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Abstract: 
Cryptocurrencies exhibit unique statistical and dynamic properties compared to 
those of traditional financial assets, making the study of their volatility crucial for 
portfolio managers and traders. We investigate the volatility connectedness 
dynamics of a representative set of eight major crypto assets. Methodologically, we 
decompose the measured volatility into positive and negative components and 
employ the time-varying parameters vector autoregression (TVP-VAR) framework 
to show distinct dynamics associated with market booms and downturns. The results 
suggest that crypto connectedness reflects important events and exhibits more 
variable and cyclical dynamics than those of traditional financial markets. Periods of 
extremely high or low connectedness are clearly linked to specific events in the 
crypto market and macroeconomic or monetary history. Furthermore, existing 
asymmetry from good and bad volatility indicates that information about market 
downturns spills over substantially faster than news about comparable market 
surges. Overall, the connectedness dynamics are predominantly driven by 
fundamental crypto factors, while the asymmetry measure also depends on macro 
factors such as the VIX index and the expected inflation. 
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1 Introduction

Quantification of volatility and assessment of its transfer is central to financial modeling as well
as practical applications (Diebold & Yilmaz, 2015). Volatility spillovers that materialize into
connectedness among cryptocurrencies are particularly intriguing since they are characterized by
unprecedented levels of volatility, a rich network structure, and complex connections within asset
classes. These key features differentiate cryptocurrencies from standard financial assets (Guo,
Härdle, & Tao, 2022; Härdle, Harvey, & Reule, 2020). Nevertheless, many questions related to
connectedness in the crypto market remain open. How do the connectedness dynamics evolve in a
network of the key cryptocurrencies, and how does it differ with respect to negative and positive
shocks? How does the nature of key events affect volatility spillovers on the crypto market?
What are the key drivers of the qualitatively differing (negative and positive) connectedness
segments? In our paper, we answer those questions with a battery of methodological advances
and cover most of the crypto market in terms of its capitalization.1

Since the seminal papers by Diebold and Yılmaz (2009), Diebold and Yılmaz (2012), and
Diebold and Yılmaz (2014), much of the financial research has been devoted to studying the
interdependence of returns or return volatilities with the spillover index introduced therein.
This measure quantifies the directional propagation of shocks through forecast error variance
decomposition of the underlying vector autoregressive model (VAR), which is a well-known
model estimating interrelationships in multivariate setups (Enders, 2008). A large amount of
literature has emerged based on the abovementioned studies in traditional finance and emerging
crypto finance. Our goal is to move beyond the typical reports on total spillovers, directional
analysis, or their frequency dynamics (Baruńık & Křehĺık, 2018). We calculate the spillovers
of volatility approximated by several realized variance (RV) measures and explain the spillovers
with fundamental variables for crypto assets, such as blockchain activity, exchange activity,
and external macroeconomic factors in an approach similar to Kristoufek (2015) but venturing
beyond Bitcoin as the single asset of interest.

Our key methodological tool is the time-varying parameters vector autoregression (TVP-
VAR) framework, which generalizes the traditional moving-window estimation technique by
estimating a full VAR model in each time period of the sample. Furthermore, we decompose the
measured volatility into its positive and negative components, and we describe distinct dynamics
behind connectedness associated with market surges and downturns. We also qualitatively
analyze the impact of exogenous news on connectedness and asymmetry, thus contributing to
the discussion on price endogeneity in crypto markets (Jiang, Nie, & Ruan, 2018; Kristoufek,
2018; Mark, Sila, & Weber, 2020), as we observe the so-called “excess volatility puzzle” (Shiller,
1981) when large price movements occur without a pertinent flow of news.

In sum, we (i) analyze the connectedness dynamics of the representative set of crypto assets,
(ii) assess how news affects volatility spillovers among them, including their impact on bad and
good volatility, and (iii) determine the set of impactful drivers of crypto-connectedness. Along
these lines, we review the literature related to our research questions to show our contribution
better.

The principal research on the financial characteristics of crypto assets can be traced to studies
by Barber, Boyen, Shi, and Uzun (2012), Meiklejohn et al. (2013) or Kristoufek (2013). At that
time, most of the research understandably focused on Bitcoin as the original and sole dominant
player on the market. With additional crypto assets entering the market, studies covering the
structure of linkages in the crypto market have become more frequent. Corbet, Lucey, Urquhart,

1Because the labels for digital assets vary in the literature, we use crypto assets, cryptocurrencies, or
“crypto” as a shorthand, as terms of interchangeable meaning. Similarly, we use the terms connectedness
and spillovers interchangeably, as both have been used in the literature to describe the same phenomenon
of volatility connectedness quantifying the dynamic characterization of volatility spillovers among various
assets or across markets, modeling them as a network; see Diebold and Yilmaz (2015).
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and Yarovaya (2019) or Härdle et al. (2020) provide a comprehensive overview of the relevant
crypto literature and its progress from Bitcoin-dominant topics to current research avenues.

Regarding news impact on connectedness, we provide a qualitative analysis of news per-
taining to connectedness dynamics. This is an important topic in the recent literature where
the effect of the news on Bitcoin price is analyzed in depth by Corbet, Larkin, Lucey, Meegan,
and Yarovaya (2020). Corbet et al. (2020) explain Bitcoin’s returns with an index of headline
sentiment, economic surprises, and the business cycle. They find that Bitcoin’s returns react
negatively to positive news about unemployment and durable goods. Thus, Corbet et al. (2020)
concludes that Bitcoin might serve as a hedging device against this type of macroeconomic risk.
Furthermore, Sapkota (2022) assesses the impact of media sentiment on Bitcoin’s RV and finds
that news tends to have a long-term effect on the volatility of Bitcoin. However, the literature
still lacks a similar analysis covering a larger representative set of crypto assets. To the best
of our knowledge, there is no analysis that investigates connectedness among crypto assets by
disentangling volatility due to positive and negative shocks. Nevertheless, Ji, Bouri, Lau, and
Roubaud (2019) calculate return and volatility spillovers among six large cryptos and consider
positive and negative returns separately. They find that the net positions of the assets do
not depend on their relative sizes and that the connectedness of negative returns is stronger
than that of positive returns. We arrive at a roughly similar conclusion based on modeling the
interrelation of realized semivariances instead of returns.

The literature on drivers behind connectedness in crypto is still in its infancy. Walther, Klein,
and Bouri (2019) identify the Global Financial Stress Index or Chinese Policy Uncertainty Index
as good predictors of volatility spillovers in the crypto market. Walther et al. (2019) and Bouri,
Lucey, Saeed, and Vo (2021) conclude that crypto assets appear to be driven by the global
business cycle and variables pertaining to global financial conditions. Ji et al. (2019) argue
that determinants of spillovers stem from trading volume, the Global Financial Stress Index,
the CBOE US Implied Volatility Index (VIX), and commodity prices, particularly gold prices.
Regarding more specific drivers, Andrada-Félix, Fernandez-Perez, and Sosvilla-Rivero (2020)
find that, instead of standard financial market variables, connectedness among crypto assets is
driven by crypto-specific variables, such as Wikipedia searches, the market capitalization of the
respective assets, and the total trade volume of specific coins. On the other hand, Charfeddine,
Benlagha, and Khediri (2022) omit crypto-specific factors, as in Andrada-Félix et al. (2020),
and by using the Diebold and Yılmaz (2012, 2014) approach, they find that primarily the
volumes of traded coins and the VIX are statistically significant predictors of total connectedness.
Finally, Wang, Ma, Bouri, and Guo (2022) analyze drivers that improve forecasting of Bitcoin’s
volatility from a macroeconomic and technical-analysis perspective. Their results show the
general superiority of macro factors, such as the RV of the S&P 500 index, over technical
factors. However, they suggest that the momentum and the trading volume stand out among
the technical factors. Our results suggest that the total connectedness is driven predominantly
by fundamental crypto factors, while the asymmetry measure also depends on macro factors
such as VIX and the breakeven inflation rate.

Regarding the methodological approach, our study relates well to Andrada-Félix et al. (2020),
who calculate volatility connectedness within and between blocks of four traditional currencies
and four cryptocurrencies. Our sample includes eight of the consistently largest assets and covers
an even larger proportion of the market’s liquidity. We estimate the linkages in the network
by employing the TVP-VAR model similarly to Andrada-Félix et al. (2020). However, their
estimation is based on the Kalman filter method of Antonakakis and Gabauer (2017), while
we estimate the TVP coefficients with the quasi-Bayesian local likelihood (QBLL) of Petrova
(2019) and implemented by Baruńık and Ellington (2020, 2023). Hence, unlike in Andrada-
Félix et al. (2020), our measures provide confidence intervals, and we can distinguish periods
with statistically meaningful differences between the quantified outcomes. Our key contributions
show that crypto market connectedness shows more variable and cyclical dynamics than those
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of the traditional financial markets. Most of the periods of extremely high or low connectedness
can be connected to specific events in the crypto markets related to history or the history of
macroeconomic or monetary nature. Furthermore, the study of good and bad volatility spillover
asymmetry uncovers that information about crypto asset market downturns usually spills over
substantially faster than news about comparable market upturns. While the total connectedness
is mostly driven by crypto-related factors, the asymmetry is largely affected by macroeconomic
drivers as well.

The paper proceeds as follows. We describe the methodology used to estimate the measure
of volatilities and, consequently, their connectedness in Section 2, and we also discuss specific
parameters of our setup therein. Section 3 presents the dataset, and we explain the origin
of relevant variables. Section 4 provides a qualitative analysis of the events associated with
connectedness dynamics. We analyze the determinants of connectedness and its asymmetry in
Section 5, and finally, Section 6 concludes.

2 Methodology

Volatility connectedness is estimated based on two realized volatility measures defined for a
continuous-time stochastic process of log prices, denoted as pt, which evolves within a time hori-
zon [0 ≤ t ≤ T ]. This process consists of a continuous component and a pure jump component,
as expressed by the equation:

pt =

∫ t

0
µsds+

∫ t

0
σsdWs + Jt, (1)

where µ represents a locally bounded predictable drift process, σ denotes a strictly positive
volatility process, and Jt represents the jump part. All these components are adapted to a
common filtration F . The quadratic variation of pt is given by:

[pt, pt] =

∫ t

0
σ2sds+

∑
0<s≤t

(∆ps)
2, (2)

where ∆ps = ps − ps− represents the jumps if they occur. The first component in Equation (2)
corresponds to integrated variance, while the second term captures jump variation. Andersen
and Bollerslev (1998) introduced the concept of RV by proposing an estimator that involves
summing squared returns to estimate quadratic variation. This estimator is consistent under
the assumption that there is no noise contamination in the price process.

Intraday returns, denoted as rk, are defined as the difference between intraday log prices pk
and pk−1, which are equally spaced over the interval [0, t]. The RV is then defined as the sum
of squared intraday returns:

RV =

n∑
k=1

r2k. (3)

As the number of observations n approaches infinity, the RV converges in probability to the
quadratic variation [pt, pt].

Furthermore, Barndorff-Nielsen, Kinnebrock, and Shephard (2010) decomposed the RV into
two components of realized semivariances (RS), which capture the variation attributed to neg-
ative (RS−) or positive (RS+) price changes (returns), respectively. This decomposition allows
for an interpretation of asymmetries in volatility, following the established terminology by Pat-
ton and Sheppard (2015): “bad and good volatility.” The realized semivariances are defined as
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follows:

RS− =
n∑
k=1

I(rk < 0)r2k, (4)

RS+ =

n∑
k=1

I(rk ≥ 0)r2k. (5)

The realized semivariance provides a comprehensive breakdown of the RV, resulting in:

RV = RS− +RS+. (6)

As the number of observations increases, the realized semivariance converges toward two main
components: half of the integrated variance, represented by 1/2

∫ t
0 σ

2
sds, and the sum of jumps

related to negative and positive returns (Shephard, 2010). The negative and positive semivari-
ances provide information about the variability linked to extreme movements in the underlying
variable’s tails, and as such, they offer valuable metrics for assessing the downside and upside
risks, respectively.

To estimate the connectedness measures, we consider an N -dimensional vector of (RV ), or
(RS−, RS+), to follow a locally stationary TVP-VAR of order p. This observed process is
approximated around some fixed point u0 = t0/T as a stationary process X̃t(u0) under the

regularity conditions |Xt,T − X̃t(u0)| = Op(|t/T0 − u0|+ 1/T ) as follows:

X̃t(u0) = Φ1(u0)X̃t−1(u0) + ...+ Φp(u0)X̃t−p(u0) + εt, (7)

where εt = Σ−
1
2 (u0)ηu0 and ηu0 ≈ NID(0, IM ) and Φ(u0) = (Φ1(u0), ...,Φp(u0))

T are the
time-varying autoregressive coefficients.

In parallel with the standard VAR, this TVP-VAR process has a time-varying VMA(∞)
representation due to Dahlhaus (1996) as

Xt,T =
∞∑

h=−∞
Ψt,T (h)εt−h, (8)

where
∑∞

h=−∞Ψt,T (h) ≈ Ψ(t/T, h) is a bounded stochastic process at a finite horizon h =
1, . . . H. Following Baruńık and Ellington (2020, 2023), our calculations adapt the generalized
identification scheme of Pesaran and Shin (1998) to a locally stationary process X̃t(u0) defined
above. Thus, in the underlying TVP-VAR model, the connectedness measures are invariant to
variable ordering.

2.1 Total spillovers

We compute the total spillover index, as introduced by Diebold and Yılmaz (2012), by using the
H-step-ahead generalized forecast error variance decomposition matrix. This matrix consists
of elements denoted by θHjk, in which h ranges from 1 to the desired forecast horizon H. The
calculation for each element is given by:

θHjk =
σ−1kk

∑H−1
h=0

(
e′jΨhΣεek

)2
∑H−1

h=0

(
e′jΨhΣεΨ′hek

) , j, k = 1, . . . , N, (9)

where Ψh represents the moving average coefficients obtained through the forecast at any time t.
The variance matrix for the error vector, denoted as Σε, encompasses σkk as its diagonal elements
corresponding to the kth positions. The selection vectors, ej and ek, are defined to have a value
of one at the jth or kth element, respectively, and zero elsewhere. Diebold and Yılmaz (2012)
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introduce the concept of total connectedness based on a normalization where the elements are
divided by the sum of the row, denoted as θ̃Hjk = θHjk/

∑N
k=1 θ

H
jk. The total connectedness measure

quantifies the impact of volatility shocks across variables within the system on the overall forecast
error variance:

SH = 100× 1

N

N∑
j,k=1
j 6=k

θ̃Hjk. (10)

Since
∑N

k=1 θ̃
H
jk = 1 and

∑N
j,k=1 θ̃

H
jk = N , the connectedness contributions arising from volatility

shocks are standardized by the overall variance of the forecast errors.

2.2 Measuring asymmetries in spillovers

We employ the realized semivariances defined above and account for spillovers from volatility
due to negative returns (S−) and positive returns (S+). If the contributions of RS− and RS+

are equal, the spillovers are symmetric, and we expect the spillovers to be of the same magnitude
as spillovers from RV . On the other hand, the differences in the realized semivariances result in
asymmetric spillovers.

Baruńık, Kočenda, and Vácha (2016) quantify the extent of asymmetries in volatility spillovers
based on the spillover asymmetry measure (SAM), defined as the difference between positive
and negative spillovers:

SAM = S+ − S−, (11)

where S+ and S− represent volatility transmission indices resulting from positive and negative
semivariances, denoted as RS+ and RS−, with an H-step-ahead forecast at time t. The measure
SAM reflects the degree of asymmetry in spillovers caused by RS− and RS+. As demonstrated
by Baruńık et al. (2016), a SAM value of zero indicates that the spillovers from RS− and RS+

are equal. Conversely, a positive (negative) value of SAM indicates that the spillovers from
RS+ are greater (smaller) than those from RS−.

2.3 Estimation methodology and setup

Typically, dynamic connectedness is calculated with a moving window approach that slides
over the dataset and calculates a static model while adding the next observation and dropping
the oldest one (Baruńık & Křehĺık, 2018; Diebold & Yılmaz, 2012, 2014). We turn to the
more general TVP-VAR process, which is estimated with the QBLL method of Petrova (2019).
The method provides a distribution of parameters that defines a confidence interval in each
period. Therefore, unlike in the traditional connectedness and spillover methodology, we can
describe the statistical significance of the connectedness measures and the meaningful differences
between connectedness due to good and bad volatility. Additionally, we can discuss specific
events that determine the observed dynamics since the connectedness is localized. Compared
to estimating dynamic connectedness with a moving-window VAR, TVP-VAR eliminates the
arbitrary selection of window length and the omission of observations. TVP-VAR also does not
suffer from sensitivity to outliers, which can bias the subsequent windows.

We estimate the dynamic network model introduced by Baruńık and Ellington (2020, 2023)
with the autoregressive lag parameter of 2 periods since it is commonly used in similar applica-
tions, and the value was also suggested by the Bayesian information criterion (BIC) for a static
VAR over the whole sample. Another crucial parameter is the bandwidth of the kernel, which
determines the weights of the observations around the fixed point u0 from Equation 7 for each
point in the sample. Typically, a larger kernel bandwidth smooths and increases the connect-
edness since more observations are considered in the simulation step. Having evaluated several
bandwidths, we selected the width of 7 days, particularly due to stronger inference in SAM
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and as it is the length of the crypto trading week. A more detailed discussion on the estimation
parameters for various data-generating processes can be found in Baruńık and Ellington (2023).
Finally, we truncate the moving-average process representation at horizon H = 30, as we note
that varying this parameter does not produce materially different results.

Our further analysis quantitatively assesses the dynamics of connectedness and existing
asymmetries within good and bad volatility spillovers by employing a number of potential drivers
within crypto markets as well as external financial and macroeconomic factors. For ease of
exposition and interpretation, the model specifications are introduced later in Section 5, along
with estimation results.

3 Data

We perform our analysis with 5-minute open-high-low-close price data downloaded from the
Binance exchange by using their official data repository. Our sample period runs from July 5,
2019, to February 28, 2023, and we cover eight assets that consistently represent the majority
of the overall market capitalization and liquidity in the crypto market. Specifically, we employ
high-frequency price data for Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Litecoin
(LTC), Cardano (ADA), XRP (formerly Ripple), Tron (TRX), and Dogecoin (DOGE). Since
crypto coins are traded 24 hours, we are not limited by a standard 7- or 8-hour trading period
in a calendar day. Therefore, we aggregate the RV measures over 24 hours daily based on the
UTC midnight time. Table 3 in the Appendix summarizes basic descriptive statistics, along
with the augmented Dickey-Fuller (ADF) test statistics (Dickey & Fuller, 1979), which strongly
rejects the unit root in all of the RV series, making the TVP-VAR analysis feasible. The basic
statistics are heterogeneous across the studied crypto assets. BTC is the most stable, with the
lowest maximum value and the lowest standard deviation of the volatility process across the set.
DOGE, on the other hand, is by far the most erratic and unstable.

In Figure 1, we individually present positive and negative RV for each asset. In 2019 and
early 2020, most cryptos appeared to have relatively low volatility, with occasional spikes and
dips. This changed with the onset of the COVID-19 pandemic in March 2020, when higher
volatility in the cryptocurrency market corresponded to a global market panic. In contrast, we
see a massive surge of interest in cryptocurrencies during 2021, which led to a substantial increase
in volatility, with frequent and large price movements for all eight assets. The surge in volatility
can likely be attributed to a number of factors that include increased investments by institutional
investors and the growing mainstream acceptance of cryptocurrencies as a legitimate asset class,
e.g., speculation about the introduction of the Bitcoin ETF.

Among the eight coins, the high volatility of Dogecoin stands out, driven by Elon Musk’s
tweets (Shahzad, Anas, & Bouri, 2022). Musk’s Twitter activity sparked an interest in Doge-
coin, producing unprecedented volatility. Even when compared to the pandemic crash in 2020,
Dogecoin’s RV magnitude is approximately eight times as large as that recorded for Bitcoin
during the pandemic 2020 crash. Overall, Figure 1 highlights the dynamic and rapidly evolving
nature of the cryptocurrency market, along with rapid changes in crypto market volatility.

Our analysis also explains the dynamics of connectedness and existing asymmetries between
good and bad volatility spillovers. In that sense, we search for drivers within crypto markets
as well as for external factors since cryptocurrencies have become more intertwined with tra-
ditional financial markets and reflect macroeconomic, mostly monetary, indicators (Kukacka
& Kristoufek, 2023; Nguyen, Nguyen, Nguyen, & Pham, 2019). For crypto-related potential
drivers, we combine two data sources.

First, for BTC, ETH, and the other coins in the aggregate, we use the momentum measure
defined as the logarithmic deviation (ratio) of the current market capitalization from the previous
seven days. Next, from CoinMetrics.io, we utilize the blockchain structural data on the number
of active addresses for BTC and ETH (activity on the blockchains, ticker AdrActCnt), the sum
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Figure 1: Time series of realized semivariances for individual crypto assets. Volatility due to positive returns (in green) and volatility due to negative
returns (in red) are stacked to allow for an intraday comparison. The specific y-axes are set according to the 97.5th quantile of the respective total RV to avoid
occasional spikes that overshadow the dynamics on low-volatility days.



of the fees on the BTC and ETH blockchains (measure of the blockchain load and possible
congestion, ticker FeeMeanUSD), inflows and outflows to the centralized exchanges for all coins
where available,2 the velocity of BTC and ETH (what proportion of coins “changed hands”
on the given blockchain, ticker NVTAdj), and BTC hashrate (as the measure of the network
security, ticker HashRate). Finally, from the Binance data repository, we collect exchange (off-
chain) trading volumes for BTC and ETH separately and aggregate for the remaining coins, as
well as the number of trades in the same structure.

Second, the traditional financial market and macroeconomic indicators are collected from
the St. Louis Federal Reserve database. Specifically, we include the S&P 500 index and the VIX
index as proxies for the value and uncertainty of the traditional financial markets, respectively.
The macroeconomic indicators are represented by the break-even inflation (10-year break-even
inflation rate, ticker T10YIE, representing the expected inflation derived from 10-year treasury
constant maturity securities and 10-year treasury inflation-indexed constant maturity securities)
and the short-term interest rate (market yield on U.S. treasury securities at 1-year constant
maturity, ticker DGS1). All the time series are available on a daily basis. Weekends and other
nontrading days take the value of the last available observation.

4 Qualitative analysis and timing of events

We begin reporting the results of our analysis with a qualitative description related to the overall
measure of aggregate volatility spillovers among the analyzed crypto assets. As in Diebold and
Yılmaz (2012), in this section, we do not assume any underlying causal structure of the con-
nectedness origin, which we leave for Section 5. Instead, we consider the underlying structure
as given and describe its main properties and general patterns while also focusing on linking the
dynamics of the total connectedness to the key historical events and major economic conditions
throughout the analyzed period. We also compare and contrast the overall connectedness dy-
namics of the crypto assets to the patterns revealed in earlier studies that focused on standard
financial markets.

Second, we study the decomposition of the total connectedness due to good and bad volatil-
ities. The interaction between these two components is reflected by SAM (defined as the differ-
ence between positive and negative connectedness), which quantitatively captures the asymmet-
ric reaction due to positive and negative shocks. The adopted estimation methodology directly
provides dynamic 95% confidence intervals of the two components ready-made for inference. This
contrasts with previous attempts to study the asymmetric relationship based on bootstrapping
results of a simulation-based model, which provides a universal static confidence band for SAM
(Baruńık et al., 2016). The dynamic approach based on QBLL confidence intervals allows for
a locally focused, more rigorous, transparent, and straightforward statistical evaluation of the
difference between the behavior of the two sources of connectedness that reflect positive and
negative shocks on the market.

4.1 Total dynamic network connectedness

In Figure 2, we present the total dynamic network connectedness over the whole period under
research. The total connectedness oscillates between 20 and 80, with clearly identified periods of
high connectedness corresponding to crucial events affecting the cryptocurrency market in the
recent past. Generally, a high proportion of the connectedness is driven by contemporaneous
correlations, which we observe particularly in periods characterized by very narrow confidence
intervals.

2We study connectedness on the largest centralized exchange so the capital inflows and outflows repre-
sent the willingness to trade or store the gains, respectively (tickers FlowInExUSD and FlowOutExUSD).
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Figure 2: Total dynamic network connectedness defined by Equation 10. The shaded area represents 95% confidence intervals, and the solid line
represents the median of the simulated distribution.



The volatility connectedness oscillates in a remarkably wide interval between 20 and 80. As
such, it contrasts with the results for the connectedness of stocks or volatility spillovers between
various standard financial markets that often do not drop below 50 (Baruńık & Kočenda, 2019;
Baruńık et al., 2016; Baruńık & Křehĺık, 2018; Diebold & Yılmaz, 2014). Nevertheless, they
seldom go below 40 (Baruńık, Bevilacqua, & Tunaru, 2022; Baruńık & Ellington, 2020; Diebold &
Yılmaz, 2009). Conversely, the upper bound of the connectedness on standard financial markets
reported in the above studies normally surpasses 85 and even reaches 90. The comparison
suggests that both extremes are rather edged off in the cryptocurrency segment when compared
to those of the standard financial markets.

The other pattern that characterizes the total connectedness dynamics is its considerable
smoothness when compared to that of the resulting plots of earlier applications of the Diebold
and Yılmaz (2014) and Baruńık and Křehĺık (2018) methodologies. This phenomenon is fully in
accord with outcomes reported by Baruńık and Ellington (2020). It results from the dynamic
‘continuous’ approach to estimating parameters of the underlying locally stationary TVP-VAR
at each point in time. The reason is that the QBLL estimation procedure is essentially based
on a Gaussian kernel weighting function that puts greater weights on observations surrounding
each estimated period relative to distant observations to estimate the connectedness measure for
the given day. Conversely, earlier studies typically have used the static estimation approach of
the past dynamics from an approximating rolling window; associated drawbacks are discussed
in the previous section.

4.2 Timing and impact of crucial events

We now focus in detail on cyclical increases in the total connectedness dynamics. The connect-
edness is high during several prolonged periods, and for clarity of interpretation, we marked in
Figure 2 the key events impacting the volatility connectedness of the crypto market (Corbet et
al., 2020; Rognone, Hyde, & Zhang, 2020; Sapkota, 2022).

The first clearly observable period of markedly high connectedness appeared around Septem-
ber 2019. It is linked to the Bitcoin bull run when its price more than tripled in the first half
of the year, reaching almost 14 thousand USD. The NYSE owner, Intercontinental Exchange,
Inc. (ICE), launched Bitcoin deliverable futures contracts on September 22. In addition, China,
a crucial global player, was generally supportive of the development of blockchain technology
around this period. Interestingly, these steps were met with a weak immediate reaction on the
spot markets. However, the apparently unfulfilled expectations of the cryptocurrency investors
led to Bitcoin prices dropping by almost 18% in the following days.

The next high connectedness period is clearly framed by the global outbreak of the COVID-19
pandemic at the turn of February and March 2020, which was followed by government-enforced
lockdowns leading to a coordinated crash of global financial markets. Bitcoin dropped by more
than 50% in one month and even fell below 5 thousand USD in its deepest downturn. Inter-
estingly, the connectedness rather quickly decreased during April as the crypto segment quickly
regained its market capitalization while establishing an attractive speculative environment for
the later bull run in the second half of 2020, when Bitcoin rose to 28 thousand USD in December
2020. These observations align with Divakaruni and Zimmerman (2021), who find a robust link
between the COVID-induced Economic Impact Payment (EIP) relief program and Bitcoin in-
vestment in the USA. Although they estimate that only 0.02% of the EIP program was spent on
Bitcoin, they report a significant increase of almost 4% in the traded volume between April and
June in the modal EIP amount of 1.2 thousand USD. Several other events logically connected
to cryptocurrency segment dynamics are further associated with hump-shaped periods of high
total connectedness in 2020. They are, specifically, Bitcoin’s third halving that reduced the
block reward to 6.25 BTC in May, Switzerland canton Zug allowing paying taxes in Bitcoin in
September, and the November announcement of the stablecoin payment system formerly known
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as Libra by Facebook (now Meta Platforms, Inc.).
Early 2021 is marked by Bitcoin’s (then) all-time high price of over 40 thousand USD and

a prolonged period of high connectedness around the value of 60. The high connectedness is
framed by surging prices in the whole crypto market and several important events forming the
overall bull run dynamic of the first quarter of 2021. The most prominent ones were Elon
Musk’s Tweets supporting Bitcoin and Dogecoin and the filing for Bitcoin ETF by the Chicago
Board Options Exchange (CBOE) in March. Another high connectedness period between April
and June 2021 possibly originates in the commitment of Tesla’s owner, Elon Musk, to accept
payments in Bitcoin while holding a considerable number of Bitcoins in the company’s balance
sheet. In addition, the first cryptocurrency exchange, Coinbase Global, Inc., went public on
NASDAQ during the period as well. The irony of fate is that many consider Elon Musk’s tweet
that Tesla no longer accepts Bitcoin as the trigger for the May crash, while the connectedness
remains very high over almost the whole period of the price drop from above 63 thousand USD
to below 30 thousand USD reached in July. The sell-off of the whole segment ended with the
rapid outbreak of the new Delta variant of COVID-19, spreading a new wave of worries over
the worldwide markets and leading to the new crypto bull run during the second half of 2021.
Similar to the second half of 2020, the hump-shaped periods of large volatility spillovers among
crypto markets in the second half of 2021 are associated with well-known events. Namely, with
the adoption of Bitcoin as a legal tender in El Salvador in September 2021, Ethereum reached
a price of 4.8 thousand USD, which was driven by the increasing popularity of DeFi and NFTs,
and finally, Bitcoin reached its current all-time-high price of over 69 thousand USD, which was
mainly due to institutional investors’ demand in November 2021.

Global concerns about intensifying inflation pressures and rising interest rates frame the
overall decline of cryptocurrency markets, together with global financial markets, and its steep
decline supported by several crashes during the entire first half of 2022. In June, Bitcoin went
down below the 20 thousand USD barrier and has fluctuated between 16 and 29 thousand USD
since then. The four periods of high connectedness observed during 2022 are linked to crucial
events related to the crypto assets market. There were strong fears about regulatory crackdowns
in China and the U.S. in January, forcing the Bitcoin price to tumble below 40 thousand USD
for the first time since August 2021. Furthermore, the Fed increased its key interest rate by 50
basis points in May, which was the sharpest increase since 2000; this step was followed by the
TerraUSD collapse below its 1 USD peg in May. Finally, the Chapter 11 bankruptcy procedure
was launched for the cryptocurrency exchange FTX in November 2022. Interestingly, although
the wild period for the crypto segment continued until the end of our research time span, the
total connectedness remained at a very low level.

4.3 Asymmetries due to good and bad volatility

We now analyze the dynamic asymmetries due to good and bad volatility as introduced by
Baruńık et al. (2016). Figure 3 reveals that spillovers due to negative and positive volatility are
very often similar in terms of their magnitudes. This observation is in stark contrast to existing
connectedness studies covering standard financial markets, typically documenting periods clearly
dominated interchangeably by either negative or positive spillovers. We show in the top panel
of Figure 3 that periods of significant difference between the two sources of connectedness are
always dominated by negative volatility. In contrast, in periods of large overlap of the two
measures and their confidence intervals, the spillovers due to positive volatility occasionally
become larger. Nevertheless, this difference is never statistically significant at the 5% level,
and even more importantly, this difference never materializes during a period of considerable
economic importance.

The above patterns are then transposed into SAM, whose dynamics are plotted in the
bottom panel of Figure 3. SAM is negative most of the time, with several clearly observable
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Figure 3: Estimates of total negative (in red) and positive (in green) connectedness in the upper panel and SAM in the bottom panel.
SAM is defined by Equation 11 and measures the asymmetry between the two sources of connectedness. Simulated 95% confidence bands allow for directly
identifying periods of significant differences between the two sources of connectedness represented by shaded areas of disjunct confidence intervals.



drops reaching values below minus 40 and prolonged periods of large and statistically significant
dominance of the negative connectedness. The observed pattern is occasionally broken only by
short periods of marginal dominance of the positive connectedness.

In sum, we provide evidence of strong unilateral asymmetry effects embedded in the risk
spillovers in the crypto asset market. The positive and negative connectedness thus statistically
significantly differs in certain periods, and this asymmetry prevails for consecutive days or even
weeks, implying that the market operates in different regimes. Based on the discussion linking
high spillovers with information flow on the markets (Baruńık et al., 2016), our results suggest
that information about crypto asset market downturns usually spills over substantially faster
than news about comparable market upturns.

We further discuss the impact of the key events related to the crypto assets market and
potentially associated with asymmetries in connectedness. The first observation is that only a
subset of those events affecting the total connectedness and discussed in detail in Section 4.2 is
also linked with a statistically distinct positive and negative connectedness quantified by SAM
(see Figure 3).

More detailed observations indicate six prolonged periods with 95% statistical confidence
that are prominent concerning the dynamics in connectedness due to good and bad volatility
asymmetries. The first period occurred during a period of low connectedness in August 2019
after U.S. President Donald Trump’s trade war pressures on China reboosted cryptocurrency
prices again after the bull run in the first half of 2019. The three cases coincide with the events
important for total connectedness and relate to the period around September 2019 (Bitcoin
futures on NYSE), May to June 2020 (Bitcoin’s third halving), and August to September 2021
(El Salvador adopting Bitcoin). The other two cases are solely linked to asymmetries while
not with the total connectedness: (i) in August 2020, the increasing popularity of the DeFi
segment has led to Ethereum surpassing Bitcoin in terms of the value settlement per day (pattern
beginning already in July), and (ii) in November 2021 JPMorgan Chase & Co. supported Bitcoin
as an inflation hedge that might replace gold, a move leading to all-time-high of the Bitcoin as
well as Ethereum. Finally, negative dips of SAM might not be fundamentally important per
se. However, the negative dips often approximate the boundaries of the periods when significant
differences in connectedness occur.

When looking at six specific time periods, there is no clear relationship between the asym-
metries in connectedness and the price trends of the crypto market. Some periods experienced
booms or recoveries, while others were framed by market crashes. However, overall, important
structural changes in the cryptocurrency market (Bitcoin futures, Bitcoin halving, the popular-
ity of DeFi, Bitcoin as legal tender, Bitcoin as an inflation hedge by JPMorgan) were often linked
to asymmetries. This finding goes against the intuition that positive volatility is connected to
price increases and that negative volatility is connected to market crashes. For instance, even
during the crypto rally in April 2020, negative volatility had a stronger impact on the market,
indicating that the market reacted more strongly to negative news. Regardless of positive or
negative market sentiment, bad volatility always has a stronger impact on the market.

A further existing pattern can be recognized for the periods of high total connectedness
unrelated to statistically distinguishable asymmetries due to good and bad volatility. These
are primarily the period around the COVID-19 crash in 2020, the period around the crash of
2021 (Tesla refusing Bitcoin), and the period around the crashes in 2022 (inflation pressures in
January and regulatory crackdowns in China and the U.S., Fed hike, and TerraUSD collapse in
May, FTX bankruptcy in November).

Hence, it seems that structural developments shaping the crypto market do induce asym-
metric reactions due to positive and negative shocks to volatility. On the other hand, a high
contemporaneous correlation stemming from a panic reaction and herding, which characterizes
the overall market during crashes, generally leads to very narrow but overlapping confidence in-
tervals, which eliminates the significant differences between the effects of good and bad volatility.
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Ultimately, our evidence shows that constructive structural changes are reflected in asymmetries,
while destructive panic and herding are not.

5 Explaining the connectedness and asymmetry

Linking the connectedness and existing asymmetries to specific, often external, events provides
one angle to explain their dynamics. We now look into their possible internal drivers, i.e., if
and how much of the dynamics can be explained and attributed to specific characteristics and
changes in the underlying processes of the examined blockchains and external macroeconomic
and monetary drivers. Our subsequent analysis rests on estimating the baseline model:

SH = β0 + β1MomentumBTC + β2MomentumETH + β3MomentumAlts+

β4 log(Adr)BTC + β5 log(Adr)ETH + β6 log(Fees)BTC+ETH+

β7 log(Inflow)BTC+ETH + β8 log(Outflow)BTC+ETH+

β9 log(V elocity)BTC + β10 log(V elocity)ETH + β11 log(HashRate)+

β12 log(V olume)BTC + β13 log(V olume)ETH + β14 log(V olume)Alts+

β15 log(Trades)BTC + β16 log(Trades)ETH + β17 log(Trades)Alts+

β18 log(SP500) + β19 log(V IX) + β20BEInflation+ β21IR+ ε (12)

We look at a set of potential drivers of connectedness among the whole system of 8 crypto
assets with the aim of covering various perspectives—momentum, blockchain activity, exchange
activity, and external macroeconomic factors. As there are 8 crypto assets in our dataset, we
need to select and aggregate most of the measures to avoid overfitting and colinearity, as many
of the variables would be highly correlated and thus lead to unreliable results. We tackle this
issue by mostly focusing on Bitcoin (BTC) and Ethereum (ETH) as the major players within the
system, and the rest of the coins are treated jointly as altcoins. In our model, the explanatory
variables are represented by time vectors to make the representation easier to read. In addition
to examining the total connectedness SH , we also use the same model specification to explore
drivers of the asymmetries existing in connectedness; in such cases, the dependent variable SH
in Equation 12 is replaced by the SAM that quantifies asymmetries.

Starting with the full set of variables in Equation 12, we first eliminate the factors with a high
risk of colinearity and overfitting. Specifically, we estimate the model and step-by-step eliminate
the variables with the highest variance inflation factor (VIF) until no variable has a metric above
10 (Dodge, 2008). After that, we step-by-step eliminate the statistically insignificant variables
(at the 90% confidence level) until all variables are significant. As the residuals are serially
correlated and heteroskedastic, we report the heteroskedasticity and autocorrelation consistent
(HAC) standard errors. The results for the total connectedness dynamics and its driving factors
are summarized in Table 1.

The results show that Bitcoin is quite detached from the rest of the cryptocurrency market,
as Bitcoin-related variables negatively affect total connectedness. The higher the momentum of
BTC is, the lower the total connectedness of the system. The same holds for active Bitcoin ad-
dresses and its volume on Binance. Therefore, when Bitcoin gains momentum and there is more
activity in the Bitcoin market, the rest of the crypto market does not follow immediately. The
rest of the crypto market and its increased activity apparently lead to a tighter interconnection
of the whole network. Of the macroeconomic factors, only break-even inflation remains in the
model. The external financial markets’ factors represented by the S&P500 index and the VIX
index thus do not drive the total connectedness. In addition, neither do the short-term interest
rates. As the break-even inflation reflects the inflation expectations in 10 years, its estimated
negative effect on the total connectedness suggests further detachment of Bitcoin as a reaction
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estimate SE t-stat p-value

constant 12.38 113.71 0.19 0.9100
MomentumBTC -59.19 12.85 -4.60 � 0.0001
log(Adr)BTC -32.13 9.11 -3.53 0.0004
log(Inflow) 13.64 2.963 4.60 � 0.0001
log(V elocity)ETH 7.30 3.57 2.05 0.0409
log(V olume)BTC -7.09 2.08 -3.40 0.0007
log(V olume)ETH 10.90 3.41 3.20 0.0014
log(V olume)Alts 6.70 1.93 3.46 0.0006
BEInflation -19.60 4.86 -4.04 � 0.0001

R2 0.377
R̄2 0.373

White’s test 36.75∗∗∗

LM test 1077.82∗∗∗

ADF test −6.17∗∗∗

KPSS test 0.085

Table 1: Estimated model for total connectedness. The model starts with the baseline model in
Equation 12, then the variables with the overfitting risk (VIF over 10) are step-by-step eliminated, and
the final model is obtained after eliminating the statistically insignificant variables (at the 90% confidence
level). For the tests, ∗∗∗ marks statistical significance at the 99% confidence level.

to the expectations of higher long-term inflation, which sets Bitcoin apart from the rest of the
top coins.

The key message is that the connectedness of the whole system is clearly not driven solely
by external shocks but by a mix of factors—momentum, blockchain-related, exchange-related,
and macroeconomic factors. The R2 of 0.377 validates the results with respect to the quality of
the fit. There are no autoregressive components in the model, as we are interested in explaining
the driving factors rather than simply modeling the serial correlation of the series. As the model
residuals are stationary (based on the results of the ADF and KPSS tests), the autoregressive
components are not needed, as there is no strong serial correlation that would invalidate the
results.

Section 4.3 shows that there is a strong asymmetry present between the connectedness of
good and bad volatility. This is evidenced by mostly negative SAM. Table 2 summarizes the
results from the estimated model, covering the factors driving such asymmetry. The asymmetry
toward higher connectedness in bad volatility is represented by negative values of SAM, and
we must interpret the results accordingly. The variable selection process was the same as for
the total connectedness model.

Beginning now with the structural factors, we find that the blockchain activity, namely,
the number of active addresses on BTC, the total fees on BTC and ETH, and the centralized
exchanges inflows, all lead to lower SAM and thus higher asymmetry toward connectedness in
the bad volatility. Such increased blockchain activity represents medium- to long-term effects,
as we use the level or log-level variables (not their first differences). The effects show that the
markets tend to fall together more and in a more intertwined manner. In other cryptocurrency-
related metrics, BTC and ETH effects mostly go against each other, further supporting the
detachment of BTC from the other crypto assets. This is mostly interesting for the momentum
metrics, as the short-term boosts in BTC have a more pronounced effect on the asymmetry
than that of such boosts in ETH. Therefore, when BTC rallies more than the rest of the market,
the asymmetry decreases, whereas when ETH (and likely altcoins in general) rallies more than
BTC, the asymmetry increases. The implication is that the markets fall together more strongly
after the altcoins catch up with Bitcoin, and we document this through a complex model of the
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estimate SE t-stat p-value

constant 106.90 62.11 1.72 0.0854
MomentumBTC 29.47 13.99 2.11 0.0354
MomentumETH -18.74 10.64 -1.76 0.0783
log(Adr)BTC -7.83 4.27 -1.84 0.0668
log(Fees)BTC+ETH -4.74 1.15 -4.13 � 0.0001
log(Inflow) -3.60 1.69 -2.13 0.0335
log(V elocity)BTC 3.16 1.204 2.63 0.0088
log(V elocity)ETH -10.03 1.84 -5.45 � 0.0001
log(V olume)Alts 1.31 0.77 1.70 0.0902
log(V IX) 8.62 2.27 3.80 0.0002
BEInflation 21.34 2.89 7.39 � 0.0001

R2 0.314
R̄2 0.308

White’s test 418.57∗∗∗

LM test 1420.36∗∗∗

ADF test −5.77∗∗∗

KPSS test 0.137

Table 2: Estimated model for asymmetry in connectedness for good and bad volatility.
The model starts with the baseline model in Equation 12, then the variables with the overfitting risk (VIF
over 10) are step-by-step eliminated, and the final model is obtained after eliminating the statistically
insignificant variables (at the 90% confidence level). For the tests, ∗∗∗ marks statistical significance at
the 99% confidence level.

crypto assets’ interactions. The model delivers R2 above 0.3 with no autoregressive components
again while keeping the residuals stationary.

Furthermore, we present Figure 4 to better illustrate how well the models fit the connect-
edness and asymmetry dynamics. We stress that no autoregressive terms are being used in
the model specification. Nevertheless, the model-fitted values visibly follow the basic trends of
the connectedness and asymmetry dynamics. Importantly, the humps and bumps of the total
connectedness as well as those of the asymmetry are well captured by the fitted dynamics in
the majority of cases. This evidence implies that most of such changes in the connectedness
structure are either caused by the identified driving factors or such changes transfer into the
driving factors and thus the overall blockchain structure and dynamics. Thus, we can conclude
that the volatility connectedness and existing asymmetries due to good and bad volatility are
clearly driven by structural factors.

6 Conclusion

Cryptocurrencies form a special set of assets with unique statistical and dynamic properties when
compared to those of the traditional financial assets such as stocks or Forex rates. Considering
their unprecedented levels of risk and uncertainty, studying the joint dynamics of volatilities in
a portfolio of crypto assets, represented by volatility spillovers, becomes of interest to portfo-
lio managers and traders. The latter group is specifically interested in volatility spillovers in
different market phases that we analyze through the connectedness of good and bad volatility,
representing volatility during market upturns and downturns, respectively.

The crypto market, represented by the set of 8 large crypto assets, shows the connectedness
evolution unseen for the traditional financial markets presented in previous studies. The mea-
sure oscillates in a much wider range, repeatedly phasing between the times of high and low
connectedness. Most of these periods can be linked to historical events, both crypto market-
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Figure 4: Models of total connectedness and SAM.



related and standard macroeconomic or monetary policy events. The market also shows a high
degree of asymmetry in the connectedness between good and bad volatility, representing large
swings upward and downward, respectively. Evidence points toward domination of the higher
connectedness due to bad volatility. This suggests that information about crypto asset market
downturns usually spills over substantially faster than news about comparable market upturns.

Even though the periods of high and low connectedness and the pronounced asymmetry
can be attributed to specific historical events, their overall dynamics can be well explained by
the set of factors covering blockchain activity, market momentum, macroeconomic situation,
and monetary policy. We show that Bitcoin is mostly detached from the overall dynamics,
as its momentum and blockchain activity push the whole network connectedness down, while
Ethereum and the rest of the altcoins do otherwise. Expected long-term inflation (represented
by break-even inflation) also makes the network less connected, highlighting the possible position
of Bitcoin as an inflation hedge. The asymmetry is more strongly driven by factors outside of the
crypto markets as the VIX index is added to the break-even inflation. The traditional financial
market stress materializing in a higher VIX leads to lower asymmetry. From the crypto market
factors, the on-chain activity, as well as the activity on the centralized exchanges, lead to higher
asymmetry and faster spillovers during market downturns.

In addition to the specific results and implications arising from our exploration of connected-
ness and its asymmetry in the crypto market, we propose a somewhat unconventional approach
to understanding and explaining these phenomena. While the standard approach is to identify
potential factors driving the returns and/or risk premiums, we consider the connectedness and
its asymmetry and strive to uncover and elucidate the drivers behind this specific factor and
dive deeper into its underlying dynamics. This endeavor would be challenging with traditional
financial assets that lack the rich data structures of blockchain-based assets. We are aware that
the current riskiness, regulatory uncertainty, and other specifics prevent our results from con-
veying generalizations concerning the connectedness, asymmetry, and their drivers to traditional
financial assets. However, our findings may offer a valuable approximation for understanding the
deeper dynamics of traditional assets once cryptocurrencies become more standardized financial
products. The aggressive policies of the U.S. Securities and Exchange Commission (SEC) in
2022 and 2023, and the active regulatory approach in the EU through their markets in crypto-
assets (MiCA) regulation, could indeed diverge. However, if the regulatory stance continues
to outweigh dismissive attitudes, the unprecedented data depth of blockchain-based assets may
play a vital role in many aspects of modern financial research.

The connectedness measures presented in this paper can generally be used to model a com-
mon factor stemming from network connections between asset returns or volatilities. This is
particularly interesting to the emerging asset pricing literature in crypto, for example, to calcu-
late risk premia, yet we leave this application as a potential future research avenue.
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7 Appendix

ADA BNB BTC DOGE ETH LTC TRX XRP

mean 0.0041 0.0029 0.0017 0.0072 0.0026 0.0035 0.0030 0.0042
std 0.0110 0.0078 0.0044 0.0320 0.0066 0.0076 0.0074 0.0109
max 0.3175 0.1678 0.1106 0.8793 0.1640 0.1743 0.1452 0.2055
min 0.0001 0.0001 0.0000 0.0002 0.0000 0.0001 0.0001 0.0001
skewness 19.52 13.04 16.29 18.07 16.04 13.89 12.17 9.79
kurtosis 519.28 233.56 353.96 438.50 344.11 269.35 203.17 140.59
median 0.002 0.0013 0.0009 0.002 0.0014 0.0018 0.0013 0.0015
ADF test −10.22∗∗∗ −11.25∗∗∗ −12.72∗∗∗ −10.54∗∗∗ −10.04∗∗∗ −10.04∗∗∗ −10.85∗∗∗ −6.63∗∗∗

Table 3: Descriptive statistics of the RV time series for individual crypto assets. For the
ADF tests, ∗∗∗ marks the null hypothesis of the presence of unit root rejected at the 99% confidence level.
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