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Abstract

This article investigates how two important sources of risk—market tail risk (TR)
and extreme market volatility risk—are priced into the cross-section of asset
returns across various investment horizons. To identify such risks, we propose a
quantile spectral (QS) beta representation of risk based on the decomposition
of covariance between indicator functions that capture fluctuations over various
frequencies. We study the asymptotic behavior of the proposed estimators of
such risk. Empirically, we find that TR is a short-term phenomenon, whereas ex-
treme volatility risk is priced by investors in the long term when pricing a cross-
section of individual stocks. In addition, we study popular industry, size and value,
profit, investment, or book-to-market portfolios, as well as portfolios constructed
from various asset classes, portfolios sorted on cash flow duration, and other
strategies. These results reveal that tail-dependent and horizon-specific risks
are priced heterogeneously across datasets and are important sources of risk for
investors.
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The classical conclusion of the asset pricing literature states that the price of an asset should

be equal to its expected discounted payoff. In the capital asset pricing model (CAPM) intro-

duced by Sharpe (1964), Lintner (1965), and Black (1972), we assume that the stochastic

discount factor can be approximated by return on market portfolio; thus, expected excess

returns can be fully described by their market betas based on covariance between asset re-

turn and market return. While early empirical evidence validated this prediction, decades of

consequent research have called the ability of the traditional market beta to explain cross-

sectional variation in returns into question. We aim to show that to understand the forma-

tion of expected returns, one has to look deeper into the features of asset returns that are

crucial in terms of the preferences of a representative investor. We argue that two import-

ant, risk-related features are tail events and frequency-specific (spectral) risk capturing be-

havior at different investment horizons. To characterize such general risks, we derive a

novel quantile spectral (QS) representation of beta that captures covariation between indi-

cator functions capturing fluctuations of different parts of joint risky asset and market re-

turn distributions over various frequencies. Nesting the traditional beta as well as recently

introduced spectral beta (Bandi et al. 2021), the new representation captures tail-specific as

well as horizon- or frequency-specific spectral risks.

Intuitively, covariation stemming from (extremely) negative returns of risky assets and

(extremely) negative returns of the market that are known as downside risk in the literature

should be positively compensated. While early literature (Ang, Chen, and Xing 2006) em-

pirically confirms the premium for bearing downside risk, Levi and Welch (2020) concludes

that estimated downside betas do not provide superior predictions compared with standard

betas. More recently, Bollerslev, Patton, and Quaedvlieg (2020) argue that we need to look

at finer representations allowing combinations of positive and negative assets and market

returns and suggest how such semibetas are priced.

The aim of this article is to show that there is heterogeneity in the weights that investors

assign to the risk for different investment horizons and different parts of the distribution of

their future wealth. We argue that previous attempts have failed to fully account for more

subtle implications arising from these heterogeneities. An asset drop that covaries with a

drop in the market and, at the same time, is a low-frequency event with large persistence

should be priced by investors differently than such extreme situations due to high-

frequency, transitory events. While in the first situation, investors will be pricing a persist-

ent crash resulting in long-term fluctuations in the quantiles of the market’s and risky

asset’s joint distribution, in the latter case the investor cares about the transitory crash

resulting in short-run fluctuations. This essentially means that a covariance between the

risky asset and discount factor will not only be different across all parts of the joint distribu-

tion but will also be different across various investment horizons. Intuitively, these co-

occurrences of tail events will have either short-term or long-term effects on the marginal

utility of investors. Looking at the beta representation that will capture such information

empirically will also be informative for the rare disaster literature (Barro 2006).

Economists have long recognized that decisions under risk are more sensitive to changes

in the probability of possible extreme events compared with the probability of a typical

event. The expected utility might not reflect this behavior since it weighs the probability of

outcomes linearly. Consequently, CAPM beta as an aggregate measure of risk may fail to

explain the cross-section of asset returns. Several alternative notions have emerged in the

literature. Mao (1970) presents survey evidence showing that decision-makers tend to think
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of risk in terms of the possibility of outcomes below some target. For an expected utility-

maximizing investor, Bawa and Lindenberg (1977) has provided a theoretical rationale for

using a lower partial moment as a measure of portfolio risk. Based on the rank-dependent

expected utility due to Yaari (1987), Polkovnichenko and Zhao (2013) introduce utility

with probability weights and derive the corresponding pricing kernel. As mentioned earlier,

Ang et al. (2006), Lettau, Maggiori, and Weber (2014) argue that downside risk—the risk

of negative returns—is priced across asset classes and is not captured by CAPM betas.

Furthermore, Farago and T�edongap (2018) extend the results using a general equilibrium

model based on generalized disappointment aversion (GDA) and show that downside risks

in terms of market return and market volatility are priced in the cross-section of asset

returns.1

The results described above lead us to question the role of expected utility maximizers

in asset pricing. A recent strand of literature solves the problem by considering the quantile

of utility instead of its expectation. This strand of literature complements the previously

described empirical findings focusing on downside risk, as it highlights the notion of eco-

nomic agents particularly averse to outcomes below some threshold compared with out-

comes above this threshold. The concept of a quantile maximizer and its features was

pioneered by Manski (1988) and later axiomatized by Rostek (2010). Most recently, de

Castro and Galvao (2019) developed a quantile optimizer model in a dynamic setting. A

different approach to emphasizing investors’ aversion toward less favorable outcomes

defines the theory based on Choquet expectations. This approach is based on a distortion

function that alters the probability distribution of future outcomes by accentuating proba-

bilities associated with the least desirable outcomes. This approach was utilized in finance,

for example, by Bassett, Koenker, and Kordas (2004).

Whereas aggregating linearly weighted outcomes may not reflect the sensitivity of

investors to tail risk (TR), aggregating linearly weighted outcomes over various frequencies

or economic cycles also may not reflect risk specific to different investment horizons. One

may suspect that an investor cares differently about short-term and long-term risk accord-

ing to their preferred investment horizon. Distinguishing between long-term and short-term

dependence between economic variables has proven to be insightful since the introduction

of cointegration (Engle and Granger 1987). The frequency decomposition of risk thus

uncovers another important feature of risk that cannot be captured solely by market beta,

which captures risk averaged over all frequencies. This recent approach to asset pricing ena-

bles us to shed light on asset returns and investor behavior from a different point of view,

highlighting heterogeneous preferences. Empirical justification is brought by Boons and

1 In addition, it is interesting to note that equity and variance risk premiums are also associated with

compensation for jump tail risk (Bollerslev and Todorov 2011). A more general exploration of the

asymmetry of stock returns is provided by Ghysels, Plazzi, and Valkanov (2016), who propose a

quantile-based measure of conditional asymmetry and show that stock returns from emerging mar-

kets are positively skewed. Conrad, Dittmar, and Ghysels (2013) use option price data and find a re-

lation between stock returns and their skewness. Another notable approach uses high-frequency

data to define realized semivariance as a measure of downside risk (Barndorff-Nielsen,

Kinnebrock, and Shephard 2008). From a risk-measure standpoint, handling negative events, espe-

cially rare events, is a highly relevant theme in both practice and academia. The most prominent

example is value-at-risk (Engle and Manganelli 2004; Adrian and Brunnermeier 2016).
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Tamoni (2015) and Bandi and Tamoni (2021), who show that exposure in long-term

returns to innovations in macroeconomic growth and volatility of the matching half-life is

significantly priced in a variety of asset classes. The results are based on the decomposition

of time series into components of different persistence proposed by Ortu, Tamoni, and

Telbaldi (2013).

From an empirical asset pricing standpoint, our approach is closely related to Bandi

et al. (2021) who introduce spectral beta that measures systematic risk over specific eco-

nomic cycle. Bandi et al. (2021) show that a single business cycle component of market

returns is successful in pricing many anomalous portfolios. Piccotti (2016) further sets the

portfolio optimization problem into the frequency domain using matching of the utility fre-

quency structure and portfolio frequency structure, and Chaudhuri and Lo (2016) present

an approach to constructing a mean–variance–frequency optimal portfolio. This optimiza-

tion yields the mean–variance optimal portfolio for a given frequency band and thus it opti-

mizes the portfolio for a given investment horizon.

From a theoretical point of view, preferences derived by Epstein and Zin (1989) enable

the study of frequency aspects of investor preferences and this has quickly become a stand-

ard in the asset pricing literature. With the important results of Bansal and Yaron (2004),

long-run risk started to enter asset pricing discussions. Dew-Becker and Giglio (2016) inves-

tigate frequency-specific prices of risk for various models and conclude that cycles longer

than the business cycle are significantly priced in the market. Other papers utilize the fre-

quency domain and Fourier transform to facilitate estimation procedures for parameters

hard to estimate using conventional approaches. Berkowitz (2001) generalizes band spec-

trum regression and enables the estimation of dynamic rational expectation models match-

ing data only in particular ways, for example, forcing estimated residuals to be close to

white noise. Dew-Becker (2017) proposes a spectral density estimator of the long-run

standard deviation of consumption growth, which is a key component for determining risk

premiums under Epstein–Zin preferences and shows superior performance compared with

the previous approaches. Crouzet, Dew-Becker, and Nathanson (2017) developed a model

of a multifrequency trade set in the frequency domain and showed that restricting trading

frequencies reduces price informativeness at those frequencies, reduces liquidity, and

increases return volatility. One of the rare exceptions that entertains the idea of combining

horizon-specific risk with tail events is Barro and Jin (2021), who show that most of the

risk premium is attributable to rare event risk, but the long-run risk component contributes

to fitting the Sharpe ratio as well.

The debate clearly indicates that the standard assumptions leading to classical asset pric-

ing models do not correspond with reality. In this article, we suggest that more general pric-

ing models have to be defined and should take into consideration both the asymmetry of

the dependence structure among the stock market and the relation of asymmetry to differ-

ent investor behaviors at various investment horizons.

The main contribution of this article is three-fold. First, based on the frequency decom-

position of covariance between indicator functions, we define the QS beta of an asset cap-

turing frequency-specific TRs and corresponding ways of measuring the beta. The newly

defined notion of a beta can be viewed as a disaggregation of a classical beta to a frequency-

and tail-specific beta. With this notion, we describe how extreme market risks are priced in

the cross-section of asset returns at various horizons. We define frequency-specific tail mar-

ket risk (TR) that captures dependence between extremely low market and asset returns, as
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well as extreme market volatility risk (EVR) that is characterized by dependence between

extremely high increments of market volatility and extremely low asset returns. Second, we

empirically motivate the emergence of such types of risks in the cross-section of asset

returns. Third, we estimate models and document these types of risks on a wide number of

popular datasets, including Fama–French industry, size and value, profit, investment, and

book-to-market portfolio, as well as portfolios constructed from various asset classes and

sorted on cash flow durations.

The results of this article suggest that TR is consistently priced in the cross-section of

asset returns in the short term, while EVR is priced mainly in the long term. The result also

holds when we control for popular factors, including moment-based factors that are

designed to capture asymmetric features and popular downside risk models (Ang et al.

2006; Lettau, Maggiori, and Weber 2014; Farago and T�edongap 2018). We also discuss

how our new beta representation relates to other risk measures. Finally, we document that

the final model capturing tail-specific risks across horizons significantly outperforms the

other competing models that capture downside risks.

The rest of the paper is structured as follows. Section 1 motivates the importance of TRs

across horizons. Section 2 introduces the estimation of QS betas and discusses the asymp-

totic theory for the estimators, Section 3 defines the empirical models used for testing the

significance of extreme risks and Section 4 conducts the empirical analysis on individual

stocks as well as on various portfolios. Section 5 then concludes. In the Appendix, we detail

the main technical results regarding the QS betas, their relation to the rare disaster model,

specifications of the competing measures of risk, and detailed results from the portfolio esti-

mations. For estimation of QS betas, we provide package QSbeta in R available at https://

github.com/barunik/QSbeta. QS and cross-spectral densities as well as other quantities can

be estimated using package quantspec in R available at https://github.com/tobiaskley/quant

spec introduced by Kley (2016).

1 Motivation: Why Should We Care about TRs across Horizons

The empirical search for an explanation of why different assets earn different average

returns centers around the use of return factor models arising from the Euler equation.

With only the assumption of ‘no arbitrage’, a stochastic discount factor mtþ1 exists, and

under the expected utility maximization framework, for the ith excess return, ri;tþ1 satisfies

E mtþ1ri;tþ1½ � ¼ 0, hence

E ri;tþ1½ � ¼
Cov mtþ1; ri;tþ1ð Þ

Var mtþ1ð Þ
�
Var mtþ1ð Þ
E mtþ1½ �

 !
¼ bik; (1)

where loading bi can be interpreted as exposure to systematic risk factors and k as the risk

price associated with factors. Equation (1) assumes that the risk premium of an asset or a

portfolio can be explained by its covariance with some reference economic or financial vari-

able such as consumption growth or return on market portfolio. This simple pricing rela-

tion also assumes that independent common sources of systematic risk exist in the economy

and exposure to them can explain the cross-section of asset returns.2 This leads to the

2 For example, this is the cornerstone of arbitrage pricing theory of Ross (1976).
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so-called factor fishing phenomenon, which tries to identify other risk factors in addition to

the traditional market factors assumed by CAPM using a linear combination of factors that

are assumed to have nonzero covariance with a risky asset, and to be independent of each

other.

Covariance between the two variables of interest,

ck
i;j ¼ Cov rj;tþk; ri;tð Þ � E rj;tþk � rjð Þ ri;t � rið Þ

� �
; (2)

which is central to the asset pricing literature, may not be sufficient in cases in which the in-

vestor cares about different parts of the distribution of her future wealth differently or in

cases in which an investor cares about specific investment horizons. The empirical literature

silently assumes that the risk factors aggregate information over the distribution of returns

as well as investment horizons. Part of the literature tracing back to early work by Roy

(1952), Markowitz (1952), Hogan and Warren (1974), and Bawa and Lindenberg (1977)

argues that the reason we do not empirically find support for the above thinking is that the

pricing relationship is fundamentally too simplistic. If investors are averse to volatility only

when it leads to losses, not gains, the total variance as a relevant measure of risk should be

disaggregated.

Later work by Ang et al. (2006), Lettau, Maggiori, and Weber (2014), and Farago and

T�edongap (2018) show that investors require an additional premium as compensation for

exposures to disappointment-related risk factors called downside risk. Recently, Lu and

Murray (2019) argued that bear risk capturing the left tail outcomes is even more import-

ant and Bollerslev et al. (2020) introduced betas based on semicovariances. In contrast to

the promising results, Levi and Welch (2020) concluded that estimated downside betas do

not provide superior predictions compared with standard aggregated betas, partially due to

the difficulties of accurately determining downside betas from daily returns. With a similar

argument of an overly simplistic pricing relation, another strand of the literature looks at

frequency decomposition and explores the fact that risk factors of claims on the consump-

tion risk should be frequency dependent since consumption has strong cyclical components

(Dew-Becker and Giglio 2016).

More recently, a new stream of literature led by de Castro and Galvao (2019)

assumes agents have quantile preferences. In asset pricing, such an investor prefers future

streams of quantiles of utilities leading to qt;s ms;tþ1 1þ ri;tþ1ð Þ � 1ð Þ ¼ 0. Assuming quantile

preferences, our focus shifts from the search for the best proxy for a discount factor toward

the capturing of the general dependence structures that reveal such flexible preferences.

Measures we introduce in this article allow us to identify risks associated with this type of

preference.

Recognizing departures from overly simplistic assumptions in the data, we need to

examine more general dependence measures since a simple covariance aggregating depend-

ence across distributions as well as investment horizons will not be a sufficient measure of

(in)dependence.

To illustrate this discussion, we consider dependence between market returns and a

popular small-minus-big (SMB) portfolio as well as momentum (MOM) portfolio. While

the literature assumes that these factors represent two independent sources of risk with con-

temporaneous correlation between them and the market being rather small, investigating

the dependence in various parts of their joint distribution across different lags and leads
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reveals interesting relations. Instead of aggregate covariance between the market return and

a factor portfolio, Figure 1 depicts tail- and lead/lag-specific covariation for a threshold

value given by s-quantile of the market return and a given lead/lag k of the following form:

Cov Ifrm;t�k � qrm
sð Þ

� �
g; Ifri;t � qrm

sð ÞgÞ; (3)

where rm;t is the return of the market factor, ri;t is the return of either the SMB or the

MOM portfolio, If:g is an indicator function, and qrm
is the quantile function of the market

return. This simple measure captures the probability of both returns being below some

threshold value in some time interval given by lead/lag k. This can be seen from the fact

that Cov Ifrm;t�k � qrm
sð Þ

� �
g; Ifri;t � qrm

sð ÞgÞ¼ Prfrm;t�k � qm sð Þ; ri;t � qm sð Þg � ssi.

Therefore, this dependence essentially measures additional probability over the independ-

ence copula of both variables being below some threshold value.

Looking at the median dependence of market return on SMB or MOM portfolio returns

(right column of plots for s ¼ 0:5), we observe that dependence can be fully characterized

by rather weak contemporaneous covariation between the market and the SMB and MOM

portfolio returns, since no significant relation exists at any lead or lag in the relationship.3

Moving our attention toward the left tail of the joint distribution, more complicated de-

pendence structures emerge. The departure from the joint Gaussian distribution is strongest

in the left tail (left column of plots for s ¼ 0:05). The co-occurrences of large negative mar-

ket returns with large negative SMB or MOM portfolio returns are significant and exist at

various leads/lags.

For example, if we look at the dependence between the market and SMB in the 5% tail,

we can observe that if the market is below this threshold, there is also a significant prob-

ability that the SMB portfolio will be below this threshold, with some delay. Similarly, the

SMB downturn precedes the market downturn with significant probability.4 Therefore, in-

stead of arguing that the SMB factor proxies for an independent economic risk, the results

suggest that the SMB portfolio captures more complicated market TR at some specific

horizons.

In other words, the left tail dependence shows that extreme market drop is correlated

with extreme negative returns of SMB. This illustrates that large negative market returns

are correlated with the situation in which large companies largely outperform small compa-

nies in the SMB portfolio. Hence, we document a joint probability of co-occurrence of the

market extreme left tail event, and large companies outperform small companies, leading to

an increase in default risk in the economy (Chan, Chen, and Hsieh 1985). An important

feature of the dependence not documented by earlier studies is its persistence structure

shown by autocorrelations and the same strength for leading one another. At the same

time, while momentum is negatively correlated with the market, the second row of Figure 1

shows a significant lead–lag relationship of the momentum factor and stock market, point-

ing us to the intuition that extremely low market returns are cross-correlated with compa-

nies with low momentum outperforming those with high momentum.

3 Note that the dashed lines in the figure represent confidence intervals under the null hypothesis

that the two series are jointly normally distributed correlated random variables.

4 A similar lead/lag investigation regarding business cycle indicators is performed in Backus,

Routledge, and Zin (2010).
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Figure 1 Dependence structure between the market and SMB and MOM factor portfolios. Plots display covariance in the tail and across horizons defined by Equation (3)

that measures the general dependence between the market return and the SMB and MOM factors, respectively. Dashed lines represent 95% confidence intervals under

the null hypothesis that the two series are jointly normally distributed correlated random variables. Data are sampled with monthly frequency.
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Note that these observations are closely related to the literature on market frictions,

price delays and aggregations, and their asset pricing implications.5 In that sense, we follow

a similar vein of thought as Bandi et al. (2021), with the important difference that we focus

on the downside risk specifically.

This line of thinking may lead us to the conclusion that such general dependence struc-

tures can hardly be described by traditional contemporaneous correlation-based measures.

The illustration suggests that there is no need for many factors to explain the average asset

return, as carefully measured exposure to market risk can capture the risk investors care

about. A natural way to summarize the dependence across these lead/lag relationships is to

employ frequency analysis and precisely summarize this joint structure for specific

horizons.

From an economic perspective, it is reasonable to assume that future marginal utility is

affected by the realization of low quantile returns today, as this event may lead, for ex-

ample, to bankruptcy or in other ways significantly shape the behavior of economic agents

in the future. In other words, extreme market events can have either short-run or long-run

effects on the marginal utility of investors. Previous studies, however, fail to fully account

for horizon-specific information in tails, while one of the main reasons turns to the inability

to measure such risks. Here, we propose robust methods for the measurement of such risks

and we argue that exploring the risk related to tail events as well as frequency-specific risk

is crucial.

To see how tail-specific risks are priced across horizons by investors, we proceed as fol-

lows. First, we define a quantile risk measure based on the covariance between indicator

functions, which has a natural economic interpretation in terms of probabilities. Second,

we introduce its frequency decomposition and combine these two frameworks into the QS

risk measure, which is the building block of our empirical model. This measure enables us

to robustly test for the presence of extreme market risks over various horizons in asset pri-

ces. The aim is not to convince the reader that the functional form of the preferences pre-

cisely follows our model but to show that there is heterogeneity in the weights that

investors assign to the risk for different investment horizons and different parts of the distri-

bution of their future wealth. By estimating prices of risk for short- and long-term parts, we

are able to identify the horizon that the investor cares most about. Moreover, by estimating

prices of risk for various threshold values, we are able to identify the part of the joint distri-

bution toward which the investor is the most risk averse.6 This is done by controlling for

CAPM beta, and the influence of these new measures is measured as incremental informa-

tion over simplifying assumptions that lead to the CAPM beta asset pricing models.

2 Measuring the TRs across Horizons: A QS Beta

Here, we formalize the discussion and provide more general measures that will provide a

tool for inferring the discussed types of risks from data.

5 See, for example, Kamara et al. (2016) and Hou and Moskowitz (2005).

6 Our investigation complements the work of Delikouras (2017) and Delikouras and Kostakis (2019).

These studies investigate the position of the reference point of consumption growth and show that

its correct location is crucial for fitting the model based on generalized disappointment aversion.
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2.1. Tail Risk

Let us consider a bivariate, strictly stationary process xt ¼ mt; rtð Þ0 holding some reference

economic or financial variable mt proxying risk and asset returns rt. The marginal distribu-

tion functions of mt and rt will be denoted by Fm and Fr, respectively, and by

qm smð Þ :¼ F�1
m smð Þ :¼ inffq 2 R : sm � Fm qð Þg and qr srð Þ :¼ F�1

r srð Þ :¼ inffq 2 R : sr � Fr qð Þg,
where sm; sr 2 0; 1½ � denote the corresponding quantile functions.

Since we are interested in pricing extreme negative events, we want to measure depend-

ence and risk in lower quantiles of the joint distribution that can be evaluated by quantile

cross-covariance (Kley et al. 2016; Barun�ık and Kley 2019)

cm;r
k sm; srð Þ � Cov Ifmtþk � qm smð Þg; Ifrt � qr srð Þg

� �
; (4)

k 2 Z, and IfAg denotes the indicator function of event A. The measure is given by the co-

variance between two indicator functions and, together with Fm and Fr, can fully describe

the joint distribution of the pair of random variables mt and rt, that is, provide a measure

for their serial and cross-dependency structure. If the distribution functions of the variables

are continuous, the quantity is essentially the difference between the copula of the pair mt

and rt and the independent copula, that is, Prfmtþk � qm smð Þ; rt � qr srð Þg � smsr. Thus,

covariance between indicators measures additional information from the copula over an in-

dependent copula about how likely it is that the series are jointly less than or equal to a

given quantile of the variable mt. It enables flexible measurement of both the cross-

sectional structure and time-series structure of the pair of random variables.

Comparing these new quantities with their traditional counterparts, it can be observed

that the covariance and means are essentially replaced by copulas and quantiles. A market

beta associated with the TR can then be defined using Equation (4). This quantity would be

similar to the TR measure of Schreindorfer (2020), which is also a function of the s quantile

threshold of consumption growth. The correlation between asset returns and consumption

growth is then computed conditional on realizations of consumption growth below the

threshold. It is also related to the negative semibetas of Bollerslev et al. (2020), which esti-

mates the dependence between market return and asset return conditional on the co-

occurrence of negative events for both market and asset.

2.2. TRs across Horizons: A QS Beta

It is natural to further assume that economic agents care not only about different parts of

the wealth distribution but also differently about long- and short-term investment horizons

in terms of expected returns and associated risks. Investors may be interested in the long-

term profitability of their portfolio and may not be concerned with short-term fluctuations.

Frequency-dependent features of an asset return then play an important role for an investor.

Bandi and Tamoni (2021) argue that covariance between two returns can be decomposed

into covariance between disaggregated components evolving over different time scales, and

thus the risk on these components can vary. Hence, market beta can be decomposed into a

linear combination of betas measuring dependence at various scales, that is, dependence be-

tween fluctuations with various half-lives. Frequency-specific risk at a given time plays an

important role in the determination of asset prices and the price of risk in various frequency

bands may differ, which means that the expected return can be decomposed into a linear

combination of risks in various frequency bands.
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A natural way to decompose covariance between two assets into dependencies over dif-

ferent horizons is in the frequency domain. A frequency domain counterpart of cross-

covariance ck is obtained as the Fourier transform of the cross-covariance functions

Sm;r xð Þ ¼ 1
2p

P1
k¼�1 cm;r

k e�ikx. Conversely, cross-covariance can be obtained from the in-

verse Fourier transform of its cross-spectrum as cm;r
k ¼

Ð p
�p Sm;r xð Þeikxdx, where Sm;r xð Þ is

the cross-spectral density of random variables mt and rt and i ¼
ffiffiffiffiffiffiffi
�1
p

.

This representation of covariation allows us to decompose the covariance and variance

into frequency components and disentangle the short-term dependence from the long-term

dependence. Using a similar approach, Bandi and Tamoni (2021) estimate the price of risk

for different investment horizons and show that investors possess heterogeneous preferen-

ces over various economic cycles instead of looking only at averaged quantities over the

whole frequency spectrum.

To uncover more general dependence structures, we propose to study the Fourier trans-

form of the covariance of indicator functions cm;r
k sm; srð Þ instead. In this way, one can quan-

tify the horizon-specific risk premium across the joint distribution. To define the new beta

representation that will allow us to characterize such general risks, we use the so-called

quantile cross-spectral densities introduced by Barun�ık and Kley (2019) as a generalization

of QS densities of Dette et al. (2015).

The cornerstone of this new beta representation lies in quantile cross-spectral density

defined as

f m;r x; sm; srð Þ �
1

2p

X1
k¼�1

cm;r
k sm; srð Þe�ikx (5)

� 1

2p

X1
k¼�1

Cov I mtþk � qm smð Þ
� �

; I rt � qr srð Þ
� �	 


e�ikx (6)

with x 2 R and sm; sr 2 0;1½ �. A quantile cross-spectral density is obtained as a Fourier

transform of covariances of indicator functions defined in Equation (4) and will allow us to

define beta that will capture the TRs as well as spectral risks.

The QS betas that characterize horizon- and tail-specific market risk at a given x, sm,

and sr are then defined as

bm;r x; sm; srð Þ �
f m;r x; sm; srð Þ

f m;m x; sm; smð Þ
; (7)

and will be the key quantity in our analysis. To estimate the QS beta, we use the rank-based

copula cross-periodogram introduced by Barun�ık and Kley (2019)

Im;r
n;R x; sm; srð Þ :¼ 1

2pn
dm

n;R x; smð Þdr
n;R �x; srð Þ; (8)

where dm
n;R x; smð Þ :¼

Pn�1
t¼0 IfbFn;m mtð Þ � smge�ixt and dr

n;R x; srð Þ :¼
Pn�1

t¼0 IfbFn;r rtð Þ �
srge�ixt with bFn;m mtð Þ and bFn;r rtð Þ being empirical distribution functions of mt and rt, re-

spectively. A consistent estimator of the quantile cross-spectral density is then

bGm;r

n;R x; sm; srð Þ :¼ 2p
n

Xn�1

s¼1

Wn x� 2ps=nð ÞIm;r
n;R 2ps=n; sm; srð Þ; (9)
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where Wn denotes a sequence of weight functions, precisely to be defined in the next section

studying the asymptotic properties of the proposed estimators. The estimator of the QS

beta is then given by

bbm;r

n;R x; sm; srð Þ :¼
bGm;r

n;R x; sm; srð ÞbGm;m

n;R x; sm; smð Þ
: (10)

Before we prove that bbm;r

n;R x; sm; srð Þ is a legitimate estimate of bm;r x; sm; srð Þ, we note

that for serially uncorrelated variables (regardless of their joint or marginal distributions),

the Fre�chet/Hoeffding bounds give the limits that QS beta can attain in the case of a serially

independent process as maxfsmþsr�1;0g�smsr

sm 1�smð Þ � bm;r x; sm; srð Þ � minfsm ;srg�smsr

sm 1�smð Þ .

2.3. Asymptotic properties of the QS beta

To derive the asymptotic properties of the QS beta, some assumptions need to be made.

Recall (cf. Brillinger 1975, p. 19) that the rth order joint cumulant cum Z1; . . . ;Zrð Þ of the

random vector Z1; . . . ;Zrð Þ is defined as

cum Z1; . . . ;Zrð Þ :¼
X

f�1 ;...;�pg
�1ð Þp�1

p� 1ð Þ!E
Y
j2�1

Zj

� �
� � �E

Y
j2�p

Zj

� �
;

with summation extending over all partitions f�1; . . . ; �pg; p ¼ 1; . . . ; r, of f1; . . . ; rg.
Regarding the range of dependence of xt 2 mt; rtð Þ0, we make the following assumption:

Assumption 1. The processes xtð Þt2Z are strictly stationary and exponentially a-mixing,

that is, there exist constants K < 1 and j 2 0;1ð Þ, such that

a nð Þ :¼ sup
A 2 r x0; x�1; . . .ð Þ
B 2 r xn; xnþ1; . . .ð Þ

jP A \ Bð Þ � P Að ÞP Bð Þj � Kjn; n 2 N: (11)

Note that Assumption 1 is a bivariate extension of assumptions made in Kley et al.

(2016) and used in Barun�ık and Kley (2019) to study QS quantities. It is important to ob-

serve that this assumption does not require the existence of any moments, which is in sharp

contrast to classical assumptions, where moments up to the order of the respective cumu-

lants must exist, and sets Aj are not required to be general Borel sets, as in classical mixing

assumptions. As noted in Barun�ık and Kley (2019), this assumption holds for a wide range

of popular, linear and nonlinear, multivariate and univariate processes that are a-mixing at

an exponential rate, including traditional Vector Autoregressive Models (VARMA) or vec-

tor-Autoregressive Conditional Heteroscedasticity (ARCH) models.

To establish the consistency of the estimates, we further need to consider sequences of

weights that asymptotically concentrate around multiples of 2p.

Assumption 2. The weights are defined as Wn uð Þ :¼
P1

j¼�1 b�1
n W b�1

n uþ 2pj½ �
� �

, where

bn > 0; n ¼ 1;2; . . ., is a sequence of scaling parameters satisfying bn ! 0 and nbn !1,

as n!1. The weight function W is real-valued, even has support �p; p½ �, bounded vari-

ation, and satisfies
Ð p
�p W uð Þdu ¼ 1:

The main result of this section will legitimize bbm;r

n;R x; sm; srð Þ as an estimator of the QS

beta bm;r x; sm; srð Þ. The legitimacy of the estimates follows from the fact that the estimators

converge weakly in the sense of Hoffman–Jørgensen (cf. Chapter 1 of van der Vaart and
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Wellner 1996). We denote this mode of convergence by). The estimators under consider-

ation take values in the space of (elementwise) bounded functions ½0; 1�2 ! C
d�d, which we

denote by ‘1
C

d�d ð½0; 1�2Þ (Kley et al. 2016). While the results of empirical process theory are

typically stated for spaces of real-valued, bounded functions, these results transfer immedi-

ately by identifying ‘1
C

d�d ð½0; 1�2Þ with ‘1ð½0; 1�2Þ2d2

.

Using Proposition 1 in Appendix A and following Kley et al. (2016) and Barun�ık and

Kley (2019), we quantify uncertainty in estimating f m;r x; sm; srð Þ by bGm;r

n;R x; sm; srð Þ asymp-

totically in the following theorem.

Theorem 1. (Barun�ık and Kley 2019). Let Assumptions 1 and 2 hold. Assume that the mar-

ginal distribution functions Fm and Fr are continuous and that constants j > 0 and k 2 N

exist, such that bn ¼ o n�1= 2kþ1ð Þð Þ and bnn1�j !1. Then, for any fixed x 2 R,

ffiffiffiffiffiffiffiffi
nbn

p bGm;r

n;R x; sm; srð Þ � f m;r x; sm; srð Þ � Bm;r; kð Þ
n x; sm; srð Þ

	 

sm ;sr2 0;1½ �

) H
m;r x; �; �ð Þ; (12)

where the bias is given by Bm;r; kð Þ
n x; sm; srð Þ :¼

Pk
‘¼2

b‘n
‘!

Ð p
�p v‘W vð Þdv d‘

dx‘ f
m;r x; sm; srð Þ. The

process H
m;r x; �; �ð Þ is a centered, C-valued Gaussian process characterized by

CovðHj1 ;j2 ðx; u1; v1Þ;Hk1 ;k2 ðk; u2; v2ÞÞ

¼ 2pð
Ð p
�p W2ðaÞdaÞðfj1 ;k1 ðx; u1; u2Þfj2 ;k2 ð�x; v1; v2Þgðx� kÞ

þ fj1 ;k2 ðx; u1; v2Þfj2 ;k1 ð�x; v1;u2Þgðxþ kÞÞ;

(13)

where g xð Þ :¼ Ifx ¼ 0 mod 2pð Þg (cf. Brillinger 1975, p.148) is the 2p-periodic extension

of Kronecker’s delta function. The family fH x; �; �ð Þ; x 2 0; p½ �g is a collection of independ-

ent processes.

It is important to note that in sharp contrast to classical spectral analysis, where higher-order

moments are required to obtain smoothness of the spectral density (cf. Brillinger 1975, p. 27),

Assumption 1 guarantees that the quantile cross-spectral density is an analytical function of x.

Assume that W is a kernel of order p; that is, for some p, that satisfies
Ð p
�p vjW vð Þdv ¼ 0, for

all j< p, and 0 <
Ð p
�p vpW vð Þdv < 1; for example, the Epanechnikov kernel is a kernel of

order p¼ 2. Then, the bias is of order bp
n. As the variance is of order nbnð Þ�1

, the mean-squared

error is minimal if bn � n�1= 2pþ1ð Þ. This optimal bandwidth fulfills the assumptions of

Theorem 1. A detailed discussion of how Theorem 1 can be used to construct asymptotically

valid confidence intervals can be found in Barun�ık and Kley (2019).

The independence of the limit fH x; �; �ð Þ; x 2 0; p½ �g has two important implications.

On the one hand, the weak convergence Equation (12) holds jointly for any finite-fixed col-

lection of frequencies x. Furthermore, fixing j1, j2 and s1; s2, the Copula Cross-

Periodograms (CCR) periodogram bGj1 ;j2

n;R x; s1; s2ð Þ and traditional smoothed cross-

periodogram determined from the unobservable, bivariate time series

IfFj1 Xt;j1

� �
� s1g; IfFj1 Xt;j2

� �
� s2g

� �
; t ¼ 0; . . . ; n� 1; (14)

are asymptotically equivalent. Theorem 1 thus reveals that in the context of the estimation

of the quantile cross-spectral density, the estimation of the marginal distribution has no im-

pact on the limit distribution (cf. comment after Remark 3.5 in Kley et al. 2016).
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We are now ready to state the main result of this section.

Theorem 2. Let Assumptions 1 and 2 hold. Assume that the marginal distribution func-

tions Fm and Fr are continuous and that constants j > 0 and k 2 N exist, such that bn ¼
o n�1= 2kþ1ð Þð Þ and bnn1�j !1. Assume that for some e 2 0; 1=2ð Þ, we have

infs2 e;1�e½ � f
m;m x; sm; smð Þ > 0, and infs2 e;1�e½ � f

r;r x; sr; srð Þ > 0. Then, for any fixed x 2 R,

ffiffiffiffiffiffiffiffi
nbn

p bbm;r

n;R x; sm; srð Þ � bm;r x; sm; srð Þ � Bm;r; kð Þ
n x; sm; srð Þ

	 

sm ;srð Þ2 e;1�e½ �2

) 1

fm;m
Hm;m �

fm;r

fm;m
Hm;r

 !
; (15)

where

Bm;r; kð Þ
n x; sm; srð Þ :¼ 1

fm;m
Bm;m �

fm;r

fm;m
Bm;r

 !
(16)

and we have written fa;b for the quantile cross-spectral density fa;b x; sa; sbð Þ as defined in

Equation (5), Ba;b :¼
Pk

‘¼2
b‘n
‘!

Ð p
�p v‘W vð Þdv d‘

dx‘ f
a;b x; sa; sbð Þ, and Ha;b for H

a;b x; sa; sbð Þ
defined as a centered, C-valued Gaussian process characterized by

CovðHj1 ;j2 ðx; u1; v1Þ;Hk1 ;k2 ðk; u2; v2ÞÞ

¼ 2pð
Ð p
�p W2ðaÞdaÞðfj1 ;k1 ðx; u1; u2Þfj2 ;k2 ð�x; v1; v2Þgðx� kÞ

þ fj1 ;k2 ðx; u1; v2Þfj2 ;k1 ð�x; v1;u2Þgðxþ kÞÞ;

(17)

where g xð Þ :¼ Ifx ¼ 0 mod 2pð Þg (cf. Brillinger 1975, p. 148) is the 2p-periodic extension

of Kronecker’s delta function. The family fH x; �; �ð Þ; x 2 0; p½ �g is a collection of independ-

ent processes.

Proof. The proof is lengthy and technical, and it is therefore deferred to Appendix A.1.h

Convergence to a Gaussian process can be employed to obtain asymptotically valid

pointwise confidence bands. A more detailed discussion on how to conduct inference is

given in Appendix A.2.

If W is a kernel of order p 	 1, we have that the bias is of order bp
n. Thus, if we choose

the mean square error minimizing bandwidth bn � n�1= 2pþ1ð Þ, the bias will be of order

n�p= 2pþ1ð Þ.

Regarding the restriction e > 0, note that the convergence Equation (15) cannot hold if

s1; s2ð Þ is on the border of the unit square, as the quantile coherency b x; s1; s2ð Þ is not

defined if sj 2 f0;1g, as this implies that Var IfFj Xt;j

� �
� sjg

� �
¼ 0.

3 Pricing Model for Extreme Risks across the Frequency Domain

QS betas defined in the previous sections will be the cornerstone of our empirical models.

We assume that QS betas for low threshold values will be significant determinants of risk

priced heterogeneously across investment horizons. We will employ QS betas to study two

kinds of risk related to the market return. First, we will investigate TR, a risk representing

dependence between extreme negative events of both market and asset returns at a given

horizon. In case the stochastic discount factor is linear in factors and we consider the
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market return as a risk factor, we further look at the dependence between asset returns and

market returns and the threshold values are based on quantiles of market returns.

It is useful to connect our notion of risks to a well-established rare disaster model of

Nakamura et al. (2013). QS betas between consumption growth and equity returns can be

directly connected to permanent and transitory disasters that moreover unfold over mul-

tiple years or just one period. QS beta can be used to clearly distinguish between the de-

pendence structures of these types that are otherwise invisible to investors. The detailed

discussion with simulations is relegated to Appendix B due to the limited space of the

paper.

Our notion of TR also relates to the downside risk of Ang et al. (2006) and Lettau,

Maggiori, and Weber (2014). While downside risk stems from covariation of asset returns

and market return under some threshold, our notion stems from joint probability of the co-

occurrence of extreme negative returns in both asset and market returns. This is more in

line with the approach of semibetas (Bollerslev et al. 2020) but with an important feature

of the persistence structure of such risks across investment horizons.

Second, we will examine EVR, a risk capturing unpleasant situations in which extremely

high levels of market volatility are linked with extremely low asset returns, again with re-

spect to the investment horizon. We argue that both of these concepts capture important

features of risk of an asset faced by the investor and thus should be priced in a cross-section

of asset returns.

In each of the models defined in the paper, we control for CAPM beta as a baseline

measure of risk. This ensures that if the QS betas are proven to be significant determinants

of risk premium, they do not simply duplicate the information contained in the CAPM

beta. Moreover, in the case of TR, we define relative betas that explicitly capture the add-

itional information over the CAPM beta only.

3.1. Tail Market Risk

For better interpretability, we construct a QS beta for a given frequency band correspond-

ing to reasonable economic cycles. This definition is important since it allows us to define

short-run or long-run bands covering corresponding frequencies and hence disaggregate

beta based on the specific demands of a researcher.

We expect the dependence between market return and asset return during extreme nega-

tive joint events to be positively priced across assets. The stronger the relationship is, the

higher the risk premium required by investors. In addition, we expect this risk to be priced

heterogeneously across different investment horizons.

To capture the TR measuring the probability of co-occurrence between (extreme) nega-

tive events of both market and asset returns at a given horizon, we define

brm ;ri

TR X; sð Þ �
X

X� x1 ;x2½ Þ

P1
k¼�1 Cov Ifrm;tþk � qrm

sð Þg; Ifri;t � qrm
sð Þg

� �
e�ikxP1

k¼�1 Cov Ifrm;tþk � qrm
sð Þ; Ifrm;t � qrm

sð Þg
� �

e�ikx

 !
: (18)

The numerator of Equation (18) captures the probability of co-occurrence of the nega-

tive events at a given horizon and the denominator captures information related to the

probability of market tail events at a given horizon, which is related to the variation in mar-

ket returns.
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Similar to Ang et al. (2006) and Lettau, Maggiori, and Weber (2014), we define relative

betas that capture additional information not contained in the classical CAPM beta. In this

way, we can test the significance of TR decomposed into the long- and short-term compo-

nents to obtain their prices of risk separately. Because we want to quantify risk that is not

captured by the CAPM beta, we propose to test the significance of TR via differences in the

QS beta and QS beta implied by the Gaussian white noise assumption. We call this relative

QS beta and we compute it for a given frequency band Xj and given market s-quantile

level as

brm ;ri

rel Xj; s
� �

� brm ;ri

TR Xj; s
� �

� bri

Gauss Xj; s
� �

; (19)

where bri

Gauss Xj; s
� �

¼ CGauss s;si ;qð Þ�ssi

s 1�sð Þ with CGauss being a Gaussian copula with correlation q

between market return and an asset’s return.7

Assuming that all the relevant pricing information is contained in the CAPM beta, con-

temporaneous covariance between two time series should capture all the priced informa-

tion. Moreover, if the series are jointly normally distributed and independent through time,

the CAPM beta contains all the available information regarding the dependence. Hence,

under the hypothesis that market and asset returns are correlated Gaussian noise,

brm ;ri

rel Xj; s
� �

will not carry any additional information, and CAPM characterizes the risks

well. Note that bri

Gauss Xj; s
� �

is constant across frequencies and depends only on the chosen

quantile and correlation coefficient. On the other hand, if investors price information not

captured by the CAPM beta, the QS beta estimated without any restriction may identify an

additional dimension of risk not contained in the CAPM beta. More specifically, we can

identify whether dependence in a specific part of the joint distribution and/or over a specific

horizon is significantly priced.

If the CAPM beta captures all the risk information priced in the cross-section, the risk

premium corresponding to the relative QS beta will be insignificant. Moreover, if the

returns are Gaussian, the relative QS beta will be zero at all frequencies and quantiles.8

Our first model is hence a TR model, which is defined as

E re
i;tþ1

� �
¼
X2

j¼1

brm ;ri

rel Xj; s
� �

kTR Xj; s
� �

þ brm ;ri

CAPMkCAPM; (20)

7 This stems from the fact that quantile cross-spectral density corresponds to a difference of proba-

bilities Prfri ;t � rm
sð Þ; rm;t � qrm

sð Þg � ssi , where s and si are probability levels under a Gaussian

distribution and si is obtained as si ¼ Fri
fqm sð Þg.

8 Here, we briefly note that we set the threshold values in the covariance between indicators’ meas-

ure of dependence as a s quantile of market return. In the case of TR betas, the thresholds for mar-

ket and asset returns are the same and are given by the s quantile of market return. In the case of

EVR betas, the threshold for increments of market volatility is given by the s quantile of the series

of increments of market volatility, and the threshold for asset return is given by the s quantile of

market return. Note that one could flexibly choose the thresholds based on the best model fit spe-

cific to our datasets. For example, we may choose the threshold value to be asset specific by cor-

responding to the s quantile of the asset return. We do not follow this approach because we do not

explicitly care about dependence between quantiles in the cross-section. Rather, we care about

dependence in extreme market situations.
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where re
i;tþ1 is the excess return of asset i,9 brm ;ri

CAPM is an aggregate CAPM beta, kCAPM is the

price of aggregate risk of the market captured by the classical beta, and kTR Xj; s
� �

is the

price of TR for a given quantile and horizon (frequency band). We specify our models to in-

clude the disaggregation of risk into two horizons—long and short. Long horizon is defined

by corresponding frequencies of cycles of 3 years and longer, and short horizon by frequen-

cies of cycles shorter than 3 years.10 The procedure for obtaining these betas is explained

below.

The intuition behind the TR model defined in 20 is that the relative TR betas will be

zero in the case of Gaussian data, and no association between TR and the risk premium

should be documented since risk is perfectly described by variance. On the other hand, if

the data distribution is not Gaussian, the relative TR betas will be significantly different

from zero, and the significance of the estimated price of risk captures the pricing effect of

the TR over the conventional measure of dependence based on the contemporaneous correl-

ation. We explicitly wish to investigate whether the dependence information over the clas-

sical assumptions is a significant determinant of the excess returns, so it is not important

whether the CAPM model is true or not.

This specification also relates to the models recently proposed in the literature.11 First,

model of Bandi and Tamoni (2021) builds on the consumption CAPM model and thus use

consumption as their proxy for risk when evaluating pricing implications of the frequency-

dependent risk. Second, Bandi et al. (2021) use the market factor for their analysis of the

cross section of asset returns using spectral decomposed factors. In contrast to these

attempts, we consider horizon-specific risk in in tails.

From the TR perspective, the proposed model also relates to the model of Bollerslev

et al. (2020), who investigate the pricing implications of the co-occurrence of the downside

events of both market and asset returns. In contrast to our model, Bollerslev et al. (2020)

does not consider the horizon over which these risks unfold.

3.2. Extreme Volatility Risk

Assets with high sensitivities to innovations in aggregate volatility have low average returns

(Ang et al. 2006). We further focus on extreme events in volatility and investigate whether

dependence between extreme market volatility and tail events of assets is priced across

assets. Because time of high volatility within the economy is perceived as time with high un-

certainty, investors are willing to pay more for the assets that yield high returns during these

tumultuous periods and thus positively covary with innovations in market volatility. This

drives the prices of these assets up and decreases expected returns. This notion is formally

anchored in the intertemporal pricing model, such as the intertemporal CAPM model of

Merton (1973) or Campbell (1993). According to these models, market volatility is stochas-

tic and causes changes in the investment opportunity set by changing the expected market

9 Note that all the risk measures (in line with the literature) present in the paper are calculated

using excess returns.

10 In Appendix D, we perform a robustness check by defining the horizons using 1.5 years as a

threshold and the results do not qualitatively differ. Different specifications are available upon

request.

11 Barun�ık and Kley (2019) features a toy example of TR risk estimated on asset returns as well, but

they do not investigate any asset pricing implications of the estimated risk.
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returns or by changing the risk-return trade-off. Market volatility thus determines systemat-

ic risk and should determine the expected returns of individual assets or portfolios.

Moreover, we assume that extreme events in market volatility play a significant role in the

perception of systematic risk and that exposure to them affects the risk premium of assets.

In addition, decomposition of volatility into the short run and long run when determin-

ing asset premiums was proven to be useful (Adrian and Rosenberg 2008). Moreover,

Bollerslev et al. (2020) incorporated the notion of downside risk into the concept of volatil-

ity risk and showed that stocks with high negative realized semivariance yield higher

returns. Farago and T�edongap (2018) examine downside volatility risk in their five-factor

model and obtain a model with negative prices of risk of the volatility downside factor,

yielding low returns for assets that positively covary with innovations of market volatility

during disappointing events. Thus, we want to investigate which horizon and part of the

joint distribution of market volatility and asset returns generate these findings.

We assume that assets that yield highly negative returns during times of large innova-

tions of volatility are less desirable for investors, and thus, holding these assets should be

rewarded by higher risk premiums. In addition, we assume that such risk will be horizon

specific. To measure the extreme volatility risk, we define the beta that will capture the

joint probability of co-occurrences of negative asset returns and the extreme increment of

market volatility across horizons. Because of the nature of covariance between indicator

functions, we work with negative market volatility innovations �Dr2
t ¼ � r2

t � r2
t�1

� �
,

where we estimate rt with a popular GARCH(1,1). Then, the high volatility increments

correspond to low quantiles of the distribution of the negative differences. If an asset posi-

tively covaries with increments of market volatility, the extreme volatility risk beta will be

small, and vice versa. This is in contrast to most of the measures employed in similar analy-

ses. We define the beta that captures extreme volatility risk across horizons as

bri

Dr2 X; sð Þ �
X

X� x1 ;x2½ Þ

P1
k¼�1 Cov If�Dr2

tþk � q�Dr2
t

sð Þg; Ifri;t � qrm
sð Þg

	 

e�ikxP1

k¼�1 Cov If�Dr2
tþk � q�Dr2

t
sð Þ; If�Dr2

t � q�Dr2
t

sð Þg
	 


e�ikx

0B@
1CA:

(21)

Threshold values for asset returns are obtained in the same manner as for TR and are

derived from the distribution of the market returns, which means that qrm
sð Þ is used as an

asset threshold value. For example, for model with s ¼ 0:05, when computing extreme

market volatility beta, as a threshold for negative innovations of market squared volatility,

we use the 5% quantile of its distribution (corresponding to the 95% quantile of the origin-

al distribution), and the threshold for asset return is set to the 5% quantile of the distribu-

tion of market returns.

Our second model, the extreme volatility risk (EVR) model, will test the significance of

EVR betas and is defined as

E re
i;tþ1

� �
¼
X2

j¼1

bri

Dr2 Xj; s
� �

kEV Xj; s
� �

þ bri

CAPMkCAPM; (22)

where, as in the case of the TR model, we include the CAPM beta to control for the corre-

sponding risk premium. In line with the results of the current literature (e.g., Boons and
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Tamoni [2015], Boguth and Kuehn [2013], or Adrian and Rosenberg [2008]), we expect

positive prices of risk corresponding to EVR betas. This is because EVR betas measure the

dependence between extremely high increments of market volatility (i.e., low values of

negative innovations of market volatility) and low values of asset returns. Therefore, if an

asset yields low returns in times of high market volatility, investors will require high premi-

ums to hold it. Note that our EVR model closely relates to the model of Farago and

T�edongap (2018), who introduces downside volatility betas without the frequency aspect

of the risk.

Unlike the TR model, the EVR model does not take into consideration the Gaussianity

of the data. The estimated price of EVR will directly measure the pricing implication of ex-

treme dependence between market increments of volatility and asset returns.

3.3. Full Model

Finally, to show the independence of the two horizon-specific TRs, we also combine them

into the third model that includes both TR and EVR for both short- and long-run horizons,

again controlling for a traditional CAPM beta. The model possesses the following form:

E re
i;tþ1

� �
¼
X2

j¼1

brm ;ri

rel Xj; s
� �

kTR Xj; s
� �

þ
X2

j¼1

bri

Dr2 Xj; s
� �

kEV Xj; s
� �

þ brm ;ri

CAPMkCAPM: (23)

We denote this model as the full model. Assuming that TR and EVR are priced, using

this model, we will investigate whether these risks are subsumed by each other or whether

they describe independent dimensions of priced risk.

Throughout the paper, we focus on results for s equal to 1%, 5%, 10%, 15%, 20%,

and 25%. The choice of 1%, 5%, and 10% quantiles is natural and arises in many econom-

ic and finance applications. Most likely, the most prominent example is value-at-risk,

which is a benchmark measure of risk widely used in practice and studied among academ-

ics. Remaining values of s, that is, 15%, 20%, and 25% capture general downside risk and

thus more probable negative joint events.

3.4. Estimation

To test our models, we use the standard Fama and MacBeth (1973) cross-sectional regres-

sions. In the first stage, we estimate all required QS betas, relative QS betas, and CAPM

betas for all assets. We define two nonoverlapping horizons: short and long. Horizon is

specified by the corresponding frequency band. We specify the long horizon by frequencies

with corresponding cycles of 3 years and longer, whereas short horizon indicates frequen-

cies with corresponding cycles below 3 years.12 QS betas for these horizons are obtained by

averaging QS betas over corresponding frequency bands.

In the second stage, we use these betas as explanatory variables and regress average asset

returns on them and obtain the model fit. We assess the significance of a given risk by the

significance of its corresponding estimated price.13 In the case of the full model, we obtain

the statistical inference on the estimated prices of risk by repeating cross-sectional

12 For a robustness check using 1.5 years as a threshold value, see Appendix D.

13 As shown in Shanken (1992), if the betas are estimated over the whole period, the second-stage

regression is T-consistent.
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regression at every time point, that is, in every month t ¼ 1; . . . ;T, we estimate the model

of the following form:

re
i;t ¼

X2

j¼1

bbrm ;ri

rel Xj; s
� �

kt;TR Xj; s
� �

þ
X2

j¼1

bbri

Dr2 Xj; s
� �

kt;EV Xj; s
� �

þ bbrm ;ri

CAPMkt;CAPM: (24)

We obtain T cross-sectional estimates of lambdas for each of the corresponding betas. Then,

we estimate the prices of risk by time-series averages of the lambdas over the whole period

bkk Xj; s
� �

¼ 1

T

XT

t¼1

bkt;k Xj; s
� �

; j ¼ 1; 2; k ¼ TR;EVR: (25)

Standard errors and corresponding t-statistics are computed from r2ðbkkðXj; sÞÞ ¼
1

T2

PT
t¼1ðbkt;kXj; sÞ � bkkðXj; sÞÞ2 for both horizons j ¼ f1; 2g and risks k ¼ fTR;EVRg.

The same estimation logic applies to other studied models. To take into account mul-

tiple hypothesis testing, we follow Harvey, Liu and Zhu (2016) and report t-statistics of

estimated parameters (below the actual estimates). The overall fit of the model is measured

from the OLS regression of the average returns of the assets on their betas. Throughout the

paper, we use the root mean-squared pricing error (RMSPE) metric, which is a widely used

metric for assessing model fit in the asset pricing literature, to assess the overall model

performance.

As mentioned earlier, we estimate our models for various threshold values given by the s

quantile of market return. Furthermore, in Appendix C.2, we compare our newly proposed

measures with (i) classical CAPM, (ii) downside risk model of Ang et al. (2006) (DR1), (iii)

downside risk model of Lettau, Maggiori, and Weber (2014) (DR2), (iv) three-factor model of

Fama and French (1993), (v) GDA3 and GDA5 models of Farago and T�edongap (2018), and

(vi) coskewness and cokurtosis measures. Details regarding the estimation of the risk measures

of the competing models are summarized in Appendix E. All the models are estimated for com-

parison purposes without any restrictions in two stages, similar to our three- and five-factor

models. Thus, GDA3 and GDA5 are, despite their theoretical background, estimated without

setting any restriction to their coefficients and are also estimated in two stages.

3.5. Size of the Two-Stage Estimation Procedure

Naturally, there is a question of how the two-stage procedure with estimates on frequency

bands performs in typical (small) samples, which we encounter in finance. To give the read-

er a notion of these properties, we present a simulation exercise to investigate the statistical

size of our testing approach. In each run, we simulate returns on either 300 or 30 assets to

mirror the settings of our empirical investigation of individual stocks and portfolio returns.

Each asset possesses a length of 720 observations using either the classical CAPM model or

white noise as a data generating process. First, we simulate time series of returns on the

market from the normal distribution N l; rð Þ with l ¼ 0:06=12 and r ¼ 0:2=
ffiffiffiffiffiffi
12
p

. Second,

in the case of the CAPM model, we generate time series of asset returns by randomly draw-

ing the CAPM beta from the normal distribution N b; rb

	 

, where b ¼ 1 and rb ¼ 0:5, and

then create the return as

Rit ¼ biRmt þ �it; i ¼ 1; . . . ;N; t ¼ 1; . . . ;T: (26)
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In the case of the white noise model, we set all the CAPM betas equal to 0. In the third

stage, for every stock, using the simulated data, we estimate their CAPM betas and QS

betas (both TR and EVR) and regress the average returns on them using specifications of

the TR model, EVR model, and full model. We determine the number of cases where we in-

correctly reject the null hypothesis that a given QS beta in a given model is a significant de-

terminant of average returns. We set the significance level at a ¼ 0:05. Ideally, we would

like to observe the rejection rates of approximately 5%. The results are summarized in

Table 1, which shown that the rejection rates typically correspond to the chosen signifi-

cance level a. This shows the validity of our approach; even for low values of s and long

horizons, there is no significant bias in the rejection rates.

4 QS Risk and the Cross-Sections of Expected Returns

Here, we discuss how extreme risks are priced in the cross-section of asset returns across

horizons. We focus on the results from the standard Fama and MacBeth (1973) cross-

sectional predictive regressions of the three main models and use various cross-sections of

asset returns. We show that the QS risks are priced heterogeneously across various asset

classes. This provides a great opportunity for investors who prefer to avoid certain risks. By

choosing a specific asset class in which a specific risk is not associated with a risk premium

(i.e., assets with high exposure to this risk do not yield an extra premium and vice versa),

investors can avoid this risk without paying extra money for it.

First, we investigate returns on individual stocks from the U.S. market. Next, we use

standard Fama–French portfolios sorted on various characteristics. More specifically, we

use 30 industry portfolios, 25 portfolios sorted on size and value, and decile portfolios

sorted either on operating profit, investment, or book-to-market. Finally, we use three data-

sets previously introduced in the literature to illustrate some specific phenomena. First, we

analyze the dataset of Lettau, Maggiori, and Weber (2014), which contains portfolios con-

structed from various asset classes. Second, we analyze equity portfolios sorted by cash

flow duration of Weber (2018). Third, we investigate data on investment strategies con-

structed across various asset classes from Ilmanen et al. (2021).

We report models estimated for various threshold values given by the s quantile of the

market return. We report models estimated for the 1%, 5%, 10%, 15%, 20%, and 25%

quantiles.14 Throughout the paper, market return is computed using the value-weight aver-

age return on all CRSP stocks. As a risk-free rate, we use the Treasury bill rate from

Ibbotson Associates.15

4.1. Individual Stocks

We collect our data from the Center for Research in Securities Prices (CRSP) database on a

monthly basis. The sample spans from July 1926 to December 2015; we select stocks with

a long enough history to obtain precise estimates of our measures of risk. While the main

results are presented with a sample of stocks with an available history of 60 years, to study

the robustness of our results on a larger cross-section of data, we also report results based

14 We had to rescale the data of Lettau, Maggiori, and Weber (2014) and Weber (2018) to be compar-

able to the market return.

15 All the data were obtained from Kenneth French’s online data library.
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on stocks with a shorter history of 50 years. On the other hand, one can argue that the pre-

cision of the estimated measures of risk relies on the number of observations available in

the tail; hence, we also report results based on stocks with 70 years of available history. We

report estimation results in Table 2.

Models are estimated for different values of the threshold value given by the s market

quantile to capture the different probabilities of event co-occurrences. The results of the TR

model show that the relative TR beta for short horizons is more significant for low values

of s, corresponding to 0.01, 0.05, and 0.10, while for s 	 0:15, the relative TR beta

becomes significant for long horizons. This pattern is observed across all three samples, but

it is weaker among stocks with a history of 50 years, especially regarding the prices of risk

corresponding to the long relative TR betas. This result may be caused by the fact that long

relative TR betas require a longer history of data to obtain precise estimates in comparison

to the short TR betas.

Signs of the estimated prices of risk are intuitive. More extreme dependence between

market and asset returns in both horizons leads to a higher risk premium, as we may expect.

If an asset is likely to deliver poor performance when the market is in a downturn, this asset

is not desirable from the point of view of an investor, and to decide to hold such asset, she

would require a significant risk premium. From the magnitude of the coefficients, we infer

Table 1 Size of the two-stage estimation procedure

DGP Number of assets s TR Extreme volatility risk Full model

kTR
long kTR

short kEV
long kEV

short kTR
long kTR

short kEV
long kEV

short

CAPM N¼ 300 0.01 0.052 0.046 0.062 0.072 0.060 0.048 0.070 0.080

0.05 0.066 0.062 0.072 0.058 0.066 0.062 0.072 0.058

0.10 0.056 0.046 0.048 0.088 0.068 0.048 0.066 0.088

0.15 0.056 0.046 0.050 0.042 0.048 0.046 0.048 0.038

0.25 0.046 0.054 0.068 0.032 0.056 0.054 0.064 0.030

N¼ 30 0.010 0.054 0.040 0.056 0.066 0.074 0.052 0.062 0.060

0.05 0.028 0.060 0.042 0.048 0.026 0.054 0.042 0.060

0.10 0.044 0.058 0.048 0.058 0.050 0.058 0.044 0.052

0.15 0.044 0.044 0.048 0.058 0.044 0.038 0.048 0.048

0.25 0.062 0.054 0.068 0.044 0.056 0.060 0.058 0.054

White noise N¼ 300 0.01 0.058 0.050 0.064 0.058 0.054 0.056 0.062 0.056

0.05 0.040 0.064 0.068 0.040 0.036 0.064 0.064 0.042

0.10 0.044 0.044 0.054 0.046 0.042 0.042 0.066 0.054

0.15 0.044 0.042 0.060 0.054 0.046 0.046 0.072 0.050

0.25 0.066 0.040 0.040 0.068 0.062 0.038 0.050 0.064

N¼ 30 0.01 0.054 0.038 0.074 0.060 0.040 0.040 0.066 0.058

0.05 0.050 0.060 0.036 0.038 0.048 0.064 0.038 0.040

0.10 0.046 0.048 0.032 0.048 0.048 0.040 0.034 0.048

0.15 0.052 0.048 0.042 0.060 0.048 0.040 0.038 0.052

0.25 0.044 0.072 0.052 0.050 0.036 0.066 0.060 0.036

Notes: Here, we report rejection rates of the two-stage estimation procedure when the assets are generated

using either the CAPM model or white noise. The significance level is set to a ¼ 0:05. The number of simula-

tions is 500.
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Table 2 Individual stocks

TR Extreme volatility risk Full model

T kTR
long kTR

short kCAPM RMSPE kEV
long kEV

short kCAPM RMSPE kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

70 years (142 assets) 0.01 �0.059 0.657 0.754 26.683 �0.086 �0.275 0.960 28.542 0.125 0.620 �0.210 �0.168 0.834 26.387

�0.660 3.309 3.911 �0.972 �0.887 5.001 0.901 3.087 �1.485 �0.539 4.196

0.05 0.102 1.319 0.717 26.807 0.232 0.380 0.682 28.192 0.080 1.295 0.009 0.303 0.721 26.757

0.500 3.520 3.871 1.394 0.753 3.028 0.221 3.534 0.030 0.595 2.978

0.1 0.368 1.203 0.739 27.121 0.474 0.472 0.558 27.212 �0.064 1.037 0.422 0.311 0.555 26.555

1.483 2.304 4.144 2.532 0.677 2.533 �0.158 1.973 1.384 0.448 2.312

0.15 0.544 0.895 0.733 26.672 0.509 0.552 0.602 27.016 0.242 0.882 0.326 0.538 0.618 26.289

2.327 1.511 4.075 2.783 0.778 2.903 0.730 1.487 1.223 0.752 2.875

0.2 0.665 0.279 0.784 26.995 0.702 �0.272 0.605 25.796 �0.041 0.848 0.693 �0.094 0.586 25.431

2.566 0.400 4.454 3.665 �0.348 3.070 �0.116 1.250 2.601 �0.120 2.868

0.25 0.746 �0.132 0.812 27.244 0.823 �0.543 0.648 25.768 0.009 0.444 0.805 �0.397 0.643 25.676

2.805 �0.181 4.662 3.816 �0.678 3.366 0.026 0.616 2.810 �0.498 3.284

60 years (267 assets) 0.01 �0.044 0.439 0.759 29.725 �0.090 0.271 0.939 30.494 0.170 0.387 �0.241 0.255 0.865 29.442

�0.633 2.693 4.126 �1.293 1.007 5.144 1.431 2.391 �2.010 0.939 4.659

0.05 0.189 1.219 0.660 28.674 0.243 0.614 0.645 29.945 0.115 1.271 0.027 0.653 0.661 28.600

1.068 3.653 3.573 1.471 1.505 2.850 0.379 3.903 0.103 1.594 2.759

0.1 0.315 1.000 0.718 29.243 0.503 0.420 0.511 29.201 �0.161 0.939 0.509 0.443 0.493 28.676

1.388 2.450 4.022 2.471 0.830 2.281 �0.489 2.282 1.737 0.875 2.058

0.15 0.500 0.779 0.709 29.257 0.441 0.550 0.603 29.608 0.297 0.819 0.233 0.443 0.626 29.099

2.188 1.546 3.961 2.248 1.004 2.889 1.042 1.630 0.958 0.805 2.972

0.2 0.484 0.287 0.765 29.764 0.630 �0.198 0.595 28.769 �0.234 0.735 0.742 �0.253 0.561 28.620

2.002 0.537 4.359 3.153 �0.338 3.024 �0.824 1.438 3.007 �0.430 2.808

0.25 0.487 0.242 0.785 30.045 0.619 �0.463 0.661 29.389 �0.053 0.574 0.629 �0.443 0.657 29.341

2.017 0.427 4.513 3.084 �0.764 3.505 �0.203 1.037 2.768 �0.737 3.481

(continued)
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Table 2 Continued

TR Extreme volatility risk Full model

T kTR
long kTR

short kCAPM RMSPE kEV
long kEV

short kCAPM RMSPE kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

50 years (528 assets) 0.01 �0.089 0.441 0.823 29.727 �0.099 0.478 0.970 30.281 0.001 0.410 �0.096 0.439 0.873 29.683

�1.655 2.953 4.631 �1.783 2.508 5.420 0.009 2.787 �1.077 2.337 4.816

0.05 �0.022 1.185 0.760 29.233 0.061 0.649 0.800 30.059 0.019 1.268 �0.059 0.780 0.781 29.039

�0.152 3.949 4.233 0.484 1.971 3.776 0.067 4.400 �0.258 2.421 3.439

0.1 0.153 0.820 0.786 29.762 0.289 0.093 0.680 29.700 �0.104 0.801 0.288 0.182 0.665 29.417

0.794 2.450 4.436 1.785 0.223 3.224 �0.333 2.450 1.167 0.436 2.971

0.15 0.348 0.862 0.767 29.600 0.148 0.023 0.783 30.112 0.476 0.830 �0.149 0.101 0.813 29.570

1.832 2.034 4.307 0.921 0.051 3.891 1.733 1.984 �0.670 0.222 3.945

0.2 0.272 0.683 0.810 29.973 0.346 �0.267 0.735 29.791 �0.002 0.743 0.314 �0.298 0.735 29.704

1.410 1.437 4.605 2.011 �0.566 3.789 �0.009 1.605 1.374 �0.622 3.695

0.25 0.257 0.822 0.821 30.035 0.322 �0.051 0.765 30.004 0.034 0.946 0.281 �0.081 0.764 29.885

1.316 1.594 4.704 1.885 �0.106 4.082 0.152 1.848 1.388 �0.167 4.070

Notes: Prices of risk estimated on monthly stock data from the CRSP database sampled between July 1926 and December 2015. Models are estimated for various values of thresholds

given by s. We employ three samples with varying numbers of minimum years. A long horizon is given by frequencies corresponding to a 3-year cycle and longer. Below the coeffi-

cients, we include Fama-MacBeth t-statistics.
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that investors price TR in the short term more than in the long term. Moreover, it is import-

ant to note that these features are not subsumed by the CAPM beta, as we explicitly control

for it in the model, and report TR betas relative to the CAPM beta, as discussed above.

Estimation results for the EVR model are captured in the middle panel of Table 2. In

this case, parameters are not significant for low values of s, but starting with s 	 0:1, long

EVR becomes significantly priced in the cross-section. On the other hand, short-horizon

EVR risk is not significantly priced for any values of s.

Significant prices of risk corresponding to long-horizon EVR betas for s 	 0:10 possess

intuitive positive signs, as we expected. The EVR betas capture dependence between ex-

tremely high increments of market volatility16 and extremely low asset returns, and the

results are consistent with the current literature (Adrian and Rosenberg 2008; Boguth and

Kuehn 2013; Boons and Tamoni 2015). Moreover, these results are in line with the conclu-

sions of long-run risk models. We observe few instances of unintuitive negative signs of pri-

ces of risk, but these coefficients are insignificant and observed mostly for low values of s,

which may be caused by the measurement error for the corresponding betas. We may con-

clude that EVR betas, especially their long-term component, provide priced information

regarding risk, which is moreover orthogonal to the information featured in the CAPM

beta.

In terms of the RMSPE, the TR model delivers better results than the EVR model for

low values of s, as short TR betas are significantly priced for these values of s. On the other

hand, for higher values of s, the EVR model delivers improved values of RMSPE, as the

long EVR betas for these s values deliver a significant dimension of risk priced in the cross-

section and TR betas possess higher explanatory power for lower values of s.

Moreover, we identify the fact that there is a complex interplay between the horizons

and parts of the joint distribution priced in the cross-section. Extreme TR is mostly a short-

run phenomenon and TR associated with more probable joint events (higher values of s) is

priced with respect to long-term dependence between the market and assets. On the other

hand, EVR is not significantly priced in cases of extreme joint events, but as unpleasant

events become more probable, the joint dependence between increments of market volatil-

ity and asset return in the long run becomes a significant determinant of risk premiums. In

Table A.6 in Appendix D, we present the results for 1.5 years being the threshold in the def-

inition of the long horizon. The results are qualitatively very similar and all the findings

from the 3-year horizon hold for this case.

From the results above, we can conclude that tail market and EVRs are priced in the

cross-section of stock returns across different horizons. A natural question arises whether

these risks capture different information or whether one measure can subsume the other.

For this purpose, we test the full model, which contains both risks for a given s level at the

same time. Estimated parameters can be found in the right panel of Table 2. We observe

results mostly consistent with the outcomes of the separate TR and EVR models.

Significantly priced determinants of the risk are short-term TR for low values of s and long-

term EVR for the higher values of s, both priced across assets with expected positive signs.

TR is more significant for lower values of s, meaning that dependence between market re-

turn and asset return during extremely negative events is a significant determinant of the

risk premium. On the other hand, long-term extreme volatility risk is significant for higher

16 Note that we work with negative increments of market volatility when we estimate the QS betas.
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values of s—approximately 0.2. This finding suggests that investors price downside de-

pendence between asset returns and market volatility but focus on more probable market

situations. We can deduce that the price of long-run risk mentioned by Bansal and Yaron

(2004) is hidden in this coefficient.

The main deviation of the full model from the results of the separate TR and EVR mod-

els is that the long TR betas for higher values of s become insignificant, in contrast with the

conclusions from the TR model. One potential explanation for this result is that only a

small fraction of the market return fluctuations are due to its long-term component in com-

parison to the short-term component, and thus, the risk premium for this risk is only small.

Another explanation is that the long-term aspect of the market TR may be fully captured

by the extreme volatility risk, namely, the long TR betas are subsumed by the long EVR

betas. This makes sense since variance is much more persistent than the market return (high

portion of variance due to the long-term component) and thus investors fear the fluctuation

in long-term variance much more than the variance in the short term.

In Appendix C, we use this data sample and show various features of the estimated QS

betas. We present distributions of the estimated QS betas to give a notion of their estimated

values. Next, we investigate the relation between QS betas and other risk measures previ-

ously proposed in the literature. Although the QS measures are correlated with some of the

other variables discussed previously in the literature, they do not drive out the QS measures

of risk. Moreover, these variables are, in most cases, subsumed by the variables from the

full model. Our results are in agreement with recent results of Bollerslev et al. (2020), which

show that the dependence characterized by the co-occurrence of negative asset and negative

market returns possesses the highest explanatory power on the formation of asset returns

among all specifications of disaggregated conventional beta. Importantly, we explicitly

show that the premium for this risk is generated by the dependence in the extreme left tail

and by its short-term component. In addition, we extend the analysis to extreme volatility

risk and show that investors focus on more probable joint negative outcomes that unfold

over the long horizon.

4.2. Other Portfolios

Finally, we investigate the pricing implication across multiple datasets, including popular

Fama–French portfolios sorted on various characteristics. We use 30 industry portfolios, 25

portfolios sorted by size and value, and decile portfolios sorted by operating profit, invest-

ment, or book-to-market portfolios of Lettau, Maggiori, and Weber (2014) constructed

from various asset classes, equity portfolios sorted on cash flow duration of Weber (2018),

and finally, investment strategies constructed across various asset classes from Ilmanen

et al. (2021).

Figure 2 summarizes the estimation results for all these data. We report t-statistics of

estimated prices of QR risks over all portfolios and across tails, which gives a general over-

view of how tail- and horizon-specific risks are priced across a wide number of portfolios.

Appendix F then provides a detailed summary of all results as well as a data description.

We conclude that a phenomenon of short-term TR is universally priced (although with

varying magnitude) across most of the datasets. The results of EVR are slightly more mixed.

In the case of individual stocks, it is mostly the long-term part of the EVR that is priced in

the cross-section of the expected returns. The same is also true for the aggregated dataset of

Lettau, Maggiori, and Weber (2014). On the other hand, in the case of 25 portfolios sorted
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Figure 2 Estimated t-statistics of QS risk for various portfolios. For each s 2 f0:01; 0:05; 0:1; 0:15; 0:2; 0:25g quantile, we show Fama–MacBeth t-statistics of estimated pri-

ces of risk of the QS models. Vertical line Group 11 portfolios depicted by different symbols. The t-statistics of short-run (red color) and long-run (blue color) risks are

shown for TR models by a solid line, extreme volatility risk (EVR) by a dashed line, and the full model by dotted lines. Horizontal lines depict 1% and 99% quantiles of

the standard normal distribution.
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on size and value, the short-term part of EVR is priced. There are also datasets in which

both components of the EVR risk are priced. These include equity portfolios sorted on cash

flow duration of Weber (2018) and investment strategies constructed using various asset

classes of Ilmanen et al. (2021). This heterogeneity gives investors the opportunity to follow

certain investment strategies according to their aversion to certain risk in a given horizon.

5 Conclusion

We introduce a novel approach for isolating the effects of various risk dimensions on the

formation of expected returns. Until now, studies have focused either on exploring down-

side features of risk or on investigating its horizon-specific properties. We define novel

measures that estimate risk in a specific part of the joint distribution over a specific horizon

and we show that extreme risks are priced in a cross-section of asset returns heterogeneous-

ly across horizons. Furthermore, we argue that it is important to distinguish between TR

and extreme volatility risk. TR is characterized by the dependence between a highly nega-

tive market and asset events. Extreme volatility risk is defined as the co-occurrence of ex-

tremely high increases in market volatility and highly negative asset returns. Negative

events are derived from the distribution of market returns and their respective quantiles are

used to determine threshold values for computing QS betas.

To consistently estimate the models, data with a sufficiently long history must be

employed. However, if these data are available, our measures of risk are able to outperform

competing measures, and their performance is best for low threshold values, suggesting that

investors require a risk premium for holding assets susceptible to extreme risks. Moreover,

we show that the state-of-the-art downside risk measures do not capture the information

contained in our newly proposed measures. Our results have important implications for

asset pricing models. We show that only taking into account contemporaneous dependence

averaged over the whole distribution when measuring risk exposure leads to the omitting of

important information regarding the risk.

Future work may explore origins of the QS risk with a particular emphasis on the TR.

From a data generating process perspective, these attempts could be based on the delayed

price adjustment in the spirit of Bandi et al. (2021). From a preference standpoint, one

could relate the QS risk to utility models such as power utility, habits, or non-separable util-

ity specifications and investigate their pricing implications.

Supplemental Data

Supplemental data are available at https://www.datahostingsite.com.

A Technical Appendix

In this section, the proof of the results in Section 2.3 is given. Before we begin, note that by

a trivial generalization of Proposition 3.1 in Kley et al. (2016), we have that Assumption 1

implies that there exist constants q 2 0; 1ð Þ and K < 1 such that, for arbitrary intervals

Am;Ar 
 R, arbitrary times tm; tr 2 Z,

jcum Ifmtm
2 Amg; Ifrtr

2 Arg
� �

j � Kqjtm�tr j: (27)
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In addition, we will use the following lemma.

Lemma 1 (Barun�ık and Kley 2019). Under the assumptions of Theorem 1, the derivative

sm; srð Þ7!
dk

dxk
fm;r x; sm; srð Þ

exists and satisfies, for any k 2 N0 and some constants C, d that are independent of

a ¼ am; arð Þ; b ¼ bm;brð Þ, but may depend on k,

sup
x2R

 dk

dxk
fm;r x; am; arð Þ �

dk

dxk
fm;r x; bm; brð Þ

 � Cjja� bjj1 1þ j log jja� bjj1j
� �D

:

Following proposition further provides asymptotic properties of Im;r
n;R x; sm; srð Þ

Proposition 1 (Barun�ık and Kley 2019). Assume that xtð Þt2Z is strictly stationary and satis-

fies Assumption 1. Further assume that the marginal distribution functions Fm, and Fr are

continuous. Then, for every fixed x 6¼ 0 mod 2p,

Im;r
n;R x; sm; srð Þ

	 

sm ;srð Þ2 0;1½ �2

) 1

2p
D

m x; smð ÞDr �x; srð Þ
� �

sm ;srð Þ2 0;1½ �2
; (28)

where D
m x; smð Þ and D

r x; srð Þ; s 2 0; 1½ �; x 2 R are centered, C-valued Gaussian processes

with covariance structure of the following form

Cov D
m x; smð Þ;Dr x; srð Þ

� �
¼ 2pf

m;r x; sm; srð Þ:

Moreover, the family fDm x; �ð Þ;Dr x; �ð Þ : x 2 0;p½ �g is a collection of independent proc-

esses. In particular, the weak convergence Equation (28) holds jointly for any finite-fixed

collection of frequencies x.

For x ¼ 0 mod 2p, the asymptotic behaviour of the rank-based copula cross-periodogram

is as follows: we have dj
n;R 0; sð Þ ¼ nsþ op n1=2ð Þ, where the exact form of the remainder

term depends on the number of ties in the process. Therefore, under the assumptions of

Proposition 1, we have Im;r
n;R 0; sm; srð Þ ¼ n 2pð Þ�1

smsr110 þ op 1ð Þ, where 1 :¼ 1; 1ð Þ0 2 R
2.

A.1. Proof of Theorem 2

Proof. By a Taylor expansion we have, for every y; y0 > 0,

1

y
� 1

y0
¼ � 1

y2
0

y� y0ð Þ þ 2n�3
y;y0

y� y0ð Þ2;

where ny;y0
is between y and y0. Let Rn y; y0ð Þ :¼ 2n�3

y;y0
y� y0ð Þ2, then

x

y
� x0

y0
¼ x

y
� x

y0
þ x

y0
� x0

y0
¼ 1

y0
y� y0ð Þ �

x0

y2
0

x� x0ð Þ þ rn; (29)

where rn ¼ xRn y; y0ð Þ þ x� x0ð Þ2=y2
0.
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Write fa;b for f
a;b x; sa; sbð Þ; Ga;b for bGa;b

n;R x; sa; sbð Þ, and Ba;b for Ba;b; kð Þ
n x; sa; sbð Þ and let

x :¼ Ga;b y :¼ Ga;a

x0 :¼ fa;b þ Ba;b y0 :¼ fa;a þ Ba;a
:

By Theorem 1 differences x� x0 and y� y0 are in OpððnbnÞ�1=2Þ, uniformly with re-

spect to sm; sr. Under the assumption that nbn !1, as n!1, this entails

Ga;a � Ba;a ! fa;a, in probability. For e � s1; s2 � 1� e, we have fa;a > 0, such that, by the

Continuous Mapping Theorem we have ðGa;a � Ba;aÞ�3 ! f
�3
a;a , in probability. As

Ba;a ¼ oð1Þ, we have y�3 � y�3
0 ¼ opð1Þ. Finally, due to

n�3
y;y0
� y�3

n _ y�3
0 � y�3

n � y�3
0

	 

_ 0þ y�3

0 ¼ op 1ð Þ þO 1ð Þ ¼ Op 1ð Þ;

we have that Rn y; y0ð Þ ¼ Opð nbnð Þ�1Þ.So we have shown that

bbm;r

n;R x; sm; srð Þ �
fa;b þ Ba;b

fa;a þ Ba;a
¼ 1

fm;m
Gm;m � fm;m � Bm;m

� �
�

fm;r

fm;m
Gm;r � fm;r � Bm;r

� � !
þOp 1= nbnð Þ

� �
;

with the Op holding uniformly with respect to sm; sr. Furthermore, note that setting

x :¼ fa;b þ Ba;b y :¼ fa;a þ Ba;a

x0 :¼ fa;b y0 :¼ fa;a

we have

fa;b þ Ba;b

fa;a þ Ba;a
�

fa;b

fa;a
¼ 1

fa;a
Ba;a �

fa;b

fa;a
Ba;b

 !
þO jBa;aj2 þ jBa;bj2

	 

:

By Lemma 1, we have that

sup
sm ;sr2 e;1�e½ �

 d‘

dx‘
fm;r x; sm; srð Þ

 � Ce;‘:

Therefore, Bm;r satisfies

sup
sm ;sr2 e;1�e½ �

Xk

‘¼2

b‘n
‘!

ðp

�p
v‘W vð Þdv

d‘

dx‘
fm;r x; sm; srð Þ

 ¼ o nbnð Þ�1=4
	 


;

which implies that

jBa;aj2 þ jBa;bj2 ¼ o nbnð Þ�1=2
	 


:

Therefore,

ffiffiffiffiffiffiffiffi
nbn

p bbm;r

n;R x; sm; srð Þ �
fa;b

fa;a|{z}
¼:bm;r x;sm ;srð Þ

� 1

fa;a
Ba;a �

fa;b

fa;a
Ba;b

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:Bm;r; kð Þ
n x;sm ;srð Þ

0BBB@
1CCCA
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and ffiffiffiffiffiffiffiffi
nbn

p 1

fm;m
Gm;r � fm;r � Bm;r

� �
�

fm;r

fm;m
Gm;m � fm;m � Bm;m

� � !

are asymptotically equivalent in the sense that if one of the two converges weakly, then so

does the other. The assertion then follows by Theorem 1, Slutzky’s lemma, and the

Continuous Mapping Theorem. h

A.2. Construction of Pointwise Confidence Bands for QS Beta

Following Barun�ık and Kley (2019) and Theorem 2, we construct pointwise asymptotic

1� að Þ level confidence bands for the real and imaginary parts of bm;r
n;R x; sm; srð Þ as follows:

C 2ð Þ
r;n xkn; sm; srð Þ :¼ Rbbm;r

n;R xkn; sm; srð Þ6Rrm;r

2ð Þ xkn; sm; srð ÞU�1 1� a=2ð Þ;

for the real part, and

C 2ð Þ
i;n xkn; s;srð Þ :¼ Ibbm;r

n;R xkn; sm; srð Þ6Irm;r
2ð Þ xkn; sm; srð ÞU�1 1� a=2ð Þ;

for the imaginary part of the QS beta. Here, U stands for the cdf of the standard normal

distribution,

Rrm;r

2ð Þ xkn; sm; srð Þ
	 
2

:¼ 0 _
0 if m ¼ r

and sm ¼ sr;
1

2
Cov Lm;r;Lm;rð Þ þRCov Lm;r;Lr;mð Þ
� �

otherwise;

8>><>>:
and

Irm;r

2ð Þ xkn; sm; srð Þ
	 
2

:¼ 0 _
0 if m ¼ r

and sm ¼ sr;
1

2
Cov Lm;r;Lm;rð Þ � RCov Lm;r;Lr;mð Þ
� �

otherwise:

8>><>>:
where La;b ¼ 1

fa;a
Ha;a � fa;b

fa;a
Ha;b

	 

. The definition of rm;r

2ð Þ xkn; sm; srð Þ is motivated by noting

that for any complex-valued random variable Z, with complex conjugate Z,

Var RZð Þ ¼ 1

2
Var Zð Þ þ RCov Z;Z

� �� �
; Var IZð Þ ¼ 1

2
Var Zð Þ � RCov Z;Z

� �� �
; (30)

and we have Lm;r ¼ Lr;m. Furthermore, note that bbm;r

n;R xkn; sm; srð Þ ¼ 1, if m¼ r and sm ¼ sr.

We have used Cov La;b;Lc;dð Þ to denote an estimator for

Cov L
a;b xkn; sa; sbð Þ;Lc;d xkn; sc; sdð Þ

	 

:

Recalling the definition of the limit process in Theorem 2, we derive the following expression:

Cov La;b;Lc;dð Þ ¼
1

fa;afc;c
Cov Ha;a �

fa;b

fa;a
Ha;b;Hc;c �

fc;d

fc;c
Hc;d

 !

¼ Cov Ha;a;Hc;cð Þ
fa;afc;c

�
fc;dCov Ha;a;Hc;dð Þ

fa;af
2
c;c

�
fa;bCov Ha;b;Hc;cð Þ

f2a;afc;c
þ

fa;bfc;dCov Ha;b;Hc;dð Þ
f2a;af

2
c;c

;
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where we have written fi;j for the QS density f
i;j xkn; si; sjð Þ and Hi;j for the limit distribution

H
i;j xkn; si; sjð Þ for any i; j ¼ a; b; c;d.

Thus, considering the special case where a¼ c ¼ m and b¼ d ¼ r, we have

Cov Lm;r;Lm;rð Þ ¼
1

f2m;m
Cov Hm;m;Hm;mð Þ �

fr;m

f3m;m
Cov Hm;m;Hm;rð Þ

�
fm;r

f
3
m;m

Cov Hm;r;Hm;mð Þ þ
jfm;rj2

f
4
m;m

Cov Hm;r;Hm;rð Þ:

and for the special case where a¼ d ¼ m and c¼ b ¼ r, we have

Cov Lm;r;Lr;mð Þ ¼
1

fm;mfr;r
Cov Hm;m;Hr;rð Þ �

fm;r

fm;mf
2
r;r

Cov Hm;m;Hr;mð Þ

�
fm;r

f
2
m;mfr;r

Cov Hm;r;Hr;rð Þ þ
f
2
m;r

f
2
m;mf

2
r;r

Cov Hm;r;Hr;mð Þ:

Finally, we substitute consistent estimators for the unknown quantities. To do so we

abuse notation using fa;b to denote ~G
a;b

n;R xkn; sa; sbð Þ and motivated by Theorem 7.4.3 in

Brillinger (1975), we use

2p

n �Wk
n

� �
�
"Xn�1

s¼1

Wnð2pðk� sÞ=nÞWnð2pðk� sÞ=nÞ ~G
a;c

n;Rðsa; sc; 2ps=nÞ ~G
b;d

n;Rðsb; sd;�2ps=nÞ

þ
Xn�1

s¼1

Wnð2pðk� sÞ=nÞWnð2pðkþ sÞ=nÞ ~G
a;d

n;Rðsa; sd; 2ps=nÞ ~G
b;c

n;Rðsb; sc;�2ps=nÞ
#

(31)

to estimate Cov Ha;b;Hc;dð Þ.

B Rare Disaster Risk Model and QS Betas

We show how the QS betas relate to the asset pricing model of Nakamura et al. (2013).

Their extension of disaster risk model originally proposed by Rietz (1988) and Barro

(2006) enables disasters to unfold over multiple periods and partially recover after the dis-

aster. We argue that the QS betas can capture the complex joint dynamics between con-

sumption growth and equity return. To do that, we simulate consumption growth and

solve for equity return from three specification of the rare disaster model: (1) Model in

which a disaster unfolds over multiple periods and then a partial recovery occurs. (2)

Model with unfolding disaster over multiple periods, but the disaster is permanent. (3)

Model with one period disaster which is permanent. We assume preferences of Epstein and

Zin (1989) and Weil (1990) and follow Nakamura et al. (2013) in the estimation procedure

using their dataset, solution procedure, and values of preference parameters.17 Namely, we

set the CRRA, c ¼ 6:5, the IES, w¼2, and the discount factor, b ¼ exp �0:034ð Þ.
Figure A.1 presents the main results. The first row of the figure contains courses of typ-

ical disasters with respect to the detrended consumption and equity return (return on

unleveraged consumption claim). We observe that at the onset of the disaster (first drop of

17 The code supplementing Nakamura et al. (2013) can be downloaded from https://eml.berkeley.

edu/enakamura/papers.html
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the consumption), there is a visible contemporaneous drop at equity return, as well. In case

of unfolding disasters, after the end of the disaster period, there is a noticeable positive

jump in the equity return. The lower panel of the figure contains QS betas and their 90%

confidence intervals simulated from the respective models. Each model is simulated 100

times and each simulation produces a time series of length 50,000 years (we simulate yearly

observations).

We can see that the dependence in the median (given by the line corresponding to

s ¼ 0:50) does not dramatically differ across the specifications and is constant over hori-

zons. This implies that using a simple covariance-based measure, we cannot distinguish

between joint dynamics across different specifications. The most important part of the

joint structure contains the tails of the joint distribution over specific horizons. We may

think of one period and permanent specification as a benchmark specification. In this

case, on average, the extreme events occur contemporaneously and thus the beta across

horizons is flat. If we look at the cases with unfolding disasters, the QS betas for the left

tail due to the persistency of the disaster possess its peak at the longer horizons. For the

case of multiperiod and transitory disaster, the QS betas for the upper tail are very simi-

lar to the QS betas for the lower tail, because after the end of the disaster, consumption

partially recovers over multiple periods, which mirrors the joint dynamics at the onset

of the disaster. On the other hand, in case of multiperiod permanent disaster, at the end

of the disaster, there is a positive jump in equity return, but there is no recovery in the

consumption. This makes the QS betas peaking at the longer horizons, as there is
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Figure A.1 QS betas between consumption growth and equity return. First row depicts typical disas-

ters for various specifications of rare disaster risk model as specified in Nakamura et al. (2013).

Second row captures QS betas and their 90% confidence intervals for those specifications. For each

specification, QS betas are estimated using 100 simulations of consumption growth series and equity

return of length 50,000. Models and parameter values follow Nakamura et al. (2013).

1622 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/21/5/1590/6605770 by guest on 16 N

ovem
ber 2023



typically no contemporaneous positive jump in consumption growth and equity return

at the end of the disaster.

C Features of QS Betas

C.1. Summary Statistics about QS Betas

We are interested to see what distributions of estimated QS betas reveal and so we display

the unconditional distribution of the estimated betas used in the TR, EVR, and Full models.

Table A.1 summarizes descriptive statistics for all estimated betas. We focus on two values

of s—0.05 and 0.10, and present cross-sectional means, medians, and standard deviations

of the estimated parameters in the top panel. We observe that all the betas are on average

positive. This is particularly interesting for relative TR betas, which means that, roughly

speaking, average stock possess higher tail dependence with market than suggested by the

simple covariance-based measures. Bottom panel of Table A.1 presents correlation struc-

ture of TR, EVR, and CAPM betas. We observe higher values of correlation between long-

term betas and also between long-term EVR and CAPM betas. Nevertheless, all these cor-

relation are far below 1, which suggests that all the variables may possess different and po-

tentially important information regarding the risk associated with the assets. Another

interesting observation is that the relative TR betas, both long- and short-term, are almost

uncorrelated with the CAPM betas, which is exactly what we want to see given their

definition.

To further visualize the distributional features, Figure A.2 presents unconditional distri-

butions of the betas for four different threshold values for quantile levels. We observe the

highest dispersion of betas for the lowest values of s corresponding to the most extreme

case. As we move to higher values of s, the distributions exhibit less and less variance.

Moreover, the distribution of long-term betas is wider than the distribution of the short-

term betas for the respective risks.

C.2. Robustness Checks: TR across Horizons and Other Risk Factors

Large number of other risk factors and firm characteristics have been documented by the

literature as significant drivers of the cross-sectional variation in equity returns (Harvey,

Liu and Zhu 2016). While we do not attempt to include the whole exhaustive set of all con-

trols, we would like to see if our newly defined risk factors are not subsumed by a subset of

prominent variables, as well as variables related to the tails and moments of the return dis-

tribution. Hence, we naturally focus on the downside measures and we use downside risks

proposed by Ang et al. (2006), downside risk beta specification of Lettau, Maggiori, and

Weber (2014), as well as recently proposed five-factor GDA (GDA5) model by Farago and

T�edongap (2018). Further, we use coskewness and cokurtotis measures, as well as size,

book-to-market, and momentum factors used by Fama and French (1993).

To investigate whether our newly proposed measures of risk can be driven out by other

determinants of risk proposed earlier in the literature, we include these risks as control vari-

ables in the previous regressions. First, we focus on the GDA5 model proposed by Farago

and T�edongap (2018) as these are the risks most closely related to ours. It contains two

measures of TR as well as two measures of extreme volatility risk, but focuses on various

specifications of downside dependence and does not take into consideration frequency as-

pect of the risks. Based on these competing measures, we compare risk measures associated
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Table A.1 Descriptive statistics

s ¼ 0:05 s ¼ 0:10

bCAPM brel
long brel

short bEVR
long bEVR

short bCAPM brel
long brel

short bEVR
long bEVR

short

Mean 1.068 0.310 0.098 0.726 0.016 1.068 0.197 0.051 0.632 0.015

Median 1.084 0.324 0.096 0.715 0.016 1.084 0.191 0.048 0.634 0.016

St. Dev. 0.372 0.208 0.083 0.296 0.065 0.372 0.164 0.064 0.212 0.051

bCAPM 1.000 0.234 �0.188 0.595 0.041 1.000 �0.040 �0.100 0.435 0.066

brel
long 0.234 1.000 0.147 0.688 0.032 �0.040 1.000 0.275 0.595 0.055

brel
short �0.188 0.147 1.000 �0.062 �0.053 �0.100 0.275 1.000 0.104 �0.073

bEV
long 0.595 0.688 �0.062 1.000 0.025 0.435 0.595 0.104 1.000 0.112

bEV
short 0.041 0.032 �0.053 0.025 1.000 0.066 0.055 �0.073 0.112 1.000

Notes: The table summarizes basic descriptive statistics and correlation structure for all betas from our Full

model for the two choices of the quantile levels. Betas are computed using CRSP database sampled between

July 1926 and December 2015. Presented results are computed on our largest sample, that is, using stocks with

at least 50 years of history. Long horizon is given by frequencies corresponding to 3-year cycle and longer.
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Figure A.2 Distribution of TR and EVR betas at different tails. Plots display kernel density estimates of

the unconditional distribution of the short-term and long-term TR and EVR betas. Presented results

are computed on our largest cross-section, that is, using stocks with at least 50 years of history. Long

horizon is given by frequencies corresponding to 3-year cycle and longer.
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with market return and market volatility increments separately. The aim of this analysis is

to decide which measures of risk better capture the notion of extreme risks associated with

risk premium. The detailed specification of the corresponding betas can be found in

Appendix E.

Table A.2 reports the risk premium of our QS risks controlled for the GDA5 risks. In

case of TR presented in left panel, we see that GDA5 measures of risk (kD and kWD) do not

drive out our measures for any value of s and remain insignificant when we include our TR

measures. Moreover, the pattern of prices of risk corresponding to TR betas remains the

same as in the TR and Full model specifications. This clearly suggests that our measures

capture the asymmetric features of risk priced in the cross-section of assets.

In the case of extreme volatility risk, we see from the right panel of Table A.2 that the

situation is similar. Especially, the price of risk for long-term EVR betas stays significantly

strong for higher values of quantile. In addition, short-term EVR betas emerge as significant

predictors for the lower values of s. On the other hand, GDA5 measures of volatility risk re-

main insignificant in all of the cases. All the results suggest that our model brings an im-

provement in terms of identifying form of asymmetric risk which is priced in the cross-

section of asset returns.

From these results, we can infer that our QS measures may potentially provide an add-

itional information not captured by other risk measures. To further investigate this hypoth-

esis, we present correlation structure of our QS measures with all other highly discussed

asset pricing risk measures in Figure A.3. Details regarding their specifications are con-

tained in Appendix E. We plot dependence between them and the QS measures with respect

to the value of quantile of the threshold value. Generally, our measures possess the highest

correlation with coskewness and cokurtosis and market beta (computed using FF3 specifi-

cation) in the extreme left tail and long horizon, while they show high correlation with

downside risk measures in extreme left tail at short horizon. This suggests that downside

risk measures capture short-term risk while moment-based risk measures are more related

to the extreme volatility in the long-term. Although the correlations in few cases exceed 0.5

in absolute value, all the values are well below 1 suggesting potentially important addition-

al information regarding the risk.

Next, we check whether these measures can drive out our QS measures in the cross-

sectional estimation. Table A.3 reports the results of risk prices controlled for coskewness

and cokurtosis risks. We first include coskewness into our Full model and check whether it

can drive out our risk measures. We can see that although the coskewness is significant, it

does not drive out our QS measures, which follow the same pattern as in the case of previ-

ous specifications of the models. Table A.3 also reports in the right panel horse race regres-

sion including cokurtosis. We observe that cokurtosis does not bring any new explanatory

information when included in our full model, as the corresponding estimated coefficients

for cokurtosis are insignificant for all specifications.

In addition, Table A.4 reports the results controlled for the two specifications of relative

downside betas. In the left panel, we report results with downside risk specification of Ang

et al. (2006). We observe that the downside risk beta does not capture any additional im-

portant dimension of risk when included in our full model specification. The same is true

for the downside risk model of Lettau, Maggiori, and Weber (2014), which is captured in

the right panel.
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Table A.2 Estimated coefficients of the TR, EVR, and Full models controlled for GDA5 measures

TR Extreme volatility risk

s kD kWD kTR
long kTR

short kCAPM RMSPE kX kXD kEV
long kEV

short kCAPM RMSPE

70 years (142 assets) 0.01 �0.027 0.118 �0.034 0.628 0.760 26.377 0.848 0.775 �0.096 0.773 0.735 28.313

�0.987 0.597 �0.364 3.231 3.879 1.326 1.450 �1.155 3.892 3.781

0.05 �0.024 0.207 0.050 1.149 0.779 26.434 0.108 0.285 0.122 1.294 0.704 27.698

�0.908 1.037 0.234 3.066 4.153 0.169 0.526 0.612 3.431 3.805

0.1 �0.017 0.253 0.305 0.795 0.799 26.688 0.157 0.343 0.388 1.220 0.724 26.560

�0.622 1.279 1.243 1.488 4.436 0.246 0.633 1.580 2.344 4.066

0.15 �0.010 0.214 0.449 0.746 0.779 26.326 0.219 0.367 0.572 0.786 0.720 26.627

�0.357 1.090 1.992 1.210 4.297 0.344 0.678 2.422 1.325 4.018

0.2 �0.010 0.244 0.526 0.301 0.824 26.532 0.302 0.492 0.723 0.176 0.766 25.345

�0.324 1.258 2.115 0.401 4.630 0.473 0.900 2.732 0.257 4.374

0.25 �0.018 0.268 0.587 �0.064 0.856 26.693 0.377 0.554 0.850 �0.332 0.793 25.364

�0.587 1.423 2.300 �0.086 4.878 0.587 1.007 3.089 �0.468 4.576

60 years (267 assets) 0.01 �0.014 0.141 �0.011 0.338 0.765 29.578 0.367 0.032 �0.060 0.495 0.753 30.288

�0.584 0.809 �0.151 2.269 4.168 0.631 0.068 �0.950 3.104 4.069

0.05 �0.009 0.110 0.187 1.094 0.681 28.606 �0.050 �0.139 0.166 1.218 0.663 29.764

�0.364 0.627 1.030 3.437 3.719 �0.086 �0.297 0.949 3.679 3.608

0.1 0.000 0.164 0.283 0.850 0.740 29.013 �0.044 �0.192 0.284 1.004 0.721 28.928

0.002 0.946 1.277 2.166 4.166 �0.076 �0.408 1.253 2.453 4.071

0.15 0.001 0.182 0.464 0.627 0.733 28.962 �0.076 �0.234 0.479 0.774 0.713 29.459

0.022 1.067 2.097 1.279 4.108 �0.131 �0.500 2.104 1.570 4.020

0.2 �0.007 0.244 0.449 0.092 0.796 29.317 �0.032 �0.147 0.473 0.240 0.765 28.616

�0.259 1.414 1.906 0.173 4.541 �0.056 �0.314 1.966 0.458 4.401

0.25 �0.005 0.237 0.425 0.199 0.813 29.566 �0.028 �0.143 0.477 0.182 0.784 29.268

�0.205 1.399 1.814 0.367 4.691 �0.049 �0.305 1.995 0.337 4.557
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Table A.2 Continued

TR Extreme volatility risk

s kD kWD kTR
long kTR

short kCAPM RMSPE kX kXD kEV
long kEV

short kCAPM RMSPE

50 years (528 assets) 0.01 �0.028 0.114 �0.054 0.396 0.823 29.452 0.254 �0.016 �0.108 0.489 0.822 29.913

�1.399 0.799 �0.968 3.126 4.643 0.465 �0.037 �2.154 3.272 4.611

0.05 �0.028 0.118 0.009 1.097 0.778 29.023 0.016 �0.098 �0.049 1.191 0.762 29.791

�1.389 0.781 0.061 4.134 4.373 0.030 �0.229 �0.359 4.120 4.279

0.1 �0.026 0.204 0.161 0.503 0.826 29.567 �0.056 �0.165 0.120 0.843 0.788 29.443

�1.261 1.338 0.821 1.614 4.726 �0.104 �0.390 0.652 2.559 4.499

0.15 �0.025 0.224 0.347 0.452 0.809 29.393 �0.122 �0.219 0.331 0.868 0.769 29.895

�1.172 1.490 1.827 1.077 4.610 �0.227 �0.518 1.772 2.131 4.378

0.2 �0.031 0.268 0.279 0.153 0.860 29.664 �0.107 �0.203 0.260 0.679 0.811 29.577

�1.357 1.786 1.450 0.307 4.945 �0.200 �0.476 1.350 1.516 4.685

0.25 �0.024 0.246 0.250 0.478 0.863 29.723 �0.110 �0.203 0.251 0.804 0.822 29.759

�1.125 1.673 1.287 0.922 5.015 �0.204 �0.472 1.284 1.672 4.795

Notes: The table reports coefficients and their t-statistics from the horse race estimations. Displayed are prices of risk of three-factor models also including the GDA5 measures for cor-

responding risks. We use CRSP database between July 1926 and December 2015. Models are estimated for various values of thresholds given by s. We employ three samples with

varying number of minimum years. Long horizon is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include Fama–MacBeth t-statistics.
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Finally, Table A.5 reports regressions including additional betas from the three-factor

model of Fama and French (1993).18 This model is not explicitly related to the asymmetric

features of market or volatility risk, but as we show in Section 2, these factors may be just

capturing market risk in different horizons in specific parts of the joint distribution of mar-

ket and asset returns, so we should check whether they are not superior in describing these

kinds of risks. As in the case of other horse race regressions, the additional risk factors do

not drive out the QS measures, which repeat the same pattern as in the cases without the

additional variables.

D Different Definition of Long Horizon—1.5 Years
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Figure A.3 Correlations with other risk measures. Plots display correlations between the QS betas and

various other risk measures widely used in the asset pricing literature using CRSP database between

July 1926 and December 2015. Presented results are computed on our largest sample, that is, using

stocks with at least 50 years of history. Long horizon is given by frequencies corresponding to 3-year

cycle and longer.

18 We have to include only two additional betas as the market beta is already included in our full

model.
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Table A.3 Estimated coefficients of the TR, EVR, and Full models controlled for coskewness and cokurtosis

Coskewness Cokurtosis

s kCSK kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE kCKT kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

70 years (142 assets) 0.01 �0.255 0.122 0.493 �0.122 �0.320 0.790 25.630 �0.020 0.113 0.676 �0.197 �0.241 0.928 26.332

�1.321 0.879 2.420 �0.854 �1.021 4.152 �0.942 0.820 3.374 �1.390 �0.777 4.217

0.05 �0.316 0.016 0.983 0.093 �0.179 0.747 25.911 �0.009 0.017 1.288 0.094 0.236 0.725 26.756

�1.701 0.044 2.674 0.327 �0.343 3.279 �0.452 0.049 3.492 0.330 0.467 2.874

0.1 �0.345 �0.147 0.633 0.470 �0.453 0.610 25.532 �0.022 �0.294 0.952 0.642 0.165 0.575 26.478

�1.833 �0.368 1.183 1.582 �0.642 2.684 �0.988 �0.709 1.817 1.921 0.242 2.310

0.15 �0.344 �0.028 0.301 0.584 �0.205 0.616 25.214 �0.021 0.106 0.647 0.541 0.425 0.663 26.262

�1.644 �0.084 0.475 2.165 �0.280 3.040 �0.903 0.319 1.062 1.926 0.595 2.721

0.2 �0.281 �0.152 0.327 0.743 �0.395 0.630 24.616 �0.023 �0.135 0.509 0.845 �0.052 0.668 25.353

�1.429 �0.443 0.466 2.925 �0.510 3.234 �0.993 �0.389 0.720 3.111 �0.067 2.735

0.25 �0.279 0.001 �0.310 0.754 �0.761 0.709 24.895 �0.017 �0.005 0.021 0.896 �0.477 0.721 25.653

�1.417 0.004 �0.402 2.835 �0.960 3.752 �0.738 �0.015 0.027 3.089 �0.607 2.921

60 years (267 assets) 0.01 �0.342 0.159 0.218 �0.091 0.021 0.776 28.728 �0.011 0.169 0.409 �0.229 0.222 0.908 29.442

�1.988 1.343 1.308 �0.751 0.074 4.427 �0.531 1.424 2.462 �1.857 0.798 4.486

0.05 �0.340 �0.071 0.767 0.252 0.144 0.636 28.063 �0.014 0.026 1.225 0.152 0.519 0.672 28.600

�2.095 �0.233 2.466 0.950 0.338 2.772 �0.749 0.091 3.818 0.629 1.236 2.697

0.1 �0.377 �0.385 0.559 0.597 �0.272 0.545 27.857 �0.034 �0.499 0.805 0.812 0.163 0.544 28.572

�2.406 �1.164 1.441 2.017 �0.522 2.338 �1.632 �1.518 2.029 2.625 0.325 2.188

0.15 �0.368 �0.026 0.067 0.505 �0.079 0.624 28.124 �0.018 0.176 0.618 0.397 0.281 0.668 29.093

�2.246 �0.092 0.139 1.963 �0.139 3.121 �0.860 0.645 1.259 1.707 0.514 2.848

0.2 �0.350 �0.266 �0.058 0.715 �0.562 0.639 27.744 �0.025 �0.321 0.360 0.876 �0.254 0.661 28.553

�2.185 �0.941 �0.114 2.973 �0.954 3.313 �1.211 �1.161 0.701 3.568 �0.433 2.815

0.25 �0.361 �0.034 �0.471 0.553 �1.001 0.747 28.311 �0.014 �0.065 0.252 0.681 �0.524 0.725 29.336

�2.241 �0.132 �0.845 2.564 �1.665 4.073 �0.691 �0.252 0.448 2.990 �0.889 3.127
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Table A.3 Continued

Coskewness Cokurtosis

s kCSK kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE kCKT kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

50 years (528 assets) 0.01 �0.406 0.046 0.184 �0.014 0.116 0.820 29.347 �0.020 �0.003 0.438 �0.070 0.365 0.940 29.666

�2.735 0.522 1.259 �0.156 0.599 4.720 �0.973 �0.035 2.858 �0.757 1.906 4.605

0.05 �0.398 �0.112 0.754 0.159 0.273 0.746 28.705 �0.026 �0.100 1.215 0.123 0.569 0.815 29.028

�2.693 �0.403 2.862 0.686 0.837 3.383 �1.404 �0.396 4.236 0.602 1.721 3.413

0.1 �0.447 �0.292 0.320 0.417 �0.181 0.682 28.936 �0.039 �0.412 0.656 0.603 0.009 0.716 29.371

�3.130 �0.933 1.042 1.660 �0.433 3.115 �1.955 �1.420 2.093 2.378 0.022 3.058

0.15 �0.419 0.169 0.139 0.143 �0.323 0.793 29.185 �0.018 0.362 0.660 0.008 �0.067 0.852 29.531

�2.872 0.619 0.363 0.620 �0.697 4.066 �0.920 1.416 1.691 0.036 �0.148 3.734

0.2 �0.412 �0.077 �0.056 0.365 �0.522 0.776 29.196 �0.030 �0.120 0.332 0.498 �0.382 0.828 29.700

�2.871 �0.309 �0.129 1.636 �1.091 4.030 �1.516 �0.509 0.772 2.256 �0.798 3.596

0.25 �0.414 0.043 �0.123 0.263 �0.607 0.828 29.387 �0.023 0.020 0.475 0.367 �0.263 0.854 29.880

�2.905 0.191 �0.259 1.361 �1.262 4.514 �1.142 0.089 1.016 1.872 �0.547 3.746

Notes: Displayed are prices of risk of full models also including either coskewness or cokurtosis. We use CRSP database between July 1926 and December 2015. Models are estimated

for various values of thresholds given by s. We employ three samples with varying number of minimum years. Long horizon is given by frequencies corresponding to 3-year cycle and

longer. Below the coefficients, we include Fama–MacBeth t-statistics.
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Table A.4 Estimated coefficients of the TR, EVR, and Full models controlled for downside risk betas

DR beta of Ang et al. (2006) DR of Lettau, Maggiori, and Weber (2014)

s kDR1 kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE kDR2 kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

70 years (142 assets) 0.01 �0.017 0.129 0.629 �0.210 �0.194 0.826 26.387 �0.017 0.129 0.629 �0.210 �0.194 0.826 26.387

�0.044 0.922 3.240 �1.484 �0.631 4.104 �0.044 0.922 3.240 �1.484 �0.631 4.104

0.05 0.149 0.042 1.250 �0.005 0.285 0.754 26.736 0.149 0.042 1.250 �0.005 0.285 0.754 26.736

0.410 0.119 3.448 �0.017 0.559 3.216 0.410 0.119 3.448 �0.017 0.559 3.216

0.1 0.082 �0.086 0.997 0.412 0.212 0.573 26.548 0.082 �0.086 0.997 0.412 0.212 0.573 26.548

0.235 �0.216 1.895 1.414 0.306 2.451 0.235 �0.216 1.895 1.414 0.306 2.451

0.15 0.128 0.211 0.864 0.325 0.367 0.636 26.259 0.128 0.211 0.864 0.325 0.367 0.636 26.259

0.363 0.638 1.433 1.272 0.512 3.036 0.363 0.638 1.433 1.272 0.512 3.036

0.2 0.121 �0.098 0.840 0.717 �0.207 0.594 25.397 0.121 �0.098 0.840 0.717 �0.207 0.594 25.397

0.352 �0.283 1.242 2.780 �0.269 2.962 0.352 �0.283 1.242 2.780 �0.269 2.962

0.25 0.135 �0.030 0.454 0.802 �0.475 0.656 25.627 0.135 �0.030 0.454 0.802 �0.475 0.656 25.627

0.391 �0.090 0.631 2.895 �0.598 3.399 0.391 �0.090 0.631 2.895 �0.598 3.399

60 years (267 assets) 0.01 0.107 0.161 0.345 �0.211 0.244 0.852 29.418 0.107 0.161 0.345 �0.211 0.244 0.852 29.418

0.368 1.350 2.368 �1.760 0.912 4.611 0.368 1.350 2.368 �1.760 0.912 4.611

0.05 0.135 0.093 1.171 0.041 0.612 0.671 28.588 0.135 0.093 1.171 0.041 0.612 0.671 28.588

0.486 0.308 3.716 0.167 1.493 2.934 0.486 0.308 3.716 0.167 1.493 2.934

0.1 0.192 �0.205 0.839 0.516 0.345 0.509 28.620 0.192 �0.205 0.839 0.516 0.345 0.509 28.620

0.711 �0.637 2.096 1.836 0.674 2.183 0.711 �0.637 2.096 1.836 0.674 2.183

0.15 0.240 0.252 0.657 0.257 0.362 0.638 28.943 0.240 0.252 0.657 0.257 0.362 0.638 28.943

0.867 0.888 1.313 1.101 0.656 3.119 0.867 0.888 1.313 1.101 0.656 3.119

0.2 0.296 �0.236 0.536 0.721 �0.344 0.588 28.443 0.296 �0.236 0.536 0.721 �0.344 0.588 28.443

1.055 �0.827 1.053 3.062 �0.589 3.021 1.055 �0.827 1.053 3.062 �0.589 3.021

0.25 0.313 �0.060 0.404 0.598 �0.605 0.686 29.091 0.313 �0.060 0.404 0.598 �0.605 0.686 29.091

1.105 �0.233 0.733 2.763 �1.035 3.705 1.105 �0.233 0.733 2.763 �1.035 3.705

(continued)
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Table A.4 Continued

DR beta of Ang et al. (2006) DR of Lettau, Maggiori, and Weber (2014)

s kDR1 kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE kDR2 kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

50 years (528 assets) 0.01 0.110 0.003 0.367 �0.086 0.418 0.873 29.683 0.110 0.003 0.367 �0.086 0.418 0.873 29.683

0.471 0.038 2.938 �0.951 2.285 4.883 0.471 0.038 2.938 �0.951 2.285 4.883

0.05 0.142 0.005 1.167 �0.045 0.753 0.790 29.039 0.142 0.005 1.167 �0.045 0.753 0.790 29.039

0.610 0.018 4.423 �0.206 2.372 3.612 0.610 0.018 4.423 �0.206 2.372 3.612

0.1 0.275 �0.120 0.628 0.276 0.164 0.695 29.396 0.275 �0.120 0.628 0.276 0.164 0.695 29.396

1.192 �0.385 1.978 1.168 0.397 3.189 1.192 �0.385 1.978 1.168 0.397 3.189

0.15 0.284 0.446 0.642 �0.134 0.034 0.831 29.516 0.284 0.446 0.642 �0.134 0.034 0.831 29.516

1.228 1.631 1.568 �0.643 0.076 4.176 1.228 1.631 1.568 �0.643 0.076 4.176

0.2 0.304 �0.002 0.546 0.296 �0.332 0.760 29.626 0.304 �0.002 0.546 0.296 �0.332 0.760 29.626

1.305 �0.007 1.206 1.381 �0.695 3.923 1.305 �0.007 1.206 1.381 �0.695 3.923

0.25 0.299 0.033 0.781 0.255 �0.133 0.789 29.797 0.299 0.033 0.781 0.255 �0.133 0.789 29.797

1.271 0.147 1.549 1.356 �0.276 4.293 1.271 0.147 1.549 1.356 �0.276 4.293

Notes: Displayed are prices of risk of full models also including either downside risk beta of Ang et al. (2006) or downside risk beta specification of Lettau, Maggiori, and Weber

(2014). We use CRSP database between July 1926 and December 2015. Models are estimated for various values of thresholds given by s. We employ three samples with varying num-

ber of minimum years. Long horizon is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include Fama–MacBeth t-statistics.
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Table A.5 Estimated coefficients of the TR, EVR, and Full models controlled for Fama and

MacBeth (1973) factors

s kSMB kHML kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

70 years (142 assets) 0.01 0.035 �0.050 0.133 0.636 �0.217 �0.174 0.838 26.281

0.266 �0.280 0.960 3.276 �1.558 �0.569 4.206

0.05 �0.073 �0.181 0.401 1.108 �0.238 0.093 0.893 26.349

�0.550 �1.034 1.238 3.072 �0.989 0.186 4.007

0.1 �0.009 �0.200 0.187 0.888 0.276 0.076 0.674 26.119

�0.066 �1.188 0.562 1.777 1.101 0.112 3.093

0.15 0.001 �0.165 0.376 0.612 0.231 0.289 0.702 25.969

0.010 �0.949 1.232 1.068 1.044 0.416 3.504

0.2 0.090 �0.150 0.016 0.535 0.712 �0.259 0.609 25.052

0.685 �0.869 0.050 0.827 2.965 �0.341 3.107

0.25 0.067 �0.150 0.118 0.171 0.753 �0.731 0.691 25.349

0.517 �0.873 0.359 0.251 2.759 �0.962 3.604

60 years (267 assets) 0.01 �0.149 0.040 0.198 0.389 �0.233 0.281 0.851 29.218

�1.184 0.252 1.657 2.622 �1.979 1.053 4.481

0.05 �0.175 �0.016 0.291 1.216 �0.204 0.552 0.827 28.377

�1.434 �0.101 1.035 3.859 �1.018 1.410 3.858

0.1 �0.121 �0.051 0.063 0.996 0.255 0.341 0.650 28.578

�0.978 �0.333 0.216 2.589 1.152 0.676 3.045

0.15 �0.143 �0.052 0.414 0.837 0.025 0.442 0.751 28.833

�1.182 �0.340 1.561 1.831 0.137 0.821 3.926

0.2 �0.060 �0.054 �0.151 0.709 0.640 �0.261 0.618 28.464

�0.492 �0.359 �0.559 1.550 3.120 �0.448 3.258

0.25 �0.102 �0.059 0.014 0.623 0.505 �0.534 0.726 29.051

�0.850 �0.388 0.055 1.243 2.506 �0.940 4.000

50 years (528 assets) 0.01 �0.087 0.006 �0.005 0.457 �0.081 0.493 0.874 29.354

�0.761 0.041 �0.063 3.577 �0.921 2.582 4.805

0.05 �0.088 �0.051 0.135 1.172 �0.213 0.708 0.905 28.909

�0.806 �0.361 0.604 4.502 �1.349 2.251 4.504

0.1 �0.044 �0.096 0.022 0.791 0.137 0.120 0.774 29.182

�0.394 �0.697 0.092 2.507 0.781 0.289 3.917

0.15 �0.095 �0.126 0.612 0.730 �0.347 0.153 0.950 29.086

�0.854 �0.919 2.645 1.926 �2.262 0.344 5.144

0.2 �0.042 �0.084 0.091 0.682 0.201 �0.306 0.804 29.402

�0.376 �0.613 0.422 1.710 1.202 �0.652 4.429

0.25 �0.055 �0.090 0.101 0.914 0.163 �0.166 0.835 29.519

�0.499 �0.662 0.476 2.004 1.033 �0.354 4.793

Notes: Displayed are prices of risk of full models also including either HML or SMB betas of Fama and French

(1993). We use CRSP database between July 1926 and December 2015. Models are estimated for various val-

ues of thresholds given by s. We employ three samples with varying number of minimum years. Long horizon

is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include

Fama�MacBeth t-statistics.
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Table A.6. Estimated coefficients of the TR, EVR, and Full models

TR Extreme volatility risk Full model

s kTR
long kTR

short kCAPM RMSPE kEV
long kEV

short kCAPM RMSPE kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

70 years (142 assets) 0.01 �0.045 0.644 0.751 26.672 �0.084 �0.258 0.946 28.576 0.135 0.610 �0.213 �0.150 0.832 26.436

�0.476 3.303 3.910 �0.883 �0.853 4.885 0.896 3.085 �1.366 �0.495 4.151

0.05 0.149 1.272 0.716 26.801 0.242 0.378 0.689 28.212 0.160 1.258 �0.024 0.297 0.738 26.755

0.699 3.485 3.861 1.413 0.774 3.047 0.431 3.519 �0.081 0.602 3.046

0.1 0.432 1.153 0.735 27.109 0.519 0.441 0.549 27.226 �0.005 1.004 0.442 0.287 0.553 26.567

1.673 2.265 4.119 2.588 0.649 2.461 �0.011 1.964 1.357 0.425 2.269

0.15 0.611 0.842 0.730 26.651 0.557 0.522 0.592 27.025 0.312 0.832 0.344 0.501 0.615 26.280

2.493 1.453 4.050 2.836 0.756 2.817 0.898 1.436 1.210 0.719 2.816

0.2 0.732 0.224 0.780 26.944 0.750 �0.313 0.590 25.765 0.050 0.753 0.709 �0.139 0.580 25.417

2.726 0.326 4.432 3.604 �0.411 2.950 0.137 1.127 2.463 �0.183 2.784

0.25 0.786 �0.165 0.808 27.241 0.869 �0.563 0.631 25.703 0.045 0.418 0.844 �0.420 0.628 25.608

2.898 �0.230 4.631 3.695 �0.727 3.238 0.130 0.589 2.751 �0.544 3.165

60 years (267 assets) 0.01 �0.036 0.430 0.759 29.723 �0.083 0.263 0.934 30.514 0.168 0.380 �0.227 0.250 0.865 29.496

�0.491 2.685 4.130 �1.105 1.002 5.093 1.342 2.388 �1.784 0.948 4.630

0.05 0.225 1.187 0.661 28.681 0.256 0.611 0.655 29.996 0.175 1.241 0.016 0.646 0.675 28.617

1.211 3.659 3.574 1.493 1.545 2.878 0.562 3.921 0.060 1.626 2.819

0.1 0.368 0.958 0.715 29.239 0.550 0.371 0.501 29.193 �0.109 0.906 0.538 0.402 0.490 28.678

1.549 2.407 3.999 2.516 0.753 2.200 �0.318 2.265 1.730 0.815 2.015

0.15 0.559 0.729 0.706 29.244 0.488 0.495 0.593 29.614 0.358 0.770 0.250 0.398 0.622 29.089

2.326 1.482 3.940 2.349 0.923 2.805 1.191 1.573 0.968 0.739 2.918

0.2 0.538 0.236 0.762 29.736 0.677 �0.251 0.581 28.726 �0.166 0.657 0.757 �0.296 0.555 28.607

2.139 0.450 4.343 3.146 �0.440 2.913 �0.560 1.309 2.870 �0.517 2.739

0.25 0.523 0.208 0.782 30.035 0.669 �0.526 0.645 29.286 �0.041 0.539 0.680 �0.506 0.641 29.244

2.114 0.375 4.491 3.065 �0.895 3.382 �0.154 0.996 2.755 �0.870 3.356

(continued)
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Table A.6. Continued

TR Extreme volatility risk Full model

s kTR
long kTR

short kCAPM RMSPE kEV
long kEV

short kCAPM RMSPE kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

50 years (528 assets) 0.01 �0.087 0.436 0.825 29.726 �0.088 0.463 0.969 30.286 �0.007 0.407 �0.073 0.422 0.871 29.689

�1.535 2.981 4.634 �1.507 2.500 5.396 �0.082 2.829 �0.798 2.305 4.787

0.05 0.001 1.162 0.762 29.233 0.071 0.636 0.807 30.075 0.060 1.242 �0.055 0.765 0.790 29.054

0.004 3.980 4.238 0.542 1.991 3.795 0.209 4.422 �0.236 2.446 3.474

0.1 0.195 0.783 0.784 29.756 0.316 0.069 0.672 29.669 �0.060 0.770 0.302 0.155 0.662 29.400

0.972 2.401 4.418 1.836 0.168 3.152 �0.187 2.416 1.165 0.381 2.932

0.15 0.404 0.811 0.765 29.583 0.168 �0.003 0.776 30.089 0.532 0.782 �0.150 0.084 0.810 29.552

2.010 1.968 4.288 0.991 �0.006 3.817 1.840 1.923 �0.637 0.187 3.893

0.2 0.324 0.631 0.808 29.957 0.377 �0.316 0.725 29.730 0.038 0.692 0.332 �0.342 0.727 29.650

1.599 1.363 4.594 2.045 �0.687 3.694 0.144 1.535 1.359 �0.731 3.611

0.25 0.303 0.775 0.819 30.024 0.373 �0.116 0.752 29.926 0.046 0.912 0.335 �0.136 0.750 29.817

1.509 1.546 4.690 2.019 �0.247 3.980 0.199 1.833 1.536 �0.287 3.958

Notes: Prices of risk estimated on monthly stock data from CRSP database sampled between July 1926 and December 2015. Models are estimated for various values of thresholds

given by s. We employ three samples with varying number of minimum years. Long horizon is given by frequencies corresponding to 1.5-year cycle and longer. Below the coefficients,

we include Fama–MacBeth t-statistics.
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E Specification of the Competing Models

In this section, we briefly describe the specification of the models we use in Appendix C.2.

We denote market excess return as rm and its mean and variance as lm and r2
m, respectively.

Excess return of an asset is denoted as ri with mean li and variance r2
i .

We present how we estimate betas in the first-stage regression. The second-stage regres-

sion is the same for all the models and is performed via OLS by regressing the average asset

returns on their betas. This then leads to the estimated values of RMSPE.

E.1. Downside Risk Models

We follow two specifications of the downside risk models. First, we use specification of

Ang et al. (2006) and estimate their relative downside risk betas as

bDR1
i � b�i;lm

� bi ¼
Cov ri; rmjrm < lmð Þ
Var rmjrm < lmð Þ �

Cov ri; rmð Þ
Var rmð Þ

: (32)

Downside risk beta specification of Lettau, Maggiori, and Weber (2014) is then

obtained as

bDR2
i � b�i;d � bi ¼

Cov ri; rmjrm < dð Þ
Var rmjrm < dð Þ �

Cov ri; rmð Þ
Var rmð Þ

; (33)

where we define the threshold value as d � lm � rm.

E.2. GDA Models

We employ specification of GDA models of Farago and T�edongap (2018) and estimate two

main versions of their cross-sectional models. Their models are based on disappointment

events Dt.

E.2.1. GDA3

First model is their three-factor model, which does not contain volatility-related factors.

The betas possess the following form:

bi;m �
Cov ri; rmð Þ
Var rmð Þ

; (34)

bi;D �
Cov ri; I Dð Þ

� �
Var I Dð Þð Þ ; (35)

bi;mD �
Cov ri; rmI Dð Þ

� �
Var rmI Dð Þð Þ ; (36)

where we follow the specification and set Dt ¼ frm;t < bg, where b ¼ �0:03 and I is an in-

dicator function.

E.2.2. GDA5

Five-factor specification of the GDA model contains, in addition to the betas from the

three-factor model, the following betas:

bi;X �
Cov ri;Dr2

m

� �
Var Dr2

m

� � ; (37)
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bi;XD �
Cov ri;Dr2

mI Dð Þ
� �

Var Dr2
mI Dð Þ

� � ; (38)

where the disappointment events are given by Dt ¼ rm;t � a rm

rX
Dr2

m;t < b
n o

, where Dr2
m;t

are increments of market volatility, r2
X ¼ Var Dr2

m

� �
, a¼ 0.5 and b ¼ �0:03.

E.3. Coskewness and Cokurtosis

Following work of Kraus and Litzenberger (1976); Harvey and Siddique (2000); Dittmar

(2002); and Ang et al. (2006), we estimate the coskewness and cokurtosis as

CSKi �
E ri � lið Þ rm � lmð Þ2
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ri � lið Þ2
h ir

E rm � lmð Þ2
h i ; (39)

CKTi �
E ri � lið Þ rm � lmð Þ3
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ri � lið Þ2
h ir

E rm � lmð Þ3=2
h i : (40)

E.4. Fama–French Three-Factor Model

Betas of the three-factor model of Fama and French (1993) are estimated via time-series re-

gression of excess asset return on three factors: SMB (obtained by sorting stocks based on

their size), HML (obtained by sorting stocks based on their book-to-market value), and

MKT (market factor)

ri;t ¼ ai þ bSMB
i SMBt þ bHML

i HMLt þ bMKT
i MKTt þ ei;t: (41)

Factor data were obtained from Kenneth French’s online data library.

F Detailed Description of the Portfolio Results

F.1. Fama–French Portfolios

In this section, we employ two sets of Fama–French portfolios. First set contains two sam-

ples: 25 portfolios double-sorted on size and value and 30 industry portfolios. These two

datasets were chosen because they possess the longest history available across all the Fama–

French portfolios. Their time span ranges between July 1926 and April 2020. Second set

contains three datasets of portfolios sorted on the following characteristics: operating

profit, investment, and book-to-market. Portfolios sorted on operating profit and invest-

ment possess significantly shorter history of observations between July 1963 and March

2020.

Regarding the first dataset, the results are summarized in Table A.7. In the case of port-

folios double sorted on size and value, the short component of QS and short component of

EVR risks are priced. Regarding the industry sorted portfolios, only the short-term TR is

consistently priced across the model specifications. For those investors who fear the high

volatility states, these results suggest that the more appropriate strategy involves investing

based on the industries rather than size and value, as you do not have to pay a premium for

portfolios that possess low EVR betas—portfolios whose extreme negative returns are less

probable to co-occur with extreme positive increments of market volatility.
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Table A.7 Fama�French long history portfolios

TR Extreme volatility risk Full model

s kTR
long kTR

short kCAPM RMSPE kEV
long kEV

short kCAPM RMSPE kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

25 portfolios sorted on size and value 0.01 0.060 0.502 0.645 2.557 0.047 0.425 0.707 2.602 �0.002 0.483 0.076 0.320 0.615 2.545

0.461 1.249 3.618 0.395 0.950 3.251 �0.010 1.438 0.354 1.393 2.722

0.05 �0.486 3.170 0.704 2.258 0.231 �2.263 0.586 2.520 �0.569 3.041 �0.093 �0.848 0.831 2.230

�1.257 6.276 3.990 0.685 �3.315 1.460 �1.875 5.590 �0.291 �1.088 2.491

0.1 0.597 0.270 0.607 2.535 �0.252 5.020 0.843 2.496 0.505 0.445 0.016 3.783 0.523 2.422

1.259 0.243 3.536 �0.511 3.067 1.771 1.152 0.415 0.043 3.358 1.496

0.15 �0.954 3.584 0.826 2.473 �0.892 6.249 1.142 2.011 �1.015 2.112 �0.946 6.342 1.318 1.866

�2.112 4.345 4.607 �2.326 5.690 3.224 �2.366 2.549 �2.636 6.463 4.177

0.2 �0.349 1.421 0.739 2.615 �0.606 9.894 0.858 2.001 �0.850 2.598 �0.606 10.489 0.860 1.922

�0.827 1.054 4.140 �1.592 5.712 2.824 �1.920 1.958 �1.486 6.393 2.935

0.25 �0.271 1.630 0.717 2.594 �0.216 5.347 0.770 2.390 �0.932 1.242 0.065 6.623 0.674 2.319

�0.800 1.143 4.137 �0.626 2.398 2.839 �1.952 1.106 0.172 4.443 2.573

30 industry portfolios 0.01 �0.132 0.874 0.712 1.411 �0.208 �0.740 1.007 1.897 0.020 0.823 �0.155 �0.402 0.781 1.373

�1.077 3.823 3.231 �1.611 �1.909 4.160 0.086 3.356 �0.597 �1.011 2.833

0.05 0.036 0.903 0.675 1.898 0.445 �2.141 0.443 1.878 �0.162 0.791 0.390 �1.728 0.447 1.792

0.101 1.975 3.274 1.357 �2.558 1.296 �0.326 1.878 0.690 �2.027 1.022

0.1 0.208 1.044 0.651 1.848 0.722 �2.173 0.261 1.720 �0.504 0.545 0.875 �1.972 0.209 1.683

0.592 1.680 3.286 3.348 �1.969 0.986 �0.838 0.809 1.825 �1.751 0.604

0.15 0.561 1.135 0.607 1.704 0.930 �2.461 0.246 1.612 0.147 0.774 0.647 �2.147 0.358 1.564

1.843 1.594 3.044 3.644 �2.162 0.929 0.278 1.122 1.303 �1.947 1.080

0.2 0.602 0.442 0.665 1.917 0.840 �1.770 0.384 1.784 0.177 0.431 0.674 �1.970 0.430 1.767

1.714 0.568 3.388 2.398 �1.535 1.437 0.414 0.555 1.434 �1.688 1.468

0.25 0.823 0.926 0.648 1.734 0.652 �2.961 0.550 1.806 0.879 0.883 0.046 �2.418 0.673 1.611

2.093 1.221 3.239 1.993 �2.469 2.191 2.152 1.157 0.123 �1.984 2.628

Notes: Prices of risk estimated on monthly return data of 30 industry portfolios and portfolios double sorted on size and book-to-market. Sample period covers time interval between

July 1926 and April 2020. Long horizon is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include Fama�MacBeth t-statistics.
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Table A.8 Fama�French portfolios

TR Extreme volatility risk Full model

s kTR
long kTR

short kCAPM RMSPE kEV
long kEV

short kCAPM RMSPE kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

Operating profit 0.01 0.266 0.844 0.337 0.417 0.353 �0.329 0.467 0.663 0.097 1.012 0.185 �0.388 0.244 0.265

1.217 1.929 1.462 1.603 �1.014 1.668 0.333 2.738 0.466 �1.264 0.700

0.05 �0.301 1.308 0.669 0.920 0.684 �2.969 0.422 0.723 �0.355 0.306 0.782 �1.790 0.317 0.625

�0.692 2.328 3.255 2.673 �2.070 1.617 �0.728 0.618 2.164 �1.951 0.987

0.1 0.119 �1.008 0.747 0.976 0.844 �1.697 0.142 0.701 0.018 0.394 0.986 �2.376 0.037 0.688

0.315 �1.461 3.608 1.493 �0.783 0.318 0.037 0.945 1.939 �1.705 0.093

0.15 0.262 �0.933 0.709 1.041 0.803 �1.173 0.263 0.986 �0.807 �0.974 1.804 �2.295 �0.104 0.820

0.696 �1.041 3.335 2.318 �1.426 1.008 �0.751 �1.458 2.108 �2.814 �0.255

0.2 �1.191 0.226 0.884 0.886 1.284 �4.962 0.147 0.849 �1.646 0.742 1.662 �3.192 0.121 0.579

�1.379 0.340 4.024 3.769 �2.240 0.577 �2.360 1.415 4.102 �1.850 0.471

0.25 �0.947 1.579 0.725 0.914 0.195 �2.627 0.599 0.589 �0.332 �0.049 0.356 �2.294 0.541 0.575

�0.913 1.638 3.511 0.511 �1.525 2.166 �0.433 �0.075 1.418 �2.138 2.185

Investment 0.01 0.234 2.347 �0.145 1.219 1.093 �0.047 �0.114 3.332 0.768 2.230 �0.774 0.729 0.196 0.933

2.228 7.966 �0.626 5.265 �0.251 �0.405 1.009 3.649 �1.126 3.077 0.374

0.05 �1.855 5.496 0.668 1.333 �1.674 �1.749 1.995 2.535 �2.088 5.045 0.035 1.831 0.593 1.279

�4.548 5.866 3.130 �9.143 �1.320 7.719 �4.508 8.124 0.151 2.755 2.487

0.1 �4.729 4.393 1.274 2.007 0.950 7.075 �0.330 2.960 �5.437 3.225 �0.552 0.004 1.902 1.984

�5.902 3.724 5.048 1.964 9.647 �0.699 �7.711 4.848 �1.215 0.007 3.911

0.15 �2.556 7.013 0.811 2.068 �2.463 16.677 1.543 2.440 �5.158 8.173 4.022 14.513 �1.794 1.366

�6.042 7.252 3.908 �8.222 7.779 5.729 �5.133 9.396 4.581 7.545 �3.767

0.2 �4.208 14.158 0.559 1.746 �3.982 10.646 2.676 2.933 �1.998 13.989 �2.161 10.860 1.174 1.301

�8.644 8.388 2.439 �7.310 6.644 6.950 �1.360 6.574 �1.248 2.824 1.387

0.25 �5.272 2.109 1.236 1.770 0.216 7.497 0.527 3.296 �4.753 3.109 �0.416 2.632 1.341 1.681

�9.910 1.765 4.718 0.428 4.862 1.257 �9.098 3.275 �0.863 1.710 3.095

(continued)
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Table A.8 Continued

TR Extreme volatility risk Full model

s kTR
long kTR

short kCAPM RMSPE kEV
long kEV

short kCAPM RMSPE kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

Book-to-market 0.01 0.783 0.378 0.249 1.537 1.045 0.830 �0.323 2.178 2.016 �1.162 �1.923 �1.355 1.793 1.141

4.365 1.142 1.220 4.243 2.022 �1.130 3.866 �2.861 �3.316 �3.587 3.971

0.05 1.909 2.898 0.061 1.386 �0.682 �6.138 1.661 2.020 2.821 2.012 �0.957 2.715 0.669 1.148

3.552 2.593 0.274 �1.912 �4.116 3.755 3.917 2.384 �2.543 2.847 1.886

0.1 2.997 �1.702 0.276 1.449 �0.672 5.498 1.240 2.791 3.098 �3.078 �1.303 �3.900 1.558 1.159

4.274 �2.004 1.368 �1.457 2.332 2.571 4.323 �3.434 �2.526 �2.110 3.180

0.15 2.979 1.100 0.147 1.504 �1.844 0.164 2.095 2.378 5.562 �6.472 �0.957 8.492 0.252 1.063

4.180 0.971 0.693 �3.473 0.147 4.427 4.697 �4.100 �2.493 3.918 0.772

0.2 1.940 5.670 0.272 2.043 �1.110 8.519 1.166 2.151 1.055 4.724 �0.066 4.433 0.335 1.999

3.102 4.096 1.333 �2.942 3.797 4.017 1.799 3.161 �0.133 2.907 0.908

0.25 �0.046 8.320 0.442 2.212 �0.956 9.493 1.193 2.160 �1.799 6.455 �0.477 8.514 0.893 2.006

�0.072 3.362 2.283 �2.841 3.578 4.198 �2.185 3.050 �1.778 3.276 3.536

Notes: Prices of risk estimated on monthly return data of portfolios sorted on operating profit, investment, and book-to-market. Sample period covers time interval between July 1963

(July 1926 for book-to-market portfolios) and March 2020. Long horizon is given by frequencies corresponding to 3-year cycle and longer. Below the coefficients, we include

Fama�MacBeth t-statistics.
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Table A.9 Various portfolios

TR Extreme volatility risk Full model

s kTR
long kTR

short kCAPM RMSPE kEV
long kEV

short kCAPM RMSPE kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

Lettau, Maggiori, and

Weber (2014)

0.01 0.744 0.126 0.455 8.739 0.562 0.115 0.112 9.116 0.953 �0.042 �0.135 �0.420 0.600 8.702

3.703 0.225 1.792 3.080 0.225 0.399 3.238 �0.074 �0.484 �0.855 1.894

0.05 0.428 4.432 0.590 8.724 0.738 1.779 0.264 9.634 0.059 4.368 0.268 0.378 0.501 8.708

0.956 3.801 2.294 1.838 1.575 0.968 0.126 3.565 0.515 0.333 1.603

0.1 0.784 3.342 0.602 9.988 1.029 0.109 0.248 9.935 �0.847 4.122 1.468 �1.817 0.202 9.693

1.344 2.138 2.359 1.945 0.071 0.858 �1.824 2.579 2.593 �1.154 0.668

0.15 0.627 7.934 0.578 9.408 1.213 1.165 0.293 10.037 �0.117 8.497 0.906 �1.273 0.392 9.367

1.243 3.951 2.241 1.783 0.657 0.999 �0.257 3.551 1.116 �0.622 1.263

0.2 0.990 11.846 0.487 8.925 0.519 2.222 0.481 10.623 2.392 10.492 �2.392 2.494 0.954 8.525

1.871 4.994 1.939 0.746 1.004 1.639 2.514 5.140 �2.560 1.176 2.799

0.25 1.187 10.080 0.459 9.502 0.700 1.154 0.455 10.705 1.842 9.434 �1.674 3.161 0.767 9.295

2.208 3.700 1.809 0.956 0.503 1.541 2.538 3.594 �1.944 1.544 2.353

Weber (2018) 0.01 0.611 1.702 0.008 1.428 0.826 8.684 �0.796 1.460 0.852 1.246 �0.795 6.825 �0.123 0.695

2.809 4.083 0.033 3.741 3.537 �2.297 1.779 2.466 �1.568 2.545 �0.281

0.05 �2.640 4.875 1.027 2.864 1.953 �3.555 �0.249 4.277 �2.562 5.166 2.319 �3.806 �0.211 1.318

�4.897 7.174 4.416 4.587 �4.026 �0.696 �4.832 7.206 5.026 �4.633 �0.641

0.1 �4.297 3.906 1.361 3.989 0.827 9.226 �0.426 3.270 0.316 3.719 2.061 8.453 �1.611 3.190

�5.230 3.027 5.394 1.262 6.569 �0.669 0.704 3.318 3.698 6.560 �2.939

0.15 0.257 8.307 0.155 3.620 �0.829 10.041 0.840 3.099 �0.568 5.073 0.858 11.976 �0.447 2.906

0.783 7.019 0.696 �2.711 5.768 2.299 �1.005 5.208 1.369 4.526 �0.885

0.2 �2.453 9.974 0.580 3.804 �0.838 6.443 1.052 4.413 �2.801 15.421 3.088 13.817 �1.799 2.779

�4.107 6.689 2.658 �1.926 6.203 2.645 �4.146 6.730 4.330 7.357 �3.280

0.25 �3.435 8.407 0.658 3.870 1.904 2.376 �0.463 4.693 �5.417 8.747 4.081 8.589 �1.818 3.097

�5.066 6.948 2.989 5.773 2.107 �1.514 �6.571 7.086 6.850 6.427 �4.362

(continued)
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Table A.9 Continued

TR Extreme volatility risk Full model

s kTR
long kTR

short kCAPM RMSPE kEV
long kEV

short kCAPM RMSPE kTR
long kTR

short kEV
long kEV

short kCAPM RMSPE

Ilmanen et al. (2021) 0.01 2.401 1.279 �0.528 20.445 2.279 3.100 �0.440 19.912 1.087 1.338 1.086 2.842 �0.424 19.407

11.322 0.988 �1.714 11.091 2.741 �1.484 1.076 0.991 1.094 2.455 �1.420

0.05 6.482 �0.905 0.058 19.846 4.840 5.149 �0.779 20.155 4.160 �1.209 1.709 3.082 �0.283 19.650

12.922 �0.367 0.196 10.085 2.232 �2.446 2.146 �0.477 0.952 1.342 �0.541

0.1 7.660 1.560 0.377 24.118 5.830 6.750 �0.729 22.877 4.715 0.885 1.916 6.173 �0.038 23.208

11.398 0.480 1.487 10.703 1.834 �2.309 2.781 0.266 1.304 1.657 �0.102

0.15 8.689 �0.554 0.438 24.783 6.698 12.464 �0.763 23.232 3.026 �0.202 4.250 10.625 �0.335 23.133

11.734 �0.167 1.803 9.759 2.889 �2.407 2.416 �0.059 3.628 2.430 �1.045

0.2 9.876 �2.295 0.368 27.105 10.214 1.875 �0.756 22.503 �0.278 �4.394 10.922 1.825 �1.075 22.170

11.540 �0.632 1.487 10.411 0.374 �2.359 �0.259 �1.188 9.470 0.346 �3.447

0.25 8.151 3.455 0.557 30.032 10.378 20.757 �0.502 28.317 1.925 0.215 8.146 19.229 �0.268 27.793

10.336 0.925 2.305 9.569 4.311 �1.594 1.781 0.057 6.879 3.642 �0.969

Notes: Prices of risk estimated on monthly data of various datasets. Models are estimated for various values of thresholds given by s. Long horizon is given by frequencies correspond-

ing to 3�year cycle and longer. Below the coefficients, we include Fama�MacBeth t�statistics.
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The second set of portfolios includes equities sorted on operating profit, investments,

and book-to-market. The results are given in Table A.8. Generally, short TR is priced

across these portfolios with the expected sign. On the other hand, using the portfolios

sorted on investment, there is a strong negative relation between long TR and asset returns,

which may seem unintuitive. Regarding the EVR, its short-term part is priced across invest-

ment portfolios and book-to-market portfolios.

F.2. Other Portfolios

In this section, we provide analysis of QS risk performed on other widely used datasets.

The estimated models are reported in Table A.9. First, we focus on portfolios employed in

Lettau, Maggiori, and Weber (2014). This dataset contains portfolios formed across mul-

tiple asset classes. First, the dataset contains six currency portfolios sorted on interest rate

differential (we exclude high inflation currencies similar to the approach of Lettau,

Maggiori, and Weber 2014). Second, we have five commodity futures portfolios sorted on

basis. Third, we include returns on five corporate bond portfolios sorted on credit spread.

And fourth, we have equity portfolios sorted on various characteristics (six double sorted

on size and value, five on CAPM beta, five on industry, and six double sorted on momen-

tum and size).19 Here, we present results for the aggregated dataset. This dataset was intro-

duced to show the usefulness of downside risk beta for pricing. From the results, we can

conclude that the short component of TR for most s threshold values is priced using the

aggregated dataset. Its long component is significant for some medium values of s.

Regarding the EVR, its short-term component for lower values of s is priced as well.

Second, we look at the equity portfolios sorted on cash flow duration proposed in

Weber (2018). The results can be found in the second section of Table A.9. Similarly as in

the previous case, short-term part of TR is priced across these portfolios. On the other

hand, its long-term part is negatively priced across these assets, which may be counterintui-

tive. The EVR is priced using its both components.

Finally, we use returns on factors constructed from various asset classes from Ilmanen

et al. (2021). This dataset was chosen because of its long history and because it spans many

asset classes including U.S. and international equities, fixed income assets, currencies, and

commodities using value, momentum, carry, defensive, and multi-style type of investment

strategy. We report the results in the third panel of Table A.9. We can see that using the TR

model, the long-term TR is priced, and both parts of EVR are priced. But if we look at the

results of the Full model, only the EVR coefficients remain consistently significant.
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