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Pod Vodárenskou věžı́ 4, 182 00 Prague 8, Czech Republic

{pavelkov,belda}@utia.cas.cz
https://www.utia.cas.cz

Abstract. The paper deals with an algorithm of output-feedback model predic-
tive control (MPC) where the required point state estimate is selected from the
set of possible estimates. The involved state estimator is based on an approxi-
mate uniform Bayesian filter. In the paper, there are compared conservative mean
and progressive composite state estimates. The proposed method is illustrated
by the motion control of a specific robotic system.
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1 Introduction

The output-feedback model predictive control (MPC) is popular as the states
of the involved state space model are often unmeasurable in the praxis [2]. In such
case, the control performance depends on the quality of the state estimates. This qual-
ity is usually influenced by uncertainties that are related to a model inaccuracy and to
unmeasured noises. The statistics of these uncertainties are rarely known. In many prac-
tical applications, they are only known to be bounded, and any additional information
about their nature and properties is unavailable [10]. Therefore, the output-feedback
MPC, that considers a bounded uncertainty, is one of the recent research concerns.

The estimation techniques to cope with bounded disturbances are based either on
stochastic or set-membership approach. Set-membership algorithms provide state esti-
mates that are confined in constrained sets such as boxes [20], zonotopes [23], ellipsoids
[16] or their combination [26]. Stochastic state estimation is based on particle filtering
[22] or can resemble Kalman filter with data and time update steps [8]. Stochastic and
set-membership paradigms are merged in [6].

Set-membership state estimation has been used e.g. in [21], [5] while in [27], a spe-
cific robust Kalman filter has been used. Recently, a tube-based robust MPC scheme
was proposed where the states are bounded by the tubes whose center is the state of the
nominal system [11,15,19,25]. The paper [17] combines set-membership estimation
with prediction tubes.

In our research, we focus on the output-feedback MPC intended for industrial sta-
tionary robots-manipulators, specifically parallel kinematic machine (PKM) [18] where
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the system outputs correspond to the Cartesian coordinates and angular position. The
unmeasured states consist of the relevant velocities. In this setting, measurements are
often influenced by physically bounded uncertainties.

We propose an algorithm of output-feedback MPC for discrete-time systems influ-
enced by bounded state and output disturbances. The required estimates are provided by
the Bayesian state estimator presented in [8]. The control aim is to follow a given ref-
erence trajectory. The paper builds on the previous authors works presented in [12,13],
and proposes a novel way how to choose a point estimate from the admissible set of
state estimates. In [12], the center of a set estimate was chosen as a point estimate in
each simulation step. In [13], the choice of the point estimate was included into the opti-
mization step. Here, we will choose it in advance based on the previous state evolution.

The paper is organised as follows. This section ends with a summary of the notation
used. Section 2 introduces a linear state space model with uniform disturbances includ-
ing its approximate Bayesian estimation. In Sect. 3, two algorithms of output-feedback
MPC using the above mentioned model are explained. Section 4 presents experiments
with a model of the parallel kinematic machine where the proposed control scheme is
applied to the reference tracking. Section 5 concludes the paper.

Notation. Matrices are in capital letters (e.g. A), vectors and scalars are in lowercase
letters (e.g. b). Aij is the element of a matrix A on i-th row and j-th column. Ai denotes
the i-th row of A. Column vectors are considered, where zt denotes the value of a
vector variable z at a discrete-time instant t ∈ {

1, · · · , t
}
; zt;i is the i-th entry of zt;

z and z are lower and upper bounds on z, respectively. ẑ denotes the estimate of z.
The symbol f(·|·) denotes a conditional probability density function (pdf); names of
arguments distinguish respective pdfs; no formal distinction is made between a random
variable, its realisation and an argument of the pdf. Uz(z, z) denotes a multivariate
uniform distribution of z, z ≤ z ≤ z, inequalities are meant entrywise; ‖.‖22 means
the squared Euclidean norm.

2 Bayesian State Estimation of LSU Model

A linear state space model with uniform disturbances (LSU model) is defined as

xt = At xt−1 + Bt ut−1︸ ︷︷ ︸
x̃t

+ νt, νt ∼ Uν(−ρ, ρ) (1)

yt = Cxt︸︷︷︸
ỹt

+nt, nt ∼ Un(−r, r) (2)

where At, Bt are time varying model matrices; C = [I 0]; x̃t and ỹt correspond to
the nominal values of xt and yt, respectively; νt and nt are independent and identically
distributed (i.i.d.) state and observation disturbances. They are uniformly distributed
within an orthotope with known bounds ρ and r, respectively.
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In the Bayesian filtering framework [9], a controlled system is described by the
following pdfs:

time evolution model: f (xt|xt−1, ut−1) (3)

observation model: f (yt|xt) (4)

prior pdf: f (x0) (5)

Bayesian state estimation (filtering) consists in the evolution of the posterior pdf
f(xt|d(t)) where d(t) is a sequence of observed data records dt = (yt,ut), d0 ≡ u0.
The evolution of posterior pdf f(xt|d(t)) is described by a two-steps recursion that
starts from the prior pdf f(x0|u0) ≡ f(x0) (5): (i) time update that uses theoretical
knowledge described by model (3) and reflects the evolution xt−1 → xt; it provides
prediction f(xt|d(t−1)), and (ii) data update that uses theoretical knowledge described
by model (4) and incorporates information about data dt; it provides The LSU model
(1), (2) can be equivalently described, using pdf notation (3)–(5), as follows

f(xt|ut−1, xt−1) = Ux(x̃t − ρ, x̃t + ρ) (6)

f(yt|xt) = Uy(ỹt − r, ỹt + r) (7)

f(x0) = Ux(x0, x0) (8)

The exact solution of the Bayesian filtering of LSU model (6), (7) leads to a very com-
plex form of posterior pdf. Recently, an approximate Bayesian state estimation was
proposed by one of authors [7]. It provides the evolution of the uniformly distributed
posterior pdf f(xt|d(t)) as follows.
Time Update – time update starts at t = 1 with m0 = x0, m0 = x0 and holds

f(xt|d(t − 1)) ≈
�∏

i=1

Uxt; i(mt; i − ρi,mt; i + ρi) = Uxt
(mt − ρ,mt + ρ), (9)

where mt = [mt; 1, . . . , mt; � ]
T , mt = [mt; 1, . . . , mt; � ]T , � is the size of x,

mt; i =
�∑

j=1

min(Aij xt−1; j + Bi ut−1, Aij xt−1; j + Bi ut−1), (10)

mt; i =
�∑

j=1

max(Aij xt−1; j + Bi ut−1, Aij xt−1; j + Bi ut−1).

Data Update – in data update, the observation yt (7) is processed by the Bayes rule
together with the prior (9) from the time update as yt−r ≤ Cxt ≤yt+r. The resulting
uniform pdf posses a support in the form of polytope. It is approximated by a uniform
pdf with an orthotopic support

f(xt|d(t)) ≈ Uxt
(xt, xt). (11)

This approximation is based on a minimising of Kullback-Leibler divergence of two
pdfs [7]. The result of (11) says that the estimate x̂t belong to a set

x̂t ∈ 〈xt, xt〉 (12)
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where all points have the same probability.
For the intended task of the output-feedback MPC, we need a state point estimate. In

[12], this point estimate corresponded to the center of a set estimate (12) at each control
design step. In [13], we did not choose the particular point estimate to be used in the
control design but consider the whole set (12). In each time step, the optimization run
several times for a chosen sequence of points from this set. Then, the point connected
with a minimal cost was chosen for the control input computation.

Now, we will come back to the concept of a priori chosen estimate. Contrary to
the paper [12], the choice will not be fixed to the center of the set estimate but will
depend on the shape of reference trajectory and on the previous state evolution. Details
concerning the mentioned choice are presented in Sect. 4.

3 Control Design

To design an optimal control action, MPC employs predictions of expected future out-
puts of controlled system represented by a state space model. The equations of pre-
dictions are composed using current state estimate in nominal parts of model (1) and
(2). For simplicity, we omit here the time indices, i.e., At → A and Bt → B, as for
one optimisation step, we will consider the matrices to be constant within a prediction
horizon N that is for control horizon as well.

Prediction Equations – positional control algorithm [4,12]:

Ŷt+1 =
[
ŷT

t+1, · · · , ŷT
t+N

]T
= F1x̂t + G1 Ut,

Ut =
[
uT

t , · · · , uT
t+N−1

]T
(13)

F1 =

⎡

⎢
⎢
⎢
⎣

CA
...

CAN−1

CAN

⎤

⎥
⎥
⎥
⎦

, G1 =

⎡

⎢
⎢
⎢
⎣

CB 0 · · · 0
...

. . .
. . .

...
CAN−2B · · · CB 0
CAN−1B · · · CAB CB

⎤

⎥
⎥
⎥
⎦

.

To achieve integral property in the design, the nominal parts of model (1) and (2) are
rewritten in incremental forms as follows [13]

Δx̂t+1 = x̂t+1 − x̂t = A Δx̂t + B Δut

Δŷt+1 = ŷt+1 − yt = C Δx̂t+1.
(14)

Prediction Equations – incremental control algorithm: the equations are composed
analogically to the positional algorithm but using the model (14):

Δx̂t+j = Aj Δx̂t +
j∑

i=1

Ai−1BΔut+j−i (15)

Δŷt+j = CAj Δx̂t +
j∑

i=1

CAi−1BΔut+j−i (16)
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The evolution of the full-value predictions of the system outputs ŷ is

ŷt+j = yt +
j∑

i=1

Δŷt+i (17)

The relevant matrix notation of (17) is as follows

Ŷt+1 = [ ŷ T
t+1 · · · ŷ T

t+N ]T = FI yt + F2 Δx̂t + G2 ΔUt, (18)

ΔUt =
[
ΔuT

t , · · · ,ΔuT
t+N−1

]T
(19)

FI = [ I · · · I ]T , F2 =

⎡

⎢
⎢
⎢
⎣

CA
...

N∑

i=1

CAi

⎤

⎥
⎥
⎥
⎦

, G2 =

⎡

⎢
⎢
⎢
⎣

CB · · · 0
...

. . .
...

N∑

i=1

CAi−1B · · · CB

⎤

⎥
⎥
⎥
⎦

The behaviour of a control process is influenced by the choice of the cost function.
MPC involves a quadratic cost function that balances control errors, i.e. differences
between predicted outputs and reference values, against amount of input energy given
by control vector (for the the positional algorithm) or control increments (for the incre-
mental algorithm).

Cost Function: has the form

Jt = (Ŷt+1 − Wt+1)T QT
Y W QY W (Ŷt+1 − Wt+1) + U

T
t QT

U
Q

U
Ut (20)

where Ut = Ut for the positional algorithm [12] and Ut = ΔUt for the incremental

algorithm [13]; Wt+1 =
[
wT

t+1, · · · , wT
t+N

]T
represents a sequence of references.

Optimality Criterion: is defined as follows

min
Ut

Jt (Ŷt+1,Wt+1,Ut), Ut ∈ {Ut,ΔUt} (21)

s. t. state space model (1), (2) (or (15), (16))
state estimate x̂t (12)

where Ŷt+1 are prediction Eq. (13) or (18), respectively. The involved cost function Jt

(20) is rewritten into the square-root form

Jt = J
T
t Jt (22)

For the Positional algorithm, the square-root Jt of Jt (22) is

Jt =
[

QY W 0
0 QU

][
Ŷt+1 − Wt+1

Ut

]
=

[
QY W (G1 Ut − Zpos)

QU Ut

]
(23)

where Zpos = Wt+1 − F1 x̂t.
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For the Incremental algorithm, the square-root Jt of Jt (22) is

Jt =
[

QY W 0
0 QΔU

][
Ŷt+1 − Wt+1

ΔUt

]
=

[
QY W (G2 ΔUt − Zinc)

QΔUΔUt

]
(24)

where Zinc = Wt+1 − FI yt − F2 Δx̂t and QY W , QΔU and QU are penalisation
matrices defined as follows

QT
� Q� =

⎡

⎢
⎣

QT
∗ Q∗ 0

. . .
0 QT

∗ Q∗

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣

subscripts �, ∗ :
� ∈ {YW, ΔU, U}
∗ ∈ {yw, Δu, u}

(25)

Optimization: consist in the minimisation of the cost function. Considering the square-
root Jt (23) or (24), the minimisation, as a specific solution of least-squares problem,
leads to the following algebraic equations for (23) [12]:

[
QY W G1 QY W Zpos

QU 0

]

︸ ︷︷ ︸
A b

[
Ut

−I

]
= 0 (26)

and for (24) [13]:
[

QY W G2 QY W Zinc

QΔU 0

]

︸ ︷︷ ︸
A b

[
ΔUt

−I

]
= 0 (27)

The over-determined system (26) or (27), respectively, can be transformed
by orthogonal-triangular decomposition [14] so that matrix [ A b ] is transformed into
upper triangle matrix R1, and solved for unknown Ut ∈ {Ut,ΔUt}. This transforma-
tion is indicated by the following equation diagram

A b Ut

-I

= 0 ⇒
�

�
��

R1

0

c1

cz

Ut

-I

= 0
(28)

where the vector cz represents a loss vector. Its Euclidean norm ‖cz||2 corresponds
to the square-root of the minimum of cost function (20), i.e., Jt = cT

z cz . Note that for
control, only the first elements corresponding to ut or Δut are used from computed
vector Ut (13) or (19), respectively.

In the previous paper of authors, [12], the point estimate corresponding to the cen-
tre of (12) was used in (28). The paper [13] extended these result both by using the
incremental algorithm (24) and by considering the set estimate (12) without choice a
particular point estimate. The transformation into (28) was performed successively for
preselected points from the whole set. Subsequently, the realisation with the minimal
value of ‖cz||2 was chosen as the result.

Here, we aim to optimize the choice of the relevant point estimate before optimiza-
tion step to avoid the multiple optimisation run. For details on this choice see Sect. 4.3.



Output-Feedback Model Predictive Control Using Set of State Estimates 157

Fig. 1. Considered robot ’Moving Slide’ and used testing trajectory [13].

Table 1. Overview of performed experiments.

Exp. Control algorithm State estimate Fig. No MeanEt (31) Max.Et (31) (t)

1 Positional (23) Central point (30) Fig. 2 0.8977mm 2.0958mm (3.24 s)

2 Positional (23) Set (12) [13] Fig. 3, 4 0.9053mm 2.3157mm (4.70 s)

3 Positional (23) Best point, Sect. 4.3 Fig. 5 0.9192mm 2.2842mm (3.24 s)

4 Incremental (24) Central point (30) Fig. 6 0.8248mm 1.9193mm (3.81 s)

5 Incremental (24) Set (12) [13] Fig. 7, 8 0.8317mm 1.9069mm (3.81 s)

6 Incremental (24) Best point, Sect. 4.3 Fig. 9 0.8231mm 1.8836mm (3.81 s)

4 Experiments

4.1 Robot Model

To illustrate the proposed algorithm, we use the redundant planar parallel
robot-manipulator [1]. It has a four-dimensional input u (four torques) and a three-
dimensional output y (Cartesian positions of tool center point (TCP): xTCP and yTCP ;
and rotation angle ϕTCP of robot movable platform around the vertical axis), see Fig. 1.
The dynamics of the robot can be described by a set of non-linear differential equations
representing equations of motion. They are composed using Lagrange equations [3]

ÿ = f(ẏ, y) + g(y)u (29)

where y = [ xTCP , yTCP , ϕTCP ]T . The corresponding non-linear continuous-time
state-space model can be transformed into the linear-like continuous-time state-space
model by a special decomposition [24]. Then, using standard time discretisation and
considering additive bounded disturbances, the LSU model (1), (2) is obtained [13]
where the system state xt = [yT

t , ẏT
t ]

T .
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4.2 Experiment Setup

The controlled system is represented by the robot model (29) with an additive uni-
formly distributed output noise. The set state estimates (12) are obtained using the
linearised robot model (1), (2) as described in Sect. 2. The noise bounds are set as
follows: ρ = 10−6[m,m,rad,m s−1,m s−1, rad s−1]T , r = 10−3[m,m,rad]T . The
control parameters in (20) are set as follows: N = 10; Qyw = I , Qu = 10−2 I ,
QΔu = 2.5 · 10−2 I , where I is the identity matrix of the appropriate order. The refer-
ence trajectory to be followed is depicted in Fig. 1.

The central point estimate, i.e. corresponding to the mean value of the set estimate
(12), has the form [12]

x̂t =
xt + xt

2
. (30)

The control error, i.e. a difference between the reference and a measured output, is
defined as follows

Et =

√√
√
√

2∑

i=1

(yi − wi)2 =

√√
√
√

2∑

i=1

e2i . (31)

4.3 Search for the Best Point Estimate

Running the series of experiments based on the combination of boundary state values
for corresponding couples: [position yi + velocity ẏi]|i=1,2,3;, we have prove experi-
mentally our initial hypothesis that the control results depend both on the choice of
particular point from the set estimate (12) and on the previous state evolution that is
related to the shape of the reference trajectory.

4.4 Results and Discussion

We have run series of experiments comparing the performance of the positional (23)
and the incremental (24) output-feedback MPC algorithms with the following variants
concerning the state point estimate: (i) a conservative choice (30) as presented in our
previous paper [12], (ii) multiple optimisation using the scheme (28) with selection
of points from (12) where the realization with a minimal loss cz provides the required
control input presented in our previous paper [13], (iii) offline setting of the “best” point
state estimate as described in Sect. 4.3. A summary of the experiments is presented in
Table 1.

In [13], the choice of the point estimate is performed in every optimisation step with-
ing prediction horizon N . This strategy results in a discontinuous switching between
subsequent point choices in control process, see the second halves of the control input
courses in Fig. 3.

The proposed method of the “best” point state estimates applied to the incremental
control algorithm (experiment 5) , delivers the least control error.
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Fig. 2. Positional algorithm with mean value.

Fig. 3. Positional algorithm with selection according to loss value c(z).

Fig. 4. Positional algorithm selected illustrative courses of loss values c(z).

Fig. 5. Positional algorithm with selection based on prior information (1, 11, 6).
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Fig. 6. Incremental algorithm with mean value.

Fig. 7. Incremental algorithm with selection according to loss value c(z).

Fig. 8. Incremental algorithm selected illustrative courses of loss values c(z).

Fig. 9. Incremental algorithm with selection based on prior information (1, 11, 6).

5 Conclusion

The paper presents a method for the choice of the point state estimate used in the output-
feedback MPC design. The results are compared with the previous authors results pre-
sented in [13] and [12]. In this paper, we proved experimentally our initial hypothesis
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that the control results depend both on the choice of particular point from the set esti-
mate (12) and on the previous state evolution that is related to the shape of the reference
trajectory.

Future work will focus on a theoretical justification of our hypothesis. We will aim
to propose the optimal choice of point estimate based on available physical prior infor-
mation about system motion behavior and on a physical substance of individual state
variables e.g. position and corresponding velocity.
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24. Valášek, M., Steinbauer, P.: Nonlinear control of multibody systems. In: Proceedings of
Euromech, pp. 437–444 (1999)

25. Yadbantung, R., Bumroongsri, P.: Tube-based robust output feedback MPC for constrained
LTV systems with applications in chemical processes. Eur. J. Control. 47, 11–19 (2019)

26. You, F., Zhang, H., Wang, F.: A new set-membership estimation method based on zonotopes
and ellipsoids. Trans. Inst. Meas. Control. 40(7), 2091–2099 (2018)

27. Zenere, A., Zorzi, M.: Model predictive control meets robust Kalman filtering. IFAC-
PapersOnLine 50(1), 3774–3779 (2017)

© The Editor(s) (if applicable) and The Author(s), under exclusive license 
to Springer Nature Switzerland AG 2023
O. Gusikhin et al. (Eds.): ICINCO 2021, LNEE 1006, p. 209, 2023. 
https://doi.org/10.1007/978-3-031-26474-0

https://doi.org/10.1007/s10846-020-01172-6
https://doi.org/10.1007/s10846-020-01172-6
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1007/978-1-4757-3437-9



