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Ondřej Tichý1, Sabine Eckhardt2, Yves Balkanski3, Didier Hauglustaine3, and Nikolaos Evangeliou2

1The Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, Czech Republic
2The Climate and Environmental Research Institute NILU, Department of Atmospheric and Climate Research

(ATMOS), Kjeller, Norway
3Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CEA-CNRS-UVSQ,

91191, Gif-sur-Yvette, France

Correspondence: Nikolaos Evangeliou (nikolaos.evangeliou@nilu.no)

Received: 3 April 2023 – Discussion started: 5 April 2023
Revised: 25 September 2023 – Accepted: 16 October 2023 – Published: 14 December 2023

Abstract. Ammonia (NH3), a significant precursor of particulate matter, affects not only biodiversity, ecosys-
tems, and soil acidification but also climate and human health. In addition, its concentrations are constantly rising
due to increasing feeding needs and the large use of fertilization and animal farming. Despite the significance
of ammonia, its emissions are associated with large uncertainties, while its atmospheric abundance is difficult
to measure. Nowadays, satellite products can effectively measure ammonia with low uncertainty and a global
coverage. Here, we use satellite observations of column ammonia in combination with an inversion algorithm to
derive ammonia emissions with a high resolution over Europe for the period 2013–2020. Ammonia emissions
peak in northern Europe due to agricultural application and livestock management, in western Europe (industrial
activity), and over Spain (pig farming). Emissions have decreased by −26 % since 2013 (from 5431 Gg in 2013
to 3994 Gg in 2020), showing that the abatement strategies adopted by the European Union have been very effi-
cient. The slight increase (+4.4 %) in 2015 is also reproduced here and is attributed to some European countries
exceeding annual emission targets. Ammonia emissions are low in winter (286 Gg) and peak in summer (563 Gg)
and are dominated by the temperature-dependent volatilization of ammonia from the soil. The largest emission
decreases were observed in central and eastern Europe (−38 %) and in western Europe (−37 %), while smaller
decreases were recorded in northern (−17 %) and southern Europe (−7.6 %). When complemented with ground
observations, modelled concentrations using the posterior emissions showed improved statistics, also following
the observed seasonal trends. The posterior emissions presented here also agree well with respective estimates
reported in the literature and inferred from bottom-up and top-down methodologies. These results indicate that
satellite measurements combined with inverse algorithms constitute a robust tool for emission estimates and can
infer the evolution of ammonia emissions over large timescales.

1 Introduction

Ammonia (NH3), the only alkaline gas in the atmosphere,
constitutes one of the most reactive nitrogen species. It is pro-
duced from the decomposition of urea, which is a rapid pro-
cess when catalysed by enzymes (Sigurdarson et al., 2018).
The main sectors contributing to its production are livestock
management and wild animals (Behera et al., 2013), biomass

burning and domestic coal combustion (Fowler et al., 2004;
Sutton et al., 2008), volcanic eruptions (Sutton et al., 2008),
and agriculture (Erisman et al., 2007). Emissions from agri-
cultural activity and livestock management represent over
80 % of the total emissions (Crippa et al., 2020), while their
regional contribution can reach 94 % (Van Damme et al.,
2018).

Published by Copernicus Publications on behalf of the European Geosciences Union.



15236 O. Tichý et al.: Decreasing trends of ammonia emissions

Once emitted, it is transported over short distances and de-
posited to water bodies, soil, or vegetation with a typical at-
mospheric lifetime of a few hours (Evangeliou et al., 2021).
It can then lead to eutrophication of water bodies (Stevens
et al., 2010), modulate soil pH (Galloway et al., 2003), and
“burn” vegetation by pulling water from the leaves (Krupa,
2003). It also reacts with the abundant atmospheric sulfuric
and nitric acids (Malm, 2004) forming fine particulate mat-
ter (PM2.5) (Tsimpidi et al., 2007). While ammonia has a
short atmospheric lifetime, PM2.5 resides significantly longer
in the atmosphere, on the order of days to weeks (Seinfeld
and Pandis, 2000), and hence is transported over longer dis-
tances. Accordingly, secondary PM2.5 can affect the Earth’s
radiative balance, both directly by scattering incoming radia-
tion (Henze et al., 2012) and indirectly as cloud condensation
nuclei (Abbatt et al., 2006). Its environmental effects include
visibility problems and contribution to haze formation. Fi-
nally, PM2.5 affects human health as it penetrates the human
respiratory system and deposits in the lungs and alveolar re-
gions (Pope and Dockery, 2006; Pope et al., 2002), contribut-
ing to premature mortality (Lelieveld et al., 2015).

To combat secondary pollution, the European Union es-
tablished a set of measures focusing on ammonia abatement,
similar to the ones introduced by China (Giannakis et al.,
2019). These measures aim to reduce ammonia emissions
by 6 % in 2020 relative to 2005. However, the lack of spa-
tiotemporal measurements of ammonia over Europe makes
any assessment of the efficiency of these measures difficult
as only bottom-up methods are used to calculate emission.
These methods still show a slight increase (0.6 % yr−1) up
to 2018, mostly due to increasing agricultural activities (Mc-
Duffie et al., 2020). Such bottom-up approaches rely on un-
certain land use data and emission factors that are not always
up to date, thus adding large errors to existing inventories.

During the last decade, satellite products have also become
available to fill the gaps created by spatially disconnected
ground-based measurements. Data from satellite sounders
such as the Infrared Atmospheric Sounding Interferometer
(IASI) (Van Damme et al., 2017), the Atmospheric Infrared
Sounder (AIRS) (Warner et al., 2017), the Cross-track In-
frared Sounder (CrIS) (Shephard and Cady-Pereira, 2015),
the Tropospheric Emission Spectrometer (TES) (Shephard
et al., 2015), and the Greenhouse Gases Observing Satellite
(GOSAT) (Someya et al., 2020) are publicly available. Most
of them have been validated against ground-based observa-
tions or complemented with other remote sensing products
(Van Damme et al., 2015, 2018; Dammers et al., 2016, 2017,
2019; Kharol et al., 2018; Shephard et al., 2020; Whitburn et
al., 2016).

Accordingly, a few studies on ammonia emission calcula-
tions have been recently published, relying on 4D-variational
inversion schemes, such as in Cao et al. (2022) and Zhu et
al. (2013), or process-based models (Beaudor et al., 2023;
Vira et al., 2020). More recently, Sitwell et al. (2022) pro-
posed an inversion scheme for comparison between model

profiles and satellite retrievals using hybrid logarithmic and
linear observation operators that attempt to choose the best
method according to the particular situation. In the present
study, we use direct comparisons between the CrIS ammo-
nia retrievals and model profiles using the Least Squares
with Adaptive Prior Covariance (LS-APC) algorithm (Tichý
et al., 2016), which reduces the number of tuning parame-
ters in the method significantly using a variational Bayesian
approximation technique. We constrain ammonia emissions
over Europe over the 2013–2020 period and validate the re-
sults against ground-based observations from EMEP (Euro-
pean Monitoring and Evaluation Programme, https://emep.
int/mscw/, last access: 26 October 2023) (Torseth et al.,
2012).

2 Methods

2.1 CrIS observations

To constrain ammonia emissions with inverse modelling,
satellite measurements were adopted from the Cross-Track
Infrared Sounder (CrIS) on board the NASA Suomi Na-
tional Polar-orbiting Partnership (S-NPP) satellite, which
provides atmospheric soundings with a spectral resolution of
0.625 cm−1 (Shephard et al., 2015). CrIS presents improved
vertical sensitivity for ammonia closer to the surface due to
the low spectral noise in the ammonia spectral region (Za-
vyalov et al., 2013) and the early-afternoon overpass that typ-
ically coincides with high thermal contrast, which is optimal
for thermal infrared sensitivity. The CrIS Fast Physical Re-
trieval (CFPR) (Shephard and Cady-Pereira, 2015) retrieves
ammonia profiles at 14 levels using a physics-based optimal
estimation retrieval, which also provides the vertical sensitiv-
ity (averaging kernels) and an estimate of the retrieval errors
(error covariance matrices) for each measurement. As peak
sensitivity typically occurs in the boundary layer between
900 and 700 hPa (∼ 1 to 3 km) (Shephard et al., 2020), and
the surface and total column concentrations are both highly
correlated with these boundary layer retrieved levels. The
total column random measurement error is estimated to be
in the 10 %–15 % range, with total errors estimated to be
∼ 30 % (Shephard et al., 2020). The individual profile re-
trieval levels show an estimated random measurement error
of 10 %–30 %, with total random error estimates increasing
to 60 %–100 % due to the limited vertical resolution (1 de-
gree of freedom of signal for CrIS ammonia). These ver-
tical sensitivity and error output parameters are also useful
for using CrIS observations in applications (e.g. data fusion
and/or data assimilation, model-based emission inversions;
Cao et al., 2020; Li et al., 2019) as a satellite observational
operator can be generated in a robust manner. The detec-
tion limit of CrIS measurements has been calculated down
to 0.3–0.5 ppbv (Shephard et al., 2020). CrIS ammonia has
been evaluated against other observations over North Amer-
ica with the Ammonia Monitoring Network (AMoN) (Kharol
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et al., 2018) and against ground-based Fourier transform in-
frared (FTIR) spectroscopic observations (Dammers et al.,
2017), showing small bias and high correlations.

Daily CrIS ammonia (version 1.6.3) was put on a 0.5◦×
0.5◦ grid covering all of Europe (25–75◦ N, 10◦W–50◦ E) for
the period 2013–2020 (observations with Quality_Flag≥ 5
and thin clouds with Cloud_Flag= 3 rejected). Gridding was
chosen due to the large number of observations (around
10 000 retrievals per day per vertical level), which made the
calculation of source receptor matrices (SRMs) computation-
ally inefficient. Through gridding, we limited the number of
observations (and thus the number of SRMs to be calculated)
to 2000 d−1 per vertical level. Sitwell et al. (2022) showed
that the averaging kernels of CrIS ammonia are significant
only for the lowest six levels (the upper eight have no influ-
ence on the satellite observations); therefore, we considered
only these six vertical levels (∼ 1018–619 hPa). The gridding
was performed by averaging the values that fall in each 0.5◦

resolution grid cell daily over the 2013–2020 period of this
study. This type of gridding was selected as previous expe-
rience with inverse distance weighting interpolation of satel-
lite observations showed overestimated results of up to 100 %
(Evangeliou et al., 2021). In addition, the quality of gridding
with respect to the averaging kernel of CrIS ammonia was
evaluated by calculating the standard deviation of the aver-
aged values (Fig. S1 in the Supplement). The latter shows
that the kernel values within each grid cell were very simi-
lar, resulting in low gridded standard deviations and thus low
bias as a result of the gridding (Fig. S1).

2.2 A priori emissions of ammonia

We used as a priori emissions for ammonia in the inversion
algorithm the ones calculated from (i) the most recent ver-
sion of ECLIPSEv6 (Evaluating the CLimate and Air Quality
ImPacts of Short-livEd Pollutants) (Zbigniew Klimont, per-
sonal communication, 2022; Klimont et al., 2017) combined
with biomass burning emissions from GFEDv4 (Global Fire
Emission Dataset) (Giglio et al., 2013), hereafter referred
to as EC6G4; (ii) a more traditional dataset from ECLIP-
SEv5, GFEDv4, and GEIA (Global Emissions InitiAtive),
hereafter referred to as EGG (Bouwman et al., 1997; Giglio
et al., 2013; Klimont et al., 2017); (iii) emissions calculated
from IASI (Infrared Atmospheric Sounding Interferometer)
and a one-dimensional box model and a modelled lifetime
(Evangeliou et al., 2021), denoted as NE; and (iv) the high-
resolution dataset of Van Damme et al. (2018) after apply-
ing a simple one-dimensional box model (Evangeliou et al.,
2021), hereafter denoted as VD. Given the large uncertainty
in ammonia emissions illustrated in Fig. 1, we calculated the
average of these four priors (hereafter referred to avgEENV)
to establish the a priori emissions used in this study.

2.3 Lagrangian particle dispersion model for the
calculation of source receptor matrices (SRMs) of
ammonia

SRMs were calculated for each 0.5◦×0.5◦ grid cell over Eu-
rope (25–75◦ N, 10◦W–50◦ E) using the Lagrangian parti-
cle dispersion model FLEXPART version 10.4 (Pisso et al.,
2019), adapted to simulate ammonia. The adaptation of the
code includes treatment for the loss processes of ammonia,
adopted from the Eulerian model LMDZ-OR-INCA (hori-
zontal resolution of 2.5◦×1.3◦ and 39 hybrid vertical levels),
which includes all atmospheric processes and a state-of-the-
art chemical scheme (Hauglustaine et al., 2004). The model
accounts for large-scale advection of tracers (Hourdin and
Armengaud, 1999) and deep convection (Emanuel, 1991),
while turbulent mixing in the planetary boundary layer (PBL)
is based on a local second-order closure formalism. The
model simulates atmospheric transport of natural and an-
thropogenic aerosols and accounts for emissions, transport
(resolved and sub-grid scale), and dry and wet deposition.
LMDZ-OR-INCA includes a simple chemical scheme for
the ammonia cycle and nitrate particle formation, as well
as a state-of-the-art CH4 /NOx /CO /NMHC /O3 tropo-
spheric photochemistry (Hauglustaine et al., 2014). To cal-
culate chemical loss of ammonia to PM2.5, after a month of
spin-up, global atmospheric transport of ammonia was sim-
ulated for 2013–2020 by nudging the winds of the 6-hourly
ERA Interim Reanalysis data (Dee et al., 2011) with a re-
laxation time of 10 d (Hourdin et al., 2006). Using the EGG
inventory, we calculated the e-folding lifetime of ammonia
in the model, which was adopted in FLEXPART. We refer
the reader to Tichý et al. (2022) for a detailed description
of the formalism. Atmospheric linearities of the system and
a full validation against ground-based observation are also
presented in the same paper.

FLEXPART releases computational particles that are
tracked backwards in time using ERA5 (Hersbach et
al., 2020) assimilated meteorological analyses from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) with 137 vertical layers, a horizontal resolu-
tion of 0.5◦× 0.5◦, and 1 h temporal resolution. FLEXPART
simulates turbulence (Cassiani et al., 2014) and unresolved
mesoscale motions (Stohl et al., 2005) and includes a deep-
convection scheme (Forster et al., 2007). SRMs were cal-
culated for 7 d backwards in time at temporal intervals that
matched satellite measurements and at a spatial resolution
of 0.25◦× 0.25◦. This 7 d backward tracking is sufficiently
long to include almost all ammonia sources that contribute to
surface concentrations at the receptors given a typical atmo-
spheric lifetime of about half a day (Van Damme et al., 2018;
Evangeliou et al., 2021).
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Figure 1. Four ammonia prior emissions (EC6G4, EGG, NE, VD) are displayed in the first two rows. The combined prior (avgEENV) is
displayed in the bottom left. The temporal variability of all five prior emissions is given in the bottom right.

2.4 Inverse-modelling algorithm

The inversion method used in the present study relies on opti-
mization of the difference between the CrIS satellite vertical
profile observations, denoted as vsat, and the retrieved verti-
cal profile, vret. The latter is obtained by applying an instru-
ment operator applied in logarithm space (Rodgers, 2000) as
follows:

ln
(
vret)
= ln

(
va)
+A

(
ln
(
vtrue)

− ln
(
va)) , (1)

where vret is the retrieved profile concentration vector, va is
the a priori profile concentration vector used in the satellite
retrievals, vtrue is the hypothetical true profile concentration
vector supplied by the model (vtrue

= vmod), and A is the av-
eraging kernel matrix (for each 0.5◦× 0.5◦ resolution grid
cell). Equation (1) provides a useful basis for the calculation
of the CrIS retrievals if the retrieval algorithm is performing
as designed, i.e. if it is unbiased and if the root mean square

error (RMSE) is within the expected variability. The vmod

term can be written as

vmod
=Mx (2)

for each grid cell of the spatial domain, where M is the grid-
cell-specific SRM calculated with FLEXPART, and x is the
unknown grid-cell-specific emission vector. The SRM matrix
M is calculated on circular surroundings around each grid
cell for computational efficiency. We chose circles with a ra-
dius of approximately 445 km, equal to 4◦, which is shown
to be sufficient for reliable emission estimation, and low sen-
sitivity has been observed with this choice. Since the vector
x is unknown, we replace it with a prior emission xa (see
Sect. 2.2) in the initial step, which is gradually refined itera-
tively based on the satellite observations.

The used inversion setup is based on iterative minimiza-
tion of the mismatch between vsat and vret, updating (itera-
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tively) the emission x as follows:

arg
∣∣∣∣vsat

− vret∣∣∣∣2
2. (3)

This is done for each grid cell of the computational domain.
The minimization problem is solved in two steps.

First, we construct the linear inverse problem for each
year, where vret from the given surroundings, denoted here
as S, forms the block-diagonal matrix vret

S , while vsat from
the given surroundings forms an associated observation vec-
tor vsat

S . This forms the following linear inverse problem:

vsat
= vret

S qS, (4)

where the vector qS is a vector with coefficients denoting
how xa needs to be refined to obtain the emission estimate
vector x. All the elements in Eq. (4) are affected by uncer-
tainties originating from both the observations and model;
hence, we employ an inverse algorithm to solve Eq. (4) with
added regularization in the form of prior distributions with
specific covariance models. For 1 year, six vertical profiles,
and a 4◦ radius, the size of the block-diagonal matrix vret

S is
13 896 times 12; hence, the correction coefficient vector qS
contains 12 values corresponding to each month. We solve
Eq. (4) using the least squares with adaptive prior covariance
(LS-APC) algorithm (Tichý et al., 2016). The algorithm is
based on variational Bayesian methodology assuming a non-
negative solution and favouring a solution without abrupt
changes, and it minimizes the use of manual tuning (Tichý
et al., 2020). The method assumes the data model to be in the
form of

p
(
vsat)
=N

(
vret
S qS,R

)
, (5)

where N denotes the multivariate normal distribution, and
R denotes the covariance matrix assumed to be in the form
R= ω−1Ip, where Ip is the identity matrix with values of
1 on its diagonal and values of 0 elsewhere, and ω is the
unknown precision parameter on its diagonal. Following
Bayesian methodology, we assign a prior model to all un-
known parameters, i.e. ω and qS . Their prior models are se-
lected as follows:

p (ω)=G (ϑ0,ρ0) , (6)

p
(
qS
)
= tN

(
0, (LVL)−1, [0,+∞]

)
, (7)

where G(ϑ0,ρ0) is the gamma distribution (conjugate to the
normal distribution) with prior parameters ϑ0,ρ0 set to 10−10

to archive the non-informative prior. The second term fol-
lows a truncated normal distribution with positive support
and with the specific form of a precision matrix. We assume
the precision matrix in the form of a modified Cholesky de-
composition, which allows for tractability of the estimation
of its parameters, the matrices V and L. The matrix V is di-
agonal with unknown diagonal parameters, and the matrix
L is lower bidiagonal with values of 1 on the diagonal and

unknown parameters on its sub-diagonal, formalized as vec-
tors v and l, respectively. These parameters are estimated
within the method, while the purpose of vector v is to al-
low for abrupt changes in qS , and the purpose of vector l is
to favour smooth estimates (see details in Tichý et al., 2016).
All model parameters (ω,qS,v ,l) are estimated using the
variational Bayes procedure where we obtain not only point
estimates but also their full posterior distributions.

Second, the grid-cell specific-coefficient vector qS is prop-
agated through Eq. (2) into Eq. (1) to refine a prior emis-
sion xa and to obtain estimated unknown emissions x. To
maintain stability of the method, we bound the ratio between
prior and posterior emission elements to 0.01 and 100, re-
spectively. This choice, motivated by Cao et al. (2020), omits
unrealistically small or high emissions; however, the bounds
are large enough to allow for new sources, as well as for at-
tenuation of old sources. To introduce these boundaries is
necessary since the problem in Eq. (1) is ill-conditioned, and
the propagation through the equation may lead to unrealis-
tic values due to numerical instability. For this reason, these
boundaries are needed, and the sensitivity to the choice of the
prior emission is studied in Sect. 3.3.

Note that CrIS data for some spatiotemporal elements
are missing in the dataset. In these cases, we interpo-
lated the missing data following the method proposed by
D’Errico (2023), which solves a direct linear system of equa-
tions for missing elements, while the extrapolation behaviour
of the method is linear. Another strategy recently adopted in
the literature has been to tackle the missing data using to-
tal variation methodology (see details in Fang et al., 2023);
however, the method has been limited so far to its use in point
source release; hence, we did not use it in this work.

3 Results

3.1 Emissions of ammonia in Europe (2013–2020)

We analyse the CrIS ammonia satellite observations for Eu-
rope (25–75◦ N, 10◦W–50◦ E) over the 2013–2020 period
on a monthly basis to derive ammonia emissions using the
inverse-modelling methodology described in Sect. 2.4. The
inversion algorithm is applied to each year of CrIS obser-
vations separately with the use of the avgEENV prior emis-
sion. Note that, since a diurnal cycle is neither assumed in
the Chemistry Transport Model nor in existence in the satel-
lite observations from CrIS, daily emissions of ammonia do
not represent a daily mean.

The overall resulting spatial distribution of the posterior
emissions of ammonia (denoted as posterior_avgEENV) av-
eraged for the whole period is displayed in Fig. 2a. The
highest emissions occur in northwestern Europe (including
northern Belgium, the Netherlands, and northwestern Ger-
many) and, to a smaller extent, in the Po Valley (Italy) and
the Ebro Valley (Spain). Local maxima are also seen over Pu-
lawy (Poland), southern Romania, and Kutina (Croatia) due
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to industrial applications (Clarisse et al., 2019; Van Damme
et al., 2018). While ammonia emissions were not calculated
to be high in the Po Valley (8-year average), it has been re-
ported that, in Lombardy, about 90 % of the ammonia emis-
sions originated from manure management (Lonati and Cer-
nuschi, 2020). The Ebro Valley is characterized by intensive
agricultural activities (Lassaletta et al., 2012; Lecina et al.,
2010), and the Aragon and Catalonia regions are character-
ized by large pig farms (Van Damme et al., 2022). Finally,
both Belgium and the Netherlands are countries in which in-
tensive livestock activity is documented. This consists mostly
of dairy cow, beef cattle, pig, and chicken farming (Gilbert et
al., 2018; Lesschen et al., 2011; Velthof et al., 2012).

Figure 2b shows the annual posterior emissions discretized
monthly for the whole period (solid line) compared to prior
ammonia emissions (dashed line), averaged for the domain.
Higher emissions than the prior ones were calculated, which
is not necessarily attributed to emission increases over Eu-
rope but rather to miscalculation of emissions in the prior
bottom-up inventories that were used. A strong seasonal cy-
cle is also observed, peaking in the middle of each year (sum-
mer) of the study period, but for several of these years, the
characteristic bimodal cycle also appears with another peak
in spring (Beaudor et al., 2023).

To examine more closely the seasonal variability of am-
monia emissions in Europe, we present the monthly poste-
rior emissions of ammonia averaged for the whole study pe-
riod (2013–2020) together with the prior ones in panel (c)
of Fig. 2. The total emissions for each month based on the
map element size and length of the respective month were
averaged for the whole study period. The same was done
for each year in panel (d). The interannual variability over
the period between 2013 and 2020 is also apparent in the
monthly boxplots and whisker plots of the posterior emis-
sions. In addition, the spatial distribution of monthly am-
monia emissions averaged for the 8-year period is given in
Fig. S2. It appears that ammonia emissions are very low in
wintertime (DJF average: 286 Gg) over Europe and increase
towards summer (JJA average: 563 Gg) due to temperature-
dependent volatilization of ammonia (Sutton et al., 2013),
with the largest emissions occurring in August (601 Gg). Al-
though a clear peak of fertilization in early spring is miss-
ing from the plot, emissions start to increase in early spring
and peak in late summer (Van Damme et al., 2022), corre-
sponding to the start and end of the fertilization periods in
Europe (Paulot et al., 2014). Fertilization is tightly regulated
in Europe (Ge et al., 2020). It is only allowed from February
to mid-September in the Netherlands, while manure applica-
tion is also only allowed during the same period, depending
on the type of manure and the type of land (Van Damme et
al., 2022). In Belgium, nitrogen fertilizers are only allowed
from mid-February to the end of August (Van Damme et al.,
2022), as is the case in Germany (restricted in winter months)
(Kuhn, 2017).

Finally, Fig. 2 (bottom right) shows the annual posterior
emissions for the whole period with the annual total emis-
sions for each year. We observe a significant decrease in
ammonia posterior emissions over Europe during the 2013–
2020 period. Emissions were estimated to be 5431 Gg for
2013, decreasing to 4890 Gg in 2014. A minor increase can
be seen in 2015 (5104 Gg), after which a significant decrease
of 534 Gg (more than 10 %) was estimated, followed by the
nearly constant plateau at the levels between 4383 Gg in
2017, 4323 Gg in 2019, and finally 3994 Gg in 2020. The
gradual decrease in ammonia emissions over Europe since
2013 is also plotted spatially in Fig. S3. It is evident that
the restrictions and measures adopted by the European Union
to reduce secondary PM formation were successful as emis-
sions in the hotspot regions of Belgium, the Netherlands,
Germany, and Poland declined drastically over time. How-
ever, an increase of+4.4 % was observed in 2015. It has been
reported that ammonia emissions increased in 2015, and sev-
eral European Union member states, as well as the EU as
a whole, exceeded their respective ammonia emission ceil-
ings (EEA, 2017). The increase was reported to be +1.8 %
and was mainly caused by increased emissions in Germany,
Spain, France, and the United Kingdom. This was caused
by extensive use of inorganic nitrogen fertilizers (including
urea application) in Germany, while increased emissions in
Spain were driven by an increase in the consumption of syn-
thetic nitrogen fertilizers and in the number of cattle and pigs
(EEA, 2017). It should be mentioned that a false decrease of
ammonia in 2020 due to the COVID-19 pandemic is calcu-
lated by the current methodology, mainly due to bias cre-
ated by the decreases in NOx and SO2, which are precursor
species of the atmospheric acids with which ammonia reacts
(see Tichý et al., 2022).

3.2 Country-by-country ammonia emissions

Posterior annual emissions of ammonia for 2013–2020 are
plotted for four European regions (western, central and east-
ern, northern, and southern Europe), accompanied by relative
trends calculated as the difference between the years 2013
and 2020 divided by the average for the whole period in the
left panel of Fig. 3, while the estimated seasonal variation of
each region is shown in the right panels, averaged over the
whole 8-year period. Western Europe includes Ireland, Aus-
tria, France, Germany, Belgium, Andorra, Luxembourg, the
Netherlands, Switzerland, and the United Kingdom; central
and eastern Europe include Albania, Bosnia and Herzegov-
ina, Bulgaria, Czechia, Croatia, Hungary, Belarus, Slovakia,
North Macedonia, Montenegro, Poland, Romania, Moldova,
Slovenia, Ukraine, and Serbia; northern Europe is defined
by Denmark, Estonia, Finland, Latvia, Lithuania, the Faroe
Islands, Norway, and Sweden; finally, southern Europe in-
cludes Cyprus, Greece, Italy, Portugal, and Spain.

The most significant decreases in ammonia emissions
were estimated to be −38 % in central and eastern Eu-
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Figure 2. The spatial distribution of posterior ammonia emissions (posterior_EENV, a) together with their temporal distributions (b). The
Gaussian uncertainty of the posterior emissions is also plotted. Monthly average ammonia emissions are shown in the graph in (c). The
monthly average posterior emissions over the studied period are accompanied by the boxplot where the red line indicates the median; the
bottom and top edges of the boxes indicating the 25th and 75th percentiles, respectively; and the whiskers extend to the most extreme data
points not considered to be outliers, which are denoted using red crosses. Solid blue lines refer to the posterior ammonia emissions, while
dashed ones refer to the prior emissions (avgEENV). Finally, annual average ammonia emissions are also plotted (d). Except for the annual
average emission dosages that are shown in blue, we also depict the elements that were used to calculate vret

posterior, namely va and vmod
posterior

(see Eq. 1), which were compared with vsat.

Figure 3. (a) Annual posterior emissions of ammonia in southern (yellow), western (green), northern (blue), and central and eastern (red)
Europe. (b–e) Monthly average posterior emissions of ammonia accompanied by boxplots, where the red line indicates the median; the
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively; and the whiskers extend to the most extreme data points
(not considered to be outliers), which are represented using red crosses.
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rope and −37 % in western Europe, respectively. Quanti-
tatively, central and eastern Europe’s emissions were esti-
mated to gradually drop from 2190 Gg in 2013 to 1495 Gg
in 2020, with a small increase in 2015 (2171 Gg), mainly
because Germany, France, and the United Kingdom missed
their emission targets (EEA, 2017). Western European emis-
sions of ammonia also declined constantly over time from
2041 Gg in 2013 to 1421 Gg in 2020. Smaller, yet signifi-
cant, decreases were calculated over northern Europe, from
398 Gg in 2013 to 333 Gg in 2020 (−17 %). Finally, southern
Europe exhibited a minor drop between the years 2013 and
2014 (from 803 Gg in 2013 to 729 Gg in 2014), followed by a
small increase until 2019 (from 729 to 803 Gg) and then a de-
crease again in 2020 to 743 Gg. Overall, southern European
emissions decreased by −7.62 %.

The seasonal cycle of ammonia was again characterized
by the restrictions applied to the agricultural-related activi-
ties by the European Union member states (Fig. 3b–e). As
such, emissions in western, central and eastern, and south-
ern Europe were very low in winter and started increasing
when fertilization was allowed in early spring, whereas the
increasing temperature towards summer increased volatiliza-
tion and, thus, emissions of ammonia (Van Damme et al.,
2022; Ge et al., 2020). Although much less marked than in
other European regions due to lower prevailing temperatures
and weaker agricultural applications, emissions in northern
Europe show the spring–summer temperature dependence.
However, emissions were estimated to be double in winter,
rather following the cycle of SO2 (Tang et al., 2021). Emis-
sion may increase in northern Europe in winter because OH
and O3 concentrations are much lower, and the rate of con-
verting SO2 to sulfate is much slower. This means that less
sulfate is produced, and thus, more NH3 stays in the gas
form. Fig. S4 shows prior emissions in western, central and
eastern, northern, and southern Europe for EC6G4 and NE
emission inventories. Both show the aforementioned increase
in emissions during winter in northeastern Europe. Specifi-
cally, the NE emissions that dominate the a priori emissions
(avgEENV) as the highest inventory show an extreme win-
ter peak in the north (emissions decline from 105 to 13 Gg).
Therefore, there is a very strong dependence of the posterior
seasonality of ammonia in northern Europe, which may also
be influenced by the used prior emissions – see the uncer-
tainty analysis in Sect. 3.3.

Country-specific emissions of posterior ammonia on a
monthly basis (8-year average emissions) are shown for
20 countries in Fig. S5. For countries such as Portugal,
Spain, Italy, the United Kingdom, the Netherlands, Bel-
gium, Poland, Hungary, Denmark, Belarus, and Romania,
two peaks can be clearly seen in late spring and at the
end of summer. As discussed before, these peaks coincide
with the two main fertilization periods in Europe (Paulot
et al., 2014). However, it is expected that ammonia abun-
dance is high throughout the entire spring–summer period
(e.g. Greece, France, Germany, Czechia, Ukraine, and Bul-

garia) due to agricultural activity and temperature-dependent
volatilization (Sutton et al., 2013). Ammonia emissions in
Finland, Sweden, and Norway are smaller than in the rest of
Europe and show a reverse seasonality.

3.3 Uncertainties in ammonia’s posterior emissions

For the calculation of the uncertainty of the estimated poste-
rior emissions, two different approaches were used. The first
approach is based on uncertainty arising as a result of the
inversion methodology. The standard deviation is calculated
from the posterior estimate, which is in the form of a Gaus-
sian distribution such as

pposterior (xi)=N
(
µi,σ

2
i

)
, (8)

where N denotes the normal (Gaussian) distribution, and the
posterior parameters µi and σi are the results of inversion for
each element of the spatiotemporal domain. The uncertainty
associated with any given spatial element is then a property
of the Gaussian distribution defined with the square root of
summed squared standard deviations:

σlocation =

√∑
t
σ 2

location,t . (9)

Here, σ 2
location,t denotes the estimated variance of the emis-

sions for given coordinates and a given time period; we con-
sider the uncertainty calculated to be 2σ standard deviations;
i.e. 95 % of the values lay inside the interval, with the centre
in the reported emissions being surrounded by the reported
uncertainty.

The second approach is based on the ensemble of the used
prior emissions as an input for the inversion. The different
ensemble members are built from five prior emissions (see
Fig. 1), while the uncertainty is calculated as the standard
deviation of five resulting posterior emissions.

The calculated posterior uncertainty for our spatial domain
and studied period (2013–2020) is shown in Fig. 4 for the
Gaussian posterior (left) and for the ensemble of prior emis-
sions (right). The uncertainties associated with the Gaussian
posterior for each year of the study period are depicted in
Fig. S6. The absolute uncertainty of the Gaussian posterior
ammonia emissions reaches a maximum of 23.3 ng m−2 s−1

or about 39 % (relative value, calculated based on the related
maximum of posterior emissions). The uncertainty based on
the prior ensemble reaches a maximum of 60.2 ng m−2 s−1,
which is equal to about 101 % based on the related maximum
of posterior emissions. In general, the patterns of both pos-
terior uncertainties, the Gaussian posterior and the prior en-
semble, are in agreement in terms of their patterns and follow
the one of the posterior emissions, with the highest values
over (i) Belgium, the Netherlands, and Germany due to live-
stock, farming, and agricultural activity; (ii) Poland, southern
Romania, and Croatia due to industrial applications; (iii) Cat-
alonia due to pig farming; and (iv) western France due to
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manure application. Nevertheless, the obtained posterior un-
certainty remains low, and this depicts the robustness of the
methodology used and the calculated posterior emissions of
ammonia.

3.4 Validation of posterior emissions

As shown in Eq. (3) (Sect. 2.4), the inversion algorithm min-
imizes the difference between the satellite observations (vsat)
and the retrieved ammonia concentrations (vret). The latter
is a function of different satellite parameters (e.g. averaging
kernel sensitivities) and modelled ammonia concentrations
using a prior dataset (vmod or vtrue), as seen in Eq. 1. The
overall result is always propagated to vmod iteratively, each
time updating the prior emissions to obtain posterior ammo-
nia. As specified in CrIS guidelines, modelled concentrations
(vmod) cannot be directly compared with satellite data (vsat),
while comparing vsat with vret is not a proper validation
method because the comparison is performed for satellite ob-
servations that were included in the inversion (dependent ob-
servations), and the inversion algorithm has been designed to
reduce the vsat–vret mismatches. This means that the reduc-
tion of the posterior retrieved concentration’s (vret) mismatch
to the observations (vsat) is determined by the weighting that
is given to the observations with respect to vret. A proper val-
idation of the posterior emissions is performed against obser-
vations that were not included in the inversion (independent
observations).

For these reasons, we compare modelled posterior concen-
trations of ammonia (vmod) at the surface with ground-based
observations over Europe from the EMEP (European Mon-
itoring and Evaluation Programme, https://emep.int/mscw/,
last access: 26 October 2023) network (Torseth et al., 2012).
The measurements are open to the public and can be retrieved
from https://ebas.nilu.no, last access: 26 October 2023. We
used measurements for all the years between 2013 and 2020
from an average of 53 stations, with 2928 observations for
each station covering all Europe (Fig. S7). The comparison
is plotted for each of the 53 stations separately on a Taylor
diagram in Fig. 5. For all stations, the Pearson’s correlation
coefficient increased, for the posterior ammonia (coloured
circles) increased as compared to the prior one (coloured
squares), reaching above 0.6 at several stations, while the
normalized root mean square error (nRMSE) and standard
deviation were kept below 2 (unitless) and 2 µg m−3, respec-
tively, at almost all stations (except SI0008 in Slovenia).

To further show how posterior emissions of ammonia af-
fect modelled concentrations, we chose six stations (DE0002
in Germany, NO0056 in southern Norway, ES0009 in Spain,
NL0091 in the Netherlands, HU0002 in Hungary, and
PL0005 in Poland) from the EMEP network (highlighted in
red in Fig. S7), and we plot prior and posterior concentra-
tions against ground-based ammonia over time for the whole
study period (2013–2020) in Fig. S8. Given the long period
of plotting, we average observations every week and mod-

elled concentrations every month for a more visible repre-
sentation of the comparison. To evaluate the comparison, we
calculate a number of statistic measures, namely nRMSE, the
normalized mean absolute error (nMAE), and the root mean
squared logarithmic error (RMSLE), as defined below:

nRMSE=

√∑n
i=1

1
n

(mi − oi)2

1
n

∑n
i=1oi

,

nMAE=
∑n
i=1 |mi − oi |∑n

i=1oi
,

RMSLE=

√
1
n

∑n

i=1
(logmi − logoi)2, (10)

where n is sample size, and m and o are the individual sam-
ple points for model concentrations and observations of am-
monia indexed with i. As one can see in Fig. S8, all statis-
tics were improved in all six stations, and posterior concen-
trations were closer to the observations. However, individ-
ual peaks were, in many cases, misrepresented in the model.
Whether this is a result of the measurement technique or the
fact that local sources cannot be resolved at the spatiotempo-
ral resolution of CTM and FLEXPART (given the short life-
time of atmospheric ammonia) needs further research. The
best results were obtained at station ES0009 (Spain), where
the model captured the seasonal variation of the observations
during the whole study period (2013–2020). In all other sta-
tions, the seasonality is maintained, albeit steep peaks in the
observations are lost.

As explained in Sect. 1, ammonia reacts with the avail-
able atmospheric acids, producing secondary aerosols (Sein-
feld and Pandis, 2000). Therefore, its presence and lifetime in
the atmosphere is driven by the atmospheric acids and their
precursors, SO2 and NO2. Changes in the atmospheric lev-
els of these substances have a significant impact on the life-
time of ammonia and its emissions, as highlighted in Tichý
et al. (2022). Therefore, it is clear that a wrong represen-
tation of the trends in modelled SO2 and NO2 will lead to
systematic biases in the estimated ammonia emission trends.
To further demonstrate that the modelling system correctly
represents the trends in SO2 and NO2, we compare ground-
based observations of these two species from the EMEP net-
work (https://emep.int/mscw/, last access: 26 October 2023)
against modelled concentrations.

The comparison is shown in Fig. S9 for six random EMEP
stations for different years for NO2 and SO2. The full com-
parison of the two datasets of observations is plotted in scat-
terplots of modelled versus measured surface concentrations
for NO2 and SO2 for the whole of the study period (2013–
2020) in Fig. S10. Total numbers of 3 368 660 for SO2 and
4 252 592 for NO2 were used in the validation. It is evident
that the seasonal variations of the modelled surface concen-
trations and their magnitudes are both represented very well
in the model for NO2 and SO2. nRMSE was 0.12–0.19 for
NO2 and 0.09–0.25 for SO2, nMAE was 0.39–0.94 for NO2
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Figure 4. Absolute uncertainty of posterior emissions of ammonia calculated as 2σ (a) and from a member ensemble (b) comprising
posterior emissions calculated with five different priors (Fig. 1) averaged for the whole study period of 2013–2020.

Figure 5. Modelled concentrations of ammonia with prior and pos-
terior emissions against ground-based observations from 53 EMEP
stations for 2013–2020 presented in a Taylor diagram. The diagram
shows the Pearson’s correlation coefficient (gauging similarity in
terms of pattern between the modelled and observed concentrations)
that is related to the azimuthal angle (blue contours); the standard
deviation of modelled concentrations of ammonia is proportional to
the radial distance from the origin (black contours), and the centred
normalized RMSE of modelled concentrations is proportional to the
distance from the reference standard deviation (green contours).

and 0.48–1.2 for SO2, and RMSLE was 0.25–0.49 for NO2
and 0.11–0.33 for SO2 in the six stations (Fig. S9). For over
4.2 and 3.3 million measurements in this validation of NO2
and SO2 concentrations for 2013–2020 study period, nRMSE
values were 0.05 and 0.02, nMAE values were 0.74 and 1.0,
and RMSLE values were 0.50 and 0.40 for NO2 and SO2,
respectively (Fig. S10).

4 Discussion

4.1 Comparison with emissions inferred from satellite
observations

We compared our posterior estimates with two recently pub-
lished studies on ammonia emissions in Europe (Cao et al.,
2022; Luo et al., 2022). Luo et al. (2022) used IASI ob-
servations for the period 2008–2018 to estimate ammonia
emissions in a global domain. Their method was based on
updating prior emissions with correction terms computed
using differences between observed and simulated ammo-
nia columns combined with calculated ammonia lifetimes.
The key indicators calculated for the European domain in
Luo et al. (2022) are a linear trend for the 2008–2018 pe-
riod, average annual emissions, and relative trends. Note that
we compare our 8-year period with the decade in Luo et
al. (2022). The comparison is depicted in Fig. 6. Our es-
timates (Fig. 6a) are in good agreement with those calcu-
lated by Luo et al. (2022). The linear trend was estimated
as −1.27 Tg for the period by Luo et al. (2022), while our
estimate is −1.44 Tg. The spatial distribution of the trend is
also given in Fig. 6a. The key decrease is observed mainly
in France, Germany, and middle Europe, while the increas-
ing trend is observed mostly in Spain, parts of Italy, and
Greece. The average annual ammonia emission for the Euro-
pean domain in Luo et al. (2022) was estimated to be 5.05 Tg,
while our estimate is 4.63 Tg. Our lower estimate (by approx-
imately 8 %) might be attributed to the use of a more recent
period in our study, but both methods agree that the trend in

Atmos. Chem. Phys., 23, 15235–15252, 2023 https://doi.org/10.5194/acp-23-15235-2023



O. Tichý et al.: Decreasing trends of ammonia emissions 15245

Europe is negative. The relative decrease estimated by Luo et
al. (2022) is −25.1 %, while we calculate −31.02 %, which
is again in very good agreement.

Cao et al. (2022) used CrIS observations for the year
2016 in order to estimate ammonia emissions for 25 Eu-
ropean Union members (EU25), namely Austria, Belgium,
Bulgaria, Croatia, Republic of Cyprus, Czech Republic,
Denmark, Estonia, France, Germany, Greece, Hungary, Ire-
land, Italy, Latvia, Lithuania, Luxembourg, Malta, Nether-
lands, Poland, Portugal, Romania, Slovakia, Slovenia, and
Spain. The method was tested with uni-directional and bi-
directional flux schemes. The uni-directional dry-deposition
scheme assumes only an air-to-surface exchange of ammo-
nia, ignoring changes in environmental conditions, while the
bi-directional scheme captures dynamics in measured ammo-
nia fluxes. Total estimated ammonia emissions for the EU25
region from the uni-directional scheme (posterior_uni) and
the bi-directional scheme (posterior_bi) were reported to be
3534 and 2850 Gg N yr−1, respectively. The posterior_bi es-
timate is very close to our estimate for EU25 for the year
2016, which is 2712 Gg N yr−1, while the posterior_uni is
approximately 30 % higher. A uni-directional dry-deposition
scheme ignores the impacts of changes in environmental con-
ditions (e.g. soil temperature, soil wetness, soil pH, fertil-
ized condition, and vegetation type) on ammonia emissions
from fertilized soil and crops (volatilization), which likely
leads to high biases in top-down estimates. Ammonia in the
LMDz-OR-INCA model, which was used to capture ammo-
nia’s losses, resembles a partially bi-directional treatment,
where emissions and deposition are both possible at the same
time without any use of a compensation point; this may ex-
plain this 30 % difference.

The detailed EU25 emissions for the year 2016 are dis-
played in Fig. 6 (right panel) for posterior_uni (red), poste-
rior_bi (yellow), our post_avgEENV (blue), and priors used
by Cao et al. (2022) and in our study (dashed red and blue,
respectively). As seen from Fig. 6, our posterior estimates
(post_avgEENV) have more similar characteristics in rela-
tion posterior_bi, with the monthly difference being less
than a factor of 2 positive or negative compared to Cao et
al. (2022). Note that the posterior_uni estimates are always
a factor of 3 higher than our posterior estimates for ammo-
nia emissions. The main differences can be observed during
the February–March and October–November periods, where
our estimates are generally lower than those from Cao et
al. (2022). Finally, Cao et al. (2022) reported more of a
springtime peak that is likely associated with crop fertiliza-
tion, whereas in this study, the peak is towards the warmer
season (volatilization) due to livestock sources.

4.2 Assessment of ammonia’s atmospheric linearities

Ammonia is a particularly interesting substance due to its
affinity for reacting with atmospheric acids that produce sec-
ondary aerosols. In most cases, it is depleted by sulfuric and

nitric acids. However, when relative humidity is high and
when particles are aqueous, sulfate reacts with ammonia and
decreases, while the equilibrium vapour pressure of ammo-
nia with nitric acid increases, shifting the reaction towards
the production of free ammonia (Seinfeld and Pandis, 2000).
The former reaction is a rare event, and lots of prerequisites
must be fulfilled to take place.

Fig. S11a shows the frequency distribution of gain (pro-
duction of free ammonia – negative numbers) or loss (pro-
duction of sulfate or nitrate – positive numbers) due to
all chemical processes in the inversion domain (25–75◦ N,
10◦W–50◦ E) for the study period (2013–2020) and for the
lowest six sigma-p vertical levels (∼ 1018–619 hPa; see av-
eraging kernels in Sect. 2.1) (Sitwell et al., 2022). The figure
shows mostly positive numbers, indicating that atmospheric
ammonia reacts towards secondary aerosol formation. The
spatial distribution of the gain or loss of ammonia is shown
in Fig. S11b. The pixels indicating the production of gaseous
ammonia are located in marine regions, where we chose to
not perform inversions as these are 1 order of magnitude
lower (Bouwman et al., 1997) and are thus less significant.
No continental pixels showing a gain of ammonia were de-
tected, which would cause simulations made backwards in
time to fail with our Lagrangian model (see next paragraph).
Our approximation, although simplistic, provides computa-
tional efficiency when simulating SRMs in backward mode
using FLEXPART (Pisso et al., 2019).

Seibert and Frank (2004) reported that standard La-
grangian particle dispersion models cannot simulate non-
linear chemical reactions. First-order chemical reactions,
where the reaction rates can be prescribed, are also linear.
Non-linear chemistry cannot be calculated because the back-
ground chemistry nor the coupling of the tracked plume (for-
wards or backwards) to this background are modelled. Tech-
nically, the SRM in FLEXPART is calculated for a receptor
with a certain mean mixing ratio (χ ) and an emitting source
(qi,n) in a certain discretization of the space (index i) and
time (index n):

χ

qi,n
=

1
J

∑J

j=1
1ti,j,n

pj,n

ρi,n
, (11)

where J is the total number of backward trajectories (parti-
cle index j ) originating from the position of the receptor χ
and ending at a certain discretized time (index n) in a cer-
tain discretized space position (index i) for a time interval
1ti,j,n, and where the air density is ρi,n. The further func-
tion pj,n (pj,n ≤ 1) represents the relative (in relation to the
initial receptor state) decay of the mass value in the particle
in its travel from the receptor to the discretized space time
interval (jn) due to any linear decay process (e.g. deposi-
tion, linear chemical decay) for a perfectly conserved scalar
pj,n = 1. So, for linearly decaying species, a direct SRM can
be calculated explicitly among all relevant receptor points
and all positions in space and time. The existence of the SRM
(H ), linking directly mixing ratios at the receptor points with
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Figure 6. (a) Spatial distribution of ammonia emission trends computed for the studied period 2013–2020 in the same way as in Luo et
al. (2022), where trend, mean, and trend–mean are defined or computed in the same way. (b) Comparison of ammonia emissions from
the EU25 countries for the year 2016 from our posterior calculations (posterior_avgEENV in blue) and results from Cao et al. (2022)
(posterior_uni in red and posterior_bi in yellow).

emissions, is the prerequisite to apply simple inversion algo-
rithms, such as the one in the present study.

The inversion of observations to obtain emissions for non-
linear chemically reactive species entails the need for a
chemistry transport model (CTM) forwards (and, its adjoint,
backwards) in time – from time t0 to time t – that evolves the
full state of the atmosphere in relation to the emissions and
boundary conditions. Subsequently, a cost function is eval-
uated by an iterative descent gradient method that implies
running the adjoint of the forward model (Fortems-Cheiney
et al., 2021). Note that an iterative algorithm means that the
forward and adjoint models run several times in sequence un-
til the estimated minimum of the cost function is reached.

To overcome these complexities, we examine the lin-
earities of our method and show that FLEXPART simu-
lates ammonia efficiently, and we evaluate modelled am-
monia against ground-based measurements of ammonia
from EMEP (https://emep.int/mscw/, last access: 26 Octo-
ber 2023) in Europe, EANET (East Asia acid deposition
NETwork) in southeastern Asia (https://www.eanet.asia/, last
access: 26 October 2023), and AMoN (Ammonia Moni-
toring Network in the US, AMoN-US; National Air Pollu-
tion Surveillance Program (NAPS) sites in Canada) in North
America (http://nadp.slh.wisc.edu/data/AMoN/, last access:
26 October 2023). The SRMs for ammonia express the emis-
sion sensitivity (in seconds) and yield modelled concentra-
tions at the receptor point when coupled with gridded emis-
sions from EGG (in kg m−2 s−1; see Sect. 2.2) at the low-
est model level (100 m). To check the consistency of the
proxy used in the SRMs of ammonia, we also simulated sur-
face concentrations of ammonia with FLEXPART in forward
mode using the same emissions (EGG). We have chosen two
random ground-based stations from each of the three mea-
suring networks (EMEP, EANET, AMoN) to compare mod-
elled concentrations. For consistency, we also plot the result-
ing surface concentrations from the LMDz-OR-INCA model
(Fig. S12).

Modelled concentrations (forward and backward FLEX-
PART and the CTM LMDz-OR-INCA) at each station have
been averaged to the temporal resolution of the observa-
tions. Fig. S13 shows Taylor diagrams of the comparison
between FLEXPART simulated concentrations in forward
and backward mode. Plotting backward versus forward re-
sults is a common procedure to infer whether a Lagrangian
model produces reasonable results (Eckhardt et al., 2017;
Pisso et al., 2019). In general, the forward and backward
simulations show very good agreement for the depicted re-
ceptor points. For example, ammonia concentrations at sta-
tions AL99, CA83, and VNA001 (Fig. S12) are simulated
similarly, and the mean concentrations are almost identical
in the forward and backward modes. However, during some
episodes, there can be notable differences (e.g. at DE0002R),
as seen before (Eckhardt et al., 2017). The main reason is that
the backward calculations always give more accurate results
as the number of particles released at the receptor is much
higher in backward mode than in forward mode; the parti-
cles are targeted towards a very small location in backward
mode, whereas in forward mode, the particles are distributed
equally on a global scale, and therefore, fewer particles rep-
resent each receptor location. Another reason is that transport
and, especially, turbulent processes are parameterized by ran-
dom motions, which are different for each FLEXPART sim-
ulation. Finally, the coordinate system for defining the height
layer above the ground depends on the meteorological field
which is read at the start of the simulation, and this can also
cause small deviations. The Taylor diagram for the respec-
tive comparison (Fig. S13) shows high Pearson’s correlation
coefficients (>0.7), low standard deviations (<1 µg N m−3),
and low root mean square errors (RMSEs<0.7 µg N m−3).

4.3 Limitations of the present study

The latest Commission Third Clean Air Outlook pub-
lished in December 2022 (EC, 2022), which is based on

Atmos. Chem. Phys., 23, 15235–15252, 2023 https://doi.org/10.5194/acp-23-15235-2023

https://emep.int/mscw/
https://www.eanet.asia/
http://nadp.slh.wisc.edu/data/AMoN/


O. Tichý et al.: Decreasing trends of ammonia emissions 15247

data reported by the EEA (https://www.eea.europa.eu/
data-and-maps/dashboards/necd-directive-data-viewer-7,
last access: 26 October 2023), concluded (p. 2) that emis-
sions of ammonia in recent years remain worryingly flat or
may have increased for some member states. The assessment
covers the period we investigated in the present paper (2013–
2020) and shows (for the EU27) a reduction in ammonia
emissions of only 2 %, which is far smaller than that which
we calculated here (26 %). The consistency of our results
with those calculated with similar methodologies (Cao et
al., 2022; Luo et al., 2022) urges us to believe that such
differences in ammonia trends are the result of differences
between bottom-up and top-down methodologies.

Another reason for the difference in emissions between
EC (2022) and this study might be the fact that we used both
nighttime and daytime CrIS observations. The nighttime ob-
servations use the exact same retrieval approach as the day-
time ones. Any unknown bias would only be present if atmo-
spheric conditions are such that they make the retrievals more
challenging during night overpasses (e.g. thermal inversions
causing a radiative emission layer at the surface). Note that
CrIS nighttime observations have not been validated yet.

CrIS ammonia retrievals are performed in the logarithmic
space and are expressed by Eq. (1). When solving the cost
function in the inverse-modelling algorithm, we minimize
the model–observation mismatch, which, in the present case,
is vret (calculated using modelled concentrations, vtrue

=

vmod, in Eq. (1) after applying prior emissions) with the
CrIS observations, vsat. Then, iteratively, the algorithm up-
dates vmod to calculate the posterior emissions using Eq. (1).
The logarithmic nature of Eq. (1) causes (i) the optimization
of the modelled concentrations (vmod) to be tiny and (ii) the
trend of the posterior emissions to have a very large depen-
dency on the prior column used in CrIS (va). The latter is
shown very clearly in Fig. 2d.

5 Conclusions

Today, there is a large debate about ammonia abatement
strategies for Europe but also for southeastern Asia in an
effort to reduce secondary formation and, thus, to mitigate
climate crises (van Vuuren et al., 2015). These strategies
include (a) low-nitrogen feed by reducing ammonia emis-
sions at many stages of manure management, from excre-
tion in housing, through storage of manure, to the application
on land, which would also have positive effects on animal
health and indoor climate (Montalvo et al., 2015); (b) low-
emission livestock housing, which focuses on reducing the
surface area on which and the time over which manure is
exposed to air by adopting rules and regulations regarding
new livestock houses (Poteko et al., 2019); and (c) air pu-
rification by adopting technologies to clean exhaust air from
livestock buildings (Cao et al., 2023), amongst others. Here
we used satellite observations from CrIS and a novel inverse-

modelling algorithm to study the spatial variability and sea-
sonality of ammonia emissions over Europe. We then evalu-
ated the overall impact of such strategies on the emissions of
ammonia for the period 2013–2020. The main key messages
can be summarized below:

– The highest emissions over the 2013–2020 study period
occur in northern Europe (Belgium, the Netherlands,
and northwestern Germany). At a regional scale, peaks
are seen in western Europe (Poland, southern Romania,
and Croatia) due to industrial activities, in Spain (Ebro
Valley, Aragon, and Catalonia) due to agricultural activ-
ities and farming, and in Belgium and the Netherlands
due to livestock activity (dairy cow, beef cattle, pig, and
chicken farming).

– Ammonia emissions are low in winter (average:
286 Gg) and peak in summer (average: 563 Gg) due
to temperature-dependent volatilization of ammonia,
while a notable peak attributed to fertilization can be
seen in early spring during some years.

– Over the 2013–2020 period, European emissions of am-
monia decreased from 5431 Gg in 2013 to 3994 Gg in
2020 (about−26 %). Hence, the restrictions adopted by
the European Union members were effective in reduc-
ing secondary PM formation.

– A slight emission increase of +4.4 % in 2015 appears
for several European Union member states (Germany,
Spain, France, and the United Kingdom) who exceeded
their respective ammonia emission targets. Part of the
2020 ammonia decrease might be attributable to the
COVID-19 pandemic restrictions.

– The largest decreases in ammonia emissions were ob-
served in central and eastern Europe (−38 %, 2190 Gg
in 2013 to 1495 Gg in 2020) and in western Europe
(−37 %, 2041 Gg in 2013 to 1421 Gg in 2020). Smaller
decreases were calculated in northern Europe (−17 %,
398 Gg in 2013 to 333 Gg in 2020) and southern Europe
(−7.6 %, from 803 Gg in 2013 to 743 Gg in 2020).

– The maximum calculated absolute uncertainty of the
Gaussian posterior model was 23.3 ng m−2 s−1 or about
39 % (relative value), and the calculated maximum of
prior emissions was 60.2 ng m−2 s−1 or about 101 %
following the spatial distribution of the posterior emis-
sions.

– Comparison of the concentrations calculated with prior
and posterior ammonia emissions against indepen-
dent (not used in the inversion algorithm) observa-
tions showed improved correlation coefficients and low
nRMSEs and standard deviations. Looking at the time
series of six randomly selected stations in Europe, we
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also found that posterior surface concentrations of am-
monia were in accordance with the ground-based mea-
surements, also following the observed seasonal trends.

– Our results agree very well with those from Luo et
al. (2022) (decreasing trend: −1.44 versus −1.27 Tg,
annual European emissions: 4.63 versus 5.05 Tg) and
those from Cao et al. (2022) following their method-
ology (their posterior_bi estimate for EU25 for the
year 2016 was 2850 Gg N yr−1, while we calculate
2712 Gg N yr−1).

– The relatively low posterior uncertainty and improved
statistics in the validation of the posterior surface con-
centrations denote the robustness of the posterior emis-
sions of ammonia calculated with satellite measure-
ments and our adapted inverse framework.
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