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ABSTRACT This paper proposes an innovative framework of a parameter estimation procedure based
on the well-established relay-feedback experiment paradigm. The novelty consists in consideration of
asymmetric dynamics and non-equal static gains of the identified system. A different system behavior after
changing the input variable polarity near the operating point is rarely considered or even omitted within
relay-based parameter identification tests, in contrast to the common use of asymmetry in the nonlinear relay
element. The thing is that many existing relay-based identification techniques in the frequency domain use
integrations, assuming that the system output operating point coincides with the setpoint value (i.e., the offset
between them is zero). However, this is not true for asymmetric dynamic systems, which yields considerably
erroneous parameter estimation as the integration result is highly sensitive to the baseline value. The resulting
iterative numerical optimization-based algorithm is built-up using a chain of natural assumptions and
step-by-step thought experiments. The proposed framework is applied to the well-established exponential
decaying method in this paper. Some computation aspects of the algorithm are discussed. A comparative
numerical study illustrates the efficacy of the proposed strategy, where several frequency-fitting-based and
descriptive-function-based competitive approaches are considered.

INDEX TERMS Asymmetric dynamics, frequency-domain analysis, optimization, parameter estimation,
relay feedback, system dynamics, system identification.

I. INTRODUCTION
When modeling and identifying parameters of dynamic sys-
tems, it is usually assumed that the system dynamics and the
static gain remain invariant with respect to the input polarity
in the neighborhood of the operating point. It implies that a
unique model is considered regardless of the relative change
of the input variable sign. However, static and dynamic sys-
tem behavior can differ for a positive and a negative input
variable change. Regarding static gain values, this fact is
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obvious from the static characteristics of nonlinear systems,
see Fig. 1 (and the description therein). Naturally, static
gains (as the tangents to the characteristics) are non-equal
in the left and right operating point neighborhoods. Besides,
scholars have referred to many systems and processes with
asymmetric dynamics appearing in various scientific and
engineering fields, ranging from microcosmos to complex
atmospheric phenomenamodeling. To name just a few, Zhang
et al. [1] showed generic asymmetric expansion and cor-
relation dynamics in non-Hermitian quantum many-body
systems. Zushi and Takeuchi [2] studied spontaneous sym-
metry restoring for asymmetric dynamics of liquid-crystal
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reconnecting disclinations. Han et al. [3] proposed an
extended Rayleigh-Plesset model to predict the asymmet-
ric dynamics of a cavitation bubble. In [4], a DC-offset-
induced asymmetric dynamical behavior in Memristive
Chua’s circuits was revealed using equilibrium point analy-
ses, numerical simulations, and experimental measurements.
Asymmetric dynamics can inherently be detected in heat
and mass transfer systems and processes. For instance,
Vasičkaninová et al. [5] referred to an asymmetric dynam-
ics of a heat-exchanger network when fuzzy-logic control
designing. Rodriguez and Campo [6] showed that the vor-
tex shedding process in a forced convection heat transfer is
asymmetric for high values of Reynolds number and low
values of Prandtl numbers. Kim et al. [7] observed a strong
spatiotemporal asymmetry between the inflow and outflow
from the downstream and the upstream, respectively, during
the power generation phase in a tidal power plant. Asym-
metric dynamics models are not limited to technical and
engineering problems. The asymmetric mean-reverting fun-
damental dynamics governing the unemployment rate based
on a simple labor supply and demand relationship model was
derived in [8]. Simonyan and Bayraktar [9] studied asym-
metric relationships between sovereign credit default swaps
and variables in bull and bear markets. Last but not least,
asymmetric systems can also be found in wild nature. For
instance, Cheng et al. [10] referred to the existence of asym-
metric processes in the typhoon secondary eyewall formation
mechanism.

The relay-feedback experiment has become one of themost
favorite and widely used parameter identification principles
in practice [11], [12]. Its nascence can be traced back to the
early 1950s [13]; however, the work byAström andHägglund
[14] is usually considered as the pioneering result in the
field. This parameter-identification task is usually followed
by automatic controller tuning, which represents the autotun-
ing procedure [14], [15]. Main advantages of this concept can
be summarized as follows: It can even be applied to integral or
unstable processes that are stabilizable by the feedback loop
with a relay, and, in particular, the process output is kept close
to the setpoint, which is favorable or even required in various
industrial applications.

The main idea lies in the existence of sustained oscillations
that enable estimating the ultimate (or other) frequency points
of the model by detecting process output shape, angular
frequency, phase shift, and amplitude.

Two frequency-based families and a time-domain one
of relay-feedback data evaluation for the model param-
eter identification can be found in the literature [11].
The so-called describing function (DF) represents the
most used frequency-domain method that utilizes harmonic
analysis and linear approximation of the relay output
[16], [17].

The original concept [14] used a simple symmetric on/off
relay; however, it was shown that the obtained ultimate gains
could have errors of over 15% [18]. Therefore, scholars

investigated different techniques to enhance the DF and
ultimate-frequency point estimation.

FIGURE 1. The static characteristics of a nonlinear system where u is the
input and y means the output. If a negative change −1u of the input
value in the neighborhood of the operating point [u0, y0] is made, the
corresponding static gain k− differs from that (k+) under a positive input
change +1u.

For instance, a relay with hysteresis [19], [20], a satu-
rated relay [21], a parasitic or a cascade relay [22], preload
relay [23], or a multiple-switching relay [24] were used to
cope with this task. Ghorai et al. [25] developed an online
technique that includes a proportionally-derivative controller
within the identification procedure. Other methods, e.g., use
asymmetric sustained oscillations [26] or attempt to reduce
disturbances and noises [27], [28].
The fitting of the frequency-response points represents

another bunch of methods [29], [30], [31]. Whereas the DF
methods attempt to match the ultimate-frequency point or
a low number of other points, the frequency fitting (FF)
approaches aim tomatch amultitude of frequency points. The
fact is that the simple test can estimate only one point giving
rise to two model parameter values. Various strategies were
proposed to estimate more points (generally, extract more
information from the closed-loop responses). For instance,
an artificial integrator or a delay element can be inserted in
the open loop to reach a preset phase shift [32], [33]. Hofreiter
[34] proposed a 2-shifting method that enables estimating
two frequency-response points. This idea has been extended
to several n-shifting methods [32], [35]. The FF approaches
also utilize modified integrable relay inputs and outputs by
reducing the magnitudes via exponential decay [36] or a
shifting procedure [18]. Miguel-Escrig et al. [12] recently
designed a complex method based on algebraic operations
and a proper selection of frequency-response points that were
estimated corresponding to the fundamental oscillation fre-
quency induced by the asymmetric relay and its harmonics.

Time-domain methods usually aim to match the course
of the identified system output caused by the relay feed-
back with the model theoretical response using its analytic
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formulation [37], [38]. Kyeong et. al. [39] proposed a tech-
nique combining DF and time-domain approaches that is
insensitive to static disturbances.

The main motivation for this research has arisen from the
following observation. It is intrinsically considered that the
system output operating point equals the setpoint value for
the closed relay-feedback loop (i.e., the offset between them
is zero). This natural assumption, however, holds for sys-
tems and processes with ideally symmetric static gain and
model dynamics parameters. It was observed that the output
operating point differs from the setpoint if an identified sys-
tem asymmetry appears. Note that the rationale behind this
effect is provided in Section III. Moreover, the same rationale
implies that not only one but two shifts must exist – for the
positive input change and the negative one. It gives rise to
two different subsystems with non-equal dynamics and static
parameters.

Whereas the accuracy of DF-based methods usually does
not depend on either the reference value or the operating
point value [39] (but only the difference between response
extrema is evaluated), the FF relay-feedback identification
methods yield erroneous parameter estimation if there is a
mismatch between the reference value and the output oper-
ating point. This fact is because of integral computations for
the parameters’ evaluation, the accuracy of which is highly
sensitive to the zero-point guess (see Sections II and III).
Theoretically, if the exact offset value is found, the static gain
and other dynamic parameters can be analytically determined
[11], [36]. Hence, it is crucial to estimate operating points
for each subsystem as accurately as possible by available
numerical means.

According to the authors’ best knowledge, no method that
proposes estimating the offset value for asymmetric systems
exists. In contrast to the use of the asymmetric relay for
standard symmetric processes [12], [26], [28], [32], [36], the
effect of an asymmetric relay on systems with asymmetric
response has not been considered yet. However, several meth-
ods have been investigated for tackling a process output shift
due to disturbance when performing relay-based parameter
identification. These techniques attempt to restore symmetry
by various means (e.g., by an adaptive setting of the relay
asymmetry [28], high-pass filtering [40], moving the refer-
ence value [41], etc.). Although they can overcome the signal
asymmetry (regardless of the reason), they do not consider
the offset change.

The presented research represents the framework strat-
egy for a family of FF techniques for asymmetric iden-
tified systems. Its contribution can be summarized as
follows:

1) The exact output mean value for symmetric identified
systems when using an asymmetric (biased) relay is
derived. Based on this value, an initial static-gain guess
can be made for asymmetric systems.

2) The iterative estimation formula for computing the
system output operating point is derived using the pre-
ceding results.

3) The iteratively updated operating point value yields
the direct reset of the static gain guess, and model
parameters are successively estimated by solving a
nonlinear optimization problem based on the multiple-
point decay-based identification method [36].

4) The efficacy of the proposed relay-based strategy is
illustrated via a comparative academic example. The
relay with hysteresis [19], the saturation relay [21], and
an output drift compensation followed by asymmetric
input excitation serve as competitive DF-based meth-
ods [40]. An n-shifting procedure with artificial delay
[32] and a full closed-loop test with a special activation
function [18] are representatives of FF-based methods.
In addition, the reasonability of the proposed method
is demonstrated by showing identification results when
the offset is zero (i.e., the reference value is assumed to
be equal to the output operating point).

The remainder of this paper is organized as follows. Section II
introduces preliminaries of the framework idea of the
relay-feedback identification test using DFs and describes
the multiple-point FF-based method with signal decaying.
The motivation and the research problem in question are
raised in Section III. The main result crowned by the iterative
identification procedure for asymmetric systems is provided
in Section IV. In Section V, a numerical academic example
demonstrating the proposed strategy is given. Some computa-
tional aspects of the algorithm are discussed, and a compara-
tive study is elaborated along with a concise description of the
competitive methods. Conclusions are drawn in Section VI.

II. PRELIMINARIES
The basic general principle of the relay-feedback parameter
identification test is introduced in this section. The idea of
using DF and FF-based methods for the relay-based identifi-
cation, and the exponential decay method [36] are concisely
summarized as well. Note that advanced techniques are omit-
ted due to brevity; interested readers are referred to, e.g., [11],
[12], and [22] for more details. Particular comparative meth-
ods benchmarked in this research are introduced in Section V.

The relay-feedback scheme is depicted in Fig. 2 where
‘‘Plant’’ expresses the identified system, ‘‘Relay’’ means
the nonlinear relay element, ‘‘Add’’ stands for a potential
additional artificial linear dynamics (see, e.g., [25], [32],
[33]), reference (setpoint), error, system input, and output
variables are denoted by r (t) , e (t) , u (t), and y (t), respec-
tively (note that the time argument (t) is omitted in the figure).
Under some conditions, sustained oscillations with angular
frequency ωosc = 2π/Tos appear after time tos.

A. RELAY-FEEDBACK IDENTIFICATION FRAMEWORK
The idea of using a DF NDF (·) ∈ C for model parameter
identification stems from a linear approximation of the relay
dynamics, giving rise to the estimation of a single point of the
model frequency response (1).

Gm (jωos) = −
1

Ga (jωos)NDF (·)
(1)
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FIGURE 2. A general scheme of the parameter identification principle via
a relay in the feedback.

Equivalently, one can write |Gm (jωos)| =
1

|Ga (jωos)NDF (·)|
,

Gm (jωos) = −
[
Ga (jωos)+ NDF (·)+ π

] (2)

where Gm (s) ,Ga (s) are the plant model and the additional
element transfer functions, respectively, and j2 = −1. The
formulae express that the overall open-loop gain is−1 and the
phase shift equals −π . The DF NDF (·) depends on various
relay parameters and the output sustained oscillation ampli-
tude A = 0.5 [y (tmax)− y (tmin)] where tmax = argmax

t≥tos
y (t),

tmin = argmin
t≥tos

y (t)

The core of most FF-based methods lies in Lemma 1 [18],
[32], [42].
Lemma 1 (Laplace Transform of Periodic Function): Let

f : [0,∞) → R be a periodic function of period Tos > 0
(i.e., f (t) = f (t + Tos) for all t ≥ 0). If the Laplace
transform of f exist, then

F (s) = L {f (t)} =

∫ Tos
0 f (t) exp (−st) dt

1− exp (−sTos)
(3)

Lemma 1 implies that the model transfer function can be
written as

Gm (s) =
L {y (t)}
L {u (t)}

=
Y (s)
U (s)

=

∫ t+Tos
t y (t) exp (−st) dt∫ t+Tos
t u (t) exp (−st) dt

(4)

for t ≥ tos. The corresponding frequency response can be
obtained by substituting jω← s

Gm (jω) =

∫ t+Tos
t y (t) exp (−jω t) dt∫ t+Tos
t u (t) exp (−jω t) dt

(5)

Although in literature, formula (5) is assumed to be applied
for ω = 0 or ω = ωos only, it can also be used for other
frequencies. The former yields the model static gain guess

k = Gm (0) =

∫ t+Tos
t y (t) dt∫ t+Tos
t u (t) dt

(6)

B. EXPONENTIAL DECAY METHOD
Let us introduce a well-established FF method used in this
research. Namely, the exponential decay method [36] enables
estimating multiple frequency points under a single relay test.

First, process input and output are subject to the decaying

ua (t) = u (t) exp (−at) ,

ya (t) = y (t) exp (−at) ,

a > 0, t ∈
[
0, tf

]
(7)

where tf expresses the relay experiment duration, for which
|ua (t)| , |ya (t)| within t ∈

(
tf − Tos, tf

]
:= If are suffi-

ciently small. The decaying satisfies the integrability of the
signals. Clearly, if εa > max (|ua (t)| , |ya (t)|), t ∈ If ,
is selected, the decaying exponent a must be taken as

a >
1
t
ln
[
max (|u (t)| , |y (t)|)

εa

]
, t ∈ If (8)

According to [43], a suitable option is εa ≈(
10−6 ∼ 10−4

)
max (|u (t)| , |y (t)|). In [18], it is suggested

to take a = 0.05ωos.
Then, the shifted model Laplace transform reads

Gm (s+ a) =
L {ya (t)}
L {ua (t)}

=
Y (s+ a)
U (s+ a)

=

∫ tf
0 ya (t) exp (−st) dt∫ tf
0 ua (t) exp (−st) dt

(9)

By substituting jω ← s and setting ω = ωl ≥ 0, l =
0, 1, . . ., the following set of algebraic equations is obtained

Gm (jωl + a) =

tf∫
0
ya (t) exp (−jωl t) dt

tf∫
0
ua (t) exp (−jωl t) dt

(10)

where the left-hand side of (10) includes unknown model
parameter values, whereas the right-hand one is computed
from the relay-test data. In practice, measured signals are
sampled with the period Ts, and the discrete-time Fourier
transform (DTFT) is used to compute (10)

Gm (jωl + a) ≈

∑N−1
i=0 ya (ti) exp (−jωl ti)∑N−1
i=0 ua (ti) exp (−jωl ti)

(11)

where ti+1 = ti + Ts and N means the number of samples.
The original work [36], [43] suggests taking

ωl = l
2π
NTs

, l = 0,M − 1; M ≤ N
Ts
Tos
+ 1 (12)

where M is the number of considered frequency points. In
fact, u (t) , y (t) represents the deviation from the operat-
ing point [u0, y0] in academic formulae (4)-(7). Hence, the
following differences should be substituted in the formulae
instead of u (t) , y (t):

1u (t) = u (t)− u0, 1y (t) = y (t)− y0 (13)

Besides, formula (10) holds for anyωl ∈ R; hence, the sim-
ple quadrature (11) can consider different angular frequencies
than those in (12). Note that the corresponding quadrature can
be applied to (5).

III. RESEARCH PROBLEM
This section provides the reader with research problem moti-
vation and formulation. The problem arises from the exis-
tence of identified process asymmetry that cannot be a priori
excluded.
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A. MOTIVATION
The accuracy of FF methods strongly depends on integral
values (5), (6), or (10). These formulae include input and
output differences (13) that are functions of the operating
point [u0, y0]. Clearly, if an integrand is shifted by d in a
particular integral with lower and upper limits L1 and L2,
respectively, then the integral error is d (L2 − L1).

However, systems with asymmetric dynamics and/or static
gain reveal a mismatch between the reference value r and
the output operating point value y0. Then the obtained results
are considerably erroneous when computing integrals around
the setpoint. We have observed the described effect when
performing standard relay-based identification experiments
in a laboratory [44]. To judge this effect rigorously, it is
possible to formulate the following simple lemma.
Lemma 2: Given an asymmetric identified system in the

relay-feedback loop, a unique output operating value y0 = r
does not exist.
Proof: LetG+ (s) andG− (s) express different asymmetric

subsystems’ dynamics for positive (1u > 0) and nega-
tive (1u < 0) input step changes, respectively, due to the
relay switching. Consider a contradiction: Let the unique
y0 = r exist for both subsystems. Then (5) (or (10)) and (6)
return identical dynamic and static, respectively, frequency
responsesGm (·) for both subsystems. It means thatG+ (s) =
G− (s), which yields a contradiction. ■
Hence, two research questions arise:
RQ1: How can the real (true) value of y0 for each submodel

be estimated?
RQ2: How can unknown parameters of particular models

Gm+ (s) and Gm− (s) be estimated?
The formulation of these problems in detail follows.

B. PROBLEM FORMULATION
Consider a biased (asymmetric output) relay with a symmet-
ric (input) hysteresis, for simplicity, switching as follows

u (t) =


B+ = u0 + B+ δ,

if (e (t) ≥ ε) ∨ (−ε ≤ e (t) ≤ ε ∧ ė (t) < 0)
B− = u0 − B+ δ,

if (e (t) ≤ −ε) ∨ (−ε ≤ e (t) ≤ ε ∧ ė (t) > 0)
(14)

where B = 0.5 (B+ − B−) and δ ̸= 0 expresses the relay
asymmetry (bias). Note that hysteresis ε ≥ 0 helps to over-
come excessive switching rates under signal disturbances in
practice. The corresponding static characteristics is depicted
in Fig. 3 and its DF reads [35]

NDF (A,B, 1A, ε)

=
2B
πA

√1−
(
−1A− ε

A

)2

+

√
1−

(
−1A+ ε

A

)2


+
4Bε

πA2
j (15)

whereA = 0.5 (ymax − ymin) is the amplitude of the sustained
oscillations and 1A := 0.5 (ymax + ymin) − y0 = ym − y0
means the output shift. As formula (15) was derived for a
symmetric system, corresponding sustained oscillations with
essential parameters are displayed in Fig. 4.
Assumption 1: Without loss of generality and also for sim-

plicity, let r = u0 = ε = 0 in the figure and hereinafter.
Define the difference 1yrm := ym − r . It holds for a

symmetric system that1A = 1yrm; however, it does not hold
for an asymmetric one, see Fig. 5.
Considering 1A ̸= 1yrm, computing (5), (6), or (10)

yields erroneous results due to an incorrect evaluation of (13).
It is worth noting that not only FF-based relay feedback
identification methods can fail due to that, see, e.g., (15). The
exponential decay method (introduced in Subsection II-B),
which has been chosen as a representative of FF method in
this study, requires the correct guess on y0 due to computation
of ya (t) in (7), see Fig. 6.

FIGURE 3. The static characteristics of a biased relay (with symmetric
hysteresis).

These issues require modifying the standard relay test
framework to estimate factual y0 values for both subsystems
G+ (s) , G− (s), as a system static or dynamic nonsymmetry
cannot be excluded. Once this value is obtained, it is supposed

FIGURE 4. Sustained oscillations with relay (14) (without hysteresis) for a
symmetric system.
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FIGURE 5. Sustained oscillations with relay (14) (without hysteresis) for
an asymmetric system.

FIGURE 6. Exponentially decayed system input and output as per (7)
and (13) for two different values of y0 (y0,1 = 0, y0,2 = −0.0794), a = 0.2,
see also Example 2.

that corresponding static and dynamic system properties are
given by theoretical results (5) (or (10)) and (6), respectively.

IV. MAIN RESULT
Let us introduce two assumptions, the rationales of which are
natural and meet theoretical expectations. The assumptions
are crucial when deriving the main result and summarize
already introduced facts.
Assumption 2: Let values of k and y0 be known exactly

for each subsystem G+ (s) , G− (s), satisfying (6) and (13).
Then all other (dynamic) models’ parameters are precisely
given by (5) and/or (10) for any ω ̸= 0.
Assumption 3: The asymmetric identified system evinces

different static and dynamic behavior (i.e.,G+ (s) ̸= G− (s))
whenever the sign of 1u (t) differs.

Assumption 2 expresses the idea that whenever the static
gain is exactly found, then all the dynamic model parameters
are also equal to those of the real-world system (in the case
of perfect signal measurement and integral computations).
Assumption 3 represents the ‘‘asymmetry’’ precondition for
this research, i.e., a non-equal system response whenever the

sign of the input excitation differs. Although it looks trivial
and intuitive, it implies the idea of two separate experiments
given below in the eventual algorithm.

The following proposition represents the cornerstone of the
main result.
Proposition 1: Under Assumptions 1 and 2, it holds for the

feedback identification test with relay (14) that

1A = k
uINT
Tos
=
yINT (y0)
Tos

(16)

where uINT = T1B++T2B−, yINT (y0) =
∫ Tos
0 1y (t + τ) dτ .

Proof: Under Assumption 1, it can be deduced from (6)
that

k
∫ Tos

0
1u (t + τ) dτ =

∫ Tos

0
1y (t + τ) dτ

k
∫ Tos

0
1u (t + τ) dτ = yINT (y0) (17)

It is clear from Fig. 4 that

uINT :=
∫ Tos

0
1u (t + τ) dτ = T1B+ + T2B− (18)

Moreover, let the value of k be known exactly as per
Assumption 2. The surface yINT (y0) is considered relatively
to y0, and it can also be viewed as an equivalent rectangle area

yINT (y0) = (ym − y0)Tos = 1ATos (19)

Formula (16) is finally obtained by combining
(17)-(19). ■
Remark 1: Proposition 1 can serve for computing k from

the knowledge of1A, and vice versa, from (16). It is straight-
forward and effortless, mainly for symmetric systems, and the
advantage of this result is that no information about the course
or area of y (t) is required when estimating k (compared
to (6)), except for the knowledge of ym.
Remark 2: The value of 1A is usually only roughly esti-

mated in literature, which may lead to erroneous results. For
instance, 1A ≈ 0.5 (B+ + B−) is used in [35].

The following theorem represents the core of the even-
tual relay-feedback parameter identification framework for
asymmetric systems, i.e., the iterative formula for estimat-
ing the output operating point y0, and the starting point for
Assumption 2.
Theorem 1: Let k+ and k− be known exactly for 1u > 0

and 1u < 0, respectively. Consider that the corresponding
operating point estimations are ŷ0+ and ŷ0−. Then the actual
values of y0+ and y0− are

y0· = ŷ0· +1Â·
(
ŷ0·
)
−1A· (20)

where

1A· := k·
uINT ·
Tosc·

,

1Â·
(
ŷ·
)
:=

yINT ·
(
ŷ0·
)

Tosc·
(21)

and the dot symbol · stands for + or −.
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Proof: The existence of two different pairs {y0+, k+}
and {y0−, k−} is given by Lemma 2 and summarized in
Assumption 3. Consider one of both asymmetric dynamics
(e.g., 1u > 0), without loss of generality, with a guess ŷ0+
and exactly known static gain k+. If the guess is perfect,
i.e., ŷ0+ = y0+, then 1A+ can be calculated via (16) of
Proposition 1 as either 1A+ = k+uINT+/Tos+ or 1A+ =
yINT+ (y0+) /Tos+. However, whenever the guess is imper-
fect, there exists an error

dA+ = 1Â+,1 −1Â+,2 =
k+uINT+
Tosc+

−
yINT+

(
ŷ0+

)
Tosc+

(22)

As k+ is exact, then 1Â+,1 = 1A+ must be exact as well.
The value of1Â+,2 depends on ŷ0+. Hence, denote1Â+,2 =

1Â+
(
ŷ0+

)
. If it is computed that dA+ > 0, i.e., 1A+ >

1Â+
(
ŷ0+

)
, it means that

1Â+
(
ŷ0+

)
= 1A+ − dA+, dA+ > 0 (23)

which implies that the true value yINT+ must be higher than
the estimate, see (21). Hence, the actual integral baseline y0+
should be lower than the estimate ŷ0+, i.e.,

y0+ = ŷ0+ −1ŷ0+ 1ŷ0+ > 0 (24)

The output shift change equals the operating point correc-
tion, i.e., dA+ = 1ŷ0+. Considering this equality in (23)
and (24), one can obtain (20) directly. ■
Corollary 1: Consider the current estimation pairs{
ik̂+, iŷ0+

}
and

{
ik̂−, iŷ0−

}
for 1u > 0 and 1u < 0,

respectively, that are sufficiently close to their true values.
Then the updated estimations can be computed as

i+1ŷ0· = iŷ0· +1Â·,2
(
iŷ0·
)
−

i1Â·,1 (25)

where

i1Â·,1 := ik̂·
uINT ·
Tosc·

,

1Â·,2
(
iŷ0·
)
:=

yINT ·
(
iŷ0·
)

Tosc·
(26)

Proof: Iterative formula (25)-(26) results from Theorem 1.
If the actual (true) static gain is not known, equality (20) does
not hold as1A· in (23) is inexact. Therefore, it is assumed that
dA· ≈ dÂ· = 1ŷ0·, which yields from (23), (24), and (26)
that y0· ≈ ŷ0· + 1Â·,2

(
ŷ0·
)
− 1Â·,1. It implies the iterative

update (25) directly. ■
In accordance with Assumption 2, once sufficiently accu-

rate static gain and output operating point estimations are
found via Corollary 1, an FF-based technique can be applied
to determine other model parameters. This one-step strategy
can, however, be unsuitable as the update (25)-(26) may still
lie far from the actual operating point.

Therefore, all system model parameters can be com-
puted using (5) or (10), usually as a constrained nonlinear

optimization problem for the current ŷ0

p∗ = argmin f (p) ∈ Rn

f (p) :=
∥∥ĝ− gm (p)

∥∥
s.t. : h (p) ≤ 0 (27)

where ĝ :=
[
G (jωl + a)

]
∈ RM , l = 0,M − 1, is a

vector, the entries of which are frequency points computed
using (5) or (10), gm (p) :=

[
Gm (p, jωl + a)

]
are corre-

spondingmodel points at the same frequencies, p ∈ Rnmeans
the parameters’ vector to be identified, and h (p) is a vector
of constraints on the parameters due to model stability, feasi-
bility, etc. The frequency set can be selected, e.g., as in (12);
however, other possibilities exist (see Lemma 3 in Section V).
In (27), the initial guess of model static gain is adopted
from (26).

Once (27) is solved, the static gain estimation is updated
via

k̂ = Gm
(
p∗, s

)∣∣
s=0 (28)

that serves as the initial guess for (25)-(26) again.
This iterative framework approach can be summarized in

the following algorithm (i.e., Algorithm 1) under Assump-
tion 1 and using the FFmethod introduced in Subsection II-B.
Possible modifications of Algorithm 1 are discussed in
Subsection V-B.

Algorithm 1 Relay-Based Identification Strategy for Asym-
metric Systems.
input: Gm+ (p, s), Gm− (p, s)
for j = 0, 1
select B > 0, 0 < δ < B
set B+ = B+ (−1)j δ, B− = −B+ (−1)j δ
perform the test with relay (14)
record Tos = T1 + T2, u (t) , y (t)
set0ŷ0 = 0
compute the initial static gain guess 0k̂ via (6)
select niter , a > 0,M > 0

ωl ≥ 0, l = 0,M − 1 (e.g., as per (12))
for i = 1, niter

select ipj reflecting i−1k̂
substitute y (t)← 1y (t) = y (t)− i−1ŷ0 in (7)
compute ĝ :=

[
G (jωl + a)

]
as per (10)

ip∗m←solve (27)
calculate ik̂ according to (28)
update iŷ0 as per (25)

end
return p∗j ←

niterp∗j
end

output: Gm+ (p, s)|p=p∗0 , Gm− (p, s)|p=p∗1

V. NUMERICAL COMPARATIVE STUDY
The reader is acquainted with a comparative numerical exam-
ple in this section. Competitive methods used in this study are

VOLUME 11, 2023 82263



L. Pekař et al.: Asymmetric System Model Parameters Identification Framework

concisely introduced first to understand the main numerical
example description (Example 2). All the methods consider
that r = y0. In addition, some modifications and numerical
aspects of Algorithm 1 are investigated.

A. COMPETITIVE METHODS OVERVIEW
The use of asymmetric relay with (symmetric) hysteresis
represents the first competitive DF-based method [18], [19],
[32]. Model parameters are evaluated based on (2) using the
particular DF given by (15) with ε > 0. Let this method
be labeled as METHOD-I. Artificial delays are applied to
estimate more than one frequency point within this method
[32], [33]. That is, the input-output delay element Ga (s) =
exp

(
−τa,is

)
is placed in ‘‘Add’’ block in Fig. 2 where

i = 1, nτ , nτ = ⌈0.5n− 1⌉. Note that |Ga (jωos)| = 1,
Ga (jωos) = −τa,iωos.

A saturation relay with both symmetric and asymmetric
settings is the second DF-based method [21], [44]. Let the
former setting be labeled as METHOD-IIa, and the latter one
(METHOD-IIb) should prove the advantage of an asymmet-
ric system input level in the light of Assumption 3. The (asym-
metric) saturation relay static characteristic is displayed in
Fig. 7 and the corresponding DF is given by (29). The mean-
ing of B and 1A are the same as introduced below (14)
and (15); see also Fig. 4. Again, the artificial delay is used
in case that more than two model parameters are estimated.

NDF
(
A,B, 1A,A

)
=

2B
π

 1

A
sin−1

(
A
A

)
+

√√√√1−

(
A
A

)2

√
1−

(
1A
A

)2

(29)

The third DF method (METHOD-III) to be compared
is a technique based on the output drift compensation fol-
lowed by an asymmetric input excitation [40]. The method
combines a symmetry restoration using a series of low-pass
(given by filtering delay τF ) and high-pass filtering, followed
by a specific relay-based test. First, a block displayed in
Fig. 8 to remove disturbances is placed instead of ‘‘Add’’
(see Fig. 2).

Then, the following excitation signal is injected into the
system in the open loop

u = u0 + δ + ur (ωos)+ us (ωlow) (30)

to estimate multiple frequency points of the process where
δ is a step change, ur (ωos) represents a high-frequency
part obtained as process-input sustained oscillations from the
feedback-relay test, and us (ωlow) , ωlow = 0.5ωos, expresses
a low-frequency part having the form of a (symmetric)
periodic square wave. Finally, the test data gives rise to a
two-frequency-point parameter estimation of the first-order-
plus-time-delay (FOPTD) system model

Gm (s) = Gm,0 (s) exp (−sτm) =
k

Ts+ 1
exp (−sτm) (31)

FIGURE 7. The static characteristics of an (asymmetric) saturation relay.

FIGURE 8. The ‘‘Add’’ block to remove disturbances [40].

The following formulae are based on the result derived
in [45], which was extended in [40] to capture also the
low-frequency dynamics of the process

Gm (s) = Gm,0,low (s) exp
[
−s
(
τm,low +1τm

)]
,

1τm =
Gm,os (jωos)− Gm,low (jωos)

ωos
,

Gm,0,· (s) =
km,·

Tm,·s+ 1
,Tm,· =

χ (ω·)

ω·
,

km,os = km,low = Ĝ (0) ,

τm,· =
Ĝ (jω·)− tan−1 [χ (ω·)]

ω·
,

χ (ω·) =

√√√√√ k2m∣∣∣Ĝ (jω·)
∣∣∣2 − 1,

∡Gm,· (jωos) = Gm,0,· (jωos)− τm,·ωos (32)

where the dot symbol stands for os or low. Readers are
referred to [40] for more detail.

Two FF-based methods are benchmarked as well. A com-
bination of the use of artificial delay and the n-shifting
technique for asymmetric relay (14) is taken as the first
one (METHOD-IV) [32]. The main idea is that multiple
frequency points of the process are estimated at sustained
oscillation frequencies ωos,l ≥ 0, l = 1, 2, . . ., so that the
induced phase lag caused by the artificial delay decreases the
value of ωos,l as the process phase shift is higher than −π ,
see (2). Contrariwise, the n-shifting technique can multiply
the frequency of the recorded oscillation data by an integer
value. Namely, let periodic signal y (t) have the period Tos
and corresponding angular frequency ωos = 2π/Tos. Then
the following signal

yn (t) =
∑n−1

i=0
y
(
t −

iTos
n

)
(33)

has the period of Tn,os = Tos/n and frequency ωn,os = nωos.
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FIGURE 9. Computed relation between the selected relay asymmetry and
computed static gain estimation.

FIGURE 10. Relations between the selected relay asymmetry and true
values of y0 for known static gains.

The eventual signals are evaluated using formula (5).
Besides, the relay asymmetry can suitably adjust the process
input (i.e., the relay output) signal polarity.

Finally, a relay test for the FOPTD model with a special
activation function represents the last competitive method
(METHOD-V) [18]. Note that the activation function of type
II is used in this research, which means a relay-feedback
test followed by another relay-feedback test that applies a
setpoint change to get better static gain estimation. As the
obtained sustained oscillation evaluation includes a bunch of
successive equations, details are omitted.

B. NUMERICAL EXAMPLES
Prior to providing readers with the motivation and the main
simulation examples, let us concisely discuss the selection of
frequencies for (5) and (10). As mentioned above, options
ωl = 0 or ωl = ωos are mostly used in the former case
and formula (12) for the latter one. However, if (5) works
for ωl = 0 (see (6)), it can also work for other frequen-
cies. Similarly, (10) represents a general theoretical frequency
response of the decayed (integrable) signal, and the DTFT
formula (11) can be viewed as its simple quadrature. Hence,

it can be used not only for (12) that returns frequencies less
than half of the ultimate frequency ωu (i.e., G (jωu) = −1).
The following minor lemma represents guidance on selecting
linearly increasing frequencies around ωu (including ωu).
Lemma 3: Consider vector ω of M linearly increasing

frequencies ω = (ω1, ω2, . . . , ωu, . . . , ωM−1, ωM ) that
includes ωu. LetM be given and select the position 1 ≤ iu ≤
M such that ωu = ωiu . Then the formula ωi = ai + b, i =
1,M , generating ω reads

a =
(kM − k1) ωu

M − 1
, b = k1ωu − a (34)

where:
a) If iu = 1, then k1 = 1 and kM = ωM/ωu > 1 is selected.
b) If iu = M , then kM = 1 and k1 = ω1/ωu < 1 is selected.
c) If 1 < iu < M , then

k1 = kM −
(kM − 1) (M − 1)

M − iu
(35)

and kM = ωM/ωu > 1 is selected so that k1 ≥ 0.
Proof: The proof is based on a straightforward calculation

of interpolation conditions ω1 = a+ b, ωu = aiu + b, ωM =
aM + b, and auxiliary relations ω1 = k1ωu, ωM = kMωu.
As the interpolation set is overfitting, one of the parameters
k1, kM can be selected (almost) freely. The rest of the proof
is omitted. ■

The following introductory and motivating example
demonstrates the relation between the choice of asymmetry δ

of relay (14) and the true value of y0 yielding the correct static
gain from (6) and (13). Moreover, it elucidates Lemma 2 and
Assumption 3.
Example 1: Consider an asymmetric system described by

transfer functions for each of the subsystems

G+ (s) =
30

s4 + 8s3 + 24s2 + 32s+ 15
,

G− (s) =
200

s4 + 12s3 + 54s2 + 108s+ 80
(36)

i.e., corresponding static gains and subsystem poles are
k+ = 2, k− = 2.5 and s+,i = {−1,−3,−2± j}, s-,i =
{−2,−4,−3± j}, respectively. The relation between δ (for
B = 1) and the static gain estimation k̂ computed using (6)
when assuming y0 = r = 0 is displayed in Fig. 9. Clearly,
higher values of δ yield better estimation of k+, and the lower
δ is, the better guess on k− is received. On the contrary, the
estimation fails if the relay is close to its symmetry.

From the first sight, the course of relation δ 7→ k̂ may
serve for computing true values of both static gains. However,
it is not so straightforward in practice due to several reasons.
Firstly, it is necessary to evaluate many points k̂ (δ) for a
possible extrapolation. Secondly, the computed extrapola-
tion (approximation) functionmay not have a finite limit or its
parameters can be erroneous. Thirdly, it is often impossible to
reach sustained oscillation for higher values of |δ|. However,
it may be an alternative way to get an initial guess on k̂+, k̂−
and corresponding y0+, y0− (see Theorem 1).
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Two separate relations between the selected relay asym-
metry and computed y0+, y0− for the perfect knowledge of
k+, k− as per (6) and (13) are displayed in Fig. 10. Appar-
ently, the higher the value of |δ| is, the closer y0 to r (except
for the symmetric and almost symmetric relay settings). Nev-
ertheless, the displayed courses do not indicate steady states
of extrapolated data.

FIGURE 11. Relay feedback tests with sustained oscillations for settings
{B+, B−} = {1.8, −0.2} (a) and {B+, B−} = {0.2, −1.8} (b).

Both the figures numerically validate Lemma 2 and pro-
vide a rationale for Assumption 3 and the necessity of asym-
metric relay tests for sufficiently high values of |δ|. However,
one has to be careful about the disappearance of sustained
oscillations.

Now, the main example demonstrating Algorithm 1 and
comparing the results of other methods follows.
Example 2: Let the identified asymmetric process have

transfer functions (36). Perform two separate relay feedback
tests for the settings B = 1, δ = 0.8 in Algorithm 1
(i.e., B+ = 1.8,B− = −0.2 and B+ = 0.2,B− = −1.8),
under Assumption 1, see Fig. 11. Note that periods and angu-
lar frequencies of sustained oscillations are Tos+ = 3.313s,
Tos− = 2.514s and ωos+ = 1.897 rad ·s−1, ωos− =

2.499rad ·s−1, respectively. Let the model have the same

FIGURE 12. Iterated values of the setpoint estimates for selected settings
using Algorithm 1 for G+ with {B+, B−} = {1.8, −0.2} (a) and G− with
{B+, B−} = {0.2, −1.8}.

dynamics as the true process (for simplicity)

Gm (s) =
b0

s4 + a3s3 + a2s2 + a1s+ a0
(37)

except for the FOPTD model for some competitive
methods.

For the default initial guess on the output operating point,
0ŷ0 = 0, the corresponding static gain estimates are 0k̂+ =
1.6205, 0k̂− = 3.0747, in accordance with Fig. 9 and for-
mula (6). The initial parameter set is selected to be stable
with a unit static gain as 0p =

(
0b0, 0a3, 0a2, 0a1, 0a0

)
=

(2, 2, 4, 4, 2).
We select three frequency sets. Namely, the first set ω1 =(

0 = ω0,1, . . . , ω19,1
)
is computed using (12) [36], [43]. The

two others ω2, ω3 are computed using Lemma 3 for the
settings iu,2 = 18, k19,2 = 1.1 and iu,3 = 10, k19,3 = 2,
respectively, with ω2,0 = ω3,0 = 0. Moreover, consider
frequency points evaluation using both formulae (5) and (10)
(for a particular setting of a).

The optimization problem (27) is specifically defined as a
constrained task with pi > 0, i = 2, 5, due to the necessary
stability conditions governed by the following cost function,
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FIGURE 13. Iterated values of the static gain estimates for selected
settings using Algorithm 1 for G+ with {B+, B−} = {1.8, −0.2} (a) and G−

with {B+, B−} = {0.2, −1.8}.

including a penalty function π (p)

p∗ =argmin
p

∥∥ĝ−gm (p, ωi)
∥∥
2︸ ︷︷ ︸

f (p)

−α
∑5

j=2
log

(
1−exp

(
pj
))

︸ ︷︷ ︸
π(p)


i = 1, 20 (38)

Subtask (38) of Algorithm 1 is solved using the well-
established Nelder-Mead simplex method [46]. Here, the
very basic setting of control parameters is made (i.e., the
expansion, contraction, and reduction coefficients are 2, 0.5,
and 0.5, respectively); however, several values of the ini-
tial simplex edge length within the range h ∈ [0.1, 1] are
selected. Besides, the weight on the penalty function varies as
α ∈ [0.01, 5].

Iterated values of ŷ0 for selected (best) results (from tenths
of tests) are given in Fig. 12. Note that the true values y0+ =
−0.0794, y0− = −0.0829 (in accordance to Fig. 10) are
indicated by dash-dot lines. The corresponding data for k̂ and
f (p) are displayed in Figs. 13 and 14, respectively. Note that
values of f (p) are normed for comparison due to a different
number of samples for (5) and (10)-(11). Besides, the values
depend on a particular frequency set.

FIGURE 14. Iterated values of f (p) for selected settings using Algorithm 1
for G+ with {B+, B−} = {1.8, −0.2} (a) and G− with {B+, B−} = {0.2, −1.8}.

It is evident from the figures that the static gain estimation
using (10) in Algorithm 1 is more accurate than that using
formula (5), yet it requires a higher number of iteration steps
for k̂−. Contrariwise, the frequency point fitting measured via
f (p) seems worse.
Let the eventual models obtained from Algorithm 1 for

different settings be denoted by Gm,A−1, Gm,A−2, Gm,A−3,
and Gm,A−4 (for both the subsystems) in the same order as
introduced in the legend to Figs. 12-14.
We also perform identification tests with the same set-

tings for the fixed value y0 = r = 0 (i.e., without
an update of ŷ0) for comparison. The corresponding trans-
fer functions are denoted by Gm,0−1, Gm,0−2, Gm,0−3, and
Gm,0−4.
Regarding METHOD-I, the asymmetric relay with hys-

teresis has the following settings: B = 1 with δ = 0.8
(for Gm+) and δ = −0.8 (for Gm−), and ε = 0.05. Two
artificial delays are chosen τa = {0.2, 0.4}s. The computed
three frequency points (i.e., M = 3) are used for model
parameter estimation by minimizing (38) with (2) and (15)
via the Nelder-Mead method again.
Among a multitude of tested settings, the following ones

give the significant (best) results: α = 2, h = 0.3 (giving rise
to Gm+,I−1), α = 5, h = 0.9 (Gm+,I−2), α = 2, h = 0.4
(Gm-,I−1), and α = 5, h = 0.9 (Gm-,I−2).
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FIGURE 15. Comparison of unit step responses for non-normed
subsystems G+ (a) and G− (b) and their models.

METHOD-IIa applies the symmetric relay (Fig. 7) with
saturation (B = 1, δ = 0), and METHOD-IIb adopts two
asymmetric tests (B = 1, δ = ±0.8). The same artificial
delay values as in METHOD-I are taken. Again, condi-
tions (2) for three oscillation frequencies are considered when
minimizing (38) with (2) and (29). The selected optimization
algorithm settings and corresponding eventual models for the
symmetric tests are as follows: α = 2, h = 0.6 (giving rise
to Gm+,IIa−1 and Gm-,IIa−1) and α = 5, h = 0.6 (Gm+,IIa−2,
Gm-,IIa−2). The asymmetric tests are evaluated with the iden-
tical settings yielding Gm+,IIb−1, Gm-,IIb−1, Gm+,IIb−2, and
Gm-,IIb−2.
METHOD-III is performed with the following settings

of (30): δ = ±1/3, ωos = 2.795 rad ·s−1, ωlow =

1.3975 rad ·s−1. The resulting models are denoted byGm+,III
and Gm-,III for δ = 1/3 and δ = −1/3, respectively.
The setting of METHOD-IV takes one artificial delay

τa = 0.4s to decrease the sustained oscillation frequency and
2-shifting and 3-shifting techniques to get frequency inte-
ger multiples as per (33). Moreover, the asymmetric relay
(without hysteresis) with the same settings as in Algorithm 1
is used. Then, all the obtained signals are subject to (5),
and the fitting of all the estimated (computed) frequency

FIGURE 16. Comparison of unit step responses for normed subsystems
G+ (a) and G− (b) and their models.

points is made using (38) for M = 5 and the Nelder-
Mead method. The selected optimization method settings
and corresponding obtained model notations are as follows:
α = 2, h = 0.3 (giving rise to Gm+,IV−1 and Gm-,IV−1),
α = 5, h = 0.9 (Gm+,IV−2), and α = 5, h = 0.6
(Gm-,IV−2).

Finally, the activation stage of METHOD-V adopts the
asymmetric relay with the same setting as above, followed
by the symmetric on-off relay. The resulting FOPTD models
are denoted by Gm+,V and Gm-,V .
The eventual transfer function models of subsystems G+

and G− are provided to the reader in Table 1 and Table 2,
respectively. Tables 3 and 4 display performance metrics for
both the subsystems and their models given in Table 1 and
Table 2 in time- and frequency-domains.
The metrics are defined as follows:

1k =

∣∣∣∣1− km
k

∣∣∣∣ = ∣∣∣∣1− Gm (0)
G (0)

∣∣∣∣ [×100%] (39)

RMSE =

√∑ωk,f
i=0

∣∣G (jωk,i)− Gm (jωk,i)∣∣2
Nk

(40)
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FIGURE 17. Comparison of Nyquist plots for non-normed subsystems G+

(a) and G− (b) and their models.

where km means the (eventual) model static gain, and ωk,i ∈

�k , ω1,f = ωu, N1 = |�1|, ω2,f = 3ωu, N2 = |�2|.

IAE63 =

∫ t63

0
|y (t)− ym (t)|dt

≈ Ts
∑N63

i=0
|y (ti)− ym (ti)| (41)

where t63 :=
{
t : y (t) = k

[
1− exp (−1)

]}
= N63Ts

and y (t), ym (t) mean true and modelled step responses,
respectively. Note that t63 corresponds to the time constant
of the first-order system.

ITAE =
∫
∞

0
t
∣∣ynorm (t)− ym,norm (t)

∣∣dt
≈ Ts

∑N

i=0
ti |y (ti)− ym (ti)| (42)

where the subscript norm expresses the normed (unit static
gain) step response. Note that (40) and (41) are also computed
for the normed responses in Table 5 and Table 6.

The static gain error 1k and root-mean-squared errors
(RMSEs) between system and model Nyquist plots for
different frequency ranges �1 := [0, ωu] , �2 :=

[0, 3ωu] are primary performance measures, where ωu means

FIGURE 18. Comparison of Nyquist plots for normed subsystems G+

(a) and G− (b) and their models.

FIGURE 19. Relations between error e (43) and decaying exponent a (10)
for a frequency set computed via (12) – Example 3.

the ultimate system frequency of a particular subsystem
(ωu+ = 1.9997 rad ·s−1, ωu− = 3.0006rad ·s−1). The
integral absolute error (IAE63) measures the matching of
the step response transition part (i.e., until the value y63 =
k
[
1− exp (−1)

]
is reached).
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TABLE 1. Computed models of G+ (Example 2).

As the performances’ values are significantly affected by
the error 1k , the metrics are computed for the normed (unit)
static gain of both the model and system (see Table 5 and
Table 6). In addition, the integral absolute time-weighted
error (ITAE) of complete normed step responses is computed.
The best results for using Algorithm 1, the fixed y0 =
0 with (5) and (10), and the remaining competitive methods
are highlighted in green; while the worst ones are in red.

It can be deduced from Table 3 and Table 5 that the
proposed method governed by Algorithm 1 gives the best
performance metrics for G+, except for the ITAE criterion.
This is mainly given by relatively slow normed unit step
responses.

The use of (5) returns lower performance metric values
than the exponential decay; however, computational exper-
iments show that significantly more different optimization

algorithm settings have to be examined to reach a satisfactory
result.

It can be mainly seen that the static gain estimation is much
worse if y0 = 0 is considered (i.e., the data for all the methods
except for the proposed one). If asymmetric process input is
used (caused by a relay setting or an excitation signal), this
estimation is better than using a symmetric input; compare,
e.g., METHOD-IIa vs. METHOD-IIb. This finding agrees
with Example 1.

For G+, the DF-based methods (METHOD-I and
METHOD-IIb) for non-normed data yield better results than
the FF-based ones (except for ITAE again). This can stem
from the fact that the DF-based methods do not explicitly
rely on an accurate guess on y0.
Contrariwise, METHOD-IV gives the best metrics’ val-

ues for G− in the frequency domain among the competitive
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TABLE 2. Computed models of G− (Example 2).

methods. Surprisingly, a relay asymmetry does not improve
time domain responses of non-normed models; however,
a slight improvement can be observed for the normed data.

Based on Tables 3-6, representative models are selected
for the eventual graphical comparison of time- and frequency
domain plots.

Namely, model transfer functions Gm+,A−2 (s), Gm+,A−4
(s), Gm+,0−2 (s), Gm+,0−3 (s), Gm+,I−1 (s), Gm+,IIb−2 (s),
and Gm+,IV−2 (s) represent the set for G+, and Gm-,A−1 (s),
Gm-,A−4 (s), Gm-,0−1 (s), Gm-,0−4 (s), Gm-,I−1 (s), Gm-,III (s),
andGm-,IV−2 (s) is another set of models estimatingG−. Non-
normed unit step responses are displayed in Fig. 15, while
Fig. 16 provides readers with those for the normed (unit static
gain)models. Analogously, Figs. 17 and 18 give a comparison
of Nyquist plots.

C. POSSIBLE ALGORITHM MODIFICATIONS
Let us discuss possible modifications of Algorithm 1 and
its setting. As the algorithm represents a framework rather
than a method, it can be altered in several ways. In par-
ticular, any FF-based technique, the accuracy of which is
significantly affected by a guess on y0 can be applied within

TABLE 3. Computed performance values for Gm+ (Example 2, Table 1).

TABLE 4. Computed performance values for Gm− (Example 2, Table 1).

the algorithm. We have used the exponential decay method
(see Subsection II-B) that includes the decaying exponent
a as its crucial parameter. A bunch of numerical tests for
various exponent settings have been made to obtain solutions
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FIGURE 20. Relations between error e (43) and decaying exponent a (10) for a frequency set computed using Lemma 3 with iu = 10,
k1 = 0.55, k19 = 1.5 (a) , iu = 11, k1 = 0.78, k19 = 1.2 (b), iu = 18, k1 = 0.15, k19 = 1.1 (c), iu = 2, k1 = 0.89, k19 = 3 (d) – Example 3.

presented in Example 2. One can take values suggested in
literature [18], [43] as the initial setting; however, it can be
tricky. Especially, a suitable (or the best) option depends on
the frequency setωl, l = 1,M , in which the frequency points
are computed (for instance, it is possible to consider rule (12)
or take Lemma 3). The following numerical example attempts
to elucidate these thoughts.
Example 3:Assume subsystemG+ (s) in (36) and perform

the relay-based experiment as in Example 2 (see Fig. 11(a)).
Apply the exponential decay technique for M = 20, yet
different sets of ωl , several values of y0, and various settings
of a in (10)-(11), (13). Recall that the exact operation point
reads y0 = −0.0794. Define the following error

e =
1
M

∑M−1

i=0

∣∣∣Ĝ (jωi + a)− G (jωi + a)
∣∣∣ (43)

where points Ĝ (·) are computed via (10)-(11), (13), andG (·)

represent true process values.
Errors (43) for the frequency set computed via (12) (for

M = 20) are displayed in Fig. 19. In Fig. 20, the same is done
for four sets calculated via Lemma 3 (the value ofM = 19 is
taken in (34)-(35), includingω0 = 0). Namely, ‘‘wide’’ ( iu =
10, k1 = 0.55, k19 = 1.5), ‘‘narrow’’ (iu = 11, k1 = 0.78,

k19 = 1.2), ‘‘low-frequency’’ (iu = 18, k1 = 0.15, k19 =
1.1), and ‘‘high-frequency’’ (iu = 2, k1 = 0.89, k19 = 3 )
ranges are selected for the comparison.

Some settings return error minima very close to zero
(Figs. 20(b), 20(d)), which is unsuitable as the final value
of the decayed signal is too high. More critically, some
frequency sets yield lower error for the initial (incor-
rect) operation point y0 = 0 that for the correct one
y0 = −0.0794.

This effect is unacceptable since Algorithm 1 can return
the optimization problem solution with a lower cost func-
tion value (27) for an erroneous guess on y0 that, moreover,
can be evaluated as the eventual operating point. Then, the
static gain estimation can also fail. Therefore, the options on
Fig. 19 and Fig. 20(c) seem to be preferable. It implies that
the selected frequency set for the exponential decay method
should include sufficiently low values, not exceeding the
ultimate frequency to a large extent.

A suitable choice ofM represents another issue. The higher
the value is, the higher the computational effort and time
are. On the contrary, a low number of frequency points to
be fitted may lead to insufficient accuracy of the identified
model.
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TABLE 5. Computed performance values for normed Gm+ (Example 2).

TABLE 6. Computed performance values for normed Gm− (Example 2).

Last but not least, the selection of an optimization tech-
nique solving problem (27) (or (38)) is a challenging task.
For instance, modern metaheuristic approaches [47] might be
benchmarked in the future research.

VI. CONCLUSION
This research has presented a novel framework for
relay-based parameter identification techniques for asymmet-
ric systems and processes. It has attempted to provide the
reader with a rationale for two asymmetric tests giving rise
to two different operating points for both asymmetric subsys-
tems. An algorithm estimating static and dynamic parameters
has been proposed as the main results. The algorithm efficacy
and reasonability have been demonstrated via a detailed com-
parative example, in which some other competitive methods
considering the unique operating point have been bench-
marked. The main example has proved a necessity of an
accurate guess on the operating point for frequency-based
relay feedback identification methods. A concise discussion
on possible framework modifications and setting have also
been given, yielding a possible future research focus.

In future research, two research tasks should mainly be
investigated. First, a practical (laboratory) verification of the
proposed framework using a suitable asymmetric process
ought to be made. Second, the identification data can be
contaminated by noise, and the proposed method should
be verified with the polluted data. As real-life systems and
processes are inherently affected by noise and disturbances,
both tasks can be performed simultaneously. In addition,
a benchmark test with disturbance attenuation methods that
have not been covered in this research might be made.
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