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Abstract

Any prescriptive theory of decision-making (DM) has to cope with the common DM agents’ inability to fully specify their
preferences dependent on several attributes. The paper provides the needed preference completion and quantification for f ully
probabilistic design (FPD) of DM strategies. FPD (covering the usual Bayesian DM) probabilistically models the agent’s
environment and quantifies its preferences via an ideal probabilistic model of the closed DM loop. The probability density
(pd) models (closed-loop) behaviour, a collection of involved random variables. Its ideal twin is high on desired behaviours,
small on undesired and zero on forbidden ones. The FPD-optimal strategy minimises the Kullback-Leibler d ivergence (KLD)
of the closed-loop modelling pd to the ideal twin. The exposed preference quantification chooses the optimal ideal pd from
the set of pds compatiblewith partially-specified agent’s preferences. The optimal ideal pdminimises theKLDminima reached by
the optimal strategies for respective imminent ideal pds. This preference-focused twin of theminimumKLDprinciplewas applied
to special sets of ideal pds. The paper extends them towards exploration and balancing contradictorywishes on states and actions.
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1 Introduction

Decision making (DM) is an agent’s targeted choice and
use of actions that try to meet the agent’s preferences 1 .
The choice of an optimal, action-opting, strategy needs
a quantification of the faced problem. It deals with the
agent’s beliefs about responses to its actions [40] and
its wishes [46], both concerning the closed loop. The
adopted Bayesian paradigm elicits prior beliefs [11,32],
modifies them by data via Bayes’ rule [3,36] or its gen-
eralisation [38]. The minimum KLD principle [41] com-
pletes them. The situation is less mature concerning the
agent’s wishes. It is a harder problem as human agents
or strategy designers are: ▶unable quantify fully their
wishes in multi-attribute DM tasks [13]; ▶ prone to con-
flicts [16]; ▶unwilling to spend too much deliberation
effort on this hard, but unavoidable, DM subtask [19].

The paper contributes to the remedy of this state. It
deals with the preference quantification as [24] (aka
preference elicitation, PE [10]). It processes the state-
transition model and semi-verbal expression of agent’s
wishes pointing to imminent ideal pds. It serves the
usual PE as the state-transition model and thus prefer-
ences are learnt while the wishes-inspecting queries and

⋆ This paper was not presented at any IFAC meeting. MK
corresponds at school@utia.cas.cz, TS at sivakova@utia.cas.cz.
1 The agent of any nature is referred to as “it”. Agent’s wish-
es are taken as synonyms of formally treated preferences [46].

the agent’s answers enter the behaviour [8,27].

FPD [17,18,20,45] models wishes probabilistically. It
chooses the strategy making the behaviour-modelling
pd the closest one to the ideal pd modelling the closed
loop that behaves in harmony with the agent’s wishes.
Kullback-Leibler divergence [29] measures the pds’
(di)similarity. In FPD, PE consists of: ▶ a translation
of agent’s wishes into a non-empty set of imminent ideal
pds; ▶ a choice of the optimal ideal pd within this set
that adds as few extra wishes or constraints as possible.

The developed solution: ▶ combines multiple attributes
in a clear-cut way; ▶ provides an ambitious, but poten-
tially reachable, goal of the strategy design;▶ suppresses
conflicts; ▶ omits no standard DM [20]; ▶unifies the
expression and handling of beliefs and preferences;
▶ simplifies PE based on queries [9,12,27,44].

Sec. 2 recalls FPD and the used PE principle. Core Sec. 3
extends former uses of this principle. Sec. 4 applies the
result to DMwith a finite amount of possible behaviours.
Sec. 5 illustrates the theory. Sec. 6 adds comments.

Throughout, {x} marks the set of xs. It is a sub-
set of a finite-dimensional real space or a set of pds.
It is specified only if needed. ≡ defines by assigning,
e.g. |{x}| ≡

∫
{x} dx. The index i marks ideals and o

optimality. ∝ is proportionality. Sanserif fonts mark
mappings. p-norm, p ≥ 1, of a real-valued function

f(x) is ||f||p ≡
[ ∫

{x} |f(x)|
pdx

]1/p
, [39]. χ{x}(x) is

the indicator of {x} at x. Minimisers of f(x) are in
Argminx∈{x} f(x) ⊂ {x}.
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2 Preliminaries

The next recall of FPD and the employed PE principle
make the paper self-reliant.

2.1 Decision Making via Fully Probabilistic Design

DM couples an agent with its environment. The agent
applies actions at ∈ {a} ̸= ∅ at discrete time t ∈ {t} ≡
{1, . . . , T}, T ≤ ∞. Actions at ∈ {a} stimulate tran-
sitions of the (closed loop) states st−1 ∈ {s} ̸= ∅ to
states st ∈ {s}. The actions and states up to the hori-
zon T form the behaviours b ∈ {b}. The agent selects
actions via a randomised DM strategy 2 r ∈ {r} ≡
{r(at|st−1), t ∈ {t}, at ∈ {a}, st−1 ∈ {s}}. The pds
r(at|st−1), called r-factors, model the DM rules forming
the strategy. The r-dependent joint pd cr(b) fully mod-
els, generically random, behaviours b ∈ {b}. The chain
rule for pds [36] and the meaning of state provide the
factorisation, ∀b ∈ {b} ≡ {b = (st, at)t∈{t}},

cr(b) =
∏

t∈{t}

m(st|at, st−1)r(at|st−1). (1)

The model m ∈ {m} ≡ {m(st|at, st−1), t ∈ {t},
st, st−1 ∈ {s}, at ∈ {a}}, form conditional pds
m(st|at, st−1) called m-factors, describes the state
transitions. The m-factors are known. Often, grey-box
modelling [7] and Bayesian learning [36] provide them.
Then, the states include the used statistic values [15].
FPD quantifies the agent’s wishes by an ideal closed-
loop model. It is a joint pd ci(b), b ∈ {b}, with high
probability values on preferred behaviours, small values
on undesired ones and zero on forbidden behaviours. It
also factorises

ci(b) =
∏

t∈{t}

mi(st|at, st−1)r
i(at|st−1), b ∈ {b}. (2)

The mi- and ri-factors model the desired (ideal) state
transitions and the desired ways of the action choice.
Their product at given time moment is called ci-factor.
The FPD-optimal DM strategy ro ∈ {r} minimises 3

KLD D(cr||ci) of cr to ci, see (1), (2),

ro∈Argmin
r∈{r}

D(cr||ci)≡Argmin
r∈{r}

∫
{b}
cr(b) ln

(cr(b)
ci(b)

)
db. (3)

The next proposition provides the FPD-optimal strat-
egy. Its proof mimics dynamic programming [5] and pro-
vides the optimal ro-factors. Its general version is in [22].

Proposition 1 (FPD) The backward functional recur-
sion on h(st) ∈ [0, 1], st ∈ {s}; h(sT ) ≡ 1, at ∈ {a},

h(st−1)≡
∫
{a}
ri(at|st−1) exp[−d(at|st−1)]dat, t ∈ {t} (4)

d(at|st−1)≡
∫
{s}
m(st|at, st−1) ln

[ m(st|at, st−1)

h(st)mi(st|at, st−1)

]
dst

2 A fixed initial state s0 is an implicit part of all conditions.
3 It resembles the concept of model reference control [31].
The FPD-optimality has an axiomatic basis that covers all
usual formulations of DM under uncertainty [20]. FPD has
a range of non-trivial uses, e.g. [21,25]. The related KLD-
based reinforcement learning [34] provides an extra insight.

gives the optimal ro-factors and the reached minima
− ln(h(st−1)), i.e. the value functions, [5]. It holds

ro(at|st−1) =
ri(at|st−1) exp[−d(at|st−1)]

h(st−1)

min
r∈{r}

D(cr||ci) = − ln(h(s0)), cf. footnote
2. (5)

2.2 Optimal Preference-Elicitation Principle

The ideal pd ci (2) quantifies the agent’s wishes. Once
it is chosen, the minimisation (3) gives the optimal DM
strategy ro. Thus, PE within FPD reduces to the choice
of the pd cio that expresses the agent’s wishes in the
best way. The specific wishes delimit the imminent ideal
joint pds. Their usually incomplete description implies,
that the set {ci} of ideal pds ci, acting on {b},

{ci} ≡ {ideal pds ci(b) meeting agent’s wishes} (6)

contains many (often, infinitely many) pds. The set
(6) may be empty due to the agent’s inconsistencies.
PE deals with an amenable choice of: ▶ the non-empty
set {ci} (6) that copes with inconsistencies of agent’s
wishes, and ▶ the optimal ideal pd cio from this set.
The PE principle [24] chooses as the optimal ideal pd

cio ∈ Arg min
ci∈{ci}

[
min
r∈{r}

D(cr||ci)
]
. (7)

Its use guarantees that no extra wish and no extra con-
straint are added to those expressed by the agent.

Predecessors of this work [24,26] gave up the optimisa-
tion (7) and searched for an approximate solution. They
exploited that the amenable greedy strategy provides an
upper bound on the value function. They minimise this
bound over {ci}. Here, this way is unused. It is possible
whenever the value function can be well evaluated 4 .

The minimisations over ci-factors at any time t ∈ {t}
and for any realised state st−1 are formally identical.
Thus, we can hide t, st−1 and deal withm(s|a) ≡ m(st =
s|at = a, st−1), mi(s|a) ≡ mi(st = s|at = a, st−1),
r(a) ≡ r(at = a|st−1), ri(a) ≡ ri(at = a|st−1) and
h(s) ≡ h(st = s), st−1, st, s ∈ {s}, at, a ∈ {a}.
The optimal cio ≡ miorio-factor, is, cf. (4), (5), (7),

cio ∈ Arg max
ri∈{ri}

[
max

mi∈{mi}

∫
{a}

ri(a) exp[−d(a)]da
]

d(a) =

∫
{s}
m(s|a) ln

( m(s|a)
h(s)mi(s|a)

)
ds (8)

∈
[
−

∫
{s}

m(s|a) ln[h(s)]ds,∞
]
⊂ [0,∞].

D(m||mi) ≥ 0 = D(m||m) [29] implies d(a)-range.

The evaluation (8) uses the given h : {s} → [0, 1] gained
in the previous design step in (4). It runs over a cross-
section {mi-factors} of {ci-factors} given by an ri-factor.
Thus, the evaluation (8) runs over

{ci} ≡ {miri = ci-factor meeting agent’s wishes}. (9)

4 This fact was recognised by our colleague Marko Ruman.
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3 Preference Quantification

First, a generic choice of ci-factors is made. Then, a spe-
cific, but quite universal, non-empty set (9) is chosen.
The task (8) gives the optimal ideal cio-factors. It runs
over the mi-factors for a fixed ri-factor and then over the
ri-factors. The reversed order in [24,26] is more complex.

3.1 Generic Optimal Ideal mio-Factor

This part operationally specifies the optimal ideal mio.

Proposition 2 (Optimal mio-Factor) Let an ri ∈
{ri} define a non-empty cross-section {mi} of (9). Let
mi(s|a) ∈ {mi} exist giving 5 d(a) < ∞, ∀a ∈ {a}.
Then, the optimal ideal mio-factor minimises d(a) (8)

mio(s|a) ∈ Arg max
mi∈{mi}

∫
{a}
ri(a) exp[−d(a)]da (10)

=Arg min
mi∈{mi}

d(a), s ∈ {s}, a ∈ {a}.

Proof For {mi} ̸= ∅ and any a ∈ {a}, a minimiser
mi⋆ ∈ {mi} of d(a) ≥ 0 gives the value d⋆(a) ≤ d(a).
There, d(a) is given by (8) for an arbitrary mi ∈ {mi}
and the same h. This implies that d⋆(a) < ∞ and
exp [−d⋆(a)] ≥ exp[−d(a)]. Multiplication of this in-
equality by ri(a) ≥ 0 (not being identically zero) and the
integration over the set {a} imply that mio = mi⋆. 2

Remarks 1
▶The minimiser of d(a) (10) is uninfluenced by h.
▶mio(s|a) minimises the KLD given by a = at and
st−1 of the state-transition pd to m(s|a). Thus, the opti-
mal ideal state-transitionmodel is the best approximant of
the state-transitionmodelmeeting agent’s wishes, [4,23].
▶The found mio makes m absolutely continuous with
respect to mio (otherwise d

o

= ∞). Thus, the state
s ∈ {s} that may occur due to m(s|a) > 0 for the al-
lowed a ∈ {a} is not forbidden by mio(s|a).
▶These facts confirm that the ideal pd mio (10) is the
realistic option. Its optimality (7) makes it ambitious.

3.2 Generic Optimal Ideal rio-Factor

This part inspects universally desirable ri-factors.

The support supp[r] ≡ {a : r(a) > 0} of the opted r-
factor is to be included in the set {a} accessible to the
agent. The form of the FPD-optimal ro-factor (5) implies
supp[ro] ⫅ supp[ri]. Hence, only the ideal ri-factors

ri ∈ {ri} ≡ {ri : supp[ri] = {a}} (11)

keep actions in {a} and exclude none. This makes (11)
the generic constraint on the set {ri}.
Proposition 3 (Optimal rio-Factor Meeting (11))
Let {ri} be given by an opted p > 1 as follows

{ri}≡ {ri : supp[ri] = {a} and ||ri||p < ∞} (12)

while assuming |{a}| < ∞. (13)

5 It needs absolute continuity of m with respect to a poten-
tial mi [39], e.g., mi > 0 on {s} for all conditions meets it.

Let each ri ∈ {ri} (12) define a non-empty cross-section
{mi} of (9). Let mi(s|a) ∈ {mi} exist such that d(a) <
∞, ∀a ∈ {a} (8). Then, the optimal ideal rio-factor is

rio(a) ∝ χ{a}(a) exp[−νdo(a)], ν ≡ 1/(p− 1) (14)

do(a) ≡
∫
{s}

m(s|a) ln
(

m(s|a)
h(s)mio(s|a)

)
ds

(10)︷︸︸︷
≤ d(a).

The rio-factor (14) is in (12) and thus it meets (11).

Proof The range of d(a) (8) implies exp[−d(a)] ∈ [0, 1].
This and (13)make || exp[−do]||q < ∞ for q ≡ p

p−1 = pν.

Hölder’s inequality [39] implies that maximiser of (8) is
rio(a) ∝ χ{a}(a) exp

(
− q

pd
o(a)

)
, i.e. (14) hold. The re-

peated assumptions of Prop. 2 guarantee that do(a) < ∞
on {a} so that exp[−νdo(a)] > 0 on {a}, i.e. supp[rio] =
{a} and constraints (12), (11) are met. 2

Remarks 2
▶The equality (5) implies similarity of ro and rio as
ro ∝ rio exp[−do] ∝ exp[−νdo] exp[−do], ν ∈ (0,∞).
▶The constraint (11) guarantees that the ideal ri-factor
supports exploration (the key dual feature of the optimal
learning strategy [6,15]) as it a priori forbids no action.
▶The opted value ν > 0 controls exploration. The higher
the parameter ν, the weaker the exploration becomes.
▶The requirement (12), implying (11), is almost unre-
strictive for p → 1+, i.e. for a large ν (14).
▶The value function − ln(h(s)), Prop. 1, influences the
rio-factor (14) via do(a), but, as said, not the mio-factor.
▶The strong assumption (13) avoids technicalities. Any
weaker one giving || exp[−do]||q < ∞ suffices.
▶Other wishes on a ∈ {a} can be met by enforcing
exp[−g(a)], with a given g(a) ∈ [0,∞), into ri, i.e. using

ri ∈{ri} ≡ {ri : ri(a) ∝ f(a) exp[−g(a)] (15)

with an opted f(a) > 0 on {a} giving ||ri||p < ∞}.

The function g(a) may express the quest for low cost of
DM or deliberation. As a rule, it is loosely given and a
domain-specific PE is needed [35].
▶The replacement of (12) by (15) in Prop. 3 yields

rio ∝ χ{a}(a) exp[−(ν + 1)g(a)− νdo(a))].

3.3 Specific Optimal Ideal cio-Factor

This part specialises Sec. 3.1, 3.2. Its result is useful per
se. It hints how to proceed in other cases.

The optimal ideal rio-factor is uniquely given by 6 mio,
rio = rio(mio), and by the opted ν > 1, see (14). This
allows us to meet agent’s wishes by opting mio ∈ {mi}.
The treated version deals with the agent’s wish:

Reach ideal sets ∅ ≠ {si} ⊆ {s}, ∅ ≠ {ai} ⊆ {a} ! (16)

This is taken as the wish to assign high probabilities to
the sets of ideal states {si} and of ideal actions {ai}
(16). The probabilities arise by closing the loop of the

6 The abusing symbol rio(mio) stresses the used dependence.
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given, un-mutable, state-transition model with the op-
timal ideal DM rule rio = rio(mio) (14)

rio(mio) ∈ Arg max
mi∈{mi}

∫
{a}
ρ(a)ri(a)da ≡ (17)

Arg max
mi∈{mi}

∫
{a}

[ ∫
{s}
χ{si}(s)m(s|a)ds+wχ{ai}(a)

]
ri(a)da.

The weight w ≥ 0 assigns the importance of acting in
{ai} ⊂ {a} relatively to reaching {si} ⊂ {s}. The task
(17) has a meaningful solution if the sets {si}, {ai} are

“probabilistically reachable” ⇔ ρ(a) > 0 on {a}. (18)
Remarks 3
▶ If ρ(a) > 0 only on a non-empty proper subset of {a}
then it makes no sense to choose an action out of it.
Then, {a} reduces to this subset.
▶The rule ro (4) could replace the ideal DM rule rio (17)

giving the almost same result, cf. the 1st item in Rem. 2.
▶The paper uses a fixed weight w ≥ 0. Its fine tuning is
made via the agent’s marking of the seen quality [27].
▶Any reward of the usual DM [14] may serve as the func-
tion of (s, a) defining ρ(a) in (17). As said in Rem. 1,
our construction quantifies the agent’s wishes in an am-
bitious but realistic way and cares about the exploration.

The solution of (17) gives the optimal values of do (14).
Proposition 4 (Optimal Values do(a), a ∈ {a})
Let supp[{ri}]≡ {a}, ||ri||p <∞, p > 1, and |{a}| < ∞.
Let 7 each ri ∈ {ri} (12) define a non-empty cross-
section {mi} of (9) and mi(s|a) ∈ {mi} exist giving
d(a) < ∞, ∀a ∈ {a}. Let the assumption (18) be met.
Then, the optimal ideal mio meeting (17) provides do(a),
giving rio = ri(mio) (14), as the next function

do(a) = do(ā) + ln

[
ρ(ā)

ρ(a)

]
, ā ∈ Argmax

a∈{a}
[ρ(a)], a ∈ {a}.

Proof For p > 1, ||rio||p < ∞ and |{a}| < ∞, (13) gives
||ρ||q < ∞ with q ≡ p

p−1 ≡ pν. Hölder’s inequality [39]

applied to the functional (17) provides its maximiser

rio(a) = κνρν(a)

(14)︷︸︸︷
=

exp[−νdo(a)]

|| exp[−do]||νν
. (19)

The normalization of rio gives the a-independent factor
κν . κ > 0 due to the finite volume of the action set (13),
i.e. κ = ||ρ||−1

ν > 0. Also the norm-defining integral∫
exp(−νdo(a))da ∈ (0,∞) due to do ∈ (0,∞) and the

finite volume of {a} (13). The logarithmic version of the
equation (19) gives ∀a ∈ {a},
do(a) =− ln(κ|| exp[−do]||ν)− ln[ρ(a)] (20)

≡Φ(κ)− ln[ρ(a)].

As Φ(κ) is independent of a, the equality (20) gives

Φ(κ) = do(ā) + ln[ρ(ā)] for ā ∈ Argmax
a∈{a}

(ρ(a)) ⇔ (21)

ā ∈ Arg min
a∈{a}

do(a), which yields (19). 2

7 These sentences are the assumptions of Props. 2 and 3.

Proposition 5 (Solvability of (19)) Under (18) and
|{a}| < ∞, the smallest do(ā) exists such that (19) has
a solution mio(s|a), s ∈ {s}, ∀a ∈ {a}, (21).
Proof Properties of the KLD conditioned on a ∈ {a}
(and implicitly on st−1) imply that the values do(a) ∈
[−

∫
{s} m(s|a) ln(h(s))ds,∞] ⊂ [0,∞]. Indeed, the op-

tionmio(s|a) ≡ m(s|a) attains the lower bound. The up-
per bound is reached for mio(s|a) singular with respect
to m(s|a), i.e. being zero on a subset of {s} to which
m(s|a) assigns a positive probability. Thus, the smallest
do(ā) guaranteeing solvability of (19) ∀a ∈ {a} is

do(ā) = max

[
0,max

a∈{a}

∫
{s}
m(s|a) ln

[
ρ(a)

ρ(ā)h(s)

]
ds

]
. (22)

For |{a}| < ∞, h(s) ∈ (0, 1] and ρ(a) > 0, the maximum
in (22) is finite and the range of do(ā) implies existence
of mio(s|ā) with do(ā) (22). 2

The ideal mio gives do(a) (8) and rio(mio) via (14). The
next proposition provides it for generic pds m(s|a).
Proposition 6 (mio Meeting (17), Generic m(s|a))
Let m(s|a), a ∈ {a}, be non-uniform on {s} and Prop.
3 hold. Then, the mio-factor meeting (17) has the form

mio(s|a) = m(s|a) exp[−e(a)m(s|a)]∫
{s} m(s|a) exp[−e(a)m(s|a)]ds

(23)

defined under the adopted assumption |{s}| < ∞. (24)

The real-valued e(a) in (23) is the existing solu-
tion of L(e(a)) = R(a). For do(ā) meeting (22) with
ā ∈ Argmaxa∈{a}[ρ(a)], the left- and right-hand sides
of this equation are

L(e(a)) ≡ e(a)Λ(a)+ln

[∫
{s}
m(s|a) exp[−e(a)m(s|a)]ds

]
Λ(a) ≡

∫
{s}

m2(s|a)ds > 0 (25)

R(a) ≡
∫
{s}
m(s|a) ln(h(s))ds+ do(ā) + ln

[
ρ(ā)

ρ(a)

]
≥ 0.

Proof Let us fix a ∈ {a} with a non-uniform
m(s|a). Then, (19) with do(ā) given by (22) is Fred-
holm’s integral equation for the unknown function
ln(m(s|a)/mio(s|a)), s ∈ {s}. Its particular solution
ln(m(s|a)/mio(s|a)) = e(a)m(s|a) + v(a) with a proper,
scalar-valued, e(a) and v(a) suffices. The searched func-
tion could have a summand o(s|a) orthogonal to m(s|a),
i.e. with

∫
{s} m(s|a)o(s|a)ds = 0. Its use is here unnec-

essary. The exploited solution form and normalisation
of mio give (23). It remains to find e(a).

Equation (19) for do(a) and the d(a) definition (4) give
e(a) in (23) as a solution of L(e(a)) = R(a) with left- and
right-hand sides given by (25).

The 1st derivative of L(e(a)) with respect to e(a), a ∈
{a}, reads (mio means the expression (23))

dL(e(a))

de(a)
= Λ(a)−

∫
{s}

m(s|a)mio(s|a)ds.
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The 2nd derivative is the positive variance of the non-
constant m(s|a) with respect to mio(s|a)
d2L(e(a))

de2(a)
=∫

{s}
m2(s|a)mio(s|a)ds−

[∫
{s}

m(s|a)mio(s|a)ds

]2

> 0.

Thus, L(e(a)) is strictly convex in e(a).
For e(a) = 0, L(0) = 0 ≤ R(a) as R(a) ≥ 0
due to (22) and (19). For the non-constant m(s|a),
lime(a)→∞ L(e(a)) = ∞ as Λ(a) > 0. The case Λ(a) = 0

is excluded by the normalisation
∫
{s} m(s|a)ds = 1.

Thus, the left-hand side L(e(a)), continuously depen-
dent on e(a), intersects R(a) at most for two values of
e(a) solving the inspected equation. The solution leading
to the smaller (non-negative) value do(a) is the proper
one. The strict convexity guarantees that the numerical
search for the solution is trouble-less. 2

The next proposition addresses the yet unsolved case.

Proposition 7 (mio Meeting (17), Uniform m(s|a))
For uniform pd m(s|a) on {s} with |{s}| < ∞, the
optimal mio-factor meeting (19) has the form

mi(s|a) = exp[−e(a)o(s|a)]∫
{s} exp[−e(a)o(s|a)]ds

(26)

for an arbitrary non-zero o(s|a) with
∫
s
o(s|a)ds = 0.

The real-valued e(a) is that of the pair existing solutions
of (27), which makes the corresponding do(a) smaller.

L(e(a))≡ ln

[∫
{s} exp[−e(a)o(s|a)]ds

|{s}|

]
= R(a)

≡ do(ā) +

∫
{s}

m(s|a) ln
[
h(s)ρ(ā)

ρ(a)

]
ds. (27)

Proof Let us consider a ∈ {a} with a uniform
m(s|a). Then, (19) with do(ā) given by (22) is Fred-
holm’s integral equation for the unknown function
ln(m(s|a)/mio(s|a)), s ∈ {s}. Its particular solu-
tion is searched in the form ln(m(s|a)/mi(s|a)) =
e(a)o(s|a) + v(a). The choice

∫
{s} o(s|a)ds = 0 makes

o(s|a) orthogonal to the uniform m(s|a) and gives (26).
The definition of d(a) (8) and equation (19) provide (27).

Inspection of the 1st and 2nd derivatives of L(e(a)) in
(27) with respect to e(a) shows that it is convex function
for the inevitably non-constant o(s|a).
The left-hand side L(e(a)) of (27) is zero for e(a) = 0,
while right-hand side is non-negative for do(ā) (22). Also,
lime(a)→±∞ L(e(a)) = ∞ as o(s) must be negative (pos-
itive) on a subset of {s} of a positive volume. This im-
plies the nature and existence of the solution of (27). 2

4 Algorithmic Summary

Algorithm 1 summarises the results. It does it for the
closed loop with a finite amount of state and action val-
ues. This simple but useful case shows the evaluation

structure while avoiding hard integrations and potential
infiniteness of the volumes |{s}|, |{a}|. The condition-
ing state s̃ = st−1 is there explicit.
The proposed PE becomes practical by using Bayesian
estimation of unknown but time-invariant values of
transition probabilities Θ. This parametric model
m(st|at, st−1,Θ) belongs to exponential family [2] and
makes Dirichlet’s prior pd self-reproducing. Its de-
grees of freedom, counting the observed transitions
st−1 = s̃ ∈ {s}, at = a ∈ {a} to st = s ∈ {s}, form
the sufficient statistic for learning the unknown values
Θs|a,s̃ ≡ m(s|a, s̃,Θ), s, s̃ ∈ {s}, a ∈ {a}, [21].
The explorative nature of FPD allows us to employ a
certainty-equivalent strategy that uses point estimates
of transition probabilities instead of them. With a for-
getting, [28] an adaptive agent’s strategy arises.

5 Illustrative Experiments

The experiments illustrate the theory. They apply Algo-
rithm 1 with the following common options:
▶The recursive point estimation of transition probabil-
ities provides us with the environment model

m(s|a, s̃) ∝ number of occurences of (s, a, s̃) + 1.

The added 1 reflects the used uniform prior pd of the
estimated probabilities. Let us stress that the gained
approximate certainty-equivalent strategy is explorative
as the FPD-optimal strategy is randomised.
▶The receding horizon in the design cycle was set T =
100 and exploration parameter ν = 1 ⇔ p = 2.
▶The initial guess of the exponent in (23), (26), solving
(25) or (27) was set e(a|s̃) = 1.2, ∀a ∈ {a}, s̃ ∈ {s}.
▶The initial state was always s0 = 1 and the seed of
pseudo-random generators was fixed.
Figures show the amount of visits of states and actions.
Their numbering follows that of inspected cases.

Toy Example The double-stochastic, static, transition
pd with dominating diagonal was simulated for five hun-
dred time steps while considering 3 states and 3 actions

[Probability(s|a, s̃)]s,s̃∈{s},a∈{a} ≡

[Probability(s|a)]s∈{s},a∈{a} ≡

 0.90 0.05 0.05

0.05 0.90 0.05

0.05 0.05 0.90

 . (28)

This choice makes the expected optimal behaviour quite
intuitive and the influence of the weightw (17), favouring
the preferred actions, predictable.

Case 1: No Preference on Actions The experiments show
in Fig. 1 the counts of states and actions for three differ-
ent wishes on states. The optimisation seeks the highest
counts of the preferred state. The environment (28) al-
lows this as all states may appear with a positive proba-
bility. The desired state is {si = k} in Experiment no k ∈
{1, 2, 3}. No action is preferred, {ai} = {a} = {1, 2, 3}.
Discussion The results in Fig. 1 confirm the expected
behaviour for the diagonally dominated, static environ-
ment (28) with no wishes on actions. The counts of the
preferred state are the highest ones. The desired explo-
rative actions make them slightly lower than possible.

5



Algorithm 1 FPD with Preference Quantification for
Behaviours with a Finite Number of Realisations
Inputs

✓ Finite sets of states {s} & actions {a}, sets of
ideal states {si} ⊂ {s} & actions {ai} ⊂ {a}

✓ Relative weight w ≥ 0 of {si}, {ai} (17)
✓ Environmentmodel m(s|a, s̃), s, s̃ ∈ {s}, a ∈ {a}
✓ Design horizon T , exploration controlling ν > 1

and the value function h(s) ≡ 1, ∀s ∈ {s} (4)
Evaluation of h-independent variables

For s̃ ∈ {s} do
For a ∈ {a} do
ρ(a|s̃) =

∑
s∈{si} m(s|a, s̃) + χ{ai}(a)w (17)

Λ(a|s̃) ≡
∑

s∈{s} m
2(s|a, s̃) (25)

end a ∈ {a}
ā(s̃) ∈ Argmaxa∈{a} ρ(a|s̃) (19)
ρ̄(s̃) ≡ ρ(ā(s̃)|s̃) (19)

end s̃ ∈ {s}
Design cycle for t = T, T − 1, . . . , 1

For s̃ ∈ {s} do

do(ā(s̃)) ≡ max
{
0,

maxa∈{a}

[∑
s∈{s} m(s|a, s̃) ln

[ ρ(a|s̃)
ρ̄(s̃)h(s)

]] }
(22)

For a ∈ {a} do

do(a|s̃) = do(ā(s̃)) + ln
(

ρ̄(s̃)
ρ̄(s̃)

)
(19)

If m(s|a, s̃) is not uniform
R(a|s̃) = do(a|s̃)

+
∑

s∈{s} m(s|a, s̃) ln(h(s)) (25)

Find e(a|s̃) in R(a|s̃) = e(a|s̃)Λ(a|s̃) (25)
+ ln

(∑
{s} m(s|a, s̃) exp[−e(a|s̃)m(s|a, s̃)]

)
mio(s|a, s̃) ∝
m(s|a, s̃) exp[−e(a|s̃)m(s|a, s̃)] (23)

else
Choose o(s) such that

∑
s∈{s} o(s) = 0

Find e(a|s̃) in ln
[∑

s∈{s}
exp[−e(a|s̃)o(s)]

|{s}|

]
=

do(ā(s̃) + 1
|{s}|

∑
s∈{s}ln

[
h(s)ρ̄(s̃)
ρ(a|s̃)

]
Set mio(s|a) ∝ exp[−e(a|s̃)o(s)]. (26)
end if on uniform m
rio(a|s̃) = exp

[
− νdo(a|s̃)

]
(14)

end a ∈ {a}
rio(a|s̃) = rio(a|s̃)∑

{a}
rio(a|s̃)

, a ∈ {a} (14)

n(s̃) =
∑

a∈{a} r
io(a|s̃) exp[−do(a|s̃)] (4)

ro(a|s̃) = exp[−(ν+1)do(a|s̃)]
n(s̃) , a ∈ {a} (5)

end s̃ ∈ {s}
h(s) = n(s), ∀s ∈ {s} (4)

end of the design cycle

Outputs
✓ All optimal ideal mio-, rio- and ro-factors

Case 2: Influence of Learning and Balancing Wishes on
States and Actions Experiments cover two aspects doc-
umented in Fig. 2. Firstly, the need for learning during

(a) States (b) Actions

Fig. 1. Counts of states and actions with different preferences
on states for Ex. no 1: {si} = {1}, Ex. no 2: {si} = {2}, Ex.
no 3: {si} = {3} and no preference on actions.

DM is stressed. The learnt environment model serves
also the preference quantification. This combination re-
sults in the data-based preference elicitation. The results
with learning switched off serve us for comparison. The
used fixed modelm(s|a, s̃) was the discretised normal pd
with the mean a+ s̃ and the variance 3.

Secondly, nontrivial wishes on actions are inspected.
Experiments indicate how the weight w (17) balances
wishes with respect to states and actions.

(a) States (17) (b) Actions (17)

Fig. 2. Counts of states and actions with wishes on states
{si} = {3} and actions {ai} = {1} with different weights
(17). Ex. no 1: w = 0 (no wish on actions) with learning, Ex.
no 2: w = 0 no learning, Ex. no 3: w = 0.4, Ex. no 4: w = 1.

Discussion Fig. 2 shows that the designs with learning,
Ex. no 1, and without learning, Ex. no 2, behave as ex-
pected. No-learning design deals with the wrong model.
Thus, the exploitative role of actions is almost given up.
Their exploratory role dominates.

The results of Ex. no 1, 3, 4 confirm predictable prop-
erties. The desired state {3} is the less visited the more
important the “unhelpful” action {ai} = {1} is asked.

Experience from non-presented experiments
They confirmed: ▶ the positive influence of the opti-
mal design; ▶ significant improvements of quality com-
pared to various heuristic preference quantification; ▶ a
smooth but non-linear dependency of the resulting per-
formance on the weight w and non-triviality of its plau-
sible numerical choice in the “reward” (17); ▶ the pre-
dictable influence of the set {ai} and of the weight w.

Realistic Example Here, experiments with a more
realistic dynamic environment having eleven states and
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five actions are presented. The simulated environment
was gained by learning the transition pd from observed
1000 states {s} ≡ {1, . . . , 11} stimulated by indepen-
dently generated discrete actions {a} ≡ {1, . . . , 5}. The
states were gained via an affine mapping of discretised
values st = floor(2.6311yt − 1.2838) of yt observed on
the simulated normal linear model

yt = 0.99yt−1+0.05at−0.125+0.05et, where thewhite

noise et has the constant zero mean and unit variance.
The stationary expected level y ≈ 5.5, reached for the
expected a ≈ 2.5, is interpreted as zero “spent energy”.

Remarks 4 Figures reflecting the realistic example only
show the counts of the states from 4 to 8 as the counts of
the other states were negligible.

Case 3: Varying Ideal States, No Preference on Actions
These experiments, documented in Fig. 3, show the be-
haviour of the closed loop with the 11× 5× 11 environ-
ment. The preferred states are the reachable ideal states
{si} = {6}, {si} = {7} and the unrealistic ideal state
{si} = {11}, whose probability approaches zero. No
wishes are put on actions, i.e. {ai} = {a} = {1, . . . , 5}.

(a) States (b) Actions

Fig. 3. Counts of states and actions with different prefer-
ences on states demonstrate the differences in achievable
quality for realistic and unrealistic wishes. Ex. no 1: (white)
{si} = {6}, Ex. no 2: (light gray) {si} = {7}, Ex. no 3:
(dark gray) {si} = {11}. No extra wish is put on actions.

Discussion The state {si} = {6} is easier to reach
than the state {si} = {7}. It is seen in a higher number
of occurrences of the ideal state. No optimisation can
cope with practically unreachable state {si} = {11}.
Its occurrences were negligibly small and the optimised
actions were almost uniformly distributed as driven by
the built-in exploration (11).

Case 4: Extension of the Set of Ideal States The aim of
this case is to show that an extension of the set of ideal
states may have a huge impact on the reached distribu-
tion of states and actions. The considered extended set
{si} = {5, 6, 7} includes the originally preferred state
{si} = {6}. The desired action {ai} = {3} is the same.

Discussion Fig. 4 confirms that the extension of the set
{si} = {6} to the set {si} = {5, 6, 7} had the significant
impacts on the states. The counts of the preferred state
for the unextended set is 196. For the extended set, it is
439. The preferred action predictably appears less often.

(a) States (b) Actions

Fig. 4. Relaxed target states change the reached distribution.
Counts of states and actions for different targets. Ex. no 1:
(light gray) {si} = {6}, Ex. no 2: (dark gray){si} = {5, 6, 7}
with the ideal action {ai} = {3} with weight w = 0.3.

The result appeals to agents to specify the ideal states in
a realistic way. Note that the observed plausible results
can hardly be gained by a priori chosen ideal pd.

6 Concluding Remarks

The paper advances the completion and quantification
of preferences within the fully probabilistic design of
DM strategies. It derives the optimal ideal closed-loop
model cio from: ▶ the set of allowed actions; ▶ the
agent’s wish to get closed-loop states and actions (novel)
from the ideal sets with the highest probability; ▶ the
query-tunable [27] exploration-controlling scalar ν and
the scalar weight w balancing the importance of the
ideal states and actions; ▶ the learnt state transitions.

The paper extends the former uses [24,26] of the univer-
sal preference elicitation principle by allowing to control
exploration and to balance (often contradictory) wishes
on states and actions. The papers [27,44] complement
this one by experiments. It has required refining the
used optimisation techniques as mentioned on the fly.
Compared to forerunners, the solution avoids the greedy
approximation and cares both about the target states and
actions. It is of extreme practical importance: please
think, e.g., about balancing the economic costs and
the population’s health state duringCovid 19 [33,30].

Methodologically, the elaborated principle is the wishes-
focused twin to the minimum KLD principle serving the
knowledge elicitation. The reached state of its elabora-
tion provides a firm basis for trial real-life uses.

The solution combined with on-line learning of the state-
transition model achieves the dreamt learning of prefer-
ence [37]. It is worth stressing that the quantified pref-
erences are both ambitious and realistic. For instance,
the quantification of wishes does not demand avoiding
unavoidable closed-loop behaviours.

The presented research is an open-ended story, which
surely requires dealing with: ▶ other sets of wishes, say,
balancing the importance of state entries as needed in
multi-attribute DM [1]; ▶ tailoring query-based prefer-
ence elicitation [8]; ▶weaker existence conditions than
finiteness of state and action sets’ volumes (13), (24);
▶ inspection how much the results challenge the claim
that the quest for absolute optimality is unrealistic [42]
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or what is a proper level of inattention [43]; ▶ specific
application cases like [35], etc.
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[20] M. Kárný. Axiomatisation of fully probabilistic design
revisited. SCL, 141:104719, 2020.
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