained in it.

The ranges of the individual parameters in the sub-figures
are specially adapted/zoomed so that the gradual evolution
of the parameter values could be recognisable. From the ex-
periments for available training data sequences, it is clear that
PSO quickly converges to specific ideal values and stabilises.

TABLE II
COMPARISON OF PARAMETERS: IDEAL, PSO AND LS ALGORITHMS

b1 b2 a1 a2

Ideal 0.0046788 0.0043771 -1.8097 0.81873

PSO 0.0047914 0.0043842 -1.8057 0.81498

LS 0.0046788 0.0043766 -1.8097 0.81873

VIII. CONCLUSION

The paper presents utilisation of PSO algorithm within MPC
to track changes in the parameters of the ARX model. PSO
does not represent an optimal solution and gives too cautious
parameter estimation in comparison with standard identifica-
tion methods. However, PSO uses only simple mathematical
operations, namely addition and multiplication and only trends

Fig. 2. Time histories of bi, ai and Gfun by PSO.

of acceleration coefficients or magnitudes of computed veloc-
ities. The magnitudes should be proportionally in correspon-
dence with usual parameter changes otherwise a swarm is too
volatile and searched parameters can not converge to their true
values. PSO can be used to monitor changes of parameters
and consistency with their expected trends.

Future work will focus on PSO for the detection of isolated
parameter changes and prediction of future parameter values
with the use in industrial robotics and its dynamic models.



Fig. 3. Time histories of system outputs under MPC with PSO.
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