
Experiments with the User’s Feedback in
Preference Elicitation
Tereza Siváková1, Miroslav Kárný1

1The Czech Academy of Sciences, Institute of Information Theory and Automation
182 00 Prague 8, Czech Republic

Abstract
This paper deals with user’s preferences (wishes). Common users are uneducated in the decision-making
(DM) theory and present their preferences incompletely. That is why we elicit them from such a user
during the DM. The paper works with the DM theory called fully probabilistic design (FPD). FPD models
closed DM loop, made by the user and the system, by the joint probability density (pd, real pd). A joint
ideal pd quantifies the user’s preferences. It assigns high probability values to preferred closed-loop
behaviors and low values to undesired behaviors. The real pd should be kept near the ideal pd. By
minimizing the Kullback-Leibler divergence of the real and ideal pds, the optimal decision policy is found.
The presented algorithmic quantification of preferences provides ambitious but potentially reachable
DM aims. It suppresses demands on tuning preference-expressing parameters. The considered ideal pd
assigns high probabilities to desired (ideal) sets of states and actions. The parameters of the ideal pd
(tuned during the DM via the user’s feedback) are: ▶ relative significance of respective probabilities; ▶ a
parameter balancing exploration with exploitation. Their systematic tuning solves meta-DM level task,
which observes the agent’s satisfaction expressed humanly by “school-marks”. It opts free parameters to
reach the best marks. A formalization and solution of this meta-task were recently done, but experience
with it is limited. This paper recalls the theory and provides representative samples of extensive up to now
missing simulations.
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Motivation Our results contribute to long-term research that tries to create a normative theory of
dynamic decision making applicable by imperfect decision makers, [12, 13], [14, 16]. Its aims
are close to the quest for universal artificial intelligence, [9, 15, 21].

1. Introduction

Decision making (DM) is the everyday activity of every human. It is important to make the
right decisions to achieve the goal. DM is described by a closed-loop formed by an agent (the
person, who makes decisions) and an environment. The environment of the agent is usually
called a system and its dynamics is unknown. It is described by transition probability density (pd)
between its states conditioned by the agent’s actions. The agent observes the state 𝑠 of the system
and makes an action 𝑎 to meet their wishes, ideally, to move the system to the desired state. The
actions are chosen via the agent’s policy 𝜋. It consists of decision rules r, which determine what
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action should be chosen in each time epoch depending on the system’s state and the model of the
system. The model m expresses the agent’s beliefs about the dynamics of the real system.

The main task of DM is to select the optimal policy. This paper uses a fully probabilistic design
(FPD), which introduces an ideal probability density

c𝑖(𝑏) =
∏︁
𝑡∈T

m𝑖(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)r
𝑖(𝑎𝑡|𝑠𝑡−1),

which expresses the desired pd of behavior 𝑏 ≡ (𝑠0, 𝑎1, 𝑠1, 𝑎2, 𝑠2, . . . , 𝑎𝑇 , 𝑠𝑇 ) ∈ B. It sets high
probability values to preferred behaviors and low probability values to unwanted behaviors. It
consists of an ideal model m𝑖 of the system and of an ideal decision rule r𝑖. The real pd c𝜋(𝑏)
depends on the model m of the system and decision rules r forming the policy 𝜋.

c𝜋(𝑏) =
∏︁
𝑡∈T

m(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)r(𝑎𝑡|𝑠𝑡−1).

This paper exploits Bayes’ learning to get m relating (the observed state, the used action, the next
state). The optimal policy 𝜋𝑜 in a set Π minimizes the Kullback-Leibler divergence (KLD) of the
pd c𝜋 to the ideal pd c𝑖

𝜋𝑜 ∈ Argmin
𝜋∈Π

D(c𝜋||𝑐𝑖) = Argmin
𝜋∈Π

∫︁
𝑏∈B

c𝜋(𝑏) ln

(︂
c𝜋(𝑏)

c𝑖(𝑏)

)︂
d𝑏.

Theorem 1. (FPD, [22]) Decision rules, which constitute the optimal decision policy 𝜋𝑜, are
computed for 𝑡 = 𝑇, 𝑇 − 1, . . . , 1 and with h(𝑠𝑇 ) ≡ 1 as follows

r𝑜(𝑎𝑡|𝑠𝑡−1) ≡ r𝑖(𝑎𝑡|𝑠𝑡−1)
exp[−d(𝑎𝑡, 𝑠𝑡−1)]

h(𝑠𝑡−1)
,

d(𝑎𝑡, 𝑠𝑡−1) ≡
∫︁
𝑠𝑡∈S

m(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) ln

[︂
m(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)

h(𝑠𝑡)m𝑖(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)

]︂
d𝑠𝑡 (1)

h(𝑠𝑡−1) ≡
∫︁
𝑎𝑡∈A

r𝑖(𝑎𝑡|𝑠𝑡−1) exp[−d(𝑎𝑡, 𝑠𝑡−1)] d𝑎𝑡 ∈ h(𝑠𝑡) ∈ [0, 1].

The attained minimum is min
𝜋∈Π

D(c𝜋||c𝑖) = − ln(h(𝑠0)). (2)

We focus on the preference quantification, on finding the c𝑖. The preference specification is
mostly incomplete due to the agent’s imperfections. This means that

C𝑖 ≡ {ideal pds c𝑖(𝑏), 𝑏 ∈ B, respecting the agent’s wishes} (3)

includes several pds. It can be also empty because of the agent’s inconsistencies. The agent’s
preferences can be in contradiction or the agent can have un-achievable goals. The preference
elicitation (PE) consists of the choice of: ▶ the non-empty set C𝑖 that overcomes the agent’s
inconsistencies ▶ the optimal ideal pd c𝑖𝑜 from the set (3).



The PE principle from [18] recommends to choose as the optimal ideal pd

c𝑖𝑜 ∈ Arg min
c𝑖∈C𝑖

min
𝜋∈Π

D(c𝜋||c𝑖). (4)

Its use in FPD ensures that no preferences are added to the agent’s. Theorem 1 describes the 1𝑠𝑡

minimization over 𝜋. The 2𝑛𝑑 minimization over c𝑖 is harder and it can be done over individual
factors of c𝑖 for each already observed state.

Then, cf. (1), (2), (4), the optimal closed-loop ideal pd c𝑖𝑜 in the last step reads

c𝑖𝑜 ≡ m𝑖𝑜r𝑖𝑜
(1),(2)
∈ Argmax

r𝑖∈R𝑖

[︂
max
m𝑖∈M𝑖

∫︁
𝑎1∈A

r𝑖(𝑎1|𝑠0) exp[−d(𝑎1, 𝑠0)]d𝑎1

]︂
d(𝑎1, 𝑠0) =

∫︁
𝑠1∈S

m(𝑠1|𝑎1, 𝑠0) ln
(︂

m(𝑠1|𝑎1, 𝑠0)
h(𝑠0)m𝑖(𝑠1|𝑎1, 𝑠0)

)︂
d𝑠1, (5)

h(𝑠0) comes from the backward recursion via step (1). The minimization over a c𝑖- factor
(ci(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) = mi(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1)r(𝑎𝑡|𝑠𝑡−1)) in any decision epoch 𝑡 ∈ T and for any realized
state 𝑠𝑡−1 are formally identical. Therefore, we can suppress 𝑡 and 𝑠𝑡−1 ∈ S and deal with
m(𝑠|𝑎) ≡ m(𝑠𝑡 = 𝑠|𝑎𝑡 = 𝑎, 𝑠𝑡−1), m𝑖(𝑠|𝑎) ≡ m𝑖(𝑠𝑡 = 𝑠|𝑎𝑡 = 𝑎, 𝑠𝑡−1), r(𝑎) ≡ r(𝑎𝑡 =
𝑎|𝑠𝑡−1), r

𝑖(𝑎) ≡ r𝑖(𝑎𝑡 = 𝑎|𝑠𝑡−1) and h(𝑠) = h(𝑠𝑡 = 𝑠). The optimization (5) uses the given h(𝑠)
and runs over M𝑖 (a set of m𝑖-s) while C𝑖 is determined by a given r𝑖 and chosen from the set R𝑖

(a set of r𝑖-s). For then c𝑖 = m𝑖r𝑖- factors are in

{c𝑖(𝑠, 𝑎) : c𝑖(𝑠, 𝑎) = m𝑖(𝑠|𝑎)r𝑖(𝑎), 𝑠 ∈ S, 𝑎 ∈ A, respecting the agent’s wishes}. (6)

2. Preference Quantification
We first perform the optimization for a quite general choice of sets M𝑖,R𝑖. Then, we specialize it
to a specific but still general case.

2.1. The generic choice of optimal ideal model of the system

Theorem 2. (Optimal m𝑖𝑜-factor, [19]) Let r𝑖 ∈ R𝑖 be a fixed ideal decision rule, which defines
a non-empty cross-section M𝑖 ≡ {m𝑖 : m𝑖r𝑖 ∈ set (6)}. Let m𝑖(𝑠|𝑎) ∈ M𝑖 exist such that
d(𝑎) < ∞, ∀𝑎 ∈ A (1) 𝑡 and 𝑠𝑡−1 suppressed. Then, the optimal ideal m𝑖𝑜−factor minimises
d(𝑎), 𝑠 ∈ S, 𝑎 ∈ A, i.e.

m𝑖𝑜(𝑠|𝑎) ∈ Arg max
m𝑖∈M𝑖

∫︁
A
r𝑖(𝑎) exp[−d(𝑎)]d𝑎 = Arg min

m𝑖∈M𝑖
d(𝑎). (7)

2.2. The generic choice of optimal ideal decision rule

The decision rules work on the set of admissible actions. Thus, the support of an admissible
r-factor must be included in the set of possible actions i.e. supp[r] ⊂ A. The form of the
FPD-optimal r𝑜-factor, Theorem 1, implies that supp[r𝑜] ⊆ supp[r𝑖]. Therefore, only the ideal
r𝑖-factors

r𝑖 ∈ R𝑖 ≡
{︀
r𝑖 : supp[r𝑖] = A

}︀
(8)



keep actions 𝑎 ∈ A and exclude none. Thus, (8) is the generic constraint and

R𝑖 ≡ {r𝑖 : m𝑖𝑜r𝑖 ∈ (6) while m𝑖𝑜 is given by (7)}.

Theorem 3. (Optimal r𝑖𝑜-factor meeting (8), [19]) Let assumptions of Theorem 2 hold and for
a scalar 𝑝 > 1

R𝑖 ≡

{︃
r𝑖 : supp[r𝑖] = A, ||r𝑖||𝑝 ≡

[︂∫︁
A
(r𝑖(𝑎))𝑝d𝑎

]︂1/𝑝
< ∞

}︃
, |A| ≡

∫︁
A
d𝑎 < ∞. (9)

Then, the optimal ideal r𝑖𝑜-factor reads, cf. (1), (7),

r𝑖𝑜 ∝ 𝜒A(𝑎) exp[−𝜈d𝑜(𝑎)], 𝜈 ≡ 1

𝑝− 1
, 𝜒A(𝑎) is the indicator function of A

d𝑜(𝑎) ≡
∫︁
S
m(𝑠|𝑎) ln

(︂
m(𝑠|𝑎)

h(𝑠)m𝑖𝑜(𝑠|𝑎)

)︂
d𝑠

(7)

≤ d(𝑎). (10)

The r𝑖𝑜-factor (10) belongs to (9) and meets (8).

Remarks ▶The generic constraint (8) implies that the ideal r𝑖-factors support exploration, which
makes the Bayesian learning efficient. ▶The parameter 𝜈 controls exploration. Every action
from the set of possible actions can be tried with almost the same probability if the parameter 𝜈 is
close to 0. If 𝜈 gets bigger the exploration declines, cf. form of r𝑖𝑜 in (10).

2.3. The specific choice of M𝑖 making C𝑖 ̸= ∅

The optimal ideal r𝑖𝑜-factor is uniquely given by the choice of m𝑖𝑜 (and by the opted 𝜈) via (10).
The description of the agent’s preferences only guarantees a non-empty set M𝑖. A wide range of
practical cases can be covered with a few additional PE-oriented queries. Our specific elaborated
case concerns the next agent’s general wish.

The agent wants to reach given sets of ideal statesS𝑖 and ideal actionsA𝑖,

∅ ≠ S𝑖 ⊂ S, ∅ ≠ A𝑖 ⊆ A. (11)

This is quantified as the wish to assign the highest probability to the set of ideal states S𝑖 and
to the set of ideal actions A𝑖 (11) by closing the loop of the given model m and of the optimal
ideal decision rule r𝑖𝑜. So we choose as the maximized functional∫︁

A
𝜌(𝑎)r𝑖𝑜(𝑎) d𝑎 ≡

∫︁
A

[︂
(1− 𝑤)

∫︁
S
𝜒S𝑖(𝑠)m(𝑠|𝑎) d𝑠+ 𝑤𝜒A𝑖(𝑎)

]︂
r𝑖𝑜(𝑎) d𝑎. (12)

The introduced weight 𝑤 ∈ W ≡ [0, 1] parameterizes how much the agent prefers to stay in the
set of ideal actions A𝑖 relative to being in the set of ideal states S𝑖.

The inspected problem has a meaningful solution if

𝜌(𝑎) = (1− 𝑤)

∫︁
S
𝜒S𝑖(𝑠)m(𝑠|𝑎) d𝑠+ 𝑤𝜒A𝑖(𝑎) > 0, on A. (13)



If the functional (12) is large, then the probabilities of the preferred sets are large. The part
(1−𝑤)

∫︀
S 𝜒S𝑖(𝑠)m(𝑠|𝑎) d𝑠 forces the highest probability to the set S𝑖. And the part 𝑤𝜒A𝑖(𝑎)r𝑖𝑜(𝑎)

should guarantee that the ideal decision rule will often choose the actions from the set A𝑖. The
weight 𝑤 balances these probabilities.

Remarks ▶The weight is fixed. Its fine-tuning is controlled by additional queries. ▶The
function determining 𝜌(𝑎) qualitatively plays the role of the reward. ▶Our construction of
the optimal ideal pd c𝑖𝑜 quantifies the agent’s preferences in an ambitious but realistic way.
▶Maximization of (12) with r𝑖𝑜 given by (10) rely on:

Theorem 4. (Optimal value of d𝑜, [19]) Under assumptions of Theorem 3, covering those of
Theorem 2, and under (13), the optimal ideal model m𝑖𝑜 fulfilling (12) determines d𝑜(𝑎), giving
r𝑖𝑜 = r𝑖(m𝑖𝑜) (10), 𝑎 ∈ A, as the function

d𝑜(𝑎) ≡ d𝑜(�̄�) + ln

(︂
max𝑎∈A(𝜌(𝑎))

𝜌(𝑎)

)︂
, �̄� ∈ Argmax

𝑎∈A
(𝜌(𝑎)). (14)

Theorem 5. (Solvability of (14), [19]) Under (13) and |A| < ∞, the smallest d𝑜(�̄�) exists such
that (14) has a solution m𝑖𝑜(𝑠|𝑎), 𝑠 ∈ S, ∀𝑎 ∈ A. Thus, the smallest d𝑜(�̄�) guaranteeing
solvability of (14) ∀𝑎 ∈ {𝑎} is

d𝑜(�̄�) = max

[︂
0,max

𝑎∈A

∫︁
S
m(𝑠|𝑎) ln

[︂
𝜌(𝑎)

𝜌(�̄�)h(𝑠)

]︂
d𝑠

]︂
. (15)

The ideal m𝑖𝑜 gives d𝑜(𝑎) (1) and r𝑖𝑜(m𝑖𝑜) via (7). The next proposition provides it for generic
pds m(𝑠|𝑎). It requires to find m𝑖𝑜 giving d𝑜 (14) on A.

Theorem 6. (m𝑖𝑜 meeting (12), generic m(𝑠|𝑎), [19]) Let m(𝑠|𝑎), for some 𝑎 ∈ A, be non-
uniform on S and Theorem (3) hold. Then, the m𝑖𝑜−factor meeting (12) reads

m𝑖(𝑠|𝑎) =
m(𝑠|𝑎) exp(−e(𝑎)m(𝑠|𝑎))∫︀

Sm(𝑠|𝑎) exp(−e(𝑎)m(𝑠|𝑎)) d𝑠
, while |S| ≡

∫︁
S
d𝑠 < ∞. (16)

The real valued e(𝑎) in (16) is the existing solution of L(e(𝑎)) = R(𝑎). For d𝑜(�̄�) meeting (15)
with �̄� ∈ Argmax𝑎∈A 𝜌(𝑎), the left- and right-hand sides of this equation are

L(e(𝑎)) ≡ e(𝑎)Λ(𝑎) + ln

(︂∫︁
S
m(𝑠|𝑎) exp[−e(𝑎)m(𝑠|𝑎)] d𝑠

)︂
, Λ(𝑎) ≡

∫︁
S
m2(𝑠|𝑎) d𝑠

R(𝑎) ≡ −
∫︁
S
m(𝑠|𝑎) ln

(︂
m(𝑠|𝑎)
h(𝑠)

)︂
d𝑠+ d𝑜(�̄�) + ln

(︂
𝜌(�̄�)

𝜌(𝑎)

)︂
, �̄� ∈ Argmax

𝑎∈A
𝜌(𝑎). (17)

The uniform case was solved similarly, see [19].

3. On algorithmization

In the considered case with the discrete-valued states and actions, the found solution can be
directly converted into a compact algorithm. It is done in [19]. Here, we just stress that it uses



the Bayesian estimation of unknown but time-invariant values of the transition probabilities Θ.
The gained parametric model m(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1,Θ) belongs to the exponential family [1] and makes
Dirichlet’s prior pd self-reproducing. Its degrees of freedom counting the observed transitions
𝑠𝑡−1 = �̃� ∈ S, 𝑎𝑡 = 𝑎 ∈ A to 𝑠𝑡 = 𝑠 ∈ S form the sufficient statistic for learning unknown
Θ𝑠|𝑎,�̃� ≡ m(𝑠|𝑎, �̃�,Θ) [3].

4. Dialogue with the user
The agent specifies the preferred states S𝑖 and preferred actions A𝑖 before the beginning DM. A
problem arises as the agent1 wishes concern two usually contradiction things. In this case, we
need to choose the weight 𝑤 in (12), which determines how much the user prefers to stay in the
set A𝑖 relative to being in S𝑖. But they are unable to express how much they prefer it before they
will observe how the closed loop behaves. That is why we added a dialogue with the user during
the DM. The user will express their preferences and next they will control the results of the DM
during the DM. The DM solved in Section 3, referred to as the basic DM, deals with two types of
inputs:

✓ those directly describing the basic DM, which include: ▶ the state S and action A sets;
▶ the wishes-expressing ideal sets S𝑖 ⊂ S and A𝑖 ⊆ A;

✓ more technical, policy-influencing, inputs that include: ▶ the weight 𝑤 ∈ [0, 1] balancing
the relative importance of ideal sets, see (12); ▶ the scalar 𝜈 > 0, see (10), balancing
exploration with exploitation (duality, [10, 20]).

Fine variations of ideal sets S𝑖, A𝑖 or the design horizon |𝑇 | are potential inputs of the preference
processing but they are here fixed. Thus, the paper focuses just on the pair 𝑤, 𝜈. Its optimal choice
depends on: ▶ subjective user’s preferences; ▶ the user’s attitude to the basic DM; ▶ emotions,
etc., i.e. on the user’s mental state. The dependence is complex and the mental state can hardly be
directly measured and quantified. Two users can have the same preferences expressed by the sets
S𝑖,A𝑖, but their responses differ.

In our solution, the user is asked to judge the DM quality reached for various choices of
𝑤, 𝜈. This is the domain of classical PE [8] that often elicits preferences about a static DM
and interactively queries the user. Even advanced versions, represented by [4, 5, 7], become
cumbersome in the targeted basic dynamic DM. This makes us adopt the next user-driven way
that consists of solving an appropriate FPD meta-task, whose description uses capital versions of
all functions and parameters entering it, cf. [11].

The user assigns (satisfaction) marks. Their changes during the dialog serve as the (meta-)state
𝑆𝑇 ∈ S̄, to the behaviour caused by the policy, designed for trial values of the optional inputs
here, (𝑤, 𝜈). Their changes 𝐴𝑇 are the (meta-)actions. They are generated by (meta-)policy
gained by the same algorithm as that used at the basic level2. It runs more slowly than the basic
DM, 𝑇 ∈ {𝑇 , 2𝑇 , . . . , } ⊂ T given by 𝑇 > 1.

This simple idea has to cope with the possible infinite regress, i.e. DM at meta-level needs
meta-inputs opted via a meta-PE, etc. Also, the curse of dimensionality [2] endangers applicability
as the opted inputs are multiple and continuous-valued. Our way counteracts both obstacles. We

1The agent will be called user as it is usual for preference elicitation.
2In harmony with the quest for a universal DM.



decided to ask queries after every time epoch 𝑇 > 1, but the queries can be answered irregularly
after some multiples of the 𝑇 . The use of zero-order holder copes with the expected irregularity
of user’s responses. It makes realistic the time-invariance of the model M(𝑆𝑇 |𝐴𝑇 , 𝑆𝑇−𝑇 ,Θ) :=
Θ𝑆𝑇 |𝐴𝑇 ,𝑆𝑇−𝑇

needed for learning this meta-model, cf. the beginning of Sec. 3.
The set of possible meta-states is S̄ := {−1, 0, 1}. It is implied by a difference of the

current mark and previous mark3 i.e. Δ𝑔 = 𝑔𝑇 − 𝑔𝑇−1. If Δ𝑔 < 0 =⇒ S̄ = {−1}, if
Δ𝑔 = 0 =⇒ S̄ = {0} and if Δ𝑔 > 0 =⇒ S̄ = {1}.

The choice of the ordinal scale of marks 𝑔 ∈ Ḡ ≡ {1, . . . , |Ḡ| ≡ 5} suffices for expressing
“satisfaction degree”. A rich, cross-domain, experience, e.g. in marketing [6] or in European
Credit and Accumulation System, confirms this. The mark 𝑔 = 1 is taken as the best one. The
ideal set of meta-states is then S̄𝑖 ≡ {−1}.

By construction, the outcomes of the basic DM depend smoothly on the discussed inputs. Thus,
changes 𝐴 ≡ (Δ𝑤,Δ𝜈) of inputs (𝑤, 𝜈) can be selected in a finite set Ā := {(Δ𝑤,Δ𝜈)} of
discrete values. The natural flexible options are

Δ𝑤 ∈ {−�̄�, 0, �̄�}, Δ𝜈 ∈ {−𝜈, 0, 𝜈}, �̄�, 𝜈 > 0. (18)

The meta-policy is to guarantee that its actions stay within their allowed ranges (𝑤 ∈ [0, 1],
𝜈 > 0). The used simple clipping at boundaries of (18) seems to suffice. We have no other
demands on the actions. Thus, Ā = Ā𝑖 and 𝑊 = 0 (meta-twin to 𝑤 in (12)).

The last input to the meta-DM is the parameter of exploration 𝜈. It makes no sense to choose a
different value at the meta-level: the meta-action is its common value.

The appearance of 𝑇 , �̄�, 𝜈 still preserves the danger of infinite regress. At present, it is cut
by force and they are chosen heuristically. They, however, offer, the first step in a conceptual
solution that: ▶ lets appear only meta-inputs that have a weak influence on results; ▶ tunes them
via an adaptive minimization of miss-modelling error [17].

5. Experiments
This core section presents experiments. We have chosen a DM example with a heating system.

Common simulation options The simulated system is Markov with |S| = 15 and |A| = 7. It
is created by learning the transition pd p(𝑠𝑡|𝑎𝑡, 𝑠𝑡−1) on the simulated system generating 106 real
values 𝑦𝑡 stimulated by independently generated discrete actions in A := {1, . . . , 7}. The states
𝑠𝑡 ∈ S := {1, . . . , 15} are gained via an affine mapping of discretized values of the real-valued
𝑦𝑡 generated by the equation (𝑦0 = 1)

𝑦𝑡 = 0.028𝑦𝑡−1 + 1.81𝑦𝑡−2 − 0.817𝑦𝑡−3 + 0.1𝑎𝑡 − 0.16𝑎𝑡−1 + 0.05𝜀𝑡.

There, 𝜀𝑡 is the white, zero-mean, normal noise with a unit variance. In all experiments with the
Markov chain, the number of simulated epoch was 800. The seed of the random generator was
fixed, and the initial state 𝑠0 = 1. The initial guess of the entries of the array e (17) was 1.2. The
horizon for dynamic programming is ℎ = 2, which suffices when taking the outcome from the
previous epoch as the initial guess of the stationary value function.

3We decided to note marks with a symbol 𝑔 as grade, as 𝑚 for mark is already used.



Experiments We present DM results without and with the user’s control. DM without the
user’s control, it is the basic DM with no meta-level and preferences expressed by the ideal sets
S𝑖, A𝑖 and by fixed options 𝑤, 𝜈. DM with the user’s control solves the basic DM supported by
the second-layer implementing the solution of the meta-DM task with the dialogue with the user.
The DM with the user’s control gives the user the chance to express their satisfaction every ten
steps, 𝑇 = 10. The satisfaction is quite subjective. It is demonstrated by presenting selected
results for different users. We also present results with different fixed parameters 𝑤, 𝜈 to show
how these parameters influence DM. In experiments with the user’s control, these parameters are
free and they are changed by the responses of the user. The changes of the free parameters 𝑤, 𝜈
are �̄� = 0.1 and 𝜈 = 0.3 (18). To compare the results impartially we use prices paid for deviation
from the preferred behavior. The agreed prices are in Table 1 (common to all experiments) and
Table 2 that suits to the preferred state S𝑖 = {8}. Other preferred states are priced similarly.

Table 1
The price paid for the individual action values

action 1 2 3 4 5 6 7
price 3 2 1 0 1 2 3

Table 2
The price paid for the individual state values when S𝑖 = {8}

state 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
price 4 3 3 2 2 1 1 0 1 1 2 2 3 3 4

Experiment 1. It shows the results for the preferred state S𝑖 = {6} and then for S𝑖 = {8}. No
action is preferred, A𝑖 = A. The free parameters are fixed, 𝑤 = 0, 𝜈 = 1.

(a) States for S𝑖 = {6} (b) Actions for S𝑖 = {6}

(c) States for S𝑖 = {8} (d) Actions for S𝑖 = {8}

Figure 1: Exp. 1: states and actions in the basic DM for different preferences of states without
any additional preference of actions A𝑖 = A

Discussion In the Fig. 1, we can see that the frequency of the preferred state S𝑖 = {8} is pretty
high. It occurs the most often. On the other hand the preferred state S𝑖 = {6} does not occur the
most often and its frequency is low. It is hard for the system to get the state S𝑖 = {6}. We will try
to change the free parameters to improve results.

Experiment 2. It shows the results for S𝑖 = {8} and S𝑖 = {6} with the extra preference of
actions A𝑖 = {4}. The weight 𝑤 = 0.3 and the value 𝜈 = 1 are fixed.

Discussion With the extra preference on actions the preferred states appear less often for both
preferences, but still the preferred state appears the most often for the preference S𝑖 = {8}. On



(a) States for S𝑖 = {6} (b) Actions for S𝑖 = {6}

(c) States for S𝑖 = {8} (d) Actions for S𝑖 = {8}

Figure 2: Exp. 2: states and actions in the basic DM for different preferences of states with an
extra preference on actions A𝑖 = {4}, 𝑤 = 0.3

the other hand the results for actions are pretty good for both. The preferred state S𝑖 = {6} with
the extra preference of action occurs even much less often, as expected, because these preferences
contradict. But still the results are not bad. The user can be satisfied with the results because they
could prioritized the results of actions over the poorer results concerning states.

Experiment 3. We would like to show how the parameter 𝜈 influence the results. We try
improve our results for the preferred state S𝑖 = {6}, which gives worse results. We should be
able to improve the results when there is no additional preference of actions. If the exploration
parameter 𝜈 will be bigger, the selection of the action will not be uniform, but will be concentrated
on the action, which guarantees the preferred state.

(a) States (b) Actions

Figure 3: Exp. 3: states and actions in the basic DM for S𝑖 = {6},A𝑖 = A, 𝜈 = 5

Discussion We can see, that we can improve the previous results via the parameter 𝜈. We tried
many values of 𝜈, and present the best of for which the preferred state occurs the most often. The
actions that cause the state 6 are around the action 2.

Experiment 4. We showed that the results of the experiments are influenced by the parameters
𝑤 and 𝜈. That is why we left these parameters to be free for the dialogue with the user. We choose
their values according to the responses of the users. We would like to show, that they can get the
desired results without any knowledge of DM and PE theories just using our algorithm. The users
were instructed to want S𝑖 = {6} without an additional preference of actions A𝑖 = A and then
S𝑖 = {8} with their preference of actions A𝑖 = {4}.



(a) States for the 1st user (b) Actions for the 1st user

(c) States for the 2nd user (d) Actions for the 2nd user

Figure 4: Exp. 4: states and actions for S𝑖 = {6},A𝑖 = A in DM for the users

Parameters in time for the 1st user

(a) Parameter 𝑤 in time (b) Parameter 𝜈 in time (c) Marks in time

Parameters in time for the 2nd user

(d) Parameter 𝑤 in time (e) Parameter 𝜈 in time (f) Marks in time

Figure 5: Exp. 4: The evolution of parameters for users with preferences S𝑖 = {6},A𝑖 = A.

Discussion In the Fig. 4 we can see that the results for S𝑖 = {6},A𝑖 = A are much better for
the 1st user. The occurrence of the preferred state is pretty high and it appears the most often.
For the 2nd user the results are worse. The preferred state does not appear as much often and its
occurrence is low. If we look at the evolution of the free parameters and marks Fig. 5, we can
see that the courses of weight 𝑤 are very similar and the weight is zero most of the time, which
we assumed, because there is no additional preference. The courses of parameter 𝜈 are pretty
different. The 1st user’s 𝜈 is almost all the time between 2 and 5 and the 2nd user’s declines to the
value 0.1. That is because the 2nd user was strict with their marking, they were not so satisfied
and that’s why the algorithm tries to increase the exploration and find the results to satisfy the
user. Because of that the results got worse and we got into dead end. So it really depends on the
user’s strategy. Thanks to the 1st user we can see that we can get good results but also thanks to
the 2nd user we can see that if the algorithm gets bad feedback, it will worsen the results.



(a) States for the 1st user (b) Actions for the 1st user

(c) States for the 2nd user (d) Actions for the 2nd user

Figure 6: Exp. 4: states and actions for S𝑖 = {8},A𝑖 = {4} in DM for the user

Parameters in time for the 1st user

(a) Parameter 𝑤 in time (b) Parameter 𝜈 in time (c) Marks in time

Parameters in time for the 2nd user

(d) Parameter 𝑤 in time (e) Parameter 𝜈 in time (f) Marks in time

Figure 7: Exp. 5: The evolution of parameters with preferences S𝑖 = {8},A𝑖 = {4}.

Discussion For the preferences S𝑖 = {8},A𝑖 = {4}, Fig. 5 the both users got great results.
These preferences are not in a contradiction and as we could see above, it is easy for the system
to reach this state. We can see from marking that both users were satisfied. The courses of the
weight and 𝜈 differ. The 1st user’s weight increase more and parameter 𝜈 decrease more than for
the 2nd user. The 2nd user’s parameters are more consistent but the frequencies of preferred state
and action do not differ much.

6. Numerical results

Table 3 shows the prices paid for actions and states for S𝑖 = {8},A𝑖 = {4}. For S𝑖 = {6},A𝑖 =
A the results can be judged in the same way.

We can see that the total price is the best (the lowest) for the 2nd user because they had the



Table 3
The price paid for actions and states in all experiments

Exp.
no

Opted parame-
ters

The
price of
actions

The
price of
states

Total
price

Number of
the preferred
actions

Number of the
preferred states

1. 𝑤 = 0.0, 𝜈 = 1 1086 370 1456 170 440
2. 𝑤 = 0.3, 𝜈 = 1 181 475 656 698 335
3. 1st user 281 403 684 614 403
4. 2nd user 219 420 639 692 386

top number of selections of the preferred action and the preferred state occurs also very often.
They were satisfied as can be seen on the evolution of marks Fig 7. So we can say that it is the
best result of our experiments. But the user are different so for someone it is a good results and
for someone else not, because the prices that the users are willing to pay are individual. That we
should keep in mind. The ”objective” numerical comparison is of secondary importance. We also
repeat that the users got the results they want without any knowledge of DM theory. It is also less
time demanding to find a good policy via their feedback during the DM.

7. Concluding remarks
The paper presents the quantification of preferences within the fully probabilistic design of
decision results. It provides the user’s feedback that optimizes free parameters 𝜈 and 𝑤. It
presents the experiments which show how the fixed parameters influence the DM. It compares
the DM with and without the user’s control. The algorithm does not need users any additional
knowledge of the DM and PE theories.

The further research should:

✓ care about dimensionality curse connected with other wishes;
✓ add more free parameters, e.g., extensions of preferred sets of states and actions;
✓ address continuous systems;
✓ more specific application and real-system cases; etc.

These are hard tasks requiring more research to fill the gaps in the built universal DM theory, cf.
Motivation.
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