
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 9, 2023 217

Robust Online Modeling of Counts
in Agent Networks

Radomír Žemlička and Kamil Dedecius

Abstract—Many real-world processes of interest produce non-
negative integer values standing for counts. For instance, we count
packets in computer networks, people in monitored areas, or parti-
cles incident on detectors. Often, the ultimate goal is the modeling
of these counts. However, standard techniques are computationally
demanding and sensitive to the amount of available information. In
our quest to solve the objective, we consider two prominent features
of the contemporary world: online processing of streaming data,
and the rapidly evolving ad-hoc agent networks. We propose a novel
algorithm for a collaborative online estimation of the zero-inflated
Poisson mixture models in diffusion networks. Its main features are
low memory and computational requirements, and the capability
of running in inhomogeneous networks. There, the agents possi-
bly observe different processes, and locally decide which of their
neighbors provide useful information. Two simulation examples
demonstrate that the algorithm attains good stability and estima-
tion performance even under slowly varying parameters.

Index Terms—Collaborative estimation, diffusion, distributed
estimation, excessive zeros, Poisson regression.

I. INTRODUCTION

FULLY distributed online modeling of various stochastic
processes from streaming data in networks with informa-

tion diffusion is an established discipline in the signal processing
domain [1], [2], [3]. Its applications can be found, e.g., in the
Internet of Things, social networks, sensor grids, and a variety
of other networked scenarios [4], [5], [6], [7], [8], [9]. We focus
on fully distributed modeling algorithms. They assume that the
agents degree is generally higher than two and that the com-
munication is limited to the adjacent neighbors. Typically, two
collaboration strategies are distinguished. First, the consensus
strategy with the goal of reaching a (mostly global) agreement
about the variables of interest. This necessarily relies on in-
termediate iterations among agents between two subsequent
time instants. Second, the diffusion strategy, where any type
of information is exchanged at most once per each time instant.
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Both strategies have their advantages and disadvantages, and
numerous modifications have been proposed in the last decade.
Many details can be found in the books [1], [2], and [9]. They
are an excellent source of relevant information and references
about the topic.

In the signal processing domain, the main focus has natu-
rally been given to the omnipresent continuous variables. This
gave rise to the diffusion recursive least squares [10], Bernoulli
filters [11], least mean squares [12], [13], [14], [15], particle
filters [16], [17], [18], or Kalman filters [19], [20]. Many vari-
ants, modifications, and improvements stem from these basic
algorithms. The popularity of these filters ultimately implicates
their somewhat controversial use for discontinuous variables.
Indeed, they may perform relatively well despite violating some
fundamental assumptions, such as the noise distribution and
the response variable support. For instance, the continuous data
models are routinely used for discrete counts, i.e., data that take
nonnegative integer values. The results (predictions, estimates)
are acceptable as long as the observed values are high enough.
However, such models are doomed to fail if the counts tend to
be low or if there are excessive zeros [21], [22].

In this paper, we will specifically focus on count models. They
are notably important in epidemiology, finance, transportation,
physics, or networking [21], [23]. They mostly belong to the
class of the generalized linear models (GLMs) that link the
explanatory variables (regressors) with the observations through
convenient link functions [24], [25]. The count models employ
the logarithmic link function that gives rise to the Poisson
regression model. Unfortunately, the nonlinear link function is
not without costs – the vast majority of GLMs (including the
Poisson GLM) cannot be inferred without demanding numerical
or Markov chain Monte Carlo (MCMC) methods [25], [26].
This is a critical handicap in modern applications processing
fast streaming data, for instance, in online counting of crowds,
packets, or particles. The first Poisson regression algorithm
suitable for low-cost sequential (online) modeling of counts was
proposed recently by the authors [27].

A frequent issue of the Poisson GLM is its limited use in
many engineering, medical, or sociology applications violating
its basic assumptions. Empirical count data typically exhibit
overdispersion, i.e., the variance of the observed variable ex-
ceeds the mean. Its typical source is the existence of mul-
tiple sub-populations (sub-processes) generating the observed
data [28]. Second, the real-world count data are often subject
to zero-inflation. They contain excessive zeros that cannot be
explained by the Poisson model [29], [30]. The typical sources
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of excessive zeros are missing observations, sensor/target
coverings, dropouts, dead times etc. Both the overdispersion and
zero-inflation completely rule out the generic Poisson GLMs. A
way around both problems consists in mixture-based modeling.
The overdispersion calls for mixtures of Poisson GLMs, while
the zero-inflation introduces a non-Poissonian component ac-
counting for the excessive zeros [28], [31], [32], [33]. Similarly
to the basic Poisson GLM, the inference of mixture models
heavily relies on demanding offline numerical methods. Further-
more, complex statistical models, e.g., the mixture models, share
one key characteristic: the need for a relatively large amount of
observations for their inference. This often leads to deployment
of multiple (possibly varied) sensors in practice. Ultimately,
they form an agent (sensor) network [1]. Real-world examples
comprise crowd counting using several cameras with different
fields of view, spatially distributed traffic counting with optical,
pneumatic, and inductive devices, or particle counting with
different measuring principles [34], [35], [36]. The increasingly
popular distributed information processing, however, may then
face significant challenges due to the network inhomogeneity.
For instance, sensors with wide fields of view may observe
processes that are invisible to sensors with narrow fields of
view. Similarly, cameras operating in the infrared spectrum
may observe phenomena that are not observable in the visible
spectrum. As a result, the set of observed and modeled processes
(e.g., mixture components) of one agent may partially or even
completely differ from the corresponding sets of other agents.
Reliable identification of common information is inevitable.

In this paper, we carefully focus on the discussed issues,
namely the overdispersion, zero-inflation, and network-based
information processing. The considerable novelty consists of
several aspects. We propose a novel algorithm for a numerically
stable online inference of the zero-inflated Poisson mixture
model (ZIPMM) from streaming data. It is formulated as a
mixture estimation task, where the excessive zeros are ascribed
to a Dirac distribution located at the origin. Other sub-processes
are modeled by Poisson components. Finally, the idea of im-
proving the modeling performance by collaboration of multiple
agents is brought to life for networks with information diffusion.
The resulting algorithm admits the inhomogeneity of the net-
work, where the agents possibly observe partially or completely
different processes. The automated identification of common
mixture components is a part of the solution. This allows for the
deployment of the proposed method to real-world applications,
where the state-of-the-art solutions rely on demanding central-
ized information processing.

The paper is structured as follows: The problem is formulated
in Section II. In Section III, the algorithm for the collaborative
inference is developed. The information fusion over the network
is described in the subsequent Section IV. Section V discusses
some properties and limitations of the algorithm. Section VI
demonstrates the algorithm performance on two simulation ex-
amples. Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

Let us assume a network consisting of a set of agents I =
{1, . . . , I}. Its structure can be represented by a connected graph

where the agents correspond to vertices and the undirected edges
to the communication channels among them. The communi-
cation is spatially limited to one edge distance. That is, for
each agent i ∈ I we identify its closed neighborhood Ii ⊂ I of
agents whose information is at disposal to i. For convenience,
the agent i belongs to Ii too.

The agents i ∈ I are interested in a sequential (online)
discrete-time modeling of an observable streaming stochastic
process {Y i

t ; t = 1, 2, . . .} of nonnegative integer counts. We
denote their own mutually independent observations by yit. If
there exist explanatory variables, a convenient model for Y i

t is
the zero-inflated Poisson mixture model (ZIPMM). It consists
of Ki Poisson components (GLMs), and one Dirac component.
The Poisson components link the observations yit with related
known regressorsxit ∈ Rn, and corresponding unknown vectors
βi
k,t ∈ Rn, k = 1, . . . ,Ki of regression coefficients. The Dirac

component is located at zero and accounts for excessive zero
measurements that remain unexplained by the Poisson compo-
nents. Typically, these zeros correspond to deadlocks, missing
measurements, failures, dead times, dropouts, sensor/target cov-
ering etc.

At each agent i ∈ I, the components are assigned unknown
nonnegative relative weightsφi0,t, . . . , φ

i
Ki,t taking values in the

unitKi simplex. In particular,φi0,t corresponds to the probability
that the variable Y i

t is produced by the Dirac component, and
φi1,t, . . . , φ

i
Ki,t correspond to the probabilities that it is produced

by one of the Ki Poisson components. To summarize, the local
ZIPMM at the agent i has the general form

Y i
t |xit,βi

t,φ
i
t ∼ φi0,tDir(0) +

Ki∑
k=1

φik,tPois
(
exp

(
βi,ᵀ
k,tx

i
t

)
︸ ︷︷ ︸

rate parameter

)
,

(1)

where the unknown parameters are summarized by φi
t =

[φi0,t, . . . , φ
i
Ki,t]

ᵀ and βi
t = {β1,t, . . . , βKi,t}. Our ultimate

goal is their reliable estimation. The probability density function
of the model (1) reads

f i(yit|xit,βi
t,φ

i
t) = φi0,tδ0 +

Ki∑
k=1

φik,tf
i
k(y

i
t|xit, βi

k,t), (2)

where δ0 is the Dirac delta distribution at 0, and f ik(·) are the
Poisson densities with the rate parameter plugged in,

f ik(y
i
t|xit, βi

k,t) =
exp(βi,ᵀ

k,tx
i
ty

i
t − exp(βi,ᵀ

k,tx
i
t))

yit!
. (3)

By linearity of the expectation operator and equality of the
Poisson rate parameter to the first moment it follows that

E[Y i
t |xit,βi

t,φ
i
t] =

Ki∑
k=1

φik,t exp(β
i,ᵀ
k,tx

i
t). (4)

The proposed generic model (1) enjoys a remarkable property:
it gives rise to a number of sub-models of paramount importance.
In particular:
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ŽEMLIČKA AND DEDECIUS: ROBUST ONLINE MODELING OF COUNTS IN AGENT NETWORKS 219

1) The basic Poisson GLM arises if the mixture degenerates
to a single Poisson component:

Y i
t |xit, βi

t ∼ Pois
(
exp(βi,ᵀ

t xit)
)

(5)

with the GLM form

E[Y i
t |xit, βi

t ] = exp
(
βi,ᵀ
t xit

)
. (6)

2) The prominent zero-inflated Poisson (ZIP) GLM arises if
there are excessive zero measurements unexplained by a
single Poisson component:

Y i
t |xit, βi

t , φ
i
t ∼ φitDir(0)+(1− φit)Pois

(
exp(βi,ᵀ

t xit)
)
,

(7)
with the corresponding GLM form

E[Y i
t |xit, βi

t , φ
i
t] = (1− φit) exp(βi,ᵀ

t xit). (8)

3) The pure Poisson GLM mixture models arise if Ki > 1
and the Dirac component is absent,

Y i
t |xit,βi

t,φ
i
t ∼

Ki∑
k=1

φik,tPois
(
exp

(
βi,ᵀ
k,tx

i
t

))
, (9)

where the GLM form is

E[Y i
t |xit,βi

t,φ
i
t] =

Ki∑
k=1

φik,t exp(β
i,ᵀ
k,tx

i
t). (10)

A. Homogeneity Across the Network

So far, the situation has been described from the viewpoint
of individual network agents that locally acquire measurements
yit, regressors xit, and model the process using the ZIPMM (1)
or any of its submodels (5), (7), or (9). Based on the operational
conditions (sensors technology, their orientation, fields of view
etc.) two scenarios may occur:

1) Homogeneous scenario where all agents observe the same
random process {Yt; t = 1, 2, . . .} ≡ {Y i

t ; t = 1, 2, . . .}
for all t and i ∈ I. Since Yt is a random variable, the
observations yit may spatially differ, but they still obey
the underlying distribution. Similarly, the regressors xit
may spatially differ. The ZIPMM model is hence common
to all agents i ∈ I, and they may profit from involving
neighbors’ measurements and estimates in own inference.

2) Inhomogeneous scenario where the ZIPMM may partially
or completely differ from agent to agent. Then, the agents
may profit from neighbors’ estimates, but they need to
detect which components are common. An example is
depicted in Fig. 1.

We assume that the scenario is known a priori. This allows
designing a generic algorithm for collaborative inference in
networks with information diffusion. It consists of two steps.
During the adaptation step the agents update their own prior
estimates using the locally measured or shared data. The com-
bination step then serves for fusion of estimates that relate to
the same mixture components. The steps are described in the
sequel.

Fig. 1. Example of an inhomogeneous scenario. The network consists of two
types of sensors (in blue and green). They have different fields of view and hence
observe either one of the processes (in red), or both processes simultaneously.

III. ADAPTATION STEP

The adaptation step serves for the assimilation of available
measurements yit and regressors xit into the agents’ local knowl-
edge about the inferred variables βi

t and φi
t. Recall that these

data relate to the same observed process in the homogeneous
scenario. Each agent i thus may assimilate yjt and xjt of neigh-
bors j ∈ Ii without harm. By contrast, in the inhomogeneous
scenario, the agents observe at least partially different processes,
making the use of neighbors’ data problematic, if not impossible.
The assimilation is hence limited to own data. For convenience,
we introduce the adaptation set IiA as follows:

IiA =

{Ii in the homogeneous case,
{i} in the inhomogeneous case.

(11)

Let us fix an agent i ∈ I. With respect to the ZIPMM structure
(1), the agent maintains a known numberKi + 1 of components,
namely one Dirac component and Ki Poisson GLM compo-
nents. From i’s perspective, the observed process activates one
concrete component kij,t ∈ {0, . . . ,Ki} per each t = 1, 2, . . .

and each j ∈ IiA. This component then produces a measurement
yjt that is possibly explained by a regressor xjt . In particular,
either the Dirac distribution is activated (kij,t = 0) with proba-
bility φi0,t, or one of the Poisson components is activated (kij,t ∈
{1, . . . ,Ki}) with probability φik,t. The complete information

for each measurement yjt , j ∈ IiA can be represented by a joint
density

f i(yjt , k
i
j,t|xjt ,βi

t,φ
i
t) =

[
φi0,t δ0

]10(k
i
j,t)

×
Ki∏
k=1

[
φik,tf

i
k(y

i
t|xit, βi

k,t)
]1k(k

i
j,t) ,

(12)

where 10(kij,t) and 1k(kij,t) are the indicators of the Dirac
and Poisson components, respectively. They equal 1 if the
corresponding component is active at time t, and 0 otherwise.
By conditional independence of the information from all the
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neighbors j ∈ IiA, the complete data model at time t becomes

f i
(
{yjt }j∈IiA , {k

i
j,t}j∈IiA

∣∣∣∣{xjt}j∈IiA ,βi
t,φ

i
t

)
=
∏
j∈IiA

f i(yjt , k
i
j,t|xjt ,βi

t,φ
i
t). (13)

This formula explains how the ZIPMM (1) generates data from
the ith agent’s perspective. We face the ignorance of φi

t, β
i
t, and

kij,t whose reliable inference is imperative.
We aim to infer the unknown model parameters from stream-

ing data. For this purpose, we exploit the Bayesian paradigm
allowing us to update the knowledge from time t− 1 to t through
the Bayes’ theorem. Locally at i, this knowledge is conveyed by
the joint prior density

πi(βi
t,φ

i
t|Xi

t−1, Y
i
t−1,K

i
t−1) = πi(βi

t|Xi
t−1, Y

i
t−1,K

i
t−1)

× πi(φi
t|Xi

t−1, Y
i
t−1,K

i
t−1), (14)

where Xi
t−1, Y

i
t−1, and Ki

t−1 symbolize all knowledge about
the past regressors, measurements, and active components in-
dicators available to the ith agent up to time instant t− 1.
Furthermore, by independence of components,

πi(βi
t|Xi

t−1, Y
i
t−1,K

i
t−1) =

Ki∏
k=1

πi(βi
k,t|Xi

t−1, Y
i
t−1,K

i
t−1).

(15)

A. Local Estimation of φi
t

Assume a fixed agent i. The component weights φik,t, k =

0, . . . ,Ki take values in the unit Ki-simplex, i.e., they sum to
one. This advocates the use of the Dirichlet distribution as the
factor for φi

t in the prior distribution (14). The Dirichlet density
with the prior hyperparameters κik,t−1 ∈ R+ has the form

πi(φi
t|Xi

t−1, Y
i
t−1,K

i
t−1) ∝

Ki∏
k=0

(
φik,t

)κi
k,t−1−1 , (16)

where ∝ stands for equality up to the normalizing constant. As
new streaming data xjt and yjt of agents j ∈ IiA arrive, they
are sequentially incorporated into the prior distribution (14) by
means of the Bayes’ theorem,

πi(βi
t,φ

i
t|Xi

t , Y
i
t ,K

i
t)

∝πi(βi
t,φ

i
t|Xi

t−1, Y
i
t−1,K

i
t−1)︸ ︷︷ ︸

prior density (14)

∏
j∈IiA

f i(yjt , k
i
j,t|xit,βi

t,φ
i
t)︸ ︷︷ ︸

data model (13)

.

(17)

Let us closely focus on individual factors of the formula. If we
plug the Dirichlet density (16) into the prior (14), we obtain

πi(βi
t,φ

i
t|·) ∝ πi(βi

t|Xi
t−1, Y

i
t−1,K

i
t−1)

× (φi0,t)κi
0,t−1−1

Ki∏
k=1

(
φik,t

)κi
k,t−1−1 . (18)

The term φi0,t relates to the Dirac distribution. It is separated for
convenience that will become clear shortly. The data model in
(17) encompasses the individual agents’ densities (12). That is,∏
j∈IiA

f i(yjt , k
i
j,t|xjt ,βi

t,φ
i
t)

=
∏
j∈IiA

⎧⎨⎩[φi0,t δ0]10(k
i
j,t) ·

Ki∏
k=1

[
φik,tf

i
k(y

j
t |xjt , βi

k,t)
]1k(k

i
j,t)

⎫⎬⎭.
(19)

Similarly to the previous density (18), the Dirac-related compo-
nent is separated.

The compatibility of the prior density (18) and the data models
(19) elucidates that the resulting Bayesian update (17) consists of
two separate updates. First, the values of the indicators 1k(kij,t)
are incorporated into the Dirichlet hyperparameters κik,t−1. Sec-

ond, each pair xjt and yjt updates the relevant factor of the prior
distribution for βi

t. The major problem is that the formula is
purely conceptual, as the indicators of the active components
are rarely available. In the sequel, we circumvent this issue by
replacing the indicators by their point estimates as suggested by
Titterington et al. [37] and Kárný et al. [38].

The Dirichlet density (16) yields the prior estimator

E[φik,t|Xi
t−1, Y

i
t−1,K

i
t−1] =

κik,t−1∑Ki

q=0 κ
i
q,t−1

. (20)

Now, for each Poisson component k = 1, . . . ,Ki and the jth
neighbor’s data xjt , y

j
t , the component indicator point estima-

tors are proportional to the prior probability of the individual
components and the predictive likelihood of these components.
That is, for k = 1, . . . ,Ki,

1̂k(k
i
j,t) = E[1k(k

i
j,t)|Xi

t , Y
i
t ,K

i
t ]

∝ E[φik,t|Xi
t−1, Y

i
t−1,K

i
t−1]

× f ik(yjt |xjt , Xi
t−1, Y

i
t−1,K

i
t−1). (21)

The Dirac component then takes the rest of the unit probability
mass,

1̂0(k
i
j,t) = E[10(k

i
j,t)|Xi

t , Y
i
t ,K

i
t ]

= 1−
Ki∑
k=1

E[1k(k
i
j,t)|Xi

t , Y
i
t ,K

i
t ]

= 1−
Ki∑
k=1

1̂k(k
i
j,t), (22)

The Bayesian predictive likelihood of the kth local Poisson
component in (21) is

f ik(y
j
t |xjt , Xi

t−1, Y
i
t−1,K

i
t−1)

=

∫
f ik(y

j
t |xjt , βi

k,t)π
i(βi

k,t|Xi
t−1, Y

i
t−1,K

i
t−1)dβ

i
k,t.

(23)
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We will see shortly that this prior predictive likelihood is not
analytically tractable. Still, a straightforward way around the
problem consists in exploiting the plug-in principle and substi-
tution of the prior point estimate β̂i

k,t directly into the Poisson
density (3),

f ik(y
j
t |xjt , Xi

t−1, Y
i
t−1,K

i
t−1) ≈ f ik(yjt |xjt , β̂i

k,t). (24)

The estimator β̂i
k,t will be derived in the following Section III-B.

The same process applies to the Dirac component. The sit-
uation is trivial there as it covers only the cases yjt = 0. To
conclude, the Bayesian estimation formulas for φi

t result from
(17), (21) and (22). For the Dirac component weight φi0,t the
update of the relevant Dirichlet hyperparameter reads

κi0,t = κi0,t−1 +
∑
j∈IiA

1̂0(k
i
j,t). (25)

For the Poisson component weights φi1,t, . . . , φ
i
Ki,t, the update

formula is

κik,t = κik,t−1 +
∑
j∈IiA

1̂k(k
i
j,t), k = 1, . . . ,Ki. (26)

Remark 1: While using the parameter point estimate directly
in the generative model is standard in the frequentist statistic, its
use in the Bayesian analyses is often considered controversial.
This is due to the fact that the predictive distributions of the form
(23) account for uncertainty about βi

k,t. In practice, the trade-off
between uncertainty quantification and computational burden is
often acceptable if the sample size is large enough. Moreover,
Smith pointed out that the inferiority of the plug-in estimators
is by far not a rule [39].

B. Approximate Local Estimation of βi
t

From the independence of βi
k,t it follows that the Bayesian

update (17) with the estimated indicators (21) results in the
posterior distribution of βi

t of the form

πi(βi
t|Xi

t , Y
i
t ,K

i
t) =

Ki∏
k=1

πi(βi
k,t|Xi

t , Y
i
t ,K

i
t)

∝
Ki∏
k=1

πi(βi
k,t|Xi

t−1, Y
i
t−1,K

i
t−1)

∏
j∈IiA

[
f ik(y

j
t |xjt , βi

k,t)
]̂1k(k

i
j,t)

.

(27)

A careful examination of this update elucidates that the posterior
distribution of each βi

k,t incorporating the measurement yjt and

the regressor xjt is given by the weighted Bayesian update

πi(βi
k,t|Xi

t , Y
i
t ,K

i
t) ∝ πi(βi

k,t|Xi
t−1, Y

i
t−1,K

i
t−1)

×
∏
j∈IiA

[
f ik(y

j
t |xjt , βi

k,t)
]̂1k(k

i
j,t)

. (28)

In principle, this update can be performed in a sequential
one-by-one way. The problem of its analytical intractability
can theoretically be overcome using the Bartlett and Kendall’s

Fig. 2. Mean value mj
k,t

: The approximation error (residue) for different

values of yjt . The order of magnitude is very low.

approximation [40]. Namely, for two random variables a and b
with a density p(a|b),

p(a|b) ∝ eabe−exp(a) ⇒ a ∼̇N
(
log b,

1

b

)
. (29)

This approach was first used for static Poisson GLM by El
Sayaad [41]. We aim at applying this Gaussian approximation
to the Poisson components. Indeed, their densities (3) are com-
patible with (29). From a practical viewpoint, this would work
well for yit large enough. For low values, the approximation is
crude, and it inevitably fails if yjt = 0. Inspired by [42] and [27],
we rewrite the density (3) as follows:

f ik(y
j
t |xjt , βi

k,t) =
exp(βi,ᵀ

k,tx
j
t (y

j
t + 1)− exp(βj,ᵀ

k,tx
j
t ))

yjt !

× 1

exp(βi,ᵀ
k,tx

j
t )
. (30)

This form is stable under yjt = 0 and its first factor is compatible
with (29). However, the approximation is still relatively crude
for very low values of yjt . The difference between the original
mean value and the mean value of the approximating Gaussian
distribution is high for low yjt , but quickly decreases with
increasing yjt . The same is true for the standard deviation. In
order to suppress these errors for all values of yjt , we fit a simple
hyperbolic regression model describing the evolution of the pair
“yjt ∼ error in mean,” and another hyperbolic regression model
for the pair “yjt ∼ error in standard deviation”. The predicted
errors are then subtracted from the mean and standard deviation
of the original approximation (29). The resulting calibrated
Gaussian approximation is convenient for any value of yjt . It
is given by N (mj

k,t, s
j,2
k,t) where

mj
k,t = log(yjt + 1)− 0.5574

yjt + 1
, (31a)

sjk,t =
1√
yjt + 1

+
0.0724

yjt + 1
+

0.2121

(yjt + 1)2
. (31b)

The approximation accuracy present Figs. 2, 3, and 4. The first
two depict the final error for the mean value (31a) and the
standard deviation (31b), respectively. Apparently, the orders
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Fig. 3. Standard deviation sj
k,t

: The approximation error for different values

of yjt . The order of magnitude is remarkably low.

of inaccuracy are negligible. Fig. 4 compares the cumulative
distribution functions and the Q-Q plots of the true distribution,
the original crude approximation (29), and the calibrated approx-
imation (31). The error apparently vanishes with an increasing
value of yjt regardless of the approximation type. For low values,
the calibration leads to much better results.

The calibrated approximation of the data model (30) results
from the normal density with the mean and standard deviation
(31a) and (31b), and the second factor in (30). Its basic form
and the exponential family form characterized by the sufficient
statistic read

f ik(y
j
t |xjt , βi

k,t) ∝ exp

(
−1
2sj,2k,t

(βi,ᵀ
k,tx

j
t −mj

k,t)
2 − βi,ᵀ

k,tx
j
t

)

∝exp

{
−1
2

Tr

([
−1
βi
k,t

][
−1
βi
k,t

]ᵀ
T (xjt , y

j
t , k

i
j,t)

)}
, (32)

respectively. The sufficient statistic T (xjt , y
j
t , k

i
j,t) is a square

symmetric (n+ 1)× (n+ 1) matrix

T (xjt , y
j
t , k

i
j,t)=

1

sj,2k,t

[
mj,2

k,t (mj
k,t − sj,2k,t)x

j,ᵀ
t

xjt (m
j
k,t − sj,2k,t) xjtx

j,ᵀ
t

]
.

(33)

Let us again focus on the update (28) where we substitute
the Gaussian densities (32) for the data models f ik(y

j
t |xjt , βi

k,t).
In order to make the update analytically tractable, the Bayesian
paradigm requires conjugacy between the data models and the
prior πi(βi

k,t|Xi
t−1, Y

i
t−1,K

i
t−1). A convenient choice is the

Gaussian density

πi(βi
k,t|Xi

t−1, Y
i
t−1,K

i
t−1) ≡ N (bik,t−1, P

i
k,t−1), (34)

where bik,t−1 ∈ Rn is the mean vector and P i
k,t−1 is the n× n

positive semi-definite covariance matrices. Its probability den-
sity reads

πi(βi
k,t|Xi

t−1, Y
i
t−1,K

i
t−1)

∝ exp

(
−1

2
(βi

k,t − bik,t−1)ᵀP i,−1
k,t−1(β

i
k,t − bik,t−1)

)

∝ exp

{
−1

2
Tr

([
−1
βi
k,t

][
−1
βi
k,t

]ᵀ
Ψi

k,t−1

)}
, (35)

Fig. 4. Quality of the calibrated and original approximations of the true density
for yjt taking values 1, 5, 10, and 25 (rows from the top). The calibration
significantly improves the approximation quality for lower values.

where

Ψi
k,t−1 =

[
bi,ᵀk,t−1
I

]
P i,−1
k,t−1

[
bi,ᵀk,t−1
I

]ᵀ
(36)

is the (n+ 1)× (n+ 1) symmetric sufficient statistic, and I is
an n× n identity matrix.

As a result, the Bayesian update (28) multiplies the prior
distribution (35) and a product of the data models (32) weighted
by estimated component indicators 1̂k(kij,t). Since the densi-
ties with sufficient statistics are functionally compatible, the
update assimilates the sufficient statistics T (xjt , y

j
t , k

i
j,t) into

Ψi
k,t−1, k = 1, . . . ,Ki as follows:

Ψi
k,t = Ψi

k,t−1 +
∑
j∈IiA

1̂k(k
i
j,t)T (x

j
t , y

j
t , k

i
j,t)

=

[
(ψi

k,t)11 (ψi
k,t)12

(ψi
k,t)

ᵀ
12 (ψi

k,t)22

]
. (37)
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The term (ψi
k,t)11 is scalar, and the submatrix (ψi

k,t)2,2 has the

same dimension as P i,−1
k,t . The posterior Ψi

k,t then easily yields

P i
k,t = (ψi

k,t)
−1
2,2,

bik,t = (ψi
k,t)

−1
2,2(ψ

i
k,t)

ᵀ
1,2. (38)

There are certain attractive features of working directly withΨi
k,t

in place of the original bik,t andP i
k,t. First, the additive form of the

update (37) avoids potentially computationally unstable matrix
inversions. Second, it represents all available information about
βi
k,t in a form allowing a straightforward information fusion in

networks. We will exploit this property in Section IV. And third,
it is easy to discount potentially outdated information about
time-varying parameters. The following section covers this.

C. Time-Varying Parameters βi
t and φi

t

In most real-world applications, the model parameters are not
constant, yet there is no known evolution model. A popular way
around the problem is to assume that they follow a random walk.
If the noise power of this random walk is smaller than the noise
power of the measurement noise, we say that the parameters
vary slowly. Then, it is possible to build an adaptive filter that
can track the parameters [43, Chap. 16]. The favored approach is
to gradually discount older information from the previous poste-
rior distribution before its subsequent updating [44], [45]. This
amounts to exponentiation of the density using forgetting factors
ranging from 0.95 (fast forgetting) to 1 (no forgetting). The
concrete values should balance the trade-off between tracking
and noise sensitivity. In practice, they are selected heuristically.

Forgetting factor αβ applied to the estimator of βi
k,t yields

πi(βi
k,t|Xi

t−1, Y
i
t−1,K

i
t−1)=[πi(βi

k,t−1|Xi
t−1, Y

i
t−1,K

i
t−1)]

αβ,
(39)

which obviously deflates Ψi
k,t−1 and hence reduces the amount

of information in it,

Ψi
k,t−1 ← αβΨ

i
k,t−1 ∀k ∈ {1, . . . ,Ki}. (40)

Similarly, for φit and forgetting factor αφ,

πi(φit|Xi
t−1, Y

i
t−1,K

i
t−1) = [πi(φit−1|Xi

t−1, Y
i
t−1,K

i
t−1)]

αφ ,
(41)

which deflates the Dirichlet hyperparameters κik,t−1,

κik,t−1 ← αφκ
i
k,t−1 ∀k ∈ {0, . . . ,Ki}. (42)

The resulting hyperparameters subsequently enter the Bayesian
updating steps described earlier.

IV. COMBINATION STEP

After the adaptation step, the network agents i ∈ I possess
the posterior estimates πi(βi

t|·). With respect to the networked
environment, there arises a logical (if not instinctive) impetus for
taking advantage of neighbors’ knowledge. Inspired by human
behavior, we suggest that an agent should consider only knowl-
edge that is sufficiently similar to its own. This principle can
be applied to both the homogeneous and inhomogeneous case.
In the former, it primarily protects from erroneous or poisoned

information. In the second case, it facilitates the identification
of common components.

In order to develop the combination step, let us fix an agent
i ∈ I. Its estimators of unknown vectors βi

k,t, k = 1, . . . ,Ki

are its local posterior densities πi(βi
k,t|·). Their mean vectors

bik,t stand for the point estimates, while their covariances P i
k,t

express the associated uncertainty. The same principle applies to
i’s neighbors j ∈ Ii. Recall, that i has access to their posteriors,
some of which may relate to vectors βi

k,t, k = 1, . . . ,Ki. Their
identification and subsequent fusion could significantly improve
i’s statistical knowledge about the inferred quantities. The iden-
tification is based on the similarity of point estimates. For each
locally inferred βi

k,t, each i’s neighbor j ∈ Ii with posterior

densities πj(βj
l,t|Xj

t , Y
j
t ,K

j
t ), l ∈ {1, . . . ,Kj}, we define the

set IiC(βi
k,t) of similar densities. It consists of elements yielding

point estimates that lie within a ball of radius d ≥ 0 around bik,t:

IiC
(
βi
k,t

)
=
{
πj(βj

l,t|·) :
∣∣∣∣bjl,t, bik,t∣∣∣∣2 ≤ d,∀j ∈ Ii}. (43)

If d = 0, the sets would contain only i’s own densities and no
neighbors’ ones. As the value of d increases, the set becomes
gradually richer. However, if d becomes too large, the set may
contain even poisoned information or information relevant to
other components. Appropriate setting of d is problem-specific
and depends on the observed system. For instance, the user may
set it based on the (rough) expertise or preliminary analyses of
how distant the inferred vectors are. It is also possible to start
with a very conservative (low) value of d and increase it when
the posterior distributions become sufficiently concentrated.
Alternatively, it is possible to run a bank of estimators with
different values of d and gradually select those that yield the
best modeling performance.

Remark 2: It may be argued that the selection of similar
densities should consider the covariance matrices too. Various
information divergences such as the Kullback-Leibler or the
Bregman divergence could be used for this task. However, in
our Bayesian information processing, the densities express the
location of the point estimate (the mean) and the uncertainty
about this location (the covariance matrix). The agents are
primarily interested in the former, while the latter is a penalizing
factor for the subsequent analyses.

The rule for the local combination of the elements of IiC(βi
k,t)

should respect the fundamental principles of Bayesian informa-
tion processing. By the Fisher-Neyman theorem, the parameter
estimators depend on data only through the sufficient statis-
tics [46]. These statistics are assimilated to the additive hyper-
parameter Ψi

k,t, cf. (37). By the Bernstein-von Misses theorem,
the influence of the initial Ψi

k,0 on the posterior distribution
vanishes with t→∞ under a well-specified parametric model
with a finite number of parameters [46]. That is, the dominating
information is contained in the sum of sufficient statistics. The
intended combination rule should protect this additivity and
ensure that if the same distributions were combined, the result
would stay identical, i.e., there would be no information loss
nor gain. The arithmetic mean of the posterior hyperparameters
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Algorithm 1: ROBUST ONLINE MODELING OF COUNTS IN

AGENT NETWORKS.
For each agent i ∈ I set the initial hyperparameters Ψi

k,0

and κik,0 of components k = 1, . . . ,Ki, and κi0,0 of the
Dirac component. Set the forgetting factors αφ and αβ .
Set the acceptable deviation d.

For t = 1, 2, . . . and each agent i ∈ I do:
Adaptation step:

1) Perform forgetting, (40) and (42).
2) Acquire xjt , y

j
t of neighbors j ∈ IiA, cf. (11)

3) Calculate the expected component indicators 1̂k(kij,t)

and 1̂1(kij,t), (21), (22), and (23).
4) Update the prior for φi

t, (25) and (26).
5) Calculate the sufficient statistics T (xjt , y

j
t , k

i
j,t), (33),

using moments (31).
6) Update the prior for βi

t, (37).
Combination:

1) Acquire poster. densities πj(βj
t |·) of neighbors j ∈ Ii.

2) Construct the sets IiC(·) of similar components, (43).
3) Combine similar components, (44).

Estimation: Calculate the point estimates of φi
t and

βi
k,t, k = 1, . . . ,Ki, (20) and (38).

resulting in the combined posterior density

π̄i(βi
k,t|·)∝exp

⎧⎨⎩−12 Tr

⎛⎝[−1
βi
k,t

][
−1
βi
k,t

]ᵀ ∑
j∈IiC(βi

k,t)
Ψj

k,t

card{IiC(βi
k,t)}

⎞⎠⎫⎬⎭
(44)

fulfills the requirement, cf. (37). The mean of the resulting
distribution serves as the point estimator of βi

k,t.
Remark 3: The combination rule is widely used in informa-

tion theory and statistics. It can be shown that it is Kullback-
Leibler-optimal [47] and Bregman-optimal [48]. The same rule
can be used to combine information about φi

t if the scenario is
totally homogeneous and all agents observe exactly the same
process. We leave it beyond the paper scope for its relatively
limited use.

V. PROPERTIES

a) Communication Requirements: The communication re-
quirements of the adaptation step at each agent i ∈ I amounts to
card (IiA) n-dimensional real vectors xjt and the same number
of nonnegative integer measurements yjt , j ∈ IiA. The commu-
nication burden of the combination step at an agent i involves
Kj symmetric real matrices Ψj

k,t of the dimension (n+ 1)×
(n+ 1) to be transmitted for each neighbor j ∈ Ii.

b) Memory Requirements: The memory requirements are as
follows: The local prior density for φi

t requires (Ki + 1) float-
ing point numbers κi0,t, . . . , κ

i
Ki,t. The local prior density for

βi
t requires Ki symmetric (n+ 1)× (n+ 1) matrices Φi

k,t of
floating point numbers. The adaptation step requires memory for
card(IiA) integer measurements yjt , and memory for card(IiA)

regression vectors xjt of n floating point numbers. During the
combination step, each neighbor j ∈ Ii providesKj symmetric
matrices Ψj

k,t of (n+ 1)× (n+ 1) floating point numbers.
The algorithm requires setting of three floating point constants:
αφ, αβ , and d. Since the prior distributions are conjugate, all
information necessary for estimation is stored in sufficient statis-
tics of fixed size. No variable changes its size in time.

c) Computational Complexity: Unlike the existing solutions
relying mostly on expectation maximization or MCMC methods
(see Section I), the proposed algorithm has a fully sequential
noniterative character. The number of arithmetic operations
depends on the number of modeled components and the car-
dinality of agent’s neighborhood. The use of sufficient statistics
reduces the Bayesian updates to weighted summations of (i)
Ki + 1 floating point numbers – (25), (26), and (ii) symmetric
(n+ 1)× (n+ 1) matrices (37). Similarly, the combination
step (44) is a summation of symmetric (n+ 1)× (n+ 1) ma-
trices. Matrix inversion is used only in the evaluation of the
covariance matrix P i

k,t−1 in (38). However, the algorithm does
not need its calculation per se. There is a need to evaluate the
(scalar) value of the Gaussian density during the adaptation step
in (24) and the (scalar) moments mj

k,t, s
j
k,t in Formulas (31).

One local time step of Algorithm 1 takes several milliseconds
on a desktop computer if a naive implementation is written in
python with numpy. An optimized implementation would
allow to use the method in relatively fast real-time applications.

d) Limitations: The limitations of the proposed algorithm
are connected with the equidispersion assumption: The vari-
ance of a single-component Poisson variable is identical to the
mean value. If the single-component variable exhibits signifi-
cant overdispersion, i.e., the variance exceeds the mean, some
other count models are preferred, namely the negative binomial,
Poisson-inverse-Gaussian, or the generalized Poisson model.
In the case of underdispersion, the generalized Poisson model
can be used too [49]. Another very flexible possibility is the
Conway-Maxwell-Poisson model [50]. However, these models,
if used as GLMs, share a common difficulty – their estimation
is (in some cases extremely) computational demanding. This
prevents their use for online sequential modeling from streaming
data. We plan to focus on this in future work. We emphasize
that the present paper primarily assumes overdispersion due to
multiple sub-processes that generate the data. The corresponding
data model is thus a multi-component mixture.

VI. ILLUSTRATIVE EXAMPLES

The aim of the following two examples is twofold. First, they
empirically study the properties of the proposed algorithm, as the
involved approximations hinder its theoretical analyses. Second,
they demonstrate the performance of the algorithm. The first
example focuses on homogeneous networks where all agents
observe the same stationary process with constant parameters.
The aim is to demonstrate that the estimates converge to the true
values and that the collaboration among agents accelerates this
convergence. The second example considers an inhomogeneous
network of possibly differently operating sensors. There exist
two count processes, and the agents observe either one or both of
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Fig. 5. Example 1: Network topology.

TABLE I
EXAMPLE 1: FINAL VALUES OF RMSE AVERAGED OVER THE NETWORK AND

100 EXPERIMENT RUNS

them. Their measurements are locally prone to excessive zeros
imitating the dead times. The component weights thus differ
from agent to agent. In addition, the parameters are time-varying.
The goal is to study the robustness and performance of the
algorithm.

A. Example 1: Homogeneous Network

In this example, we assume a randomly generated homo-
geneous network consisting of 50 agents. Its topology is de-
picted in Fig. 5. The simulated data-generating system consists
of one common Dirac component Dir(0) with weight φi0,t =

0.3, and one common Poisson component Pois(exp(βi,ᵀ
1,tx

i
t))

with φi1,t = 0.7 for all i ∈ I. The global vector βi
1,t =

[0.1, 0.2, 0.3]ᵀ. The regressors xit ∼ U(0, 5)3 are simulated in-
dependently for each agent. This setting is fixed for all t =
1, . . . , 1500. As the parameters are constant, the forgetting fac-
tors αβ = αφ = 1.

The initial prior distributions of all i ∈ I are set as follows:
The Dirichlet distribution hyperparameters φi0,t = φi1,t = 1.
The normal distribution hyperparameters used for constructing
Ψi

k,0 in Formula (36) are bi1,0 = [0, 0, 0]ᵀ and P i
1,0 = 100 · I

where I is a 3× 3 identity matrix.
The following strategies are compared: (i) NOCOOP, where

the agents do not collaborate at all, (ii) ATC, where the adapt-
then-combine Algorithm 1 is used, and (iii) MLE corresponding
to the maximum likelihood-based estimation [29]. The MLE
strategy illustrates the performance of the standard state-of-the-
art approach to the ZIPMM estimation problem. This strategy
is noncollaborative for obvious reasons, hence it corresponds
to the frequentist variant of NOCOOP. Furthermore, as MLE
does not operate with any prior knowledge, it requires sufficient
amount of initial data to avoid numerical issues. Therefore, the
analyses are evaluated for t ≥ 30. The results are averaged over
100 independent experiment runs.

The estimation performance in terms of the root mean square
error (RMSE) averaged over the agents and runs is depicted in
Fig. 6. Table I shows numerical comparison of the final values.

Apparently, the collaboration among agents significantly ac-
celerates the estimator convergence, while the noncollaborative
strategies NOCOOP and MLE exhibit similar behavior. NO-
COOP and MLE provide almost identical estimates of β, and
NOCOOP performs only negligibly better in the estimation of

Fig. 6. Example 1: Evolution of RMSE averaged over the network and 100
experiment runs.

φ. The estimation theory dictates that the Bayesian and MLE es-
timates are asymptotically equivalent [51], and this empirically
proves validity of the proposed estimator. It is critical to empha-
size that the state-of-the-art MLE is not capable of sequential
(online) updating. Instead, the estimates are calculated at each
time instant from scratch on an expanding data window. This is
extremely computationally and memory-intensive.

Finally, Fig. 7 depicts the evolution of point estimates for
a randomly chosen run at a randomly selected agent. It is
obvious that the estimates gradually converge with an increasing
amount of incorporated data. As the ATC strategy diffuses the
information about the inferred quantities through the network,
the convergence is effectively accelerated and more stable.

B. Example 2: Inhomogeneous Network

The second example considers the same network (Fig. 5). It
studies the estimator performance under significantly relaxed
conditions. The process is constructed as follows: There exist
two count processes with the vectors of regression coefficients

β1,t =

⎡⎢⎣0.05 + 0.03 · sin ( t
1500π

)
0.10 + 0.03 · sin ( t

1500π
)

0.15 + 0.03 · sin ( t
1500π

)
⎤⎥⎦ (45)

and

β2,t =

⎡⎢⎣0.30− 0.03 · sin ( 2t
1500π

)
0.35− 0.03 · sin ( 2t

1500π
)

0.40− 0.03 · sin ( 2t
1500π

)
⎤⎥⎦, (46)

respectively. The time instants t = 1, . . . , 1500. The regressors
xit ∼ U(0, 5)3 are generated independently for each i ∈ I. The
two processes mimic two physically different phenomena, e.g.,
spatially separated or with different wavelengths. Some agents
can observe only one of the two components, and some can
observe both components. This corresponds to different fields
of views or to different measuring principles. In addition, each
agent is subject to excessive zeros due to dead times. All
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Fig. 7. Example 1: Evolution of estimates at a randomly chosen agent and
run.

parameters are slowly time-varying, and the forgetting factors
αφ = αβ = 0.99 are adopted.

The agents’ prior knowledge is limited only to the number
of components. They are not aware of the total number of
components in the network, nor which of the neighbors observe
the same Poisson component(s). If an agent observes just one
Poisson component, the hyperparameter Ψi

1,t in (33) is con-
structed with bi1,0 = [0, 0, 0]ᵀ and P i

1,0 = 100 · I where I is a
3× 3 identity matrix. In the case of two observed Poisson com-
ponents, bi1,0 = [0, 0, 0]ᵀ, bi2,0 = [0.5, 0.5, 0.5]ᵀ, P i

1,0 = P i
2,0 =

100 · I . The Dirichlet prior for weights has κik,0 = 1 for all
k = 0, . . . ,Ki.

Basically, two scenarios are considered. First, the NOCOOP
scenario, where the agents do not cooperate at all. Second, the
ATC scenario with d equal to 0.05, 0.1, 0.2, and 0.25. Since the
MLE approach assumes constant parameters, it is not included.
The results are averaged over 100 independent experiment runs.

Figs. 8 and 9 depict the achieved results. Again, let us empha-
size that the parameters are not constant. The optimal solution is
no longer fixed and the algorithm is required to continually track
its variations. The algorithm must first pass through a transient
phase in order to converge sufficiently close to the true parameter
values. Then, it continually adjusts the estimates values during

Fig. 8. Example 2: Evolution of RMSE averaged over the network and 100
experiment runs.

the tracking. Tracking is hence a steady state phenomenon [43].
From the figures follows that the proposed estimator is able
to initially converge and subsequently track the parameters
variations. The performance is connected with the level of
collaboration which is driven by d. Namely, in estimation of βi

t,
the noncollaborative scenario (equivalent to d = 0) performs
significantly worse than the collaborative scenarios (d > 0).
Under collaboration, the agents effectively estimate from richer
amount of information. In particular, Fig. 9 (top) demonstrates
that the estimates are much smoother and close to the true
values of the regression coefficients if the agents collaborate.
Otherwise, the estimation quality is rather poor. Recall, that there
is no exchange of information about the component weights φi

t,
as they are strictly local. Figs. 8 (bottom) and 9 (bottom) indicate
that the estimation performance is practically identical for both
the COOP and NOCOOP scenarios, the differences of average
RMSE are of order 10−3. In contrast to the constant-parameters
case in Example 1, tracking of the component weights is very
challenging for both COOP and NOCOOP scenarios.
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Fig. 9. Example 2: Evolution of estimates at a randomly chosen agent and
run.

To summarize, the situations where the model parameters
vary are highly sensitive to the amount of available information.
The collaboration among agents is a decisive factor of the
model inference quality. In our particular case of the ZIPMM,
the collaboration allows for stable tracking of the regression
coefficients βi

t.

VII. CONCLUSION

In this paper, we investigated the collaborative online infer-
ence of the zero-inflated Poisson (mixture) models from stream-
ing data. The simulation examples demonstrate that the quality
of estimates corresponds to the traditional offline maximum
likelihood estimates if the network agents do not collaborate
and the parameters are constant. The collaboration of agents
significantly accelerates the convergence and stabilizes the es-
timates close to the true parameter values even if they slowly
vary in time. In addition, the algorithm accounts for network
inhomogeneity, where the agents possibly observe partially or
completely different processes. Unlike the existing solutions,
the proposed algorithm exploits additive sufficient statistics and
hyperparameters, allowing for fully sequential computations. It
does not rely on computationally expensive iterative procedures

nor Monte Carlo methods. Future work can concentrate on
unknown numbers of components, or models of underdispersed
and overdispersed variables. For instance, the beta-binomial
or the very flexible but challenging Conway-Maxwell-Poisson
models seem to be very attractive candidates.
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[27] K. Dedecius and R. Žemlička, “Sequential Poisson regression in diffusion
networks,” IEEE Signal Process. Lett., vol. 27, pp. 625–629, 2020.

[28] H. K. Lim, W. K. Li, and P. L. H. Yu, “Zero-inflated Poisson regression
mixture model,” Comput. Statist. Data Anal., vol. 71, pp. 151–158, 2014.

[29] D. Lambert, “Zero-inflated Poisson regression, with an application to de-
fects in manufacturing,” Technometrics, vol. 34, no. 1, pp. 1–14, Feb. 1992.

[30] J. Haslett, A. C. Parnell, J. Hinde, and R. Andrade Moral, “Modelling
excess zeros in count data: A new perspective on modelling approaches,”
Int. Stat. Rev., vol. 90, pp. 216–236, 2022.

[31] M. Wedel, W. S. Desarbo, J. R. Bult, and V. Ramaswamy, “A latent
class Poisson regression model for heterogeneous count data,” J. Appl.
Econometrics, vol. 8, no. 4, pp. 397–411, 1993.

[32] P. Wang, M. L. Puterman, I. Cockburn, and N. Le, “Mixed poisson
regression models with covariance dependent rates,” Biometrics, vol. 52,
no. 2, pp. 381–400, 1996.

[33] J. N. Gonçalves and W. Barreto-Souza, “Flexible regression models for
counts with high-inflation of zeros,” Metron, vol. 78, no. 1, pp. 71–95,
2020.

[34] Q. Zhang and A. B. Chan, “Wide-area crowd counting: Multi-view fusion
networks for counting in large scenes,” Int. J. Comput. Vis., vol. 130,
pp. 1938–1960, 2022.

[35] M. Bernas, B. Płaczek, W. Korski, P. Loska, J. Smyła, and P. Szymała, “A
survey and comparison of low-cost sensing technologies for road traffic
monitoring,” Sensors, vol. 18, no. 10, Sep. 2018, Art. no. 3243.

[36] M. Carminati, O. Kanoun, S. L. Ullo, and S. Marcuccio, “Prospects of
distributed wireless sensor networks for urban environmental monitoring,”
IEEE Aerosp. Electron. Syst. Mag., vol. 34, no. 6, pp. 44–52, Jun. 2019.

[37] D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis
of Finite Mixture Distributions. Hoboken, NJ, USA: Wiley, 1985.

[38] M. Kárný et al., Optimized Bayesian Dynamic Advising: Theory and
Algorithms. London, U.K.: Springer, 2006.

[39] R. L. Smith, “Bayesian and frequentist approaches to parametric predictive
inference,” in Bayesian Statistics, vol. 6, J. M. Bernardo, J. O. Berger, A.
P. Dawid, and A. F. M. Smith, Eds., Oxford, U.K.: Oxford Univ. Press,
1999, pp. 589–612.

[40] M. S. Bartlett and D. Kendall, “The statistical analysis of variance-
heterogeneity and the logarithmic transformation,” J. Roy. Stat. Society.
Ser. B. (Stat. Methodol.), vol. 8, no. 1, pp. 128–138, 1946.

[41] G. El-Sayyad, “Bayesian and classical analysis of Poisson regression,” J.
Roy. Stat. Society. Ser. B (Stat. Methodol), vol. 35, no. 3, pp. 445–451,
Jul. 1973.

[42] A. B. Chan and N. Vasconcelos, “Counting people with low-level features
and Bayesian regression,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 2160–2177, Apr. 2012.

[43] S. Haykin, Adaptive Filter Theory, 3rd ed. New York, USA: Prentice Hall,
1996.

[44] K. Dedecius, I. Nagy, and M. Kárný, “Parameter tracking with partial
forgetting method,” Int. J. Adaptive Control Signal Process., vol. 26, no. 1,
pp. 1–12, 2012.

[45] V. Peterka, “Bayesian approach to system identification,” in Trends and
Progress in System Identification, P. Eykhoff, Ed. Oxford, U.K.: Pergamon
Press, 1981, pp. 239–304.

[46] A. W. van der Vaart, Asymptotic Statistics. Cambridge, U.K.: Cambridge
Univ. Press, 1998.
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