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Abstract

This article investigates how two important sources of risk—market tail risk (TR)
and extreme market volatility risk—are priced into the cross-section of asset
returns across various investment horizons. To identify such risks, we propose a
quantile spectral (QS) beta representation of risk based on the decomposition
of covariance between indicator functions that capture fluctuations over various
frequencies. We study the asymptotic behavior of the proposed estimators of
such risk. Empirically, we find that TR is a short-term phenomenon, whereas ex-
treme volatility risk is priced by investors in the long term when pricing a cross-
section of individual stocks. In addition, we study popular industry, size and value,
profit, investment, or book-to-market portfolios, as well as portfolios constructed
from various asset classes, portfolios sorted on cash flow duration, and other
strategies. These results reveal that tail-dependent and horizon-specific risks
are priced heterogeneously across datasets and are important sources of risk for
investors.
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The classical conclusion of the asset pricing literature states that the price of an asset should
be equal to its expected discounted payoff. In the capital asset pricing model (CAPM) intro-
duced by Sharpe (1964), Lintner (1965), and Black (1972), we assume that the stochastic
discount factor can be approximated by return on market portfolio; thus, expected excess
returns can be fully described by their market betas based on covariance between asset re-
turn and market return. While early empirical evidence validated this prediction, decades of
consequent research have called the ability of the traditional market beta to explain cross-
sectional variation in returns into question. We aim to show that to understand the forma-
tion of expected returns, one has to look deeper into the features of asset returns that are
crucial in terms of the preferences of a representative investor. We argue that two import-
ant, risk-related features are tail events and frequency-specific (spectral) risk capturing be-
havior at different investment horizons. To characterize such general risks, we derive a
novel quantile spectral (QS) representation of beta that captures covariation between indi-
cator functions capturing fluctuations of different parts of joint risky asset and market re-
turn distributions over various frequencies. Nesting the traditional beta as well as recently
introduced spectral beta (Bandi et al. 2021), the new representation captures tail-specific as
well as horizon- or frequency-specific spectral risks.

Intuitively, covariation stemming from (extremely) negative returns of risky assets and
(extremely) negative returns of the market that are known as downside risk in the literature
should be positively compensated. While early literature (Ang, Chen, and Xing 2006) em-
pirically confirms the premium for bearing downside risk, Levi and Welch (2020) concludes
that estimated downside betas do not provide superior predictions compared with standard
betas. More recently, Bollerslev, Patton, and Quaedvlieg (2020) argue that we need to look
at finer representations allowing combinations of positive and negative assets and market
returns and suggest how such semibetas are priced.

The aim of this article is to show that there is heterogeneity in the weights that investors
assign to the risk for different investment horizons and different parts of the distribution of
their future wealth. We argue that previous attempts have failed to fully account for more
subtle implications arising from these heterogeneities. An asset drop that covaries with a
drop in the market and, at the same time, is a low-frequency event with large persistence
should be priced by investors differently than such extreme situations due to high-
frequency, transitory events. While in the first situation, investors will be pricing a persist-
ent crash resulting in long-term fluctuations in the quantiles of the market’s and risky
asset’s joint distribution, in the latter case the investor cares about the transitory crash
resulting in short-run fluctuations. This essentially means that a covariance between the
risky asset and discount factor will not only be different across all parts of the joint distribu-
tion but will also be different across various investment horizons. Intuitively, these co-
occurrences of tail events will have either short-term or long-term effects on the marginal
utility of investors. Looking at the beta representation that will capture such information
empirically will also be informative for the rare disaster literature (Barro 2006).

Economists have long recognized that decisions under risk are more sensitive to changes
in the probability of possible extreme events compared with the probability of a typical
event. The expected utility might not reflect this behavior since it weighs the probability of
outcomes linearly. Consequently, CAPM beta as an aggregate measure of risk may fail to
explain the cross-section of asset returns. Several alternative notions have emerged in the
literature. Mao (1970) presents survey evidence showing that decision-makers tend to think
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of risk in terms of the possibility of outcomes below some target. For an expected utility-
maximizing investor, Bawa and Lindenberg (1977) has provided a theoretical rationale for
using a lower partial moment as a measure of portfolio risk. Based on the rank-dependent
expected utility due to Yaari (1987), Polkovnichenko and Zhao (2013) introduce utility
with probability weights and derive the corresponding pricing kernel. As mentioned earlier,
Ang et al. (2006), Lettau, Maggiori, and Weber (2014) argue that downside risk—the risk
of negative returns—is priced across asset classes and is not captured by CAPM betas.
Furthermore, Farago and Tédongap (2018) extend the results using a general equilibrium
model based on generalized disappointment aversion (GDA) and show that downside risks
in terms of market return and market volatility are priced in the cross-section of asset
returns.’

The results described above lead us to question the role of expected utility maximizers
in asset pricing. A recent strand of literature solves the problem by considering the quantile
of utility instead of its expectation. This strand of literature complements the previously
described empirical findings focusing on downside risk, as it highlights the notion of eco-
nomic agents particularly averse to outcomes below some threshold compared with out-
comes above this threshold. The concept of a quantile maximizer and its features was
pioneered by Manski (1988) and later axiomatized by Rostek (2010). Most recently, de
Castro and Galvao (2019) developed a quantile optimizer model in a dynamic setting. A
different approach to emphasizing investors’ aversion toward less favorable outcomes
defines the theory based on Choquet expectations. This approach is based on a distortion
function that alters the probability distribution of future outcomes by accentuating proba-
bilities associated with the least desirable outcomes. This approach was utilized in finance,
for example, by Bassett, Koenker, and Kordas (2004).

Whereas aggregating linearly weighted outcomes may not reflect the sensitivity of
investors to tail risk (TR), aggregating linearly weighted outcomes over various frequencies
or economic cycles also may not reflect risk specific to different investment horizons. One
may suspect that an investor cares differently about short-term and long-term risk accord-
ing to their preferred investment horizon. Distinguishing between long-term and short-term
dependence between economic variables has proven to be insightful since the introduction
of cointegration (Engle and Granger 1987). The frequency decomposition of risk thus
uncovers another important feature of risk that cannot be captured solely by market beta,
which captures risk averaged over all frequencies. This recent approach to asset pricing ena-
bles us to shed light on asset returns and investor behavior from a different point of view,
highlighting heterogeneous preferences. Empirical justification is brought by Boons and

1 In addition, it is interesting to note that equity and variance risk premiums are also associated with
compensation for jump tail risk (Bollerslev and Todorov 2011). A more general exploration of the
asymmetry of stock returns is provided by Ghysels, Plazzi, and Valkanov (2016), who propose a
quantile-based measure of conditional asymmetry and show that stock returns from emerging mar-
kets are positively skewed. Conrad, Dittmar, and Ghysels (2013) use option price data and find a re-
lation between stock returns and their skewness. Another notable approach uses high-frequency
data to define realized semivariance as a measure of downside risk (Barndorff-Nielsen,
Kinnebrock, and Shephard 2008). From a risk-measure standpoint, handling negative events, espe-
cially rare events, is a highly relevant theme in both practice and academia. The most prominent
example is value-at-risk (Engle and Manganelli 2004; Adrian and Brunnermeier 2016).
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Tamoni (2015) and Bandi and Tamoni (2021), who show that exposure in long-term
returns to innovations in macroeconomic growth and volatility of the matching half-life is
significantly priced in a variety of asset classes. The results are based on the decomposition
of time series into components of different persistence proposed by Ortu, Tamoni, and
Telbaldi (2013).

From an empirical asset pricing standpoint, our approach is closely related to Bandi
et al. (2021) who introduce spectral beta that measures systematic risk over specific eco-
nomic cycle. Bandi et al. (2021) show that a single business cycle component of market
returns is successful in pricing many anomalous portfolios. Piccotti (2016) further sets the
portfolio optimization problem into the frequency domain using matching of the utility fre-
quency structure and portfolio frequency structure, and Chaudhuri and Lo (2016) present
an approach to constructing a mean—variance—frequency optimal portfolio. This optimiza-
tion yields the mean—variance optimal portfolio for a given frequency band and thus it opti-
mizes the portfolio for a given investment horizon.

From a theoretical point of view, preferences derived by Epstein and Zin (1989) enable
the study of frequency aspects of investor preferences and this has quickly become a stand-
ard in the asset pricing literature. With the important results of Bansal and Yaron (2004),
long-run risk started to enter asset pricing discussions. Dew-Becker and Giglio (2016) inves-
tigate frequency-specific prices of risk for various models and conclude that cycles longer
than the business cycle are significantly priced in the market. Other papers utilize the fre-
quency domain and Fourier transform to facilitate estimation procedures for parameters
hard to estimate using conventional approaches. Berkowitz (2001) generalizes band spec-
trum regression and enables the estimation of dynamic rational expectation models match-
ing data only in particular ways, for example, forcing estimated residuals to be close to
white noise. Dew-Becker (2017) proposes a spectral density estimator of the long-run
standard deviation of consumption growth, which is a key component for determining risk
premiums under Epstein—Zin preferences and shows superior performance compared with
the previous approaches. Crouzet, Dew-Becker, and Nathanson (2017) developed a model
of a multifrequency trade set in the frequency domain and showed that restricting trading
frequencies reduces price informativeness at those frequencies, reduces liquidity, and
increases return volatility. One of the rare exceptions that entertains the idea of combining
horizon-specific risk with tail events is Barro and Jin (2021), who show that most of the
risk premium is attributable to rare event risk, but the long-run risk component contributes
to fitting the Sharpe ratio as well.

The debate clearly indicates that the standard assumptions leading to classical asset pric-
ing models do not correspond with reality. In this article, we suggest that more general pric-
ing models have to be defined and should take into consideration both the asymmetry of
the dependence structure among the stock market and the relation of asymmetry to differ-
ent investor behaviors at various investment horizons.

The main contribution of this article is three-fold. First, based on the frequency decom-
position of covariance between indicator functions, we define the QS beta of an asset cap-
turing frequency-specific TRs and corresponding ways of measuring the beta. The newly
defined notion of a beta can be viewed as a disaggregation of a classical beta to a frequency-
and tail-specific beta. With this notion, we describe how extreme market risks are priced in
the cross-section of asset returns at various horizons. We define frequency-specific tail mar-
ket risk (TR) that captures dependence between extremely low market and asset returns, as
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well as extreme market volatility risk (EVR) that is characterized by dependence between
extremely high increments of market volatility and extremely low asset returns. Second, we
empirically motivate the emergence of such types of risks in the cross-section of asset
returns. Third, we estimate models and document these types of risks on a wide number of
popular datasets, including Fama—French industry, size and value, profit, investment, and
book-to-market portfolio, as well as portfolios constructed from various asset classes and
sorted on cash flow durations.

The results of this article suggest that TR is consistently priced in the cross-section of
asset returns in the short term, while EVR is priced mainly in the long term. The result also
holds when we control for popular factors, including moment-based factors that are
designed to capture asymmetric features and popular downside risk models (Ang et al.
2006; Lettau, Maggiori, and Weber 2014; Farago and Tédongap 2018). We also discuss
how our new beta representation relates to other risk measures. Finally, we document that
the final model capturing tail-specific risks across horizons significantly outperforms the
other competing models that capture downside risks.

The rest of the paper is structured as follows. Section 1 motivates the importance of TRs
across horizons. Section 2 introduces the estimation of QS betas and discusses the asymp-
totic theory for the estimators, Section 3 defines the empirical models used for testing the
significance of extreme risks and Section 4 conducts the empirical analysis on individual
stocks as well as on various portfolios. Section 5 then concludes. In the Appendix, we detail
the main technical results regarding the QS betas, their relation to the rare disaster model,
specifications of the competing measures of risk, and detailed results from the portfolio esti-
mations. For estimation of QS betas, we provide package QSbeta in R available at https://
github.com/barunik/QSbeta. QS and cross-spectral densities as well as other quantities can
be estimated using package quantspec in R available at https://github.com/tobiaskley/quant
spec introduced by Kley (2016).

1 Motivation: Why Should We Care about TRs across Horizons

The empirical search for an explanation of why different assets earn different average
returns centers around the use of return factor models arising from the Euler equation.
With only the assumption of ‘no arbitrage’, a stochastic discount factor 1,41 exists, and
under the expected utility maximization framework, for the ith excess return, 7; ., satisfies
E[m;i17i441] = 0, hence

Cov(myi1,7ip1) ~ Var(m.1)

Var(m1) E[ms1]

E[rig1] = = B4, (1)
where loading f3; can be interpreted as exposure to systematic risk factors and 4 as the risk
price associated with factors. Equation (1) assumes that the risk premium of an asset or a
portfolio can be explained by its covariance with some reference economic or financial vari-
able such as consumption growth or return on market portfolio. This simple pricing rela-
tion also assumes that independent common sources of systematic risk exist in the economy
and exposure to them can explain the cross-section of asset returns.” This leads to the

2 For example, this is the cornerstone of arbitrage pricing theory of Ross (1976).
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so-called factor fishing phenomenon, which tries to identify other risk factors in addition to
the traditional market factors assumed by CAPM using a linear combination of factors that
are assumed to have nonzero covariance with a risky asset, and to be independent of each
other.

Covariance between the two variables of interest,

"/f,‘ = Cov(tj ks Tir) = B[(rjarr — 7)) (riz — 74)] s 2)

which is central to the asset pricing literature, may not be sufficient in cases in which the in-
vestor cares about different parts of the distribution of her future wealth differently or in
cases in which an investor cares about specific investment horizons. The empirical literature
silently assumes that the risk factors aggregate information over the distribution of returns
as well as investment horizons. Part of the literature tracing back to early work by Roy
(1952), Markowitz (1952), Hogan and Warren (1974), and Bawa and Lindenberg (1977)
argues that the reason we do not empirically find support for the above thinking is that the
pricing relationship is fundamentally too simplistic. If investors are averse to volatility only
when it leads to losses, not gains, the total variance as a relevant measure of risk should be
disaggregated.

Later work by Ang et al. (2006), Lettau, Maggiori, and Weber (2014), and Farago and
Tédongap (2018) show that investors require an additional premium as compensation for
exposures to disappointment-related risk factors called downside risk. Recently, Lu and
Murray (2019) argued that bear risk capturing the left tail outcomes is even more import-
ant and Bollerslev et al. (2020) introduced betas based on semicovariances. In contrast to
the promising results, Levi and Welch (2020) concluded that estimated downside betas do
not provide superior predictions compared with standard aggregated betas, partially due to
the difficulties of accurately determining downside betas from daily returns. With a similar
argument of an overly simplistic pricing relation, another strand of the literature looks at
frequency decomposition and explores the fact that risk factors of claims on the consump-
tion risk should be frequency dependent since consumption has strong cyclical components
(Dew-Becker and Giglio 2016).

More recently, a new stream of literature led by de Castro and Galvao (2019)
assumes agents have quantile preferences. In asset pricing, such an investor prefers future
streams of quantiles of utilities leading to gy (#2: +1(1 + riz41) — 1) = 0. Assuming quantile
preferences, our focus shifts from the search for the best proxy for a discount factor toward
the capturing of the general dependence structures that reveal such flexible preferences.
Measures we introduce in this article allow us to identify risks associated with this type of
preference.

Recognizing departures from overly simplistic assumptions in the data, we need to
examine more general dependence measures since a simple covariance aggregating depend-
ence across distributions as well as investment horizons will not be a sufficient measure of
(in)dependence.

To illustrate this discussion, we consider dependence between market returns and a
popular small-minus-big (SMB) portfolio as well as momentum (MOM) portfolio. While
the literature assumes that these factors represent two independent sources of risk with con-
temporaneous correlation between them and the market being rather small, investigating
the dependence in various parts of their joint distribution across different lags and leads
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reveals interesting relations. Instead of aggregate covariance between the market return and
a factor portfolio, Figure 1 depicts tail- and lead/lag-specific covariation for a threshold
value given by t-quantile of the market return and a given lead/lag k of the following form:

COV(I{Tm,t—k < q,m(r))},l{r,;t < g5, (D)}, 3)

where 7,,; is the return of the market factor, 7;; is the return of either the SMB or the
MOM portfolio, I{.} is an indicator function, and g;,, is the quantile function of the market
return. This simple measure captures the probability of both returns being below some
threshold value in some time interval given by lead/lag k. This can be seen from the fact
that  Cov(I{rms—t < @r,(0)}, H{riz < 41, (0})=Pr{rmst < qum(7),7is < gm(1)} — 7740
Therefore, this dependence essentially measures additional probability over the independ-
ence copula of both variables being below some threshold value.

Looking at the median dependence of market return on SMB or MOM portfolio returns
(right column of plots for T = 0.5), we observe that dependence can be fully characterized
by rather weak contemporaneous covariation between the market and the SMB and MOM
portfolio returns, since no significant relation exists at any lead or lag in the relationship.?
Moving our attention toward the left tail of the joint distribution, more complicated de-
pendence structures emerge. The departure from the joint Gaussian distribution is strongest
in the left tail (left column of plots for t = 0.05). The co-occurrences of large negative mar-
ket returns with large negative SMB or MOM portfolio returns are significant and exist at
various leads/lags.

For example, if we look at the dependence between the market and SMB in the 5% tail,
we can observe that if the market is below this threshold, there is also a significant prob-
ability that the SMB portfolio will be below this threshold, with some delay. Similarly, the
SMB downturn precedes the market downturn with significant probability.* Therefore, in-
stead of arguing that the SMB factor proxies for an independent economic risk, the results
suggest that the SMB portfolio captures more complicated market TR at some specific
horizons.

In other words, the left tail dependence shows that extreme market drop is correlated
with extreme negative returns of SMB. This illustrates that large negative market returns
are correlated with the situation in which large companies largely outperform small compa-
nies in the SMB portfolio. Hence, we document a joint probability of co-occurrence of the
market extreme left tail event, and large companies outperform small companies, leading to
an increase in default risk in the economy (Chan, Chen, and Hsieh 1985). An important
feature of the dependence not documented by earlier studies is its persistence structure
shown by autocorrelations and the same strength for leading one another. At the same
time, while momentum is negatively correlated with the market, the second row of Figure 1
shows a significant lead-lag relationship of the momentum factor and stock market, point-
ing us to the intuition that extremely low market returns are cross-correlated with compa-
nies with low momentum outperforming those with high momentum.

3 Note that the dashed lines in the figure represent confidence intervals under the null hypothesis
that the two series are jointly normally distributed correlated random variables.

4 A similar lead/lag investigation regarding business cycle indicators is performed in Backus,
Routledge, and Zin (2010).
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Note that these observations are closely related to the literature on market frictions,
price delays and aggregations, and their asset pricing implications.” In that sense, we follow
a similar vein of thought as Bandi et al. (2021), with the important difference that we focus
on the downside risk specifically.

This line of thinking may lead us to the conclusion that such general dependence struc-
tures can hardly be described by traditional contemporaneous correlation-based measures.
The illustration suggests that there is no need for many factors to explain the average asset
return, as carefully measured exposure to market risk can capture the risk investors care
about. A natural way to summarize the dependence across these lead/lag relationships is to
employ frequency analysis and precisely summarize this joint structure for specific
horizons.

From an economic perspective, it is reasonable to assume that future marginal utility is
affected by the realization of low quantile returns today, as this event may lead, for ex-
ample, to bankruptcy or in other ways significantly shape the behavior of economic agents
in the future. In other words, extreme market events can have either short-run or long-run
effects on the marginal utility of investors. Previous studies, however, fail to fully account
for horizon-specific information in tails, while one of the main reasons turns to the inability
to measure such risks. Here, we propose robust methods for the measurement of such risks
and we argue that exploring the risk related to tail events as well as frequency-specific risk
is crucial.

To see how tail-specific risks are priced across horizons by investors, we proceed as fol-
lows. First, we define a quantile risk measure based on the covariance between indicator
functions, which has a natural economic interpretation in terms of probabilities. Second,
we introduce its frequency decomposition and combine these two frameworks into the QS
risk measure, which is the building block of our empirical model. This measure enables us
to robustly test for the presence of extreme market risks over various horizons in asset pri-
ces. The aim is not to convince the reader that the functional form of the preferences pre-
cisely follows our model but to show that there is heterogeneity in the weights that
investors assign to the risk for different investment horizons and different parts of the distri-
bution of their future wealth. By estimating prices of risk for short- and long-term parts, we
are able to identify the horizon that the investor cares most about. Moreover, by estimating
prices of risk for various threshold values, we are able to identify the part of the joint distri-
bution toward which the investor is the most risk averse.® This is done by controlling for
CAPM beta, and the influence of these new measures is measured as incremental informa-
tion over simplifying assumptions that lead to the CAPM beta asset pricing models.

2 Measuring the TRs across Horizons: A QS Beta

Here, we formalize the discussion and provide more general measures that will provide a
tool for inferring the discussed types of risks from data.

5 See, for example, Kamara et al. (2016) and Hou and Moskowitz (2005).

6 Our investigation complements the work of Delikouras (2017) and Delikouras and Kostakis (2019).
These studies investigate the position of the reference point of consumption growth and show that
its correct location is crucial for fitting the model based on generalized disappointment aversion.
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2.1. Tail Risk
Let us consider a bivariate, strictly stationary process x; = (1, ;)" holding some reference
economic or financial variable 7, proxying risk and asset returns 7,. The marginal distribu-
tion functions of m, and 7, will be denoted by F,, and F,, respectively, and by
A (T = F;dl(rm) =inf{geR:1, < Fn(q)} and qr(t) = F;l(r,) =inf{geR:1, < F(q)},
where 1,7, € [0, 1] denote the corresponding quantile functions.

Since we are interested in pricing extreme negative events, we want to measure depend-
ence and risk in lower quantiles of the joint distribution that can be evaluated by quantile
cross-covariance (Kley et al. 2016; Barunik and Kley 2019)

Ve (Tms T) = Cov(H{myap < qum(tm) ), Hre < qr(t0)})s (4)

k € Z, and I{A} denotes the indicator function of event A. The measure is given by the co-
variance between two indicator functions and, together with F,, and F,, can fully describe
the joint distribution of the pair of random variables 72, and 7, that is, provide a measure
for their serial and cross-dependency structure. If the distribution functions of the variables
are continuous, the quantity is essentially the difference between the copula of the pair m,
and 7, and the independent copula, that is, Pr{m, .t < qu(tm),7: < qr(%)} — TuTr. Thus,
covariance between indicators measures additional information from the copula over an in-
dependent copula about how likely it is that the series are jointly less than or equal to a
given quantile of the variable ;. It enables flexible measurement of both the cross-
sectional structure and time-series structure of the pair of random variables.

Comparing these new quantities with their traditional counterparts, it can be observed
that the covariance and means are essentially replaced by copulas and quantiles. A market
beta associated with the TR can then be defined using Equation (4). This quantity would be
similar to the TR measure of Schreindorfer (2020), which is also a function of the T quantile
threshold of consumption growth. The correlation between asset returns and consumption
growth is then computed conditional on realizations of consumption growth below the
threshold. It is also related to the negative semibetas of Bollerslev et al. (2020), which esti-
mates the dependence between market return and asset return conditional on the co-
occurrence of negative events for both market and asset.

2.2. TRs across Horizons: A QS Beta

It is natural to further assume that economic agents care not only about different parts of
the wealth distribution but also differently about long- and short-term investment horizons
in terms of expected returns and associated risks. Investors may be interested in the long-
term profitability of their portfolio and may not be concerned with short-term fluctuations.
Frequency-dependent features of an asset return then play an important role for an investor.
Bandi and Tamoni (2021) argue that covariance between two returns can be decomposed
into covariance between disaggregated components evolving over different time scales, and
thus the risk on these components can vary. Hence, market beta can be decomposed into a
linear combination of betas measuring dependence at various scales, that is, dependence be-
tween fluctuations with various half-lives. Frequency-specific risk at a given time plays an
important role in the determination of asset prices and the price of risk in various frequency
bands may differ, which means that the expected return can be decomposed into a linear
combination of risks in various frequency bands.
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A natural way to decompose covariance between two assets into dependencies over dif-
ferent horizons is in the frequency domain. A frequency domain counterpart of cross-
covariance 7, is obtained as the Fourier transform of the cross-covariance functions
Smp(0) =L 32 9y *. Conversely, cross-covariance can be obtained from the in-
verse Fourier transform of its cross-spectrum as y;"" = [* S, ,(w)e**dw, where S, () is
the cross-spectral density of random variables #2, and 7, and i = v/—1.

This representation of covariation allows us to decompose the covariance and variance
into frequency components and disentangle the short-term dependence from the long-term
dependence. Using a similar approach, Bandi and Tamoni (2021) estimate the price of risk
for different investment horizons and show that investors possess heterogeneous preferen-
ces over various economic cycles instead of looking only at averaged quantities over the
whole frequency spectrum.

To uncover more general dependence structures, we propose to study the Fourier trans-
form of the covariance of indicator functions ;"' (T, 7,) instead. In this way, one can quan-
tify the horizon-specific risk premium across the joint distribution. To define the new beta
representation that will allow us to characterize such general risks, we use the so-called
quantile cross-spectral densities introduced by Barunik and Kley (2019) as a generalization
of QS densities of Dette et al. (2015).

The cornerstone of this new beta representation lies in quantile cross-spectral density
defined as

77 (@5 Ty T

2 Z I (T Tr)e O (5)
1 : —ika
2— Z ov(I{mHk < qm(rm)},l{rt < q,(r,)})e ke (6)
with ® € R and 1,7, € [0,1]. A quantile cross-spectral density is obtained as a Fourier
transform of covariances of indicator functions defined in Equation (4) and will allow us to
define beta that will capture the TRs as well as spectral risks.

The QS betas that characterize horizon- and tail-specific market risk at a given o, 1,,,,
and 1, are then defined as

f””(w Ty Tr)

F (@3 T,y Trn)

(w 'cm,r,) (7)
and will be the key quantity in our analysis. To estimate the QS beta, we use the rank-based
copula cross-periodogram introduced by Barunik and Kley (2019)

m.,r 1
DR (0 T, Ty) = . nd' (@5 Ty )}, g (— 05 T7), (8)

g Lia EPRNPEN
where d’”R((u T) 1= :’ZOAI{Fn‘m(m,) < tuye ™ and df p(w;t) =Yg H{Fu, (1) <
7, e 1 with Fn,m(mt) and F,,(r;) being empirical distribution functions of 7, and r,, re-
spectively. A consistent estimator of the quantile cross-spectral density is then

_.

é:}:(a}; T, Ty) 1= 2771 Wa(w — 2ns/n)I, g (2ns /1, T, 1), 9)
S

Il
—
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where W,, denotes a sequence of weight functions, precisely to be defined in the next section
studying the asymptotic properties of the proposed estimators. The estimator of the QS
beta is then given by

~m, é:,r T, T
B (01t ) 1= ) (10)

G, R (©3 Ty Tm)

~m,r . .. .
Before we prove that f§, p (®;7,,1,) is a legitimate estimate of ™"(w;7,,,1,), we note
that for serially uncorrelated variables (regardless of their joint or marginal distributions),
the Fre¢het/Hoeffding bounds give the limits that QS beta can attain in the case of a serially

independent process as —max{z,::(r{jﬁ} 2 < B Ty, Th) < 7"“'1;{:(”137;1

2.3. Asymptotic properties of the QS beta

To derive the asymptotic properties of the QS beta, some assumptions need to be made.
Recall (cf. Brillinger 1975, p. 19) that the rth order joint cumulant cum(Z,...,Z,) of the
random vector (Zy,...,Z,) is defined as

am(Zi,....Z) = Y. 1" (p-1)E [H Z,} E {H z,} ,

JEV1

IV

with summation extending over all partitions {v1,...,1}, p=1,...,7r,0f {1,...,7}.
Regarding the range of dependence of x; € (1, ;)’, we make the following assumption:

Assumption 1. The processes (x;),., are strictly stationary and exponentially o-mixing,
that is, there exist constants K < oo and « € (0,1), such that

a(n) = sup \IP’(A NB) — IP’(A)]P’(B)| < K", meN. (11)
A € a(x0,%-1,...)
B € o(xp, Xnt1,...)

Note that Assumption 1 is a bivariate extension of assumptions made in Kley et al.
(2016) and used in Barunik and Kley (2019) to study QS quantities. It is important to ob-
serve that this assumption does not require the existence of any moments, which is in sharp
contrast to classical assumptions, where moments up to the order of the respective cumu-
lants must exist, and sets A; are not required to be general Borel sets, as in classical mixing
assumptions. As noted in Barunik and Kley (2019), this assumption holds for a wide range
of popular, linear and nonlinear, multivariate and univariate processes that are ¢-mixing at
an exponential rate, including traditional Vector Autoregressive Models (VARMA) or vec-
tor-Autoregressive Conditional Heteroscedasticity (ARCH) models.

To establish the consistency of the estimates, we further need to consider sequences of
weights that asymptotically concentrate around multiples of 27.

Assumption 2. The weights are defined as W, (u) :=3 " b, YW (b, [u + 2nj]), where
b,>0,n=1,2,..., is a sequence of scaling parameters satisfying b, — 0 and nb, — oo,
as n — oo. The weight function W is real-valued, even has support |—n,n|, bounded vari-
ation, and satisfies [* W (u)du = 1.

The main result of this section will legitimize ﬁ:;(a); Tm,T,) as an estimator of the QS
beta ™" (w; T, 1/). The legitimacy of the estimates follows from the fact that the estimators

converge weakly in the sense of Hoffman—Jergensen (cf. Chapter 1 of van der Vaart and
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Wellner 1996). We denote this mode of convergence by =-. The estimators under consider-
ation take values in the space of (elementwise) bounded functions [0, 1]2 — €% which we
denote by £Z..([0, 1]2) (Kley et al. 2016). While the results of empirical process theory are
typically stated for spaces of real-valued, bounded functions, these results transfer immedi-
ately by identifying £%,.,([0, 1)) with £*([0, 1224,

Using Proposition 1 in Appendix A and following Kley et al. (2016) and Barunik and
Kley (2019), we quantify uncertainty in estimating f”"(; T,u, 7,) by é:;(w; Ty T) ASYMP-
totically in the following theorem.

Theorem 1. (Barunik and Kley 2019). Let Assumptions 1 and 2 hold. Assume that the mar-
ginal distribution functions F,, and F, are continuous and that constants k > 0 and k € N
exist, such that b, = oln=V V) gud b,n!~* — co. Then, for any fixed v € R,

/' nb, ((A;:t;(w, Ty Tr) — (@3 Ty Tr) — B;"”’(k) (@3 Ty 1:,)) = H"(w;-,-), (12)

T, 7, €[0,1]

where the bias is given by Bﬁ“(k)(w; Ty Tr) 1= Zf:z%ﬁn UZW(v)dvd‘fj){ f (@; T, T7). The

process B (w; -, -) is a centered, C-valued Gaussian process characterized by

COV(HhJZ (w;ul,vl),Hk“kz(i; uy,12))
= 2n(J", W2(a)dor) (f* (03 101, 02) 722 (—e01 01, 02) (0 — 2) (13)
+ 1 (0501, 02) PP (—s 01, 12 ) (0 + 7)),

where n(x) :=I{x = 0( mod2n)} (cf. Brillinger 1975, p.148) is the 2n-periodic extension
of Kronecker’s delta function. The family {H(w;-,-), ® € [0, 7]} is a collection of independ-
ent processes.

It is important to note that in sharp contrast to classical spectral analysis, where higher-order
moments are required to obtain smoothness of the spectral density (cf. Brillinger 1975, p. 27),
Assumption 1 guarantees that the quantile cross-spectral density is an analytical function of .
Assume that W is a kernel of order p; that is, for some p, that satisfies Jfﬂ VW (v)dv = 0, for
allj<p,and 0 < [* v»W(v)dv < oo; for example, the Epanechnikov kernel is a kernel of
order p =2. Then, the bias is of order b?. As the variance is of order (nbn)71 , the mean-squared
error is minimal if b, =< 7~ Y/*+D_ This optimal bandwidth fulfills the assumptions of
Theorem 1. A detailed discussion of how Theorem 1 can be used to construct asymptotically
valid confidence intervals can be found in Barunik and Kley (2019).

The independence of the limit {H(w;-,-), € [0,n]} has two important implications.
On the one hand, the weak convergence Equation (12) holds jointly for any finite-fixed col-
lection of frequencies . Furthermore, fixing ji, j» and 71,72, the Copula Cross-
Periodograms (CCR) periodogram é:.‘g(w; 71,72) and traditional smoothed cross-
periodogram determined from the unobservable, bivariate time series

(I{F/'l (XZ,/l) < T1},I{Fﬁ (Xt1/2> < 1’2}), = 0,. L= 1, (14)

are asymptotically equivalent. Theorem 1 thus reveals that in the context of the estimation
of the quantile cross-spectral density, the estimation of the marginal distribution has no im-
pact on the limit distribution (cf. comment after Remark 3.5 in Kley et al. 2016).
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We are now ready to state the main result of this section.

Theorem 2. Let Assumptions 1 and 2 hold. Assume that the marginal distribution func-
tions F,, and F, are continuous and that constants i > 0 and k € N exist, such that b, =
ol VD) gud  bn'™ — co. Assume that for some € (0,1/2), we have
infeep g 7 (03 T, Tw) > 0, and inf 1 ' (05 7, 7,) > 0. Then, for any fixed » € R,

\/nb, (E:g(w; Ty Tr) = P77 (03 T, Tr) — B;”"’(k)((u; Tins rr)>

(TmsTr)Ele 1 =]

1 fomr
= — | Hnm — s |, 15
fm_m< " > 1)
where
B::”(k)(wv Tm7Tr) = f ! (Bmm - ffmJ Bm,r> (16)

and we have written f,, for the quantile cross-spectral density f“‘b(w; T4, Tp) as defined in
. kb ' ca,
Equation (5), B,y := Zfzzg_'fﬁn U[W(v)dvﬁf”b(w; Ta;Tp), and My for H“‘b(w; Tas Tp)

defined as a centered, C-valued Gaussian process characterized by
Cov(H! (w; 11, v1), HH R (D 1y, 1))
= 2m(J7, W2(o)da)(f" X (05 1, 12) P2 (=0 01, 02) (00 = 2) (17)
1 (031, 02) (— o3 01, u2)n (0 + ),

where n(x) := I{x = 0(mod 2n)} (cf. Brillinger 1975, p. 148) is the 2n-periodic extension
of Kronecker’s delta function. The family {H(w;-,-), » € [0, 7]} is a collection of independ-
ent processes.

Proof. The proof is lengthy and technical, and it is therefore deferred to Appendix A.1.0J

Convergence to a Gaussian process can be employed to obtain asymptotically valid
pointwise confidence bands. A more detailed discussion on how to conduct inference is
given in Appendix A.2.

If W is a kernel of order p > 1, we have that the bias is of order b%. Thus, if we choose
the mean square error minimizing bandwidth b, =< »~1/@*+1  the bias will be of order
nP/2p+1)

Regarding the restriction ¢ > 0, note that the convergence Equation (15) cannot hold if
(t1,72) is on the border of the unit square, as the quantile coherency B(w;71,12) is not
defined if 7; € {0, 1}, as this implies that Var (I{F;(X;,) < 7;}) = 0.

3 Pricing Model for Extreme Risks across the Frequency Domain

QS betas defined in the previous sections will be the cornerstone of our empirical models.
We assume that QS betas for low threshold values will be significant determinants of risk
priced heterogeneously across investment horizons. We will employ QS betas to study two
kinds of risk related to the market return. First, we will investigate TR, a risk representing
dependence between extreme negative events of both market and asset returns at a given
horizon. In case the stochastic discount factor is linear in factors and we consider the
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market return as a risk factor, we further look at the dependence between asset returns and
market returns and the threshold values are based on quantiles of market returns.

It is useful to connect our notion of risks to a well-established rare disaster model of
Nakamura et al. (2013). QS betas between consumption growth and equity returns can be
directly connected to permanent and transitory disasters that moreover unfold over mul-
tiple years or just one period. QS beta can be used to clearly distinguish between the de-
pendence structures of these types that are otherwise invisible to investors. The detailed
discussion with simulations is relegated to Appendix B due to the limited space of the
paper.

Our notion of TR also relates to the downside risk of Ang et al. (2006) and Lettau,
Maggiori, and Weber (2014). While downside risk stems from covariation of asset returns
and market return under some threshold, our notion stems from joint probability of the co-
occurrence of extreme negative returns in both asset and market returns. This is more in
line with the approach of semibetas (Bollerslev et al. 2020) but with an important feature
of the persistence structure of such risks across investment horizons.

Second, we will examine EVR, a risk capturing unpleasant situations in which extremely
high levels of market volatility are linked with extremely low asset returns, again with re-
spect to the investment horizon. We argue that both of these concepts capture important
features of risk of an asset faced by the investor and thus should be priced in a cross-section
of asset returns.

In each of the models defined in the paper, we control for CAPM beta as a baseline
measure of risk. This ensures that if the QS betas are proven to be significant determinants
of risk premium, they do not simply duplicate the information contained in the CAPM
beta. Moreover, in the case of TR, we define relative betas that explicitly capture the add-
itional information over the CAPM beta only.

3.1. Tail Market Risk

For better interpretability, we construct a QS beta for a given frequency band correspond-
ing to reasonable economic cycles. This definition is important since it allows us to define
short-run or long-run bands covering corresponding frequencies and hence disaggregate
beta based on the specific demands of a researcher.

We expect the dependence between market return and asset return during extreme nega-
tive joint events to be positively priced across assets. The stronger the relationship is, the
higher the risk premium required by investors. In addition, we expect this risk to be priced
heterogeneously across different investment horizons.

To capture the TR measuring the probability of co-occurrence between (extreme) nega-
tive events of both market and asset returns at a given horizon, we define

A
A

ZZO:—OQ COV(I{Tm,t+k S 49, (T)},I{ri‘t s 4, (T)})e_ikm

(O3 1) = _ 18
TR (5 7) ZQE[(:}],wz) Y he—oe CovV (T < r,, (0), H{rms < gy, (x)}) ek (18)

The numerator of Equation (18) captures the probability of co-occurrence of the nega-
tive events at a given horizon and the denominator captures information related to the
probability of market tail events at a given horizon, which is related to the variation in mar-
ket returns.
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Similar to Ang et al. (2006) and Lettau, Maggiori, and Weber (2014), we define relative
betas that capture additional information not contained in the classical CAPM beta. In this
way, we can test the significance of TR decomposed into the long- and short-term compo-
nents to obtain their prices of risk separately. Because we want to quantify risk that is not
captured by the CAPM beta, we propose to test the significance of TR via differences in the
QS beta and QS beta implied by the Gaussian white noise assumption. We call this relative
QS beta and we compute it for a given frequency band Q; and given market t-quantile
level as

B (5 7) = B (55 7) = Blauss (5 7)5 (19)

where S, (Q,~7 1) = % with Cgauss being a Gaussian copula with correlation p
between market return and an asset’s return.”

Assuming that all the relevant pricing information is contained in the CAPM beta, con-
temporaneous covariance between two time series should capture all the priced informa-
tion. Moreover, if the series are jointly normally distributed and independent through time,
the CAPM beta contains all the available information regarding the dependence. Hence,
under the hypothesis that market and asset returns are correlated Gaussian noise,
B (5 ) will not carry any additional information, and CAPM characterizes the risks
well. Note that ¢, . (€, 7) is constant across frequencies and depends only on the chosen
quantile and correlation coefficient. On the other hand, if investors price information not
captured by the CAPM beta, the QS beta estimated without any restriction may identify an
additional dimension of risk not contained in the CAPM beta. More specifically, we can
identify whether dependence in a specific part of the joint distribution and/or over a specific
horizon is significantly priced.

If the CAPM beta captures all the risk information priced in the cross-section, the risk
premium corresponding to the relative QS beta will be insignificant. Moreover, if the
returns are Gaussian, the relative QS beta will be zero at all frequencies and quantiles.®

Our first model is hence a TR model, which is defined as

2
(7] = D B (Q57) e (Q137) + BLirAcarnts (20)
j=1

7 This stems from the fact that quantile cross-spectral density corresponds to a difference of proba-
bilities Pr{ri: <, (1), rm¢ < @, (1)} — 77;, where 7 and 7; are probability levels under a Gaussian
distribution and t;is obtained as 7; = F,{qn(7)}.

8 Here, we briefly note that we set the threshold values in the covariance between indicators’ meas-
ure of dependence as a t quantile of market return. In the case of TR betas, the thresholds for mar-
ket and asset returns are the same and are given by the 7 quantile of market return. In the case of
EVR betas, the threshold for increments of market volatility is given by the t quantile of the series
of increments of market volatility, and the threshold for asset return is given by the t quantile of
market return. Note that one could flexibly choose the thresholds based on the best model fit spe-
cific to our datasets. For example, we may choose the threshold value to be asset specific by cor-
responding to the = quantile of the asset return. We do not follow this approach because we do not
explicitly care about dependence between quantiles in the cross-section. Rather, we care about
dependence in extreme market situations.
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where 7§, is the excess return of asset i, oy 1S an aggregate CAPM beta, Acapw is the
price of aggregate risk of the market captured by the classical beta, and Ar (), 7) is the
price of TR for a given quantile and horizon (frequency band). We specify our models to in-
clude the disaggregation of risk into two horizons—long and short. Long horizon is defined
by corresponding frequencies of cycles of 3 years and longer, and short horizon by frequen-
cies of cycles shorter than 3 years.!® The procedure for obtaining these betas is explained
below.

The intuition behind the TR model defined in 20 is that the relative TR betas will be
zero in the case of Gaussian data, and no association between TR and the risk premium
should be documented since risk is perfectly described by variance. On the other hand, if
the data distribution is not Gaussian, the relative TR betas will be significantly different
from zero, and the significance of the estimated price of risk captures the pricing effect of
the TR over the conventional measure of dependence based on the contemporaneous correl-
ation. We explicitly wish to investigate whether the dependence information over the clas-
sical assumptions is a significant determinant of the excess returns, so it is not important
whether the CAPM model is true or not.

This specification also relates to the models recently proposed in the literature.'" First,
model of Bandi and Tamoni (2021) builds on the consumption CAPM model and thus use
consumption as their proxy for risk when evaluating pricing implications of the frequency-
dependent risk. Second, Bandi et al. (2021) use the market factor for their analysis of the
cross section of asset returns using spectral decomposed factors. In contrast to these
attempts, we consider horizon-specific risk in i tails.

From the TR perspective, the proposed model also relates to the model of Bollerslev
et al. (2020), who investigate the pricing implications of the co-occurrence of the downside
events of both market and asset returns. In contrast to our model, Bollerslev et al. (2020)
does not consider the horizon over which these risks unfold.

3.2. Extreme Volatility Risk

Assets with high sensitivities to innovations in aggregate volatility have low average returns
(Ang et al. 2006). We further focus on extreme events in volatility and investigate whether
dependence between extreme market volatility and tail events of assets is priced across
assets. Because time of high volatility within the economy is perceived as time with high un-
certainty, investors are willing to pay more for the assets that yield high returns during these
tumultuous periods and thus positively covary with innovations in market volatility. This
drives the prices of these assets up and decreases expected returns. This notion is formally
anchored in the intertemporal pricing model, such as the intertemporal CAPM model of
Merton (1973) or Campbell (1993). According to these models, market volatility is stochas-
tic and causes changes in the investment opportunity set by changing the expected market

9 Note that all the risk measures (in line with the literature) present in the paper are calculated
using excess returns.

10 In Appendix D, we perform a robustness check by defining the horizons using 1.5 years as a
threshold and the results do not qualitatively differ. Different specifications are available upon
request.

11 Barunik and Kley (2019) features a toy example of TR risk estimated on asset returns as well, but
they do not investigate any asset pricing implications of the estimated risk.
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returns or by changing the risk-return trade-off. Market volatility thus determines systemat-
ic risk and should determine the expected returns of individual assets or portfolios.
Moreover, we assume that extreme events in market volatility play a significant role in the
perception of systematic risk and that exposure to them affects the risk premium of assets.

In addition, decomposition of volatility into the short run and long run when determin-
ing asset premiums was proven to be useful (Adrian and Rosenberg 2008). Moreover,
Bollerslev et al. (2020) incorporated the notion of downside risk into the concept of volatil-
ity risk and showed that stocks with high negative realized semivariance yield higher
returns. Farago and Tédongap (2018) examine downside volatility risk in their five-factor
model and obtain a model with negative prices of risk of the volatility downside factor,
yielding low returns for assets that positively covary with innovations of market volatility
during disappointing events. Thus, we want to investigate which horizon and part of the
joint distribution of market volatility and asset returns generate these findings.

We assume that assets that yield highly negative returns during times of large innova-
tions of volatility are less desirable for investors, and thus, holding these assets should be
rewarded by higher risk premiums. In addition, we assume that such risk will be horizon
specific. To measure the extreme volatility risk, we define the beta that will capture the
joint probability of co-occurrences of negative asset returns and the extreme increment of
market volatility across horizons. Because of the nature of covariance between indicator
functions, we work with negative market volatility innovations —Ac? = —(0? — o2 ,),
where we estimate o, with a popular GARCH(1,1). Then, the high volatility increments
correspond to low quantiles of the distribution of the negative differences. If an asset posi-
tively covaries with increments of market volatility, the extreme volatility risk beta will be
small, and vice versa. This is in contrast to most of the measures employed in similar analy-
ses. We define the beta that captures extreme volatility risk across horizons as

IN

Y Cov(I{=Adt < q ap (0} {1
Zkffoo Cov (I{ Ao_prk q*Aotz (T)’ I{—AO’ZZ

qr,, (T)}) eike
9 2z (1)} )e ko
@)

BAUZ Zﬂ, [o1,02)

IA

Threshold values for asset returns are obtained in the same manner as for TR and are
derived from the distribution of the market returns, which means that g,, (1) is used as an
asset threshold value. For example, for model with 7 = 0.05, when computing extreme
market volatility beta, as a threshold for negative innovations of market squared volatility,
we use the 5% quantile of its distribution (corresponding to the 95% quantile of the origin-
al distribution), and the threshold for asset return is set to the 5% quantile of the distribu-
tion of market returns.

Our second model, the extreme volatility risk (EVR) model, will test the significance of
EVR betas and is defined as

1t+1 Zﬂmz ) ”EV(Q )+ﬁCAPMACAPM7 (22)

where, as in the case of the TR model, we include the CAPM beta to control for the corre-
sponding risk premium. In line with the results of the current literature (e.g., Boons and
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Tamoni [2015], Boguth and Kuehn [2013], or Adrian and Rosenberg [2008]), we expect
positive prices of risk corresponding to EVR betas. This is because EVR betas measure the
dependence between extremely high increments of market volatility (i.e., low values of
negative innovations of market volatility) and low values of asset returns. Therefore, if an
asset yields low returns in times of high market volatility, investors will require high premi-
ums to hold it. Note that our EVR model closely relates to the model of Farago and
Tédongap (2018), who introduces downside volatility betas without the frequency aspect
of the risk.

Unlike the TR model, the EVR model does not take into consideration the Gaussianity
of the data. The estimated price of EVR will directly measure the pricing implication of ex-
treme dependence between market increments of volatility and asset returns.

3.3. Full Model

Finally, to show the independence of the two horizon-specific TRs, we also combine them
into the third model that includes both TR and EVR for both short- and long-run horizons,
again controlling for a traditional CAPM beta. The model possesses the following form:

2
[Fra] = D B (@ 7)rw () +Zﬁ $7)Aey (3 T) + Bliiicar.  (23)
1

j=

We denote this model as the full model. Assuming that TR and EVR are priced, using
this model, we will investigate whether these risks are subsumed by each other or whether
they describe independent dimensions of priced risk.

Throughout the paper, we focus on results for T equal to 1%, 5%, 10%, 15%, 20%,
and 25%. The choice of 1%, 5%, and 10% quantiles is natural and arises in many econom-
ic and finance applications. Most likely, the most prominent example is value-at-risk,
which is a benchmark measure of risk widely used in practice and studied among academ-
ics. Remaining values of z, that is, 15%, 20%, and 25% capture general downside risk and
thus more probable negative joint events.

3.4. Estimation

To test our models, we use the standard Fama and MacBeth (1973) cross-sectional regres-
sions. In the first stage, we estimate all required QS betas, relative QS betas, and CAPM
betas for all assets. We define two nonoverlapping horizons: short and long. Horizon is
specified by the corresponding frequency band. We specify the long horizon by frequencies
with corresponding cycles of 3 years and longer, whereas short horizon indicates frequen-
cies with corresponding cycles below 3 years.'? QS betas for these horizons are obtained by
averaging QS betas over corresponding frequency bands.

In the second stage, we use these betas as explanatory variables and regress average asset
returns on them and obtain the model fit. We assess the significance of a given risk by the
significance of its corresponding estimated price.'® In the case of the full model, we obtain
the statistical inference on the estimated prices of risk by repeating cross-sectional

12 For a robustness check using 1.5 years as a threshold value, see Appendix D.
13 As shown in Shanken (1992), if the betas are estimated over the whole period, the second-stage
regression is T-consistent.
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regression at every time point, that is, in every month t = 1,..., T, we estimate the model
of the following form:

STmsTi

ZBIZ1” 1) A (Q +Zﬂmz $0)2eky (1) + Bapmdrcann.  (24)

We obtain T cross-sectional estimates of lambdas for each of the corresponding betas. Then,
we estimate the prices of risk by time-series averages of the lambdas over the whole period

T
%ZIM(Q,-;TL j=1,2, k=TR,EVR. (25)
=1

Standard errors and corresponding t-statistics are computed from o> (7, (Qj;1)) =
AT s 1) — 24 (€3 7)) for both horizons j = {1,2} and risks k = {TR,EVR}.

The same estimation logic applies to other studied models. To take into account mul-
tiple hypothesis testing, we follow Harvey, Liu and Zhu (2016) and report #-statistics of
estimated parameters (below the actual estimates). The overall fit of the model is measured
from the OLS regression of the average returns of the assets on their betas. Throughout the
paper, we use the root mean-squared pricing error (RMSPE) metric, which is a widely used
metric for assessing model fit in the asset pricing literature, to assess the overall model
performance.

As mentioned earlier, we estimate our models for various threshold values given by the t
quantile of market return. Furthermore, in Appendix C.2, we compare our newly proposed
measures with (i) classical CAPM, (ii) downside risk model of Ang et al. (2006) (DR1), (iii)
downside risk model of Lettau, Maggiori, and Weber (2014) (DR2), (iv) three-factor model of
Fama and French (1993), (v) GDA3 and GDAS models of Farago and Tédongap (2018), and
(vi) coskewness and cokurtosis measures. Details regarding the estimation of the risk measures
of the competing models are summarized in Appendix E. All the models are estimated for com-
parison purposes without any restrictions in two stages, similar to our three- and five-factor
models. Thus, GDA3 and GDAS are, despite their theoretical background, estimated without
setting any restriction to their coefficients and are also estimated in two stages.

3.5. Size of the Two-Stage Estimation Procedure

Naturally, there is a question of how the two-stage procedure with estimates on frequency
bands performs in typical (small) samples, which we encounter in finance. To give the read-
er a notion of these properties, we present a simulation exercise to investigate the statistical
size of our testing approach. In each run, we simulate returns on either 300 or 30 assets to
mirror the settings of our empirical investigation of individual stocks and portfolio returns.
Each asset possesses a length of 720 observations using either the classical CAPM model or
white noise as a data generating process. First, we simulate time series of returns on the
market from the normal distribution N, ¢) with ¢ = 0.06/12 and ¢ = 0.2/v/12. Second,
in the case of the CAPM model, we generate time series of asset returns by randomly draw-
ing the CAPM beta from the normal distribution N(E, O'/;) , where =1 and a4 = 0.5, and
then create the return as

Rit:ﬂiRmt+€it7i:1?-"1N7t:17~-~7T' (26)
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In the case of the white noise model, we set all the CAPM betas equal to 0. In the third
stage, for every stock, using the simulated data, we estimate their CAPM betas and QS
betas (both TR and EVR) and regress the average returns on them using specifications of
the TR model, EVR model, and full model. We determine the number of cases where we in-
correctly reject the null hypothesis that a given QS beta in a given model is a significant de-
terminant of average returns. We set the significance level at « = 0.05. Ideally, we would
like to observe the rejection rates of approximately 5%. The results are summarized in
Table 1, which shown that the rejection rates typically correspond to the chosen signifi-
cance level o. This shows the validity of our approach; even for low values of = and long
horizons, there is no significant bias in the rejection rates.

4 QS Risk and the Cross-Sections of Expected Returns

Here, we discuss how extreme risks are priced in the cross-section of asset returns across
horizons. We focus on the results from the standard Fama and MacBeth (1973) cross-
sectional predictive regressions of the three main models and use various cross-sections of
asset returns. We show that the QS risks are priced heterogeneously across various asset
classes. This provides a great opportunity for investors who prefer to avoid certain risks. By
choosing a specific asset class in which a specific risk is not associated with a risk premium
(i.e., assets with high exposure to this risk do not yield an extra premium and vice versa),
investors can avoid this risk without paying extra money for it.

First, we investigate returns on individual stocks from the U.S. market. Next, we use
standard Fama-French portfolios sorted on various characteristics. More specifically, we
use 30 industry portfolios, 25 portfolios sorted on size and value, and decile portfolios
sorted either on operating profit, investment, or book-to-market. Finally, we use three data-
sets previously introduced in the literature to illustrate some specific phenomena. First, we
analyze the dataset of Lettau, Maggiori, and Weber (2014), which contains portfolios con-
structed from various asset classes. Second, we analyze equity portfolios sorted by cash
flow duration of Weber (2018). Third, we investigate data on investment strategies con-
structed across various asset classes from Ilmanen et al. (2021).

We report models estimated for various threshold values given by the t quantile of the
market return. We report models estimated for the 1%, 5%, 10%, 15%, 20%, and 25%
quantiles.' Throughout the paper, market return is computed using the value-weight aver-
age return on all CRSP stocks. As a risk-free rate, we use the Treasury bill rate from
Ibbotson Associates. '

4.1. Individual Stocks

We collect our data from the Center for Research in Securities Prices (CRSP) database on a
monthly basis. The sample spans from July 1926 to December 2015; we select stocks with
a long enough history to obtain precise estimates of our measures of risk. While the main
results are presented with a sample of stocks with an available history of 60 years, to study
the robustness of our results on a larger cross-section of data, we also report results based

14 We had to rescale the data of Lettau, Maggiori, and Weber (2014) and Weber (2018) to be compar-
able to the market return.
15 All the data were obtained from Kenneth French’s online data library.
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Table 1 Size of the two-stage estimation procedure

DGP Number of assets © TR Extreme volatility risk  Full model
Kong Hahore Hong Zhoe Homg Zahore Mong bt
CAPM N=300 0.01 0.052 0.046  0.062 0.072  0.060 0.048 0.070 0.080

0.05 0.066 0.062  0.072 0.058  0.066 0.062 0.072 0.058

0.10 0.056 0.046  0.048 0.088  0.068 0.048 0.066 0.088

0.15 0.056 0.046  0.050 0.042  0.048 0.046 0.048 0.038

0.25 0.046 0.054  0.068 0.032  0.056 0.054 0.064 0.030

N=30 0.010 0.054 0.040  0.056 0.066  0.074 0.052 0.062 0.060
0.05 0.028 0.060  0.042 0.048  0.026 0.054 0.042 0.060

0.10 0.044 0.058  0.048 0.058  0.050 0.058 0.044 0.052

0.15 0.044 0.044 0.048 0.058  0.044 0.038 0.048 0.048

0.25 0.062 0.054 0.068 0.044  0.056 0.060 0.058 0.054

White noise N=300 0.01 0.058 0.050  0.064 0.058  0.054 0.056 0.062 0.056
0.05 0.040 0.064  0.068 0.040  0.036 0.064 0.064 0.042

0.10 0.044 0.044  0.054 0.046  0.042 0.042 0.066 0.054

0.15 0.044 0.042  0.060 0.054  0.046 0.046 0.072 0.050

0.25 0.066 0.040  0.040 0.068  0.062 0.038 0.050 0.064

N=30 0.01 0.054 0.038 0.074 0.060  0.040 0.040 0.066 0.058
0.05 0.050 0.060 0.036 0.038  0.048 0.064 0.038 0.040

0.10 0.046 0.048  0.032 0.048  0.048 0.040 0.034 0.048

0.15 0.052 0.048  0.042 0.060  0.048 0.040 0.038 0.052

0.25 0.044 0.072  0.052 0.050  0.036 0.066 0.060 0.036

Notes: Here, we report rejection rates of the two-stage estimation procedure when the assets are generated
using either the CAPM model or white noise. The significance level is set to & = 0.05. The number of simula-
tions is 500.

on stocks with a shorter history of 50 years. On the other hand, one can argue that the pre-
cision of the estimated measures of risk relies on the number of observations available in
the tail; hence, we also report results based on stocks with 70 years of available history. We
report estimation results in Table 2.

Models are estimated for different values of the threshold value given by the t market
quantile to capture the different probabilities of event co-occurrences. The results of the TR
model show that the relative TR beta for short horizons is more significant for low values
of 1, corresponding to 0.01, 0.05, and 0.10, while for t > 0.15, the relative TR beta
becomes significant for long horizons. This pattern is observed across all three samples, but
it is weaker among stocks with a history of 50 years, especially regarding the prices of risk
corresponding to the long relative TR betas. This result may be caused by the fact that long
relative TR betas require a longer history of data to obtain precise estimates in comparison
to the short TR betas.

Signs of the estimated prices of risk are intuitive. More extreme dependence between
market and asset returns in both horizons leads to a higher risk premium, as we may expect.
If an asset is likely to deliver poor performance when the market is in a downturn, this asset
is not desirable from the point of view of an investor, and to decide to hold such asset, she
would require a significant risk premium. From the magnitude of the coefficients, we infer
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Table 2 Individual stocks

TR Extreme volatility risk Full model

T IR JCATME RMSPE  Af, JEY JCATME RMSPE 2R, Mioet o 2 JCAPM - RMSPE

70years (142 assets)  0.01  —0.059  0.657 0.754 26.683 —0.086 —0.275 0.960 28.542 0.125 0.620 —0.210 —0.168 0.834 26.387
—0.660  3.309 3.911 —0.972 —0.887 5.001 0.901 3.087 —1.485 —0.539 4.196

0.05 0.102 1.319 0.717 26.807 0232  0.380 0.682 28.192 0.080 1.295  0.009 0.303 0.721 26.757
0.500  3.520 3.871 1.394  0.753  3.028 0.221 3.534  0.030  0.595 2.978

0.1 0.368  1.203 0.739 27.121 0.474  0.472 0.558 27212 —0.064 1.037  0.422 0311 0.555 26.555
1.483  2.304 4.144 2.532  0.677 2.533 —0.158 1.973  1.384  0.448 2312

0.15  0.544  0.895 0.733 26.672 0.509  0.552 0.602 27.016 0.242 0.882  0.326  0.538 0.618 26.289
2327 1511 4.075 2.783  0.778 2.903 0.730 1.487 1223  0.752 2.875

0.2 0.665 0279 0.784 26.995 0.702 —0.272 0.605 25.796 —0.041 0.848  0.693 —0.094 0.586 25.431
2.566  0.400 4.454 3.665 —0.348 3.070 —0.116 1.250  2.601 —0.120 2.868

025  0.746 —0.132 0.812 27.244 0.823 —0.543 0.648 25.768 0.009 0.444  0.805 —0.397 0.643 25.676
2.805 —0.181 4.662 3.816 —0.678 3.366 0.026 0.616  2.810 —0.498 3.284

60years (267 assets)  0.01  —0.044  0.439 0.759 29.725 —0.090 0271 0.939 30.494 0.170  0.387 —0.241  0.255 0.865 29.442
—0.633  2.693 4.126 —1.293  1.007 5.144 1.431 2391 -2.010  0.939 4.659

0.05 0.189  1.219 0.660 28.674 0.243  0.614 0.645 29.945 0.115 1271  0.027  0.653 0.661 28.600
1.068  3.653 3.573 1471  1.505 2.850 0.379 3.903  0.103  1.594 2.759

0.1 0.315  1.000 0.718 29.243 0.503  0.420 0.511 29201 —0.161 0.939  0.509  0.443 0.493 28.676
1.388  2.450 4.022 2471 0.830 2.281 —0.489 2282  1.737  0.875 2.058

0.15  0.500  0.779 0.709 29.257  0.441  0.550 0.603 29.608 0.297 0.819 0233  0.443 0.626 29.099
2.188  1.546 3.961 2248  1.004 2.889 1.042 1.630  0.958  0.805 2.972

0.2 0.484  0.287 0.765 29.764 0.630 —0.198 0.595 28.769 —0.234 0.735  0.742 —0.253 0.561 28.620
2.002  0.537 4.359 3.153 —0.338  3.024 —0.824 1.438  3.007 —0.430 2.808

0.25  0.487  0.242 0.785  30.045 0.619 —0.463 0.661 29389 —0.053 0.574  0.629 —0.443 0.657 29.341
2.017  0.427 4.513 3.084 —0.764 3.505 —0.203 1.037  2.768 —0.737 3.481

(continued)

[4%:1"

€202 JoquianoN 91 uo 1senb Aq 0£25099/066 L/S/1.2/2101E/284l/w0d"dno-olwapese)/:sdRy Woly papeojumoq

$01118WOU0D] [elduUBUIS JO [eulnOf



Table 2 Continued

TR Extreme volatility risk Full model
T s R ACAPMRMSPE g, M MM RMSPE M Mov 2w JCAPM - RMSPE
SOyears (528 assets)  0.01 —0.089  0.441 0.823 29.727 —0.099  0.478 0.970 30.281  0.001 0.410 —0.096  0.439 0.873 29.683
~1.655 2953 4.631 ~1.783  2.508 5.420 0.009 2.787 —1.077 2337 4.816
0.05 —0.022  1.185 0.760 29.233  0.061  0.649 0.800 30.059  0.019 1268 —-0.059 0.780 0.781 29.039
—0.152  3.949 4.233 0.484 1971 3.776 0.067 4.400 —0258 2421 3.439
0.1 0153 0.820 0.786 29.762  0.289  0.093 0.680 29.700 —0.104 0.801  0.288  0.182 0.665 29.417
0.794 2450 4.436 1.785 0223 3.224 —-0.333 2450 1167  0.436 2.971
0.15 0348  0.862 0.767 29.600  0.148  0.023 0.783 30.112  0.476 0.830 —0.149  0.101 0.813 29.570
1.832  2.034 4.307 0.921  0.051 3.891 1.733  1.984 —0.670 0222 3.945
02 0272  0.683 0.810 29.973 0346 —0267 0.735 29.791 —0.002 0.743  0.314 —0.298 0.735 29.704
1410 1437 4.605 2.011 —0.566 3.789 —0.009 1.605  1.374 —0.622 3.695
025 0257  0.822 0.821 30.035  0.322 —0.051 0.765 30.004  0.034 0.946 0281 -0.081 0.764 29.885
1.316  1.594 4.704 1.885 —0.106 4.082 0.152 1.848  1.388 —0.167 4.070

Notes: Prices of risk estimated on monthly stock data from the CRSP database sampled between July 1926 and December 2015. Models are estimated for various values of thresholds

given by 7. We employ three samples with varying numbers of minimum years. A long horizon is given by frequencies corresponding to a 3-year cycle and longer. Below the coeffi-

cients,

we include Fama-MacBeth z-statistics.
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that investors price TR in the short term more than in the long term. Moreover, it is import-
ant to note that these features are not subsumed by the CAPM beta, as we explicitly control
for it in the model, and report TR betas relative to the CAPM beta, as discussed above.

Estimation results for the EVR model are captured in the middle panel of Table 2. In
this case, parameters are not significant for low values of z, but starting with = > 0.1, long
EVR becomes significantly priced in the cross-section. On the other hand, short-horizon
EVR risk is not significantly priced for any values of 7.

Significant prices of risk corresponding to long-horizon EVR betas for t > 0.10 possess
intuitive positive signs, as we expected. The EVR betas capture dependence between ex-
tremely high increments of market volatility'® and extremely low asset returns, and the
results are consistent with the current literature (Adrian and Rosenberg 2008; Boguth and
Kuehn 2013; Boons and Tamoni 2015). Moreover, these results are in line with the conclu-
sions of long-run risk models. We observe few instances of unintuitive negative signs of pri-
ces of risk, but these coefficients are insignificant and observed mostly for low values of t,
which may be caused by the measurement error for the corresponding betas. We may con-
clude that EVR betas, especially their long-term component, provide priced information
regarding risk, which is moreover orthogonal to the information featured in the CAPM
beta.

In terms of the RMSPE, the TR model delivers better results than the EVR model for
low values of 7, as short TR betas are significantly priced for these values of 7. On the other
hand, for higher values of 7, the EVR model delivers improved values of RMSPE, as the
long EVR betas for these 7 values deliver a significant dimension of risk priced in the cross-
section and TR betas possess higher explanatory power for lower values of 7.

Moreover, we identify the fact that there is a complex interplay between the horizons
and parts of the joint distribution priced in the cross-section. Extreme TR is mostly a short-
run phenomenon and TR associated with more probable joint events (higher values of 1) is
priced with respect to long-term dependence between the market and assets. On the other
hand, EVR is not significantly priced in cases of extreme joint events, but as unpleasant
events become more probable, the joint dependence between increments of market volatil-
ity and asset return in the long run becomes a significant determinant of risk premiums. In
Table A.6 in Appendix D, we present the results for 1.5 years being the threshold in the def-
inition of the long horizon. The results are qualitatively very similar and all the findings
from the 3-year horizon hold for this case.

From the results above, we can conclude that tail market and EVRs are priced in the
cross-section of stock returns across different horizons. A natural question arises whether
these risks capture different information or whether one measure can subsume the other.
For this purpose, we test the full model, which contains both risks for a given 7 level at the
same time. Estimated parameters can be found in the right panel of Table 2. We observe
results mostly consistent with the outcomes of the separate TR and EVR models.
Significantly priced determinants of the risk are short-term TR for low values of 7 and long-
term EVR for the higher values of 7, both priced across assets with expected positive signs.
TR is more significant for lower values of 7, meaning that dependence between market re-
turn and asset return during extremely negative events is a significant determinant of the
risk premium. On the other hand, long-term extreme volatility risk is significant for higher

16 Note that we work with negative increments of market volatility when we estimate the QS betas.
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values of t—approximately 0.2. This finding suggests that investors price downside de-
pendence between asset returns and market volatility but focus on more probable market
situations. We can deduce that the price of long-run risk mentioned by Bansal and Yaron
(2004) is hidden in this coefficient.

The main deviation of the full model from the results of the separate TR and EVR mod-
els is that the long TR betas for higher values of t become insignificant, in contrast with the
conclusions from the TR model. One potential explanation for this result is that only a
small fraction of the market return fluctuations are due to its long-term component in com-
parison to the short-term component, and thus, the risk premium for this risk is only small.
Another explanation is that the long-term aspect of the market TR may be fully captured
by the extreme volatility risk, namely, the long TR betas are subsumed by the long EVR
betas. This makes sense since variance is much more persistent than the market return (high
portion of variance due to the long-term component) and thus investors fear the fluctuation
in long-term variance much more than the variance in the short term.

In Appendix C, we use this data sample and show various features of the estimated QS
betas. We present distributions of the estimated QS betas to give a notion of their estimated
values. Next, we investigate the relation between QS betas and other risk measures previ-
ously proposed in the literature. Although the QS measures are correlated with some of the
other variables discussed previously in the literature, they do not drive out the QS measures
of risk. Moreover, these variables are, in most cases, subsumed by the variables from the
full model. Our results are in agreement with recent results of Bollerslev et al. (2020), which
show that the dependence characterized by the co-occurrence of negative asset and negative
market returns possesses the highest explanatory power on the formation of asset returns
among all specifications of disaggregated conventional beta. Importantly, we explicitly
show that the premium for this risk is generated by the dependence in the extreme left tail
and by its short-term component. In addition, we extend the analysis to extreme volatility
risk and show that investors focus on more probable joint negative outcomes that unfold
over the long horizon.

4.2. Other Portfolios

Finally, we investigate the pricing implication across multiple datasets, including popular
Fama-French portfolios sorted on various characteristics. We use 30 industry portfolios, 25
portfolios sorted by size and value, and decile portfolios sorted by operating profit, invest-
ment, or book-to-market portfolios of Lettau, Maggiori, and Weber (2014) constructed
from various asset classes, equity portfolios sorted on cash flow duration of Weber (2018),
and finally, investment strategies constructed across various asset classes from Ilmanen
etal. (2021).

Figure 2 summarizes the estimation results for all these data. We report t-statistics of
estimated prices of QR risks over all portfolios and across tails, which gives a general over-
view of how tail- and horizon-specific risks are priced across a wide number of portfolios.
Appendix F then provides a detailed summary of all results as well as a data description.

We conclude that a phenomenon of short-term TR is universally priced (although with
varying magnitude) across most of the datasets. The results of EVR are slightly more mixed.
In the case of individual stocks, it is mostly the long-term part of the EVR that is priced in
the cross-section of the expected returns. The same is also true for the aggregated dataset of
Lettau, Maggiori, and Weber (2014). On the other hand, in the case of 25 portfolios sorted
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on size and value, the short-term part of EVR is priced. There are also datasets in which
both components of the EVR risk are priced. These include equity portfolios sorted on cash
flow duration of Weber (2018) and investment strategies constructed using various asset
classes of Ilmanen et al. (2021). This heterogeneity gives investors the opportunity to follow
certain investment strategies according to their aversion to certain risk in a given horizon.

5 Conclusion

We introduce a novel approach for isolating the effects of various risk dimensions on the
formation of expected returns. Until now, studies have focused either on exploring down-
side features of risk or on investigating its horizon-specific properties. We define novel
measures that estimate risk in a specific part of the joint distribution over a specific horizon
and we show that extreme risks are priced in a cross-section of asset returns heterogeneous-
ly across horizons. Furthermore, we argue that it is important to distinguish between TR
and extreme volatility risk. TR is characterized by the dependence between a highly nega-
tive market and asset events. Extreme volatility risk is defined as the co-occurrence of ex-
tremely high increases in market volatility and highly negative asset returns. Negative
events are derived from the distribution of market returns and their respective quantiles are
used to determine threshold values for computing QS betas.

To consistently estimate the models, data with a sufficiently long history must be
employed. However, if these data are available, our measures of risk are able to outperform
competing measures, and their performance is best for low threshold values, suggesting that
investors require a risk premium for holding assets susceptible to extreme risks. Moreover,
we show that the state-of-the-art downside risk measures do not capture the information
contained in our newly proposed measures. Our results have important implications for
asset pricing models. We show that only taking into account contemporaneous dependence
averaged over the whole distribution when measuring risk exposure leads to the omitting of
important information regarding the risk.

Future work may explore origins of the QS risk with a particular emphasis on the TR.
From a data generating process perspective, these attempts could be based on the delayed
price adjustment in the spirit of Bandi et al. (2021). From a preference standpoint, one
could relate the QS risk to utility models such as power utility, habits, or non-separable util-
ity specifications and investigate their pricing implications.

Supplemental Data

Supplemental data are available at https://www.datahostingsite.com.

A Technical Appendix

In this section, the proof of the results in Section 2.3 is given. Before we begin, note that by
a trivial generalization of Proposition 3.1 in Kley et al. (2016), we have that Assumption 1
implies that there exist constants p € (0,1) and K < oo such that, for arbitrary intervals
A, A, C R, arbitrary times t,,,t, € Z,

lcum (I{m,, € Ay}, I{r, € A})| < Kpl»~"1. (27)
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In addition, we will use the following lemma.

Lemma 1 (Barunik and Kley 2019). Under the assumptions of Theorem 1, the derivative

k
(T T % f™ (05 T, T)

exists and satisfies, for any k € Ny and some constants C, d that are independent of
a = (am,ar), b = (b, b,), but may depend on k,

k k

d o, d D
(Sul;g Wf (wﬂm,ﬂr)—wf (0; by, by) SCHa—le(l+|log\|a—b|\1\)

Following proposition further provides asymptotic properties of I, g (®; T, Tr)

Proposition 1 (Barunik and Kley 2019). Assume that (x;),_, is strictly stationary and satis-
fies Assumption 1. Further assume that the marginal distribution functions F,,, and F, are

continuous. Then, for every fixed ® #0 mod 2,

1
, = (ﬂDm(w;rm)]D)'(—w; T,)) R (28)

(rm.t,)E[O.l]Z

IZ” W5 Ty Ty )
( ’R( ) (rm,r,)e[o,l]
where D™ (w; ) and D (w; 1,), T € [0, 1], @ € R are centered, C-valued Gaussian processes
with covariance structure of the following form

Cov (]D)m (@5 T), D" (; 1:,)) = 27f"™" (@; Ty, Tr)-

Moreover, the family {D™(w;-),D"(w;-) : o € [0,7]} is a collection of independent proc-
esses. In particular, the weak convergence Equation (28) holds jointly for any finite-fixed
collection of frequencies w.

For @ = 0 mod 2=, the asymptotic behaviour of the rank-based copula cross-periodogram
is as follows: we have dL.R(O; 1) =nt+ op(nl/z), where the exact form of the remainder
term depends on the number of ties in the process. Therefore, under the assumptions of
Proposition 1, we have ImR(O Ty T,) = n(2m) rmr,11’ + 0,(1), where 1 := (1, 1) e R%.

A.1. Proof of Theorem 2
Proof. By a Taylor expansion we have, for every y, yo > 0,

1 1

1
Y **%(y Y0) +2&,5 (v = ¥0)?,

where &, is between y and yo. Let R,,(y,y0) := 25;;0 (y— yo)z, then

x x0 x x x xo 1 X0
D S A S T ] 0) —— (¥ — X0) + 7u, (29)
Yy Yo Y Yo Yo Yo yo(y ¥o) yo( ) !

where 7, = xR, (¥, y0) + (% — xo)z/y%.
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~a,b
Write f,, for f“’b(w; T4, 7p), Gayp for GZ;R(w; 4,7p), and By, for BZ‘b"(M(a}; T4, Tp) and let

x:=G,p y:=GCGuy
X0 ‘= fa‘b + Bay Yo ‘= fa,a + Ba,a ’

By Theorem 1 differences x — xop and y — yo are in Op((nbn)fl/ %), uniformly with re-
spect to T,,7,. Under the assumption that #nb, — oo, as #n — oo, this entails
Gaa — Baa — 44, in probability. For e < 71,70 < 1 —¢, we have fM > 0, such that, by the
Continuous Mapping Theorem we have (Ga,— Baa) > — (.2, in probability. As

a,a’

B, = o(1), we have y=3 — 353 = 0,(1). Finally, due to
Ga <0Vt < (307 = 007) VO35 = 0,(1) + 0(1) = 0, (1),

we have that R, (y,¥0) = Op((nbn)fl).So we have shown that

~m,r b+ Ba, 1 mr
ﬁn,R(w; Ty Tr) - 1;41_1;173(1: = W ([Gmm - fm,m - Bmm} - ffmm [Gm,r - fm,r - Bmﬁr}>
+ Op(l/(nbn)),

with the O, holding uniformly with respect to 7, 7,. Furthermore, note that setting
X = fa,b + Ba,b y = fa,a + Ba.a

X0 = fa,b y0 ‘= faﬂ

we have

fa,a

fa,b + Ba,b fa,b _ i B _ faﬁb B
fa.a + Ba,a fa,a fa.a

a.b) + O(|Ba7a‘2 + ‘Ba,b|2>'
By Lemma 1, we have that

4

d myr o, .
W f ((,07 Tms Tr)

< Cs,£~

sup
T, TrE€[6,1—¢]

Therefore, B,,, satisfies

ke 4
sup Zb_TJ ‘W d‘f fmr(CU;TmaTr) :O((nbn)71/4>7

T €6 1—¢] ' Y=2

which implies that

1Boal + 1Byl = o (b,) 7).

Therefore,

b
foa

nb, B:q};(w, varr) - fa_‘b _i <Ba,a _fa_ﬁB X >
a

::BZ""(") (@3Tm,Tr)
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and

}’lbn fi ([Gmﬂ’ - fml - Bm"] - fm*’ [Gmm - fm"” - Bmm})

fm,m

are asymptotically equivalent in the sense that if one of the two converges weakly, then so
does the other. The assertion then follows by Theorem 1, Slutzky’s lemma, and the
Continuous Mapping Theorem. O

A.2. Construction of Pointwise Confidence Bands for QS Beta
Following Barunik and Kley (2019) and Theorem 2, we construct pointwise asymptotic
(1 — ) level confidence bands for the real and imaginary parts of Byr (@ T, Tr) as follows:

C,(flrg (wkrﬁ Tim,s Tr) = mﬁ:;(wlm? Tims T,)igﬁgg')r(wkn; Tim;s Tr)q)_l (1 - 06/2)7
for the real part, and
il myr _
Ci(_zn> (Orn; T,77) = Sﬂn,R(wkn;rm‘E,)tﬁa(z')’(wkn;rm,r,)@ 11 —a/2),

for the imaginary part of the QS beta. Here, ® stands for the cdf of the standard normal

distribution,
0 fm=r
mr 2 and 7, =t
(SRO-(Z) (wkrﬂ Tm,s Tr)) =0V 1 m m
3 (Cov(Lims, Liny) + RCoV(Lips, Lym))  otherwise,
and
0 ifm=r
m,r 2 —
(30(2’) (ks T, r,)) =0V 1 and 1, = 1y,
3 (Cov(le’,, L,.,) — RCov(L,,,, ]L,ﬁm)) otherwise.

aa

where L,; = fi (HM - ;—’Hao The definition of a&’(wkn; T, Tr) is motivated by noting
that for any complex-valued random variable Z, with complex conjugate Z,

Var(RZ) = % (Var(Z) + RCov(Z,Z)); Var(3Z) = % (Var(z) — RCov(Z,Z)),  (30)

— ~m.,r .
and we have L,,, = L, ,. Furthermore, note that f§,, z (Wgu; T, ) = 1, if m=r and 7, = 7,.
We have used Cov(LL, 4, L. 4) to denote an estimator for

Cov (H-‘a,b(wkn; Ta, Tb)aLCTd(wlzn; Te,y Td)) .

Recalling the definition of the limit process in Theorem 2, we derive the following expression:

1
COV(]La.bv ]Lc‘d) = Cov Ha,a - @Ha,bv Hc,c - fEf,d]HIc,d
fa,afc‘c fa‘a fc,c
_ Cov(Haa, Heo) feaCov(Haa, Hea)
fa,afc,c fa.aff,c

_ fa,b(COV(Ha,by Hac) fa,ba(cov(Ha‘lu Hc,d)

£ fec faf2e

)
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where we have written f;; for the QS density i/ (@kn; Ti, 7j) and Hj; for the limit distribution
HY (g Ti, 7)) foranyi,j=a,b,c,d.
Thus, considering the special case where a=c =m and b=d = r, we have

1 m
Cov(Lyys, Liny) = Z—Cov(Hm‘m,Hmrm) — f; Cov(Hyspm, Hypry)

m,m m,m
2

- Em’r Cov(H,y,ry Hypy ) + lf;“' Cov(H,y, r, ).
mm mm

and for the special case where a=d = m and c=b =r, we have

Cov(Ly s, Ly ) Cov(Hypm, H, ;) — fonr Cov(H,m, Hy )

fm,mfr,r mm ir
fm‘r ffn,r
-5 Cov(Hyr, Hy ) + 55 Cov(Hyr, Hy pr).-
mmlryr mm!ryr

Finally, we substitute consistent estiznators for the unknown quantities. To do so we
. . ~a, . .
abuse notation using f,; to denote G, g(®ky;Ta,75) and motivated by Theorem 7.4.3 in
Brillinger (1975), we use

n—1
(nz—\’;/k) x {ZWn(Zn(k = $) /M) W2k — $) /1) G (2 1es 27/ m) G g (14, 245 — 275 /)
n 1

| o
-l

STW, 2k — 5)/n) W 2alk + ) /m) G (02 275 /1) Gy (2, s —2s /)

s=

—_

(31)

to estimate Cov(H,,, H, 4).

B Rare Disaster Risk Model and QS Betas

We show how the QS betas relate to the asset pricing model of Nakamura et al. (2013).
Their extension of disaster risk model originally proposed by Rietz (1988) and Barro
(2006) enables disasters to unfold over multiple periods and partially recover after the dis-
aster. We argue that the QS betas can capture the complex joint dynamics between con-
sumption growth and equity return. To do that, we simulate consumption growth and
solve for equity return from three specification of the rare disaster model: (1) Model in
which a disaster unfolds over multiple periods and then a partial recovery occurs. (2)
Model with unfolding disaster over multiple periods, but the disaster is permanent. (3)
Model with one period disaster which is permanent. We assume preferences of Epstein and
Zin (1989) and Weil (1990) and follow Nakamura et al. (2013) in the estimation procedure
using their dataset, solution procedure, and values of preference parameters.'” Namely, we
set the CRRA, y = 6.5, the IES, = 2, and the discount factor, = exp(—0.034).

Figure A.1 presents the main results. The first row of the figure contains courses of typ-
ical disasters with respect to the detrended consumption and equity return (return on
unleveraged consumption claim). We observe that at the onset of the disaster (first drop of

17 The code supplementing Nakamura et al. (2013) can be downloaded from https://eml.berkeley.
edu/enakamura/papers.html
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Figure A.1 QS betas between consumption growth and equity return. First row depicts typical disas-
ters for various specifications of rare disaster risk model as specified in Nakamura et al. (2013).
Second row captures QS betas and their 90% confidence intervals for those specifications. For each
specification, QS betas are estimated using 100 simulations of consumption growth series and equity
return of length 50,000. Models and parameter values follow Nakamura et al. (2013).

the consumption), there is a visible contemporaneous drop at equity return, as well. In case
of unfolding disasters, after the end of the disaster period, there is a noticeable positive
jump in the equity return. The lower panel of the figure contains QS betas and their 90%
confidence intervals simulated from the respective models. Each model is simulated 100
times and each simulation produces a time series of length 50,000 years (we simulate yearly
observations).

We can see that the dependence in the median (given by the line corresponding to
7 = 0.50) does not dramatically differ across the specifications and is constant over hori-
zons. This implies that using a simple covariance-based measure, we cannot distinguish
between joint dynamics across different specifications. The most important part of the
joint structure contains the tails of the joint distribution over specific horizons. We may
think of one period and permanent specification as a benchmark specification. In this
case, on average, the extreme events occur contemporaneously and thus the beta across
horizons is flat. If we look at the cases with unfolding disasters, the QS betas for the left
tail due to the persistency of the disaster possess its peak at the longer horizons. For the
case of multiperiod and transitory disaster, the QS betas for the upper tail are very simi-
lar to the QS betas for the lower tail, because after the end of the disaster, consumption
partially recovers over multiple periods, which mirrors the joint dynamics at the onset
of the disaster. On the other hand, in case of multiperiod permanent disaster, at the end
of the disaster, there is a positive jump in equity return, but there is no recovery in the
consumption. This makes the QS betas peaking at the longer horizons, as there is
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typically no contemporaneous positive jump in consumption growth and equity return
at the end of the disaster.

C Features of QS Betas

C.1. Summary Statistics about QS Betas

We are interested to see what distributions of estimated QS betas reveal and so we display
the unconditional distribution of the estimated betas used in the TR, EVR, and Full models.
Table A.1 summarizes descriptive statistics for all estimated betas. We focus on two values
of 7—0.05 and 0.10, and present cross-sectional means, medians, and standard deviations
of the estimated parameters in the top panel. We observe that all the betas are on average
positive. This is particularly interesting for relative TR betas, which means that, roughly
speaking, average stock possess higher tail dependence with market than suggested by the
simple covariance-based measures. Bottom panel of Table A.1 presents correlation struc-
ture of TR, EVR, and CAPM betas. We observe higher values of correlation between long-
term betas and also between long-term EVR and CAPM betas. Nevertheless, all these cor-
relation are far below 1, which suggests that all the variables may possess different and po-
tentially important information regarding the risk associated with the assets. Another
interesting observation is that the relative TR betas, both long- and short-term, are almost
uncorrelated with the CAPM betas, which is exactly what we want to see given their
definition.

To further visualize the distributional features, Figure A.2 presents unconditional distri-
butions of the betas for four different threshold values for quantile levels. We observe the
highest dispersion of betas for the lowest values of 7 corresponding to the most extreme
case. As we move to higher values of 7, the distributions exhibit less and less variance.
Moreover, the distribution of long-term betas is wider than the distribution of the short-
term betas for the respective risks.

C.2. Robustness Checks: TR across Horizons and Other Risk Factors

Large number of other risk factors and firm characteristics have been documented by the
literature as significant drivers of the cross-sectional variation in equity returns (Harvey,
Liu and Zhu 2016). While we do not attempt to include the whole exhaustive set of all con-
trols, we would like to see if our newly defined risk factors are not subsumed by a subset of
prominent variables, as well as variables related to the tails and moments of the return dis-
tribution. Hence, we naturally focus on the downside measures and we use downside risks
proposed by Ang et al. (2006), downside risk beta specification of Lettau, Maggiori, and
Weber (2014), as well as recently proposed five-factor GDA (GDAS5) model by Farago and
Tédongap (2018). Further, we use coskewness and cokurtotis measures, as well as size,
book-to-market, and momentum factors used by Fama and French (1993).

To investigate whether our newly proposed measures of risk can be driven out by other
determinants of risk proposed earlier in the literature, we include these risks as control vari-
ables in the previous regressions. First, we focus on the GDAS model proposed by Farago
and Tédongap (2018) as these are the risks most closely related to ours. It contains two
measures of TR as well as two measures of extreme volatility risk, but focuses on various
specifications of downside dependence and does not take into consideration frequency as-
pect of the risks. Based on these competing measures, we compare risk measures associated
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Table A.1 Descriptive statistics

7=0.05 t=0.10

ﬂCAl’M ﬁrcl ﬂrcl ﬁFVR ﬁFVR ﬁCAPM ﬁrcl ﬂrcl ﬂF,VR ﬁF,VR

long short long short long short long short

Mean 1.068 0.310 0.098 0.726 0.016 1.068 0.197  0.051 0.632  0.015
Median  1.084 0.324  0.096 0.715 0.016 1.084 0.191 0.048 0.634 0.016
St.Dev.  0.372 0.208 0.083 0.296 0.065 0372 0.164 0.064 0212  0.051
pearM 1.000 0.234 —0.188  0.595 0.041  1.000 —0.040 —0.100 0.435  0.066

ﬁfgl,g 0.234 1.000 0.147 0.688 0.032 —-0.040 1.000 0.275 0.595 0.055
[)’gﬁlm —0.188 0.147  1.000 —-0.062 -0.053 -0.100 0.275  1.000 0.104 -0.073

E,\,/lg 0.595 0.688 —-0.062 1.000 0.025 0.435 0.595 0.104 1.000 0.112
BEY 0.041 0.032 -0.053 0.025 1.000 0.066 0.055 -0.073 0.112  1.000

Notes: The table summarizes basic descriptive statistics and correlation structure for all betas from our Full
model for the two choices of the quantile levels. Betas are computed using CRSP database sampled between
July 1926 and December 2015. Presented results are computed on our largest sample, that is, using stocks with
at least 50 years of history. Long horizon is given by frequencies corresponding to 3-year cycle and longer.

Distribution of QS betas, t=0.01 Distribution of QS betas, t=0.05
© 7 s © 7 s
Bre Bre
L L
- BER - BER
© - ﬁEVR © - ﬁEVR
- Bewr - Pewr
=2 =2
2 <« o [ a—_—
3 3
a a

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
i i
Distribution of QS betas, t=0.1 Distribution of QS betas, t=0.25
© 7 s © 7 s
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Figure A.2 Distribution of TR and EVR betas at different tails. Plots display kernel density estimates of
the unconditional distribution of the short-term and long-term TR and EVR betas. Presented results
are computed on our largest cross-section, that is, using stocks with at least 50 years of history. Long
horizon is given by frequencies corresponding to 3-year cycle and longer.
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with market return and market volatility increments separately. The aim of this analysis is
to decide which measures of risk better capture the notion of extreme risks associated with
risk premium. The detailed specification of the corresponding betas can be found in
Appendix E.

Table A.2 reports the risk premium of our QS risks controlled for the GDAS risks. In
case of TR presented in left panel, we see that GDAS measures of risk (Ap and Awp) do not
drive out our measures for any value of T and remain insignificant when we include our TR
measures. Moreover, the pattern of prices of risk corresponding to TR betas remains the
same as in the TR and Full model specifications. This clearly suggests that our measures
capture the asymmetric features of risk priced in the cross-section of assets.

In the case of extreme volatility risk, we see from the right panel of Table A.2 that the
situation is similar. Especially, the price of risk for long-term EVR betas stays significantly
strong for higher values of quantile. In addition, short-term EVR betas emerge as significant
predictors for the lower values of 7. On the other hand, GDAS measures of volatility risk re-
main insignificant in all of the cases. All the results suggest that our model brings an im-
provement in terms of identifying form of asymmetric risk which is priced in the cross-
section of asset returns.

From these results, we can infer that our QS measures may potentially provide an add-
itional information not captured by other risk measures. To further investigate this hypoth-
esis, we present correlation structure of our QS measures with all other highly discussed
asset pricing risk measures in Figure A.3. Details regarding their specifications are con-
tained in Appendix E. We plot dependence between them and the QS measures with respect
to the value of quantile of the threshold value. Generally, our measures possess the highest
correlation with coskewness and cokurtosis and market beta (computed using FF3 specifi-
cation) in the extreme left tail and long horizon, while they show high correlation with
downside risk measures in extreme left tail at short horizon. This suggests that downside
risk measures capture short-term risk while moment-based risk measures are more related
to the extreme volatility in the long-term. Although the correlations in few cases exceed 0.5
in absolute value, all the values are well below 1 suggesting potentially important addition-
al information regarding the risk.

Next, we check whether these measures can drive out our QS measures in the cross-
sectional estimation. Table A.3 reports the results of risk prices controlled for coskewness
and cokurtosis risks. We first include coskewness into our Full model and check whether it
can drive out our risk measures. We can see that although the coskewness is significant, it
does not drive out our QS measures, which follow the same pattern as in the case of previ-
ous specifications of the models. Table A.3 also reports in the right panel horse race regres-
sion including cokurtosis. We observe that cokurtosis does not bring any new explanatory
information when included in our full model, as the corresponding estimated coefficients
for cokurtosis are insignificant for all specifications.

In addition, Table A.4 reports the results controlled for the two specifications of relative
downside betas. In the left panel, we report results with downside risk specification of Ang
et al. (2006). We observe that the downside risk beta does not capture any additional im-
portant dimension of risk when included in our full model specification. The same is true
for the downside risk model of Lettau, Maggiori, and Weber (2014), which is captured in
the right panel.

€202 JoquianoN 9| uo 1sanb Aq 02/5099/065 L/S/LZ/a191HE/03)l/woo"dno-ojwapese//:sdny Wwoly papeojumoq


https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbac017#supplementary-data
https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbac017#supplementary-data

Table A.2 Estimated coefficients of the TR, EVR, and Full models controlled for GDA5 measures

TR Extreme volatility risk

T b Jwp VA IR JCAPME RMSPE  Ax XD Mo 2 JCAPM RMSPE

70years (142 assets) ~ 0.01 ~ —0.027  0.118  —0.034 0.628 0760  26.377 0.848 0.775  —0.096 0.773 0735 28.313
—-0.987 0597  —0.364 3231 3.879 1.326 1.450  —1.155 3.892  3.781

0.05  —0.024  0.207 0.050 1149 0779 26.434 0.108 0.285 0.122 1.294  0.704  27.698
—-0.908  1.037 0.234 3.066  4.153 0.169 0.526 0.612 3.431  3.805

0.1  —0.017 0253 0.305 0.795 0799  26.688 0.157 0.343 0.388 1.220  0.724  26.560
—0.622  1.279 1.243 1.488  4.436 0.246 0.633 1.580 2.344  4.066

0.15  -0.010 0214 0.449 0.746 0779  26.326 0.219 0.367 0.572 0.786  0.720  26.627
-0.357  1.090 1.992 1210  4.297 0.344 0.678 2.422 1.325  4.018

02  —0.010 0.244 0.526 0.301  0.824  26.532 0.302 0.492 0.723 0.176  0.766  25.345
—-0.324  1.258 2.115 0.401  4.630 0.473 0.900 2.732 0257  4.374

025  —0.018  0.268 0.587  —0.064  0.856  26.693 0.377 0.554 0.850  —0.332  0.793  25.364
—0.587  1.423 2300  —0.086  4.878 0.587 1.007 3.089 —0.468  4.576

60years (267 assets) ~ 0.01 ~ —0.014  0.141  —0.011 0.338  0.765  29.578 0.367 0.032  —0.060 0.495 0753  30.288
-0.584  0.809  —0.151 2269 4.168 0.631 0.068  —0.950 3.104  4.069

0.05  —0.009  0.110 0.187 1.094  0.681  28.606  —0.050  —0.139 0.166 1.218  0.663  29.764
—-0.364  0.627 1.030 3437 3.719 —-0.086  —0.297 0.949 3.679  3.608

0.1 0.000  0.164 0.283 0.850  0.740  29.013  —0.044  —0.192 0.284 1.004  0.721  28.928
0.002  0.946 1.277 2.166  4.166 —-0.076  —0.408 1.253 2453 4.071

0.15 0.001  0.182 0.464 0.627 0733 28.962  —0.076  —0.234 0.479 0.774 0713 29.459
0.022  1.067 2.097 1279  4.108 —-0.131  —0.500 2.104 1.570  4.020

02  —0.007 0.244 0.449 0.092  0.796 29317  —0.032  —0.147 0.473 0240  0.765  28.616
—-0.259  1.414 1.906 0.173  4.541 —-0.056  —0.314 1.966 0.458  4.401

025  —0.005  0.237 0.425 0.199 0813  29.566  —0.028  —0.143 0.477 0.182  0.784  29.268
—-0.205  1.399 1.814 0.367  4.691 —-0.049  —0.305 1.995 0.337  4.557

(continued)
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Table A.2 Continued

TR Extreme volatility risk

T Awp s MR JCAPM T RMSPE  2x Ixp A . JEAPM RMSPE

S50years (528 assets)  0.01 0.114  —0.054 0.396  0.823  29.452 0254  —0.016  —0.108 0.489  0.822  29.913
0.799  —0.968 3126 4.643 0.465  —0.037 —2.154 3272 4611

0.05 0.118 0.009 1.097 0778  29.023 0.016  —0.098  —0.049 1191 0762 29.791
0.781 0.061 4.134 4373 0.030  —0229  —0.359 4120 4279

0.1 0.204 0.161 0.503  0.826  29.567  —0.056  —0.165 0.120 0.843  0.788  29.443
1.338 0.821 1.614  4.726 -0.104  —0.390 0.652 2.559  4.499

0.15 0.224 0.347 0.452  0.809 29393  —0.122  —0.219 0.331 0.868  0.769  29.895
1.490 1.827 1.077  4.610 0227  —0.518 1.772 2131 4.378

0.2 0.268 0.279 0.153  0.860  29.664  —0.107  —0.203 0.260 0.679  0.811  29.577
1.786 1.450 0.307  4.945 —-0.200  —0.476 1.350 1.516  4.685

0.25 0.246 0.250 0.478  0.863  29.723  —0.110  —0.203 0.251 0.804  0.822  29.759
1.673 1.287 0.922  5.015 —0.204  —0.472 1.284 1.672  4.795

Notes: The table reports coefficients and their ¢-statistics from the horse race estimations. Displayed are prices of risk of three-factor models also including the GDAS measures for cor-

responding risks. We use CRSP database between July 1926 and December 2015. Models are estimated for various values of thresholds given by . We employ three samples with

varying number of minimum years. Long horizon is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include Fama-MacBeth #-statistics.
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Figure A.3 Correlations with other risk measures. Plots display correlations between the QS betas and
various other risk measures widely used in the asset pricing literature using CRSP database between
July 1926 and December 2015. Presented results are computed on our largest sample, that is, using
stocks with at least 50 years of history. Long horizon is given by frequencies corresponding to 3-year
cycle and longer.

Finally, Table A.5 reports regressions including additional betas from the three-factor
model of Fama and French (1993).'® This model is not explicitly related to the asymmetric
features of market or volatility risk, but as we show in Section 2, these factors may be just
capturing market risk in different horizons in specific parts of the joint distribution of mar-
ket and asset returns, so we should check whether they are not superior in describing these
kinds of risks. As in the case of other horse race regressions, the additional risk factors do
not drive out the QS measures, which repeat the same pattern as in the cases without the
additional variables.

D Different Definition of Long Horizon—1.5 Years

18 We have to include only two additional betas as the market beta is already included in our full
model.
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Table A.3 Estimated coefficients of the TR, EVR, and Full models controlled for coskewness and cokurtosis

Coskewness Cokurtosis

T OK o IR Mo JE JOAPM T RMSPE  ASKT . Mioe Mong Y JCAPM R MSPE

70years (142 assets)  0.01  —0.255  0.122  0.493 —0.122 —0.320 0.790 25.630 —0.020  0.113 0.676 —0.197 —0.241 0.928 26.332
—1.321  0.879 2420 -0.854 -—1.021 4.152 —0.942  0.820 3.374 -1.390 -0.777 4.217

0.05 -0.316 0.016 0.983  0.093 —0.179 0.747 25.911 —0.009 0.017 1.288  0.094 0236 0.725 26.756
—1.701  0.044 2.674 0327 —0.343 3.279 —0.452  0.049 3.492 0330 0467 2.874

0.1 —0.345 —0.147 0.633  0.470 —0.453 0.610 25532 —0.022 —0.294 0.952  0.642 0.165 0.575 26.478
—1.833 —0.368  1.183  1.582 —0.642 2.684 —0.988 —0.709 1.817  1.921 0242 2.310

0.15 —0.344 —0.028  0.301  0.584 —0.205 0.616 25214 —0.021  0.106 0.647  0.541  0.425 0.663 26.262
—1.644 —0.084 0475  2.165 —0.280 3.040 —0.903 0319 1.062 1926 0.595 2.721

0.2 -0.281 —0.152 0.327 0.743 —0.395 0.630 24.616 —0.023 —0.135 0.509  0.845 —0.052 0.668 25.353
—1.429 —0.443  0.466  2.925 —0.510 3.234 —0.993 —0.389 0.720  3.111 —0.067 2.735

0.25 —0279  0.001 -0.310 0.754 —0.761 0.709 24.895 —0.017 —0.005 0.021  0.896 —0.477 0.721 25.653
—1.417  0.004 —0.402  2.835 —0.960 3.752 —0.738 —0.015 0.027  3.089 —0.607 2.921

60years (267 assets)  0.01 —0.342  0.159 0218 —0.091  0.021 0.776 28.728 —0.011  0.169 0.409 —0.229 0222 0.908 29.442
—1.988  1.343 1308 -—0.751  0.074 4.427 —0.531  1.424 2.462 —1.857  0.798 4.486

0.05 —0.340 —0.071 0.767  0.252  0.144 0.636 28.063 —0.014 0.026 1225 0.152  0.519 0.672 28.600
—2.095 -0.233 2466 0950 0.338 2.772 —0.749  0.091 3.818  0.629  1.236 2.697

0.1 —-0.377 —0.385 0.559  0.597 —0.272 0.545 27.857 —0.034 —0.499 0.805 0.812  0.163 0.544 28.572
—2.406 —1.164 1.441  2.017 -0.522 2.338 ~1.632 —1.518 2.029  2.625 0325 2.188

0.15 —0.368 —0.026 0.067 0.505 —0.079 0.624 28.124 —0.018 0.176 0.618  0.397 0281 0.668 29.093
—2246 -0.092  0.139 1963 -—0.139 3.121 —0.860  0.645 1.259  1.707  0.514 2.848

0.2 -0.350 —0.266 —0.058  0.715 —0.562 0.639 27.744 —0.025 -0.321 0.360 0.876 —0.254 0.661 28.553
—2.185 —0.941 —0.114 2.973 -0.954 3.313 —1.211 -1.161 0.701  3.568 —0.433 2.815

0.25 —0.361 —0.034 —0.471  0.553 —1.001 0.747 28.311 —0.014 —0.065 0.252  0.681 —0.524 0.725 29.336
—2241 —0.132 —0.845  2.564 —1.665 4.073 —0.691 —0.252 0.448 2990 —0.889 3.127

(continued)
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Table A.3 Continued

Coskewness Cokurtosis

r K s MR Mo Y JOAPM - RMSPE KT Ao A Mov M JCAPM RMSPE

5Oyears (528 assets) 0.01 —0.406  0.046  0.184 —0.014  0.116 0.820 29.347 —0.020 —0.003 0.438 —0.070  0.365 0.940 29.666
—2.735  0.522 1259 -0.156  0.599 4.720 —0.973 —0.035 2.858 —0.757 1906 4.605

0.05 -0.398 —0.112 0.754  0.159 0273 0.746 28.705 —0.026 —0.100 1.215  0.123  0.569 0.815 29.028
—2.693 —0.403 2862  0.686  0.837 3.383 —1.404 —0.396 4236 0.602 1.721 3.413

0.1 —0.447 —0292 0320 0.417 —0.181 0.682 28936 —0.039 —0.412 0.656  0.603  0.009 0.716 29.371
—3.130 —0.933  1.042  1.660 —0.433 3.115 —1.955 —1.420 2.093 2378  0.022 3.058

0.15 —0.419 0.169 0.139  0.143 -0.323 0.793 29.185 —0.018  0.362 0.660  0.008 —0.067 0.852 29.531
—2.872  0.619 0363  0.620 -0.697 4.066 —0.920 1.416 1.691 0.036 —0.148 3.734

02 -0.412 -0.077 -0.056 0.365 —0.522 0.776 29.196 —0.030 —0.120 0.332  0.498 —0.382 0.828 29.700
—2.871 —0.309 —0.129  1.636 —1.091 4.030 —1.516 —0.509 0.772 2256 —0.798 3.596

025 —0.414  0.043 —0.123 0263 -0.607 0.828 29.387 —0.023  0.020 0.475  0.367 —0.263 0.854 29.880
—2.905  0.191 —0259 1361 —1.262 4.514 —1.142  0.089 1.016 1.872 —0.547 3.746

Notes: Displayed are prices of risk of full models also including either coskewness or cokurtosis. We use CRSP database between July 1926 and December 2015. Models are estimated

for various values of thresholds given by t. We employ three samples with varying number of minimum years. Long horizon is given by frequencies corresponding to 3-year cycle and

longer. Below the coefficients,

we include Fama—-MacBeth #-statistics.
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Table A.4 Estimated coefficients of the TR, EVR, and Full models controlled for downside risk betas

DR beta of Ang et al. (2006)

DR of Lettau, Maggiori, and Weber (2014)

2 TR

27DR2

2 TR

r PRI Hone MR iﬁxg Y JOAPM T RMSPE 2 Hone MR Aﬁxg IR JCAPM - RMSPE

70years (142 assets)  0.01  —0.017  0.129 0.629 —0.210 —0.194 0.826 26.387 —0.017  0.129 0.629 —-0.210 —0.194 0.826 26.387
—0.044  0.922 3.240 -—1.484 —0.631 4.104 —0.044  0.922 3240 —1.484 —0.631 4.104

0.05 0.149  0.042 1.250 —0.005 0285 0.754 26.736 0.149  0.042 1250 —0.005 0285 0.754 26.736
0.410  0.119 3.448 —0.017  0.559 3.216 0.410  0.119 3.448 —0.017  0.559 3.216

0.1 0.082 —0.086 0.997 0412 0212 0.573 26.548 0.082 —0.086 0.997  0.412 0212 0.573 26.548
0.235 —0216 1.895  1.414  0.306 2.451 0.235 —0216 1.895  1.414 0306 2.451

0.15  0.128 0211 0.864  0.325 0367 0.636 26.259 0.128 0211 0.864  0.325  0.367 0.636 26.259
0.363  0.638 1.433 1272  0.512 3.036 0.363  0.638 1.433 1272  0.512 3.036

0.2 0.121 —0.098 0.840  0.717 —0.207 0.594 25.397 0.121 —0.098 0.840  0.717 —0.207 0.594 25.397
0.352 —0.283 1242 2780 —0.269 2.962 0.352 —0.283 1.242 2780 —0.269 2.962

0.25  0.135 —0.030 0.454  0.802 —0.475 0.656 25.627  0.135 —0.030 0.454  0.802 —0.475 0.656 25.627
0.391 —0.090 0.631  2.895 —0.598 3.399 0.391 —0.090 0.631  2.895 —0.598 3.399

60years (267 assets)  0.01  0.107  0.161 0.345 —0.211  0.244 0.852 29.418 0.107  0.161 0.345 —0.211  0.244 0.852 29.418
0.368  1.350 2368 —1.760  0.912 4.611 0.368  1.350 2.368 —1.760  0.912 4.611

0.05  0.135 0.093 1.171  0.041  0.612 0.671 28.588 0.135  0.093 1.171  0.041  0.612 0.671 28.588
0.486  0.308 3.716 0.167  1.493 2.934 0.486  0.308 3.716 0.167  1.493 2.934

0.1 0.192 —0.205 0.839  0.516  0.345 0.509 28.620 0.192 —0.205 0.839  0.516  0.345 0.509 28.620
0.711 —0.637 2.096  1.836  0.674 2.183 0.711 —0.637 2.096  1.836  0.674 2.183

0.15 0240 0252 0.657 0.257 0362 0.638 28.943 0.240 0252 0.657 0257  0.362 0.638 28.943
0.867 0.888 1313  1.101  0.656 3.119 0.867 0.888 1.313  1.101  0.656 3.119

0.2 0.296 —0.236 0.536 0.721 —0.344 0.588 28.443 0.296 —0.236 0.536  0.721 —0.344 0.588 28.443
1.055 —0.827 1.053  3.062 —0.589 3.021 1.055 —0.827 1.053  3.062 —0.589 3.021

025 0313 —0.060 0.404  0.598 —0.605 0.686 29.091 0.313  —0.060 0.404  0.598 —0.605 0.686 29.091
1.105 -0.233 0.733  2.763 —1.035 3.705 1.105 -0.233 0.733 2763 —1.035 3.705

(continued)
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Table A.4 Continued

DR beta of Ang et al. (2006) DR of Lettau, Maggiori, and Weber (2014)
r PRI AITO‘;g Aisee How Y JCAPM - RMSPE  iPR? ZH R Mo B JCAPM - RMSPE

S50years (528 assets)  0.01 0.110 0.003 0.367 —0.086 0.418 0.873  29.683 0.110 0.003 0.367 —0.086 0.418 0.873  29.683

0.471 0.038 2.938 —0.951 2.285 4.883 0.471 0.038 2.938 —0.951 2.285 4.883

0.05 0.142 0.005 1.167 —0.045 0.753 0.790  29.039 0.142 0.005 1.167 —0.045 0.753 0.790  29.039
0.610 0.018 4.423 —-0.206 2.372  3.612 0.610 0.018 4.423 -0.206 2.372 3.612

0.1 0.275 —0.120 0.628 0.276 0.164 0.695 29.396 0.275 —0.120 0.628 0.276 0.164 0.695 29.396
1.192 -0.385 1.978 1.168 0.397  3.189 1.192 -0.385 1.978 1.168 0.397  3.189

0.15 0.284 0.446 0.642 —-0.134 0.034 0.831 29.516 0.284 0.446 0.642 —-0.134 0.034 0.831 29.516
1.228 1.631 1.568 —0.643 0.076 4.176 1.228 1.631 1.568 —0.643 0.076 4.176

0.2 0.304 —-0.002 0.546 0.296 —-0.332 0.760 29.626 0.304 —0.002 0.546 0.296 —-0.332 0.760  29.626
1.305 —-0.007 1.206 1.381 —0.695 3.923 1.305 —-0.007 1.206 1.381 —0.695 3.923

0.25 0.299 0.033 0.781 0.255 —-0.133 0.789 29.797 0.299 0.033 0.781 0.255 -0.133 0.789  29.797
1.271 0.147  1.549 1.356 —-0.276 4.293 1.271 0.147  1.549 1.356 -0.276 4.293

Notes: Displayed are prices of risk of full models also including either downside risk beta of Ang et al. (2006) or downside risk beta specification of Lettau, Maggiori, and Weber
(2014). We use CRSP database between July 1926 and December 2015. Models are estimated for various values of thresholds given by . We employ three samples with varying num-
ber of minimum years. Long horizon is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include Fama—MacBeth #-statistics.
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Table A.5 Estimated coefficients of the TR, EVR, and Full models controlled for Fama and
MacBeth (1973) factors

1SMB HML 2 TR 7TR EV 2EV 1CAPM
T A 2 long Ashort j'lung “short A RMSPE

70years (142 assets) 0.01  0.035 —-0.050 0.133 0.636 —-0.217 -0.174 0.838 26.281
0.266 —0.280  0.960 3.276 —1.558 —0.569 4.206

0.05 -0.073 -0.181 0.401 1.108 -0.238 0.093 0.893 26.349
—0.550 —-1.034  1.238 3.072 -0.989  0.186 4.007

0.1 -0.009 -0.200 0.187 0.888 0.276  0.076 0.674 26.119
—0.066 —-1.188 0.562 1.777 1.101  0.112 3.093

0.15  0.001 -0.165 0.376 0.612 0.231  0.289 0.702 25.969
0.010 —-0.949 1.232 1.068 1.044 0.416 3.504

0.2 0.090 -0.150 0.016 0.535 0.712 -0.259 0.609 25.052
0.685 —0.869  0.050 0.827  2.965 -0.341 3.107

0.25  0.067 -0.150 0.118 0.171  0.753 —-0.731 0.691 25.349
0.517 -0.873 0359 0.251 2.759 -0.962 3.604

60years (267 assets) 0.01 —0.149  0.040 0.198 0.389 -0.233  0.281 0.851 29.218
-1.184  0.252 1.657 2.622 -1.979 1.053 4.481

0.05 -0.175 -0.016 0.291 1.216 -0.204 0.552 0.827 28.377
-1.434 -0.101  1.035 3.859 -1.018 1.410 3.858

0.1 -0.121 -0.051 0.063 0.996  0.255 0.341 0.650 28.578
-0.978 -0.333  0.216 2.589 1.152  0.676 3.045

0.15 -0.143 -0.052 0.414 0.837 0.025 0.442 0.751 28.833
-1.182 -0.340 1.561 1.831 0.137 0.821 3.926

0.2 -0.060 —-0.054 -0.151 0.709 0.640 —0.261 0.618 28.464
—-0.492 -0.359 -0.559 1.550 3.120 -0.448 3.258

0.25 -0.102 -0.059 0.014 0.623  0.505 -0.534 0.726 29.051
—0.850 —-0.388  0.055 1.243  2.506 —-0.940 4.000

50years (528 assets) 0.01 —0.087  0.006 —0.005 0.457 -0.081 0.493 0.874 29.354
-0.761  0.041 -0.063 3.577 -0.921  2.582 4.805

0.05 -0.088 -0.051 0.135 1.172 -0.213  0.708 0.905 28.909
—-0.806 —-0.361  0.604 4.502 -1.349  2.251 4.504

0.1 -0.044 -0.096 0.022 0.791 0.137  0.120 0.774 29.182
-0.394 -0.697  0.092 2.507 0.781 0.289 3.917

0.15 -0.095 -0.126 0.612 0.730 -0.347 0.153 0.950 29.086
-0.854 —-0.919  2.645 1.926 -2.262 0.344 5.144

0.2 -0.042 -0.084 0.091 0.682 0.201 -0.306 0.804 29.402
-0.376 —-0.613 0.422 1.710 1.202 -0.652 4.429

0.25 -0.055 -0.090 0.101 0914 0.163 -0.166 0.835 29.519
—-0.499 -0.662 0476 2.004 1.033 -0.354 4.793

Notes: Displayed are prices of risk of full models also including either HML or SMB betas of Fama and French
(1993). We use CRSP database between July 1926 and December 2015. Models are estimated for various val-
ues of thresholds given by . We employ three samples with varying number of minimum years. Long horizon
is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include
Fama—MacBeth #-statistics.

€202 JoquianoN 9| uo 1sanb Aq 02/5099/065 L/S/LZ/a191HE/03)l/woo"dno-ojwapese//:sdny Wwoly papeojumoq



Table A.6. Estimated coefficients of the TR, EVR, and Full models

TR Extreme volatility risk Full model
T A IR JCATME RMSPE Afy, JEV JCATME RMSPE AR, Mioe o Y JCAPM R MSPE
70years (142 assets)  0.01  —0.045  0.644 0.751 26.672 —0.084 —0.258 0.946 28576  0.135 0.610 —0.213 —0.150 0.832 26.436
—0.476  3.303 3.910 —0.883 —0.853 4.885 0.896 3.085 —1.366 —0.495 4.151
0.05 0.149 1272 0.716 26.801 0.242 0378 0.689 28212  0.160 1258 —0.024 0297 0.738 26.755
0.699  3.485 3.861 1.413  0.774 3.047 0.431 3.519 —0.081  0.602 3.046
0.1 0.432  1.153 0.735 27.109  0.519  0.441 0.549 27226 —0.005 1.004 0442  0.287 0.553 26.567
1.673 2265 4.119 2.588  0.649 2.461 —0.011 1.964 1357  0.425 2269
0.15  0.611  0.842 0.730 26.651 0.557  0.522 0.592 27.025 0.312 0.832  0.344  0.501 0.615 26.280
2493  1.453 4.050 2.836  0.756 2.817 0.898 1.436 1210 0.719 2.816
0.2 0.732 0224 0.780 26.944  0.750 —0.313 0.590 25.765 0.050 0.753  0.709 —0.139 0.580 25.417
2726 0.326 4.432 3.604 —0.411 2.950 0.137 1.127  2.463 —0.183 2.784
025  0.786 —0.165 0.808 27.241 0.869 —0.563 0.631 25.703 0.045 0.418  0.844 —0.420 0.628 25.608
2.898 —0.230 4.631 3.695 —0.727 3.238 0.130 0.589  2.751 —0.544 3.165
60years (267 assets)  0.01  —0.036  0.430 0.759 29.723 —0.083  0.263 0.934 30.514  0.168 0.380 —0.227  0.250 0.865 29.49
—0.491  2.685 4.130 —1.105  1.002 5.093 1.342 2388 —1.784  0.948 4.630
0.05 0225 1.187 0.661 28.681 0.256  0.611 0.655 29.996  0.175 1241  0.016 0.646 0.675 28.617
1211 3.659 3.574 1.493  1.545 2.878 0.562 3.921  0.060 1.626 2.819
0.1 0.368 0958 0.715 29239  0.550  0.371 0.501 29.193 —0.109 0.906  0.538  0.402 0.490 28.678
1.549  2.407 3.999 2.516  0.753  2.200 —0.318 2265 1.730  0.815 2.015
0.15  0.559  0.729 0.706 29.244  0.488  0.495 0.593 29.614  0.358 0.770 0250  0.398 0.622 29.089
2326 1482 3.940 2349 0.923 2.805 1.191 1.573  0.968  0.739 2.918
0.2 0.538  0.236 0.762 29.736  0.677 —0.251 0.581 28.726 —0.166 0.657  0.757 —0.296 0.555 28.607
2139  0.450 4.343 3.146 —0.440 2.913 —0.560 1.309  2.870 —0.517 2.739
0.25  0.523  0.208 0.782  30.035 0.669 —0.526 0.645 29.286 —0.041 0.539  0.680 —0.506 0.641 29.244
2114 0375 4.491 3.065 —0.895 3.382 —0.154 0.996  2.755 —0.870 3.356

(continued)
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Table A.6. Continued

TR Extreme volatility risk Full model
LA IR JCATMC RMSPE A, Y JCATME RMSPE - AR, T o 2 JCAPM RMSPE
50years (528 assets) 0.01 —0.087  0.436 0.825 29.726 —0.088  0.463 0.969 30.286 —0.007 0.407 —0.073  0.422 0.871 29.689
—1.535 2981 4.634 ~1.507  2.500 5.396 —0.082 2.829 —0.798 2305 4.787
0.05  0.001  1.162 0.762 29.233  0.071  0.636 0.807 30.075  0.060 1.242 —0.055 0.765 0.790 29.054
0.004  3.980 4.238 0.542 1991 3.795 0.209 4.422 —0.236 2446 3.474
0.1 0.195  0.783 0.784 29.756  0.316  0.069 0.672 29.669 —0.060 0.770  0.302  0.155 0.662 29.400
0.972 2401 4.418 1.836  0.168 3.152 —-0.187 2416  1.165  0.381 2.932
0.15  0.404 0811 0.765 29.583  0.168 -—0.003 0.776 30.089  0.532 0.782 —0.150  0.084 0.810 29.552
2.010 1968 4.288 0.991 —0.006 3.817 1.840 1.923 —0.637  0.187 3.893
0.2 0.324  0.631 0.808 29.957  0.377 —0.316 0.725 29.730  0.038 0.692  0.332 —0.342 0.727 29.650
1.599  1.363 4.594 2.045 —0.687 3.694 0.144 1.535 1359 -0.731 3.611
025 0303 0775 0.819 30.024  0.373 —0.116 0.752 29.926  0.046 0912  0.335 —0.136 0.750 29.817
1.509  1.546 4.690 2.019 —0.247 3.980 0.199 1.833  1.536 -0.287 3.958

Notes: Prices of risk estimated on monthly stock data from CRSP database sampled between July 1926 and December 2015. Models are estimated for various values of thresholds

given by 7. We employ three samples with varying number of minimum years. Long horizon is given by frequencies corresponding to 1.5-year cycle and longer. Below the coefficients,

we include Fama—MacBeth #-statistics.
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E Specification of the Competing Models

In this section, we briefly describe the specification of the models we use in Appendix C.2.

We denote market excess return as r,, and its mean and variance as u,, and 62, respectively.
2

Excess return of an asset is denoted as 7; with mean y; and variance o7.
We present how we estimate betas in the first-stage regression. The second-stage regres-
sion is the same for all the models and is performed via OLS by regressing the average asset

returns on their betas. This then leads to the estimated values of RMSPE.

E.1. Downside Risk Models
We follow two specifications of the downside risk models. First, we use specification of
Ang et al. (2006) and estimate their relative downside risk betas as

ﬂDRl — ﬁ'ﬁ _ ﬁ — COV(ri71’m|1’m < um) _ (COV(1’17rm)
T T Var(rulrm < W) Var(r,)

(32)

Downside risk beta specification of Lettau, Maggiori, and Weber (2014) is then
obtained as
Cov(ri,tmlrm < 6)  Cov(ri, 1)

DR2 _ - - -
B =Bis — b= Var (7|t < ) Var(r,) (33)

where we define the threshold value as 6 = y,,, — 0,,,.

E.2. GDA Models

We employ specification of GDA models of Farago and Tédongap (2018) and estimate two
main versions of their cross-sectional models. Their models are based on disappointment
events D;.

E.2.1. GDA3
First model is their three-factor model, which does not contain volatility-related factors.
The betas possess the following form:

= Cov(ri,1m) (34)
i = Var(r,)
Cov(r;, I(D))
=" 35
ﬁz,D Var([(’D)) ) ( )
Cov(r;, 1, 1(D))
=N nim AT 36
ﬁl.mD Var(rmI(D)) ’ ( )
where we follow the specification and set D, = {r,,;, < b}, where b = —0.03 and I is an in-

dicator function.

E.2.2. GDAS
Five-factor specification of the GDA model contains, in addition to the betas from the
three-factor model, the following betas:

_ Cov(r;,Ad?)

ﬁi.X = Wv (37)
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_ Cov (r,», Aant(D))

- 7 38

fixo Var(Ac2,1(D)) (38)
where the disappointment events are given by D; = <7,,; —a22Ad},, < b}, where Ad?,,
are increments of market volatility, 6% = Var(Ac2,),a=0.5 and b = —0.03.

E.3. Coskewness and Cokurtosis
Following work of Kraus and Litzenberger (1976); Harvey and Siddique (2000); Dittmar
(2002); and Ang et al. (2006), we estimate the coskewness and cokurtosis as

E[(ri = ) (rm — )?]
(1

1/]]5[(7'1'_.“1')2 JE[ m um)z]

CKT, = El(ri = pom =’ . (40)

\ /E{(r,- - ,u,-)z]IE[(rm - um)3/2]

CSK; = ; (39)

E.4. Fama-French Three-Factor Model

Betas of the three-factor model of Fama and French (1993) are estimated via time-series re-
gression of excess asset return on three factors: SMB (obtained by sorting stocks based on
their size), HML (obtained by sorting stocks based on their book-to-market value), and
MKT (market factor)

rie = o + PMBSMB, + IMEHML, + pMKTMKT, + ¢, (41)

Factor data were obtained from Kenneth French’s online data library.

F Detailed Description of the Portfolio Results

F.1. Fama-French Portfolios

In this section, we employ two sets of Fama—French portfolios. First set contains two sam-
ples: 25 portfolios double-sorted on size and value and 30 industry portfolios. These two
datasets were chosen because they possess the longest history available across all the Fama-
French portfolios. Their time span ranges between July 1926 and April 2020. Second set
contains three datasets of portfolios sorted on the following characteristics: operating
profit, investment, and book-to-market. Portfolios sorted on operating profit and invest-
ment possess significantly shorter history of observations between July 1963 and March
2020.

Regarding the first dataset, the results are summarized in Table A.7. In the case of port-
folios double sorted on size and value, the short component of QS and short component of
EVR risks are priced. Regarding the industry sorted portfolios, only the short-term TR is
consistently priced across the model specifications. For those investors who fear the high
volatility states, these results suggest that the more appropriate strategy involves investing
based on the industries rather than size and value, as you do not have to pay a premium for
portfolios that possess low EVR betas—portfolios whose extreme negative returns are less
probable to co-occur with extreme positive increments of market volatility.
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Table A.7 Fama—French long history portfolios

TR Extreme volatility risk Full model

T Ane e ACTM RMSPE RY. ARV, O™ RMSPE AR AiRe e Aem AT™ RMSPE

25 portfolios sorted on size and value 0.01  0.060 0.502 0.645 2.557 0.047 0.425 0.707 2.602 —0.002 0.483 0.076 0.320 0.615 2.545
0.461 1.249 3.618 0.395 0.950 3.251 —0.010 1.438 0.354 1.393 2.722

0.05 —-0.486 3.170 0.704 2.258 0.231 —-2.263 0.586 2.520 —-0.569 3.041 -0.093 -0.848 0.831 2.230
—-1.257 6.276 3.990 0.685 —3.315 1.460 —-1.875 5.590 -0.291 -1.088 2.491

0.1 0.597 0.270 0.607 2.535 —0.252 5.020 0.843 2.496 0.505 0.445 0.016 3.783 0.523 2.422
1.259 0.243 3.536 —-0.511  3.067 1.771 1.152 0.415 0.043 3.358 1.496

0.15 —-0.954 3.584 0.826 2.473 —0.892 6.249 1.142 2.011 -1.015 2.112 -0.946 6.342 1.318 1.866
—2.112 4.345 4.607 —-2.326  5.690 3.224 —2.366 2.549 -2.636 6.463 4.177

0.2 -0.349 1421 0.739 2.615 -0.606 9.894 0.858 2.001 —0.850 2.598 —-0.606 10.489 0.860 1.922
—0.827 1.054 4.140 —-1.592 §5.712 2.824 —-1.920 1.958 —-1.486 6.393 2.935

0.25 —0.271 1.630 0.717 2.594 —-0.216 §.347 0.770 2390 —0.932 1.242 0.065 6.623 0.674 2.319
—0.800 1.143 4.137 —-0.626  2.398 2.839 —1.952 1.106 0.172 4.443 2.573

30 industry portfolios 0.01 -0.132 0.874 0.712 1.411 -0.208 —-0.740 1.007 1.897 0.020 0.823 —-0.155 —-0.402 0.781 1.373
—-1.077 3.823 3.231 —-1.611 —-1.909 4.160 0.086 3.356 —0.597 -1.011 2.833

0.05 0.036 0.903 0.675 1.898 0.445 —-2.141 0.443 1.878 —0.162 0.791 0.390 —-1.728 0.447 1.792
0.101 1.975 3.274 1.357 —2.558 1.296 —-0.326 1.878 0.690 —-2.027 1.022

0.1 0.208 1.044 0.651 1.848 0.722 -2.173 0.261 1.720 -0.504 0.545 0.875 —1.972 0.209 1.683
0.592 1.680 3.286 3.348 —1.969 0.986 —0.838 0.809 1.825 —1.751 0.604

0.15 0.561 1.135 0.607 1.704 0.930 —-2.461 0.246 1.612 0.147 0.774  0.647 —-2.147 0.358 1.564
1.843 1.594 3.044 3.644 -2.162 0.929 0.278 1.122  1.303 -1.947 1.080

0.2 0.602 0.442 0.665 1.917 0.840 —1.770 0.384 1.784 0.177 0.431 0.674 —-1.970 0.430 1.767
1.714 0.568 3.388 2.398 —1.535 1.437 0.414 0.555 1.434 —-1.688 1.468

0.25 0.823 0.926 0.648 1.734 0.652 —2.961 0.550 1.806 0.879 0.883 0.046 —2.418 0.673 1.611
2.093 1.221 3.239 1.993 -2.469 2.191 2.152 1.157 0.123 —1.984 2.628

Notes: Prices of risk estimated on monthly return data of 30 industry portfolios and portfolios double sorted on size and book-to-market. Sample period covers time interval between

July 1926 and April 2020. Long horizon is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include Fama—MacBeth #-statistics.
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Table A.8 Fama—French portfolios

TR Extreme volatility risk Full model

T e IR ACATM RMSPE Y MY ACATME RMSPE AR, MR VAN v JCAPM - RMSPE

Operating profit  0.01  0.266  0.844  0.337  0.417 0.353 —0.329  0.467 0.663 0.097 1.012  0.185 —0.388  0.244  0.265
1217 1929 1462 1.603 —1.014  1.668 0.333  2.738  0.466 —1.264  0.700

0.05 —0.301  1.308  0.669 0.920 0.684 —2.969  0.422 0.723 —0.355 0.306 0.782 —1.790  0.317  0.625
—0.692  2.328  3.255 2.673 -2.070  1.617 —0.728  0.618  2.164 -1.951  0.987

0.1 0.119 —1.008 0.747 0.976 0.844 —1.697  0.142 0.701 0.018  0.394  0.986 -2.376  0.037 0.688
0.315 —1.461  3.608 1.493 —0.783  0.318 0.037  0.945  1.939 —1.705  0.093

0.15 0262 -0.933 0709 1.041 0.803 —1.173  0.263 0.986 —0.807 —0.974  1.804 —2.295 —0.104 0.820
0.696 —1.041  3.335 2318 -1.426  1.008 —0.751 —1.458 2108 -2.814 —0.255

0.2 -—1.191 0226 0.884 0.886 1.284 —4.962  0.147 0.849 —1.646 0.742  1.662 —3.192  0.121 0.579
—1.379  0.340  4.024 3.769 —2.240  0.577 —2.360 1.415 4102 -1.850 0.471

025 —0.947 1579 0.725 0914 0.195 —2.627  0.599 0.589 —0.332 —0.049 0.356 —2.294  0.541 0.575
—0.913  1.638  3.511 0.511 —1.525  2.166 —0.433 —0.075  1.418 -2.138  2.185

Investment 0.01 0234 2347 —-0.145 1219 1.093 —0.047 —0.114 3.332 0.768 2230 —0.774  0.729  0.196 0.933
2228  7.966 —0.626 5.265 —0.251 —0.405 1.009  3.649 —1.126 3.077 0.374

0.05 -1.855 5496 0.668 1333 —1.674 —1.749  1.995 2.535 —2.088  5.045  0.035 1.831  0.593 1.279
—4.548  5.866  3.130 —9.143 -1.320 7.719 —4.508  8.124  0.151 2755  2.487

0.1 —4.729 4393 1274 2.007 0.950  7.075 —0.330 2.960 —5.437  3.225 —0.552  0.004  1.902 1.984
—5.902  3.724  5.048 1.964  9.647 —0.699 —7.711 4848 —1.215  0.007  3.911

0.15 -2.556 7.013  0.811 2.068 —2.463 16.677 1.543 2.440 —5.158  8.173  4.022 14.513 —1.794 1.366
—6.042 7252 3.908 —-8222 7.779  5.729 —5.133  9.396  4.581  7.545 -3.767

0.2 —4.208 14.158  0.559 1.746 —3.982 10.646 2.676 2933 —1.998 13.989 -2.161 10.860 1.174 1.301
—8.644  8.388  2.439 —7.310  6.644  6.950 ~1.360  6.574 —1.248  2.824  1.387

025 —-5272 2109 1236 1.770 0216  7.497  0.527 3296 —4.753  3.109 —0.416 2.632  1.341 1.681
—9.910  1.765  4.718 0.428  4.862  1.257 —9.098 3275 -0.863 1710  3.095

(continued)
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Table A.8 Continued

TR Extreme volatility risk Full model
T e IR ACATM RMSPE g S JCATME RMSPE AR, MR Mo MY JCAPM - RMSPE

Book-to-market  0.01 0.783 0.378 0.249  1.537 1.045 0.830 -0.323  2.178 2.016 -1.162 -1.923 -1.355 1.793  1.141

4.365 1.142 1.220 4.243 2.022 -1.130 3.866 —2.861 -—3.316 -—3.587 3.971

0.05 1.909 2.898 0.061 1.386 —0.682 —6.138 1.661  2.020 2.821 2.012 -0.957 2.715 0.669  1.148
3.552 2.593 0.274 -1.912 —4.116 3.755 3.917 2.384 —-2.543 2.847 1.886

0.1 2997 -1.702 0276 1449 —-0.672 5.498 1.240 2.791 3.098 -3.078 -1.303 —-3.900 1.558  1.159
4274 -2.004 1.368 —1.457 2.332 2.571 4.323 -3.434 -2.526 -2.110 3.180

0.15 2.979 1.100 0.147  1.504 —-1.844 0.164 2.095 2.378 5.562 —6.472 -0.957 8.492 0.252  1.063
4.180 0.971 0.693 —3.473 0.147 4.427 4.697 —4.100 —-2.493 3.918 0.772

0.2 1.940 5.670 0.272  2.043 —-1.110 8.519 1.166  2.151 1.055 4.724 —0.066 4.433 0.335  1.999
3.102 4.096 1.333 —2.942 3.797 4.017 1.799 3.161 —-0.133 2.907 0.908

0.25 —0.046 8.320 0.442 2212 -0.956 9.493 1.193  2.160 —1.799 6.455 —0.477 8.514 0.893  2.006
—0.072 3.362 2.283 —2.841 3.578 4.198 —2.185 3.050 -1.778 3.276 3.536

Notes: Prices of risk estimated on monthly return data of portfolios sorted on operating profit, investment, and book-to-market. Sample period covers time interval between July 1963
(July 1926 for book-to-market portfolios) and March 2020. Long horizon is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include
Fama—MacBeth #-statistics.
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Table A.9 Various portfolios

TR Extreme volatility risk Full model
LA IR ACAM RMSPE  Afy, B ACAM RMSPE AR, IR Mov Y JCAPM - RMSPE
Lettau, Maggiori,and 0.01  0.744  0.126  0.455 8.739 0.562  0.115  0.112 9.116 0.953 —0.042 —0.135 —0.420 0.600 8.702
Weber (2014) 3.703 0225  1.792 3.080 0225  0.399 3.238 —0.074 —0.484 —0.855  1.894
0.05 0.428 4.432  0.590 8.724 0.738 1779  0.264 9.634 0.059 4368 0.268 0.378 0.501 8.708
0.956  3.801  2.294 1.838  1.575  0.968 0.126  3.565 0.515 0.333  1.603
0.1 0784 3.342  0.602 9.988 1.029  0.109  0.248 9.935 —0.847 4.122  1.468 —1.817 0202 9.693
1.344 2138  2.359 1.945  0.071  0.858 —1.824  2.579 2593 —1.154  0.668
0.15  0.627 7.934  0.578 9.408 1213 1.165 0.293 10.037 —0.117 8.497 0906 —-1.273  0.392 9.367
1.243  3.951 2.241 1.783  0.657  0.999 —0.257  3.551 1.116 -0.622 1263
0.2 0990 11.846 0.487 8.925 0.519 2222 0481 10.623  2.392 10.492 —2.392 2494 0.954 8.52§
1.871 4994  1.939 0.746  1.004  1.639 2.514  5.140 -2.560 1.176  2.799
025 1.187 10.080  0.459 9.502 0.700  1.154 0.455 10.705  1.842 9.434 —1.674 3.161 0.767 9.295
2208  3.700  1.809 0.956  0.503  1.541 2.538  3.594 —1.944 1.544  2.353
Weber (2018) 0.01 0.611 1.702  0.008 1.428 0.826  8.684 —0.796 1.460 0.852 1246 -0.795 6.825 —0.123 0.695
2.809  4.083  0.033 3.741  3.537 —2.297 1.779 2466 —1.568 2.545 —0.281
0.05 —2.640 4.875 1.027 2.864 1.953 —3.555 —0.249 4277 -2.562 5.166 2319 -3.806 —0.211 1.318
—4.897 7.174 4416 4.587 —4.026 —0.696 —4832 7206 5.026 -4.633 —0.641
0.1 —4297 3906 1361 3.989 0.827 9226 —0.426 3.270 0.316 3.719 2.061 8.453 —1.611 3.190
—5.230  3.027 5394 1262 6.569 —0.669 0.704  3.318 3.698  6.560 —2.939
0.15 0257 8307 0.155 3.620 —0.829 10.041 0.840 3.099 —0.568 5.073 0.858 11.976 —0.447 2.906
0.783  7.019  0.696 —2.711  5.768 2299 —1.005 5.208 1.369  4.526 —0.885
0.2 -2.453 9974 0.580 3.804 —0.838 6.443 1.052 4.413 —2.801 15.421 3.088 13.817 —1.799 2.779
—4.107  6.689  2.658 —1.926  6.203  2.645 —4.146  6.730 4330  7.357 —3.280
0.25 —3.435 8.407 0.658 3.870 1.904 2376 —0.463 4.693 —5.417 8.747 4.081 8.589 —1.818 3.097
—5.066  6.948  2.989 5773 2107 -1.514 —6.571  7.086 6.850 6.427 —4.362
(continued)
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Table A.9 Continued

TR Extreme volatility risk Full model
LA MR ACATM RMSPE  Afy, v ACATM RMSPE AR, IR Mow Y JCAPM - RMSPE

Ilmanen etal. (2021)  0.01  2.401  1.279 -0.528 20.445 2279  3.100 -0.440 19.912 1.087 1.338 1.086  2.842 -0.424 19.407

11.322 0988 —-1.714 11.091  2.741 -1.484 1.076  0.991 1.094  2.455 —-1.420

0.05 6.482 —-0.905 0.058 19.846 4.840  5.149 -0.779 20.155 4.160 —1.209 1.709  3.082 —-0.283 19.650
12,922 -0.367  0.196 10.085  2.232 -2.446 2.146 —-0.477  0.952 1.342 —-0.541

0.1 7.660 1.560 0377 24.118 5.830  6.750 —-0.729 22.877 4.715  0.885 1.916 6.173 —0.038 23.208
11.398  0.480 1.487 10.703 1.834 -2.309 2.781 0.266 1.304 1.657 —0.102

0.15 8.689 —0.554  0.438 24.783 6.698 12.464 —-0.763 23.232 3.026 —0.202  4.250 10.625 —0.335 23.133
11.734 -0.167  1.803 9.759  2.889 —-2.407 2416 -0.059  3.628  2.430 —1.045

0.2 9.876 —-2.295 0.368 27.105 10.214 1.875 -—-0.756 22.503 —-0.278 —4.394 10.922 1.825 -1.075 22.170
11.540 —-0.632 1.487 10.411 0.374 -2.359 —-0.259 —-1.188 9.470 0.346 —3.447

0.25 8.151 3.455  0.557 30.032 10.378 20.757 -0.502 28.317 1.925  0.215 8.146 19.229 -0.268 27.793
10.336  0.925  2.305 9.569 4311 —1.594 1.781 0.057  6.879  3.642 —0.969

Notes: Prices of risk estimated on monthly data of various datasets. Models are estimated for various values of thresholds given by . Long horizon is given by frequencies correspond-
ing to 3—year cycle and longer. Below the coefficients, we include Fama—MacBeth z—statistics.
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The second set of portfolios includes equities sorted on operating profit, investments,
and book-to-market. The results are given in Table A.8. Generally, short TR is priced
across these portfolios with the expected sign. On the other hand, using the portfolios
sorted on investment, there is a strong negative relation between long TR and asset returns,
which may seem unintuitive. Regarding the EVR, its short-term part is priced across invest-
ment portfolios and book-to-market portfolios.

F.2. Other Portfolios

In this section, we provide analysis of QS risk performed on other widely used datasets.
The estimated models are reported in Table A.9. First, we focus on portfolios employed in
Lettau, Maggiori, and Weber (2014). This dataset contains portfolios formed across mul-
tiple asset classes. First, the dataset contains six currency portfolios sorted on interest rate
differential (we exclude high inflation currencies similar to the approach of Lettau,
Maggiori, and Weber 2014). Second, we have five commodity futures portfolios sorted on
basis. Third, we include returns on five corporate bond portfolios sorted on credit spread.
And fourth, we have equity portfolios sorted on various characteristics (six double sorted
on size and value, five on CAPM beta, five on industry, and six double sorted on momen-
tum and size).!” Here, we present results for the aggregated dataset. This dataset was intro-
duced to show the usefulness of downside risk beta for pricing. From the results, we can
conclude that the short component of TR for most t threshold values is priced using the
aggregated dataset. Its long component is significant for some medium values of t.
Regarding the EVR, its short-term component for lower values of 7 is priced as well.

Second, we look at the equity portfolios sorted on cash flow duration proposed in
Weber (2018). The results can be found in the second section of Table A.9. Similarly as in
the previous case, short-term part of TR is priced across these portfolios. On the other
hand, its long-term part is negatively priced across these assets, which may be counterintui-
tive. The EVR is priced using its both components.

Finally, we use returns on factors constructed from various asset classes from Ilmanen
et al. (2021). This dataset was chosen because of its long history and because it spans many
asset classes including U.S. and international equities, fixed income assets, currencies, and
commodities using value, momentum, carry, defensive, and multi-style type of investment
strategy. We report the results in the third panel of Table A.9. We can see that using the TR
model, the long-term TR is priced, and both parts of EVR are priced. But if we look at the
results of the Full model, only the EVR coefficients remain consistently significant.
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