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a b s t r a c t 

This paper addresses the moment selection issue of the simulated method of moments, 

an estimation technique commonly applied to intractable agent-based models. We de- 

velop a simple machine learning extension reducing arbitrariness and automating the mo- 

ment choice. Two algorithms are proposed: backward stepwise moment elimination and 

forward stepwise moment selection. The methodology is tested using simulations on a 

Markov-switching multifractal framework and two popular financial agent-based models 

with increasing complexity. We find that both algorithms can identify multiple moment 

sets that outperform all benchmark sets. Moreover, we achieve considerable in-sample es- 

timation precision gains of up to 66 percent for agent-based models. Finally, an out-of- 

sample empirical exercise with S&P 500 data strongly supports the practical applicability 

of our methodology as the estimated models pass the validity test of overidentifying re- 

strictions. 

© 2023 Elsevier B.V. All rights reserved. 

 

 

 

1. Introduction 

Since the 1960s, researchers have become increasingly aware of the stylized facts in empirical financial data. The absence 

of autocorrelation in returns, clustered volatility, heavy tails, and the emergence of speculative bubbles are among the es- 

sential patterns identified in data across all types of financial assets ( Cont, 2001; Lux, 2009 ). In the search for an explanation

of these empirical regularities, the field of finance turned to commonly used asset pricing models. However, the traditional 

approaches have not succeeded in this respect ( Hong and Stein, 1999 ). 

Beginning with Day and Huang (1990) , the field of financial agent-based modeling emerged to face this challenge. Agent- 

based models in which boundedly rational agents interact and respond to their environment can replicate the stylized em- 

pirical facts and explain them endogenously ( Cont, 2007; Chen et al., 2012 ). These models have attracted considerable atten-

tion from many economists in reaction to the global financial crisis between late 20 07 and 20 09 as mainstream approaches

that assume perfect rationality and a single representative agent could not predict the looming collapse of the financial 

system. 
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The main shortcoming of the field is the empirical estimation ( Lux and Zwinkels, 2018; Fagiolo et al., 2019 ). Due to the

complexity of models and latency of some variables, standard analytical methods, such as the generalized method of mo- 

ments (GMM) or maximum likelihood, often cease to be viable options. As closed-form solutions for more complex models 

often do not exist, computationally demanding simulation-based approaches are required. The most prominent alternative 

is the simulated method of moments (SMM) originally proposed by McFadden (1989) and Pakes and Pollard (1989) . Its main

advantages are a straightforward and transparent application without restrictive theoretical assumptions, customizability to 

various models, and well-defined mathematical properties. 

In essence, the SMM repeatedly simulates the estimated model and calculates a set of carefully chosen characteristics 

of its output, such as the sample mean and variance or the first-order autocorrelation of returns. These characteristics can 

be associated with moments of the data-generating processes. The necessity of specifying the moments and the potential 

arbitrariness of this choice are among the most concerning problems of the method because the moment selection can 

markedly affect its estimation performance ( Franke, 2009; Platt, 2020 ). The moment set is typically ‘hand-crafted’ intuitively 

based on expert knowledge of the model, following a deep study of its dynamics. However, no guarantee of the optimality

of a moment set constructed in this manner can be provided. Some crucial moments may be overlooked due to limited

knowledge of the model dynamics or arbitrary decisions of a researcher. Conversely, an overabundance of moments might 

lead to difficulties in the estimation process. 

To reduce the arbitrariness of the moment choice, we propose a novel automated approach to the moment set selection. 

It is a straightforward machine learning extension applied on top of the SMM based on the stepwise selection framework. 

Although stepwise regression is outdated as a model specification tool, this simple technique addresses the problem very 

well. Our method performs moment selection similarly, in essence, to Lasso, a regularization approach used in statistical 

modeling and regression analysis, which performs a kind of continuous subset selection ( Tibshirani, 1996; Hastie et al., 

2009 ). We thus introduce elementary machine learning feature selection principles to agent-based econometrics, our paper’s 

main methodological contribution. Subsequently, the identified moment sets can be used for empirical exercises and model 

validation. 

After introducing our method, we study its performance using three models with increasing complexity and numbers 

of estimated parameters. These include the Markov-switching multifractal (MSM) model by Calvet and Fisher (2004) , the 

popular financial agent-based model of herding by Alfarano et al. (2008) , and the Franke and Westerhoff (2012) model, 

which is a more complex financial agent-based model for studying interactions of fundamental and speculative traders in an 

asset market. The two agent-based models are standardly estimated using the SMM in practice. Therefore, our methodology 

also has a direct practical implication, especially for the Franke and Westerhoff (2012) model, for which no closed-form 

solution exists, and standard estimation approaches are thus infeasible. 

The first simplified application of the SMM to an agent-based model of financial markets can be traced to Gilli and

Winker (2003) applying it to the Kirman (1993) model. Complete implementation of the method is then presented in 

Winker et al. (2007) and Franke (2009) , who applies an alternative version of the method to the Manzan and Wester-

hoff (2007) model. Many other estimation attempts have followed these initial contributions. For instance, the SMM finds 

its use in a series of papers starting with the initial model presentation in Franke and Westerhoff (2011) , its expansion and

generalization in Franke and Westerhoff (2012) , and detailed exploration in Franke and Westerhoff (2016) . Schmitt and West- 

erhoff (2017a,b) further advance the guidance on an appropriate moment matching. Other examples of papers studying the 

application of the SMM to financial agent-based models are Fabretti (2013) , who applies this method to the Farmer and

Joshi (2002) model, Grazzini and Richiardi (2015) ; Chen and Lux (2018) ; Tubbenhauer et al. (2021) , and Schwartz and

Kirstein (2022) , who study ergodicity of moment conditions; we refer to recent excellent surveys on financial agent-based 

modeling and econometrics by Dieci and He (2018) ; Lux and Zwinkels (2018) for an overview. 

Recently, following a seminal paper by Salle and Yıldızo ̆glu (2014) on the kriging interpolation method, 

Lamperti et al. (2018) ; Bargigli et al. (2020) ; Zegadło (2021) ; Zhang et al. (2023) ; Chen and Desiderio (2022) are among

the first to introduce machine learning methods to agent-based modeling and validation. However, they primarily aim at 

simplifying complex models, a process called meta-modeling or surrogate modeling. These approaches are based on intelli- 

gent/efficient sampling, e.g., for parameter space exploration and calibration purposes, not for methodological advancements 

of existing estimation methods. Platt (2022) then extends the approach of Grazzini et al. (2017) by applying deep neural

networks to approximate the likelihood within a Bayesian estimation of the Brock and Hommes (1998) and Franke and 

Westerhoff (2012) models. 

The paper proceeds as follows. The next Section 2 introduces the SMM and implementation details. Section 3 then 

presents the proposed machine learning extension, the selection criterion, and the full moment set. In Section 4 , the three

testbed models, together with their parameterizations, are described, and Section 5 summarizes our numerical setup and 

necessary pre-estimation analyses. Next, Section 6 presents a Monte Carlo simulation analysis and quantifies performance 

improvement gains. The main results are directly applied in the empirical Section 7 . In Section 8 , we summarize the most

robust findings and properties observed across all testbed models. Finally, Section 9 concludes the paper. Additional results 

are relegated to the Appendix. 
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2. Simulated method of moments 

The simulated method of moments (SMM, also referred to as the method of simulated moments) was initially introduced 

by McFadden (1989) and Pakes and Pollard (1989) as a modification of the GMM. Further, it was expanded by Lee and In-

gram (1991) and Duffie and Singleton (1993) by describing conditions for asymptotic normality and consistency and utilizing 

the method for estimating asset pricing models. The SMM generally enables the estimation of analytically intractable time 

series models, such as complex agent-based models often containing latent variables. Its objective is to match selected mo- 

ments of the simulated data as closely as possible to their empirical counterparts by optimizing model parameters. In princi- 

ple, the method yields parameter estimates by minimizing the weighted sum of distances between the calculated statistics. 

Confidence intervals for single parameters are then obtained by approximating the estimator’s distribution via Monte Carlo 

simulations according to Franke and Westerhoff (2011, 2016) . 

2.1. Formal definition 

Consider an empirical time series { y t } T emp 

t=1 
stored in the form of a column vector y emp . We can define a function m (y ) ,

which computes the sample counterpart of a moment m given a time-series vector y . Assume we choose a total of D

moments of interest and denote their sample counterpart functions as m d (y ) , d = 1 , . . . , D . Then, we can form an empirical

moment vector m 

emp = [ m 1 (y emp ) , . . . , m D (y emp ) ] 
T 

. 

Suppose we have a fully specified, stochastic model f (θ) , where θ is a vector of parameters of the model. Assume we can

use the model to generate a simulated time series y sim (θ) of length T sim 

≥ T emp . To moderate the effect of randomness when

calculating the moment vector of simulated data, we use multiple random draws of the stochastic part of the model, each

resulting in one simulated time series vector. We can organize these vectors into a matrix Y 

sim (θ) = 

[
y sim 

1 
(θ) , . . . , y sim 

N 
(θ) 

]
,

where N is the total number of simulated time series and y sim 

n (θ) is the n th simulated time series vector. Y 

sim (θ) is then a

T sim 

× N matrix. Subsequently, we can define a function for computing the simulated sample counterpart of a moment for 

each of the D moments of interest as follows: 1 

m 

sim 

d (Y 

sim (θ)) = 

1 

N 

N ∑ 

n =1 

m d (y sim 

n (θ)) . (1) 

Then, we can form a simulated moment vector m 

sim (θ) = 

[
m 

sim 

1 
(Y 

sim (θ)) , . . . , m 

sim 

D 
(Y 

sim (θ)) 
]T 

. 

The process of matching moments is based on minimizing the distance between m 

emp and m 

sim (θ) . We can specify the

objective function as follows: 

J(θ) = h (θ) T Wh (θ) , (2) 

where h (θ) = m 

emp − m 

sim (θ) is the difference between empirical and simulated moment vectors and W ∈ R 

D ×D is a posi-

tive definite weighting matrix. Then, the SMM estimator becomes: 

ˆ θ = arg min 

θ

J 
(
θ
)
, (3) 

where θ ∈ �, � is the parameter space of the search. Finally, the J-test of overidentifying restrictions ( Hansen and Singleton,

1982; Kocherlakota, 1990; Mao, 1990; Lee and Ingram, 1991 ) is typically utilized to statistically rigorously evaluate the joint 

compatibility of all D moments in situations when the SMM utilizes more moment conditions than there are K estimated 

parameters ( Franke, 2009; Jang and Sacht, 2016 ): 

J̄ = J( ̂  θ) 
T →∞ −→ χ2 

D −K . (4) 

Under H 0 : J̄ = 0 , assuming the model to be a valid approximation of the data-generating process concerning the given set

of moments, the test statistic is asymptotically χ2 
D −K 

distributed. Rejection of H 0 indicates an invalid model that fails to 

replicate the distributional characteristics of empirical data in at least one dimension. 

2.2. Weighting matrix 

Many approaches exist to calculate the weighting matrix W . In all cases, however, the aim is to assign greater impor-

tance to stable moments across realizations of the data-generating process. For a moment with high sampling variability, a 

higher difference between the empirical and simulated values of the moment should be considered less critical than if such 

a difference occurs for a moment with low variability. Additionally, the information about possible correlations between 
1 To compare the empirical moments to their simulated counterparts, we average the simulated moments out over all generated samples. Ideally, one 

could estimate each moment’s distribution instead to evaluate the probability that the observed empirical moment values were generated by the corre- 

sponding distributions of the simulated moments. However, the employed simplification of the problem is standardly taken in the literature summarized 

in Section 1 . 
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individual moments should also be considered. In consequence, one traditionally constructs the weighting matrix from the 

covariance matrix � of moments such that W = �−1 . 

Asymptotically, the Newey–West approach is an efficient and heteroskedasticity and autocorrelation consistent estimator 

of the long-run covariance matrix of the moments yielding the most efficient SMM estimator ( Franke, 2009; Chen and Lux,

2018 ). The SMM is also asymptotically consistent provided that general regularity conditions hold ( Lee and Ingram, 1991;

Duffie and Singleton, 1993 ). However, Altonji and Segal (1996) show that this optimality does not carry over to small samples

resulting in a biased SMM estimator. Even the identity matrix sometimes presents a better alternative to the Newey–West 

matrix, and the bias gets even worse for heavy-tailed-distributed data. Moreover, it does not decline with the increasing 

dimension of moments or the number of parameters. Instead, it can even worsen, resembling the ‘curse of dimensional- 

ity.’ In specific situations, the weighting matrix derived as an inverse of the covariance matrix might be even ill-behaved

( Boivin and Giannoni, 2006 ). This phenomenon originates from the theory of the GMM for large samples ( Hansen, 1982 ),

implying that the variance of the optimal weighting matrix estimator increases in small samples with the number of mo- 

ment conditions. One should thus try to conserve the number of moments used in the estimation to obtain desirable small

sample properties. For larger dimensions of the weighting matrix, its identification becomes problematic, and its estimation 

is inefficient. 

To avoid this problem, we follow Franke and Westerhoff (2012) and estimate the covariance matrix using a bootstrap 

approach that can better account for the finite-sample properties. Specifically, we bootstrap blocks of the empirical time 

series to construct new series of empirical returns from which the covariances of individual moments can be derived. Block 

bootstrap is preferred to individual observations because many moments traditionally used for the SMM estimation of fi- 

nancial models are long-range dependent. According to the authors, sample blocks of 250 observations are used for short- 

memory moments, such as mean, variance, and k th-order autocorrelations, k ∈ { 1 , 2 , 3 , 5 } , and blocks of 750 observations

for long-memory moments, namely lth-order autocorrelations, l ∈ { 10 , 15 , 20 , 25 , 50 , 100 } . Blocks of higher length are uti-

lized to reduce the joint-point problem of the block bootstrap. It corresponds to the situation where autocorrelations are, in 

part, calculated for points with an unrelated history caused by creating artificial links between randomly sampled blocks of 

observations. When generating new series, we randomly draw blocks from the empirical sample such that a new series of 

length T emp is constructed. 

As a slight improvement of the Franke and Westerhoff (2012) setup, we use overlapping blocks to reduce the small 

sample bias within the block bootstrap procedure. Under the Franke and Westerhoff (2012) bootstrap setup, the sample unit 

is a block (of either 250 or 750 observations), resulting in a small number of non-overlapping blocks prone to a similar

small samples bias phenomenon as explained above regarding the GMM theory. The role of the estimation bias then grows 

considerably with the number of moments which perhaps does not cause complications to the authors, as they use only 

nine moments to estimate seven parameters. In our case, however, where we employ up to 22 moments in our machine

learning procedure, the overlapping block bootstrap significantly increases the randomness that limits the impact of the 

small sample bias. For T emp = 6750 , we effectively sample from 6501 (6001) overlapping blocks of size 250 (750) instead

of 27 (9) non-overlapping blocks allowing us to approximate the target distribution of the data generating process well. 

Moreover, in practice, we are not forced to cut off the last observations of the actual empirical time series that exceed a

multiple of 250 (750). 

Let us assume we bootstrap a total of B samples. Using each sample, we generate a total of B moment vectors m 

b ,

b = 1 , . . . , B . Then, we compute an estimate of the covariance matrix as follows: 

̂ � = 

1 

B 

B ∑ 

b=1 

(m 

b − m )(m 

b − m ) ′ , (5) 

where m = 

1 
B 

∑ B 
b=1 m 

b . As outlined previously, we then compute the weighting matrix W by taking the inverse of ̂ �. Further

in the text, we refer to the described weighting matrix setup as the overlapping block bootstrap weighting matrix. 

3. Moment selection using simple machine learning 

We now provide a complete specification of our machine learning-based approach to the moment set selection. Tradi- 

tionally, researchers address the problem intuitively based on their expert knowledge of the model and the data-generating 

process it represents. This approach, however, raises questions regarding the optimality of moments arbitrarily chosen in 

this manner and the application of the SMM itself ( Platt, 2020 ). Jalali et al. (2015) note that the number of moments should

be at least as large as the number of estimated parameters, similar to the standard identification requirement in the GMM 

framework. Furthermore, the authors suggest that any other moments above this lower boundary should allow for better 

identification; thus, their presence should improve the estimation precision. This situation corresponds to the overidentifi- 

cation case in the GMM. According to Hansen (1982) , overidentification allows for the construction of more efficient GMM 

estimators and the application of additional specification tests, which similarly holds for the SMM. However, the findings of 

Chen and Lux (2018) suggest that this rule might not always hold completely for the simulated version of the method under

finite samples. The efficiency gains can be modest, and more extensive sets of moments in specific cases may result in even

slightly worse estimation precision than their subsets for specific parameters. The authors further argue that correlation be- 

tween the moments can lead to deviations of the J̄ statistic from its asymptotic distribution, which affects the power of the
369 
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test of overidentifying restrictions, especially for large sets of moments. The efficient method of moments might provide a 

partial solution to this issue; however, it more or less instead shifts the problem from the moment set selection to a choice

of a necessarily misspecified auxiliary structural model based on which the moment conditions are determined ( Carrasco 

and Florens, 2002; Franke, 2009 ). 

Stepwise regression is one of the primary algorithms used for model selection. Furthermore, it represents one of the 

earliest and most straightforward uses of machine learning techniques in econometrics. Two basic approaches lie at its core: 

backward stepwise elimination and forward stepwise selection. The former successively excludes variables from a model 

that initially contains all variables at its disposal. The latter relies on an iterative addition of variables to a regression model

composed of only the intercept. Here, we propose applying stepwise techniques to the moment set choice for the SMM 

estimation. 

3.1. Backward stepwise moment elimination 

The first algorithm is the backward stepwise moment elimination (BSME). In this case, the subject of iterative reduction 

is the moment set. We begin with a set containing all the available moments. In each step, we, one by one, remove every

moment that is currently available in the set. The reduction yielding the most precise estimate given a pseudo-empirical 

time series is performed. The logic behind this choice is that the moment removed adds the smallest amount of information

to the estimation method. 

The algorithm written in pseudo-code can be found in Algorithm 1 . A total of four structures must be present in the en-

Algorithm 1 Backward stepwise moment elimination. 

1: f (θ) ∼ estimated model 

2: θtrue ∼ pseudo-true parameters selected for the estimated model 

3: y ∼ pseudo-empirical time series generated by applying parameters θtrue to model f (θ) 

4: M F ∼ full set { m 1 , . . . , m D } of all moment functions 

5: 

6: procedure BSME 

7: M S ← M F 

8: while size (M S ) > 1 do 

9: for all moments m in M S do 

10: M T ← M S \ { m } 
11: conduct SMM for time series y using model f (θ) and moment functions in M T 

12: compute quality measure using results of SMM and parameters θtrue 

13: end for 

14: M S ← M T such that quality measure is optimized across all for loop cycles 

15: end while 

16: end procedure 

vironment where the algorithm is executed. First, a function f (θ) for generating a time series using the model and accepting

its parameters as an input must be at its disposal (line 1). Second, we have to choose pseudo-true parameter values θtrue 

to generate pseudo-empirical data (line 2). Parameterizations from the literature are preferred, ensuring that the model be- 

haves appropriately and generates desired stylized facts. Third, the pseudo-empirical dataset y = f (θtrue ) must be generated 

before engaging in the procedure (line 3). Last, a set of D moment functions M F = { m 1 , . . . , m D } utilised in the procedure

is required (line 4). Furthermore, we must be able to perform the SMM estimation process using any given set of moment

functions. 

At the beginning of the procedure, we initiate M S to contain all the moment functions (line 7). Subsequently, we shrink

the set by one moment function in each elimination round of the algorithm. In essence, we consider an elimination round

to be each round of the while cycle representing the foundation of the algorithm (line 8). The while cycle continues until

the size of the set M S is smaller than or equal to one. In other words, the algorithm continues for as long as there is at

least one moment to be left out of the set M S . Within each elimination round, the procedure iterates over all moments in

the set M S using a for cycle (line 9). In each iteration, a temporary set M T is created by removing the moment that the

for cycle currently iterates over from the set M S (line 10). Next, the parameters of the model f (θ) are estimated using the

SMM applied to the pseudo-empirical time series y while utilizing moment functions contained in M T (line 11). Based on

the estimation results and the true parameter values θtrue , a measure of the quality of estimation is then computed (line

12). Finally, the moment function set M T generating the best results in estimation quality is selected and used to replace

the set M S for the subsequent elimination round (line 14). 

3.2. Forward stepwise moment selection 

The second algorithm proposed is the forward stepwise moment selection (FSMS). Overall, the algorithm works in the 

same manner as BSME; however, in this case, the initial moment set is empty. In each iteration, one moment is added to
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the moment set such that the fit achieved for the pseudo-empirical time series is the best possible. Thus, the procedure

should reveal moments with the highest value for estimation. 

Pseudo-code of FSMS is presented in Algorithm 2 . Only subtle differences exist between the two algorithms. First, the set

Algorithm 2 Forward stepwise moment selection. 

1: f (θ) ∼ estimated model 

2: θtrue ∼ pseudo-true parameters selected for the estimated model 

3: y ∼ pseudo-empirical time series generated by applying parameters θtrue to model f (θ) 

4: M F ∼ full set { m 1 , . . . , m D } of all moment functions 

5: 

6: procedure FSMS 

7: M S ← empty set ∅ of moment functions 

8: while M S 
 = M F do 

9: for all moments m in M F \ M S do 

10: M T ← M S ∪ { m } 
11: conduct SMM for time series y using model f (θ) and moment functions in M T 

12: compute quality measure using results of SMM and parameters θtrue 

13: end for 

14: M S ← M T such that quality measure is optimized across all for loop cycles 

15: end while 

16: end procedure 

M S is initiated as an empty set (line 7). Second, the while cycle representing selection rounds of the algorithm cycles for as 

long as the set M S does not contain every single moment from the full moment set M F (line 8). In other words, the while
cycle does not stop until the set M S contains D elements. Additionally, the for cycle of each selection round iterates over

all moment functions from the full set M F that are not already contained in the set M S (line 9). Doing so establishes the

impact of each moment function addition on the overall estimation performance. Finally, the temporary set M T is created 

by adding the moment that the for cycle currently iterates over to the set M S (line 10). Apart from these few differences,

the algorithm remains the same. 

3.3. Selection criterion 

While describing the algorithms, we do not elaborate on the quality metric used to differentiate between the results 

of estimations employing different moment sets. However, it has a crucial impact on the selection process. We use the 

widely accepted root mean square error (RMSE). Traditionally, this metric is calculated in the context of a single parameter. 

Therefore, we make a slight adjustment to the RMSE that accommodates the necessity of involving multiple parameters 

simultaneously. 

Assume we have a model with a total of K estimated parameters. We may thus generate a simulated time series using

a specific parameterization. We organize these known parameters into the form of a vector θtrue = 

[
θ true 

1 
, . . . , θ true 

K 

]
. Subse- 

quently, we apply the SMM to the simulated time series. Depending on the number of Monte Carlo replications, we obtain

a certain number of point estimates for each parameter and compute the reported parameter estimate as their mean val- 

ues across all replications. All parameter estimates form a vector ˆ θ = 

[ 
ˆ θ1 , . . . , 

ˆ θK 

] 
. Additionally, we can use the Monte Carlo 

point estimates to obtain the standard error and confidence interval for each parameter. The single parameter normalized 

RMSE norm 

is then calculated as follows: 

RM SE norm 

:= RM SE norm 

( ̂  θi ) = 

√ 

( ̂  θi − θ true 
i 

) 2 + ˆ σ 2 
i 

| θ true 
i 

| , (6) 

where ˆ σi 
2 

is the estimated variance of the SMM estimator of the parameter θi . Traditionally, only the nominator containing 

the bias term ( ̂  θi − θ true 
i 

) 2 and the variance term ˆ σ 2 
i 

is used as the metric. Division of the metric by the true parameter

in absolute value represents a normalization step. As a result, it ensures that parameters of different magnitudes can be 

compared and aggregated into a single value. Subsequently, we can compute the metric for multiple parameters as follows: 

RM SE ˆ θ := 

1 

K 

K ∑ 

k =1 

RM SE norm 

( ̂  θk ) . (7) 

3.4. Effective moment set selection 

The BSME and FSMS algorithms identify numerous best moment sets in terms of the RMSE ˆ θ metric specified in (7) , one

for each elimination/selection round, and compare their suitability for the SMM estimation. Among these best moment sets , 
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one would generally choose the set minimizing the RMSE ˆ θ metric that we label the overall best moment set . However, we

argue that some performance within a reasonable range can be sacrificed to obtain an effective moment set , a less complex

parsimonious alternative to the overall best moment set, lessening the computing power requirements. In this regard, we 

follow an example by Hastie et al. (2009 , pg. 62) applying it under very similar circumstances within the general stepwise

feature selection framework. 

We consider all the best moment sets for effective moment set selection. Assuming that we estimate K parameters and 

complete L independent replications to approximate the SMM estimator distribution, we end up with K · L point estimates 

for each moment set. Given a moment set and the corresponding set of point estimates ˆ θkl , k ∈ { 1 , . . . , K} , l ∈ { 1 , . . . L } , we

compute the mean normalized bias b( ̂  θ) as follows: 

b( ̂  θ) = 

1 

K · L 

K ∑ 

k =1 

L ∑ 

l=1 

| ̂  θkl − θ true 
k 

| 
| θ true 

k 
| , (8) 

where ˆ θkl is the point estimate of parameter k for replication l and θk is the true value of parameter k . The effective moment

set is then the smallest best moment set whose b( ̂  θ) lies within the 95% confidence band of b( ̂  θ) of the overall best moment

set. Following standard theoretical requirements for parameter identification in the GMM and SMM, we further employ an 

additional constraint for the effective moment set: it contains at least as many moments as there are estimated parameters. 

3.5. Full moment set and benchmarks 

The presented approaches must be supplied with an initial full set of moments used in the elimination/selection process. 

Theoretically, there is an immense number of moments that can be used. However, the initial set should have a reasonable

size due to the computational complexity of the SMM. Assume that one wants to use D F initial moments. Then, for FSMS,

there are a total of 
D F (D F +1) 

2 moment sets for which the estimation is conducted. For BSME, the total number is one less

because the initial full set with D F moments is not evaluated. Thus, the computation of results for a vast number of moment

sets is avoided, which is in stark contrast to the naive procedure of ‘best-subset selection,’ which considers all possible 

combinations of the moment set. This is because ‘greedy’ stepwise procedures can be expected to choose only among the 

most promising alternatives. Given D F moments, a total of 2 D F − 1 different moment sets would be computed within the 

best-subset selection algorithm. For D F = 15 moments, the FSMS procedure computes the results for only 120 out of 32,767

total available moment sets. The comparison becomes even starker as the number of moments increases. For D F = 50 , the

results for only 1275 moment sets must be calculated out of 1 . 1 · 10 15 possible combinations. 

We thus turn to financial agent-based models literature to choose the moments included in the initial full set. In 

Franke and Westerhoff (2012) , the SMM is applied to a structural stochastic volatility asset pricing model. In Chen and

Lux (2018) , the estimation procedure is studied in connection to a simple financial agent-based model introduced by 

Alfarano et al. (2008) . Both models replicate the main stylized facts of financial data, specifically the absence of autocor-

relation of raw returns, heavy tails of the returns’ distribution, clustered volatility, and potentially long memory patterns. In 

both papers, the moment sets are constructed to capture the dynamics behind these stylized facts. However, even though 

the same stylized empirical patterns are supposed to be captured, the moment sets differ markedly between the papers. 

Three sets, one from Franke and Westerhoff (2012) and two from Chen and Lux (2018) , are thus selected as benchmarks for

the proposed SMM extension. Most recently, identical sets of moments were applied for the approximate Bayesian compu- 

tation method to the Alfarano et al. (2008) model in Lux (2022a) . The full set provided to the algorithms is then based on

those three benchmarks. 

Moreover, following Franke (2009) ; Schmitt and Westerhoff (2017b) ; Schwartz and Kirstein (2022) , we also include a 

second Hill estimator for the top 2.5% of absolute returns to capture the tail behavior of data from real financial markets in

more detail. We thus avoid insufficient pseudo-fat tails potentially generated by financial agent-based models and a potential 

mismatch between the relative magnitudes of extreme simulated and empirical data values. Finally, according to Schmitt and 

Westerhoff (2017a) , we add the autocorrelation coefficients of raw returns for lags 2 and 3 to adequately capture the crucial 

random walk characteristic of real financial markets. 

Table 1 defines the resulting complete set of moment functions m i , i = 1 , . . . , 22 . The moment selection includes the

unconditional second and fourth moments of raw returns, i th-order autocorrelations, i ∈ { 1 , 2 , 3 } , of raw returns, the uncon-

ditional first moment of absolute returns, the Hill estimator of the tail index of absolute returns based on 2.5% and 5% of

extreme observations, jth-order autocorrelations, j ∈ { 1 , 5 , 10 , 15 , 20 , 25 , 50 , 100 } , of absolute returns, and k th-order autocor-

relations, k ∈ { 1 , 5 , 10 , 15 , 20 , 25 } , of squared returns. Following the example of Franke and Westerhoff (2011, 2012, 2016) , we

diminish the impact of outliers by smoothing out the calculated autocorrelations over their neighborhoods. In other words, 

we compute the k th-order autocorrelation as the mean of lth-order autocorrelations, l ∈ { k − 1 , k, k + 1 } . For the 1-st-order

autocorrelations, we use only the two orders available. We apply this technique to all autocorrelation moments computed 

for absolute and squared returns. 
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4. Testbed models 

This section presents three models on which we test the FSMS and BSME algorithms. To provide evidence of the func-

tionality of the proposed methodology and to observe its general properties, models with an increasing level of complexity 

( Lee et al., 2015; Mandes and Winker, 2017; Kukacka and Kristoufek, 2020; 2021 ) and an increasing number of estimated

parameters are selected. The first testbed framework is the MSM model by Calvet and Fisher (2004) with two estimated

parameters. As our methodology should mainly find its use in estimating intractable agent-based models, a popular sim- 

ple financial model of herding by Alfarano et al. (2008) with three estimated parameters and a more complex structural 

stochastic volatility model by Franke and Westerhoff (2012) with seven estimated parameters are also considered. 

4.1. Markov-switching multifractal model 

The baseline model used to test the fundamental functionality of our approach is a univariate, discrete-time MSM model 

described by Calvet and Fisher (2004) . It is a special case of the regime-switching modeling framework introduced to the

asset-pricing literature by Hamilton (1989) following its original application in statistical physics by Mandelbrot (1974) . The 

model successfully replicates all essential financial stylized facts, including volatility clustering and long memory patterns 

( Lux, 2008 ). As explained by Lux (2022c) , the model can be estimated in full analytically using maximum likelihood; how-

ever, numerical methods such as SMM may become preferred when more complex settings of the model are assumed, 

causing sharp increases in computational demands of the analytical approach. 

The log-returns r t at time t of a single asset are modeled by taking the product of a finite number of latent volatility

components with varying persistence, as follows: 

r t = σ

( 

k ∏ 

i =1 

M i,t 

) 1 / 2 

ε t , (9) 

where σ is a constant scale factor representing unconditional volatility, ε t ∼ N (0 , 1) is a noise term, k is the total number

of volatility components, and M i,t is the value of volatility component i . In combination, the k volatility components gen-

erate a Markov chain with 2 k possible states, as each component can assume one of two values. At each step, the value of

component i can either be renewed with probability γi or persist with probability (1 − γi ) . Following Lux (2022c) , we set

the renewal probabilities to: 

γi = 2 

−(k −i ) . (10) 

A discrete and continuous distribution may be used when renewing a volatility component’s value. We choose the simplest 

option and draw from the Binomial distribution with values { m 0 , 2 − m 0 } , i.e., we select from the set of values with an equal

probability assigned to each element whenever a volatility component’s value is renewed. 

The parametrization and optimization constraints follow Lux (2022c) . The true values of the estimated parameters are 

σ = 1 and m 0 = 1 . 2 . Also, we set k = 8 , meaning the estimated model contains 256 different states. 

4.2. Alfarano et al. (2008) model 

Originally developed and applied through a series of papers ( Alfarano et al., 20 05; 20 06; 20 07 ), the second framework

is the model of herding by Alfarano et al. (2008) built in the ‘ant dynamics’ tradition introduced by Kirman (1991, 1993) .

It was selected following the recent estimation effort s by Ghonghadze and Lux (2016) ; Chen and Lux (2018) ; Lux (2022a,

2018, 2022b) , where the model standardly serves as a testbed for the performance of the SMM, GMM, approximate Bayesian

computation, and new advanced methods based on the Markov chain Monte Carlo approach, such as sequential Monte Carlo 

based on a particle filter or the adaptive particle MCMC. 

The model assumes two subpopulations of market participants: N f fundamentalists and N c noise traders, and a log fun- 

damental value F t of an underlying asset. Fundamentalists make their investment decision based on the deviation from the 

fundamental value, i.e., they buy/sell when the asset is under/overvalued. The average trading volume of fundamentalists is 

 f , and their excess demand thus follows D 

f = N f V f (F t − p t ) , where p t is the equilibrium market log-price at time t . The

behavior of noise traders is determined by an opinion dynamics process, where an optimistic/pessimistic state of a given 

agent implies buying/selling V c units of the asset at time t . A population sentiment index x t is defined as equal to zero for

balanced sentiment, while it reaches positive/negative values when noise traders are dominantly optimistic/pessimistic: 

x t = 

2 n o,t 

N c 
− 1 ∈ 〈−1 , 1 〉 , (11) 

where n o,t is the number of optimistic noise traders at time t . The value of the population sentiment index directly translates

into the excess demand of noise traders that follows D 

c = N c V c x t . 

The opinion dynamics process is associated with the subpopulation of noise traders who enter pairwise communication 

and switch between the two states. The Poisson intensity of autonomous switches a ≥ 0 and the herding rate b ≥ 0 drive
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the dynamics of the model: 

πx,t (− → +) = 

N c − n o,t 

N c 

(
a + b 

n o,t 

N c 

)
= (1 − x t ) 

[ 
2 a 

N c 
+ b(1 + x t ) 

] 
N 

2 
c , (12) 

where πx,t (− → +) denotes the probability that a pessimistic noise trader switches to an optimistic mood; the opposite 

direction works similarly. 

Setting b > a leads to a bimodal distribution of the sentiment index x t , i.e., one observes a strong and persistent majority

opinion with an episodic mean-reverting tendency among noise traders over time, as pairwise communication governs sen- 

timent dynamics. Conversely, setting a > b leads to a unimodal unconditional distribution of x t centered around 0. In this

case, autonomous opinion switches dominantly govern the sentiment with a stronger mean-reverting tendency. The model 

further assumes a Walrasian price adjustment mechanism with instantaneous market clearing under which the price change 

is derived from the overall excess demand: dp 
dt 

= D 

f + D 

c = N f V f (F t − p t ) + N c V c x t . The continuous-time version of the model

is summarized as follows: 

d F t = σ f d B 1 ,t , (13) 

d x t = −2 ax t d t + 

√ 

2 b(1 − x 2 t ) + 

4 a 

n c 
d B 2 ,t , (14) 

p t = F t + 

N c V c 

N f V f 

x t ⇒ r t = p t − p t−1 ≡ σ f e t + 

N c V c 

N f V f 

(x t − x t−1 ) , (15) 

where F t follows standard Brownian motion B 1 ,t without drift, σ f ≥ 0 represents the standard deviation of its innovations, 

B 2 ,t is another standard Brownian motion processes, r t is the log-return at time t , and e t ∼ i.i.d. N (0 , 1) due to the funda-

mental value for a unit time change F t+1 ∼ i.i.d. N (F t , σ f ) . 

The parametrization follows Ghonghadze and Lux (2016) ; Chen and Lux (2018) ; Lux (2018, 2022b, 2022a) and the

Langevin equation approximation of the model. The optimization constraints follow Lux (2022a) . The true values of the 

three estimated parameters are a = 0 . 0 0 03 , b = 0 . 0 014 , and σ f = 0 . 03 . The other parameters of the model are set such that

N c = 100 and 

N c V c 
N f V f 

= 1 . Naturally, log-returns are used as the model output in our estimation exercises. 

4.3. Franke and Westerhoff (2012) model 

Finally, we consider a structural stochastic volatility model by Franke and Westerhoff (2011) and further developed in 

Franke and Westerhoff (2012) . It describes a market where two population fractions of agents, chartists and fundamentalists, 

interact and respond to their dynamic environment by switching between the two groups. Since its adoption, the model has 

been used in many estimation exercises (Franke and Westerhoff, 2016 ; Lux, 2022b ; Platt, 2022, to name few) . 

The price of an asset traded on the market is governed by demand. Specifically, a market maker changes the log-price

p t from one period to the next by observing the excess demand for the asset and proportionately adjusting the price such

that p t = p t−1 + μ(n 
f 
t−1 

d 
f 
t−1 

+ n c 
t−1 

d c 
t−1 

) , where d 
f 
t and d c t describe the excess demands of fundamentalists and chartists, re-

spectively, n 
f 
t and n c t = 1 − n 

f 
t represent the corresponding population share of each group, and μ stands for the adjustment

rate of the asset price by the market maker. Depending on the current trading approach of a trader, their excess demand is

governed by one of the following equations: 

d f t = φ(p ∗ − p t ) + ε f t ε f t ∼ N (0 , σ 2 
f ) , (16) 

d c t = χ(p t − p t−1 ) + ε c t ε c t ∼ N (0 , σ 2 
c ) , (17) 

where p ∗ is the fundamental log-value of the asset, ε f t and ε c t represent the noise terms for fundamentalists and chartists,

respectively, σ f and σc determine the corresponding volatilities of the noise terms, and φ and χ are the respective ad- 

justment parameters of the demands. The excess demands are governed by simplistic rules used throughout the literature. 

The excess demand of fundamentalists is driven by the deviation of the current asset price from its fundamental value. In

contrast, the excess demand of chartists recognizes the asset’s price change from the previous period to the current period. 

Adjustments of population shares are governed by the index a t , indicating the propensity to switch such that: 

a t = α0 + αn (n 

f 
t − n 

c 
t ) + αp (p t − p ∗) 2 , (18) 

n 

f 
t = 

1 

1 + exp (−βa t−1 ) 
, (19) 
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where α0 is a ‘predisposition’ parameter representing a general trading preference towards one of the strategies, αn ≥ 0 

represents a ‘herding’ parameter, and αp ≥ 0 is a price ‘misalignment’ parameter measuring the impact of mispricing from 

the fundamental log-value. Finally, β is the intensity of choice within the popular binomial logistic discrete choice approach. 

Franke and Westerhoff (2012) present an entire family of models varying in the approach to population fraction switching 

and its determinants. Regarding the former, the transition probability approach (TPA) of Franke and Westerhoff (2011) is 

complemented by the discrete choice approach (Brock and Hommes, 1998, DCA) presented in (19) . As for the determinants

of the switching index, accumulated past profits of alternative trading strategies called wealth (W) are included among 

herding (H), predisposition (P), and misalignment (M) terms that we use in (18) . Consequently, various subsets of the four

determinants can be utilized to create multiple models. The DCA-HPM setup combination is found to be superior; therefore, 

it is also used in our paper. 

The parameterization of the seven estimated coefficients, which follows Franke and Westerhoff (2012) , is also used in 

Platt (2022) , whom we also follow in terms of the optimization constraints: φ = 0 . 12 , χ = 1 . 5 , σ f = 0 . 758 , σc = 2 . 087 , α0 =
−0 . 327 , αn = 1 . 79 , αp = 18 . 43 . The remaining parameters are set such that μ = 0 . 01 , p ∗ = 0 , and β = 1 . Again, log-returns

are used as the model output for the estimation routine. 

5. Monte Carlo simulation study 

Although all three models are well known and verified in the recent literature, we first perform their basic time-series 

analysis. Next, we conduct a detailed preliminary analysis to find a suitable simulation setup that optimizes computational 

time without compromising the estimation precision of the SMM. This is evaluated via RMSE ˆ θ for the most challenging 

estimation exercise with the Franke and Westerhoff (2012) model. 

5.1. Analysis of the warm-up period 

First and foremost, we test the length of the warm-up period to ensure sufficient discarding of the initial observa- 

tions to eliminate any influence of the initial conditions. We follow Welch’s method ( Welch, 1983 ) recently discussed in

Vandin et al. (2022) . Based on 10 0 0 independent realizations of the process, a warm-up period of 100 observations appears

sufficient to provide all three testbed models enough time to stabilize their dynamics. We thus implement a warm-up period 

of 200 initial observations for cautionary reasons in the subsequent analysis. 

5.2. General simulation setup for all models 

The analysis is executed in Julia 1.6.1 , and we take advantage of the Distributed.jl package for parallel com- 

puting. The length of the analyzed series is always T sim 

= T emp = 6750 after discarding initial warm-up observations. Inter-

estingly, while for the double length T sim 

= 2 · T emp , the computing time doubles, the precision increases by only approx.

3%. 

5.3. Descriptive statistics and the analysis of stationarity and ergodicity 

Typical time series outputs of the testbed models are depicted in Fig. A.3 in Appendix A . Table A.6 further displays

aggregate descriptive statistics, their 95% sample confidence intervals, and rejection rates of six essential time series statis- 

tical tests based on 10 0 0 random runs and the general simulation setup. As expected, all three models violate normality,

demonstrated through excess kurtosis and confirmed statistically by 100% rejection rates for the Jarque–Bera test. For all 

three models, stationarity is supported by the Augmented Dickey–Fuller test. At the same time, stationarity is not rejected 

by the Kwiatkowski–Phillips–Schmidt–Shin test. Finally, we conduct two ergodicity tests according to Grazzini (2012) and 

Delli Gatti and Grazzini (2020) , strongly supporting the ergodic characteristics for all three models. The general regularity 

conditions for the SMM estimation ( Lee and Ingram, 1991; Duffie and Singleton, 1993 ) are thus verified and met. 

5.4. General Monte Carlo and SMM estimation setup 

We evaluate each Monte Carlo experiment based on L = 96 independent replications. While the parallel server capacities 

at our disposal provide largely sufficient computation budget for most of the standard tasks, our simulation setup is dictated 

by the computationally costly Monte Carlo executions of the FSMS and BSME machine learning algorithms. 2 Nevertheless, 

while for 192 runs the computational time naturally doubles, the SMM precision increases by less than 1%. 
2 Most of the tasks were performed on a server with an Intel(R) Xeon(R) Gold 6126 CPU @ 2.60 GHz processor with 48 cores and 768 GB RAM. Par- 

allelizing independent replications to all available cores, one complete FSMS (BSME) procedure requiring 253 (252) individual SMM estimations takes 

approximately 133 h for the most complex Franke and Westerhoff (2012) model. For the whole experiment with three models and both algorithms sum- 

marized in Fig. 1 , we need less than six times as much since computations for simpler models are shorter but remain the same order of magnitude of the 

computational complexity. However, after the machine learning exploration of the moment sets is done for a given model, subsequent practical applications 

require the execution of few single estimations that take only few hours under the same setup. 
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Table 1 

Moments sets: the full set and benchmarks. 

Moment function Label CHL4 FW9 CHL15 

m 1 = E(r 2 t ) RAW-VAR � � 

m 2 = E(r 4 t ) RAW-KURT � � 

m 3 = E(r t r t−1 ) RAW-AC1 � � � 

m 4 = E(r t r t−2 ) RAW-AC2 

m 5 = E(r t r t−3 ) RAW-AC3 

m 6 = E(| r t | ) ABS-MEAN � 

m 7 = Hil l (| r t | , 2 . 5) ABS-HILL2.5 

m 8 = Hil l (| r t | , 5) ABS-HILL5 � 

m 9 = E(| r t || r t−1 | ) ABS-AC1 � � 

m 10 = E(| r t || r t−5 | ) ABS-AC5 � � 

m 11 = E(| r t || r t−10 | ) ABS-AC10 � � 

m 12 = E(| r t || r t−15 | ) ABS-AC15 � 

m 13 = E(| r t || r t−20 | ) ABS-AC20 � 

m 14 = E(| r t || r t−25 | ) ABS-AC25 � � 

m 15 = E(| r t || r t−50 | ) ABS-AC50 � 

m 16 = E(| r t || r t−100 | ) ABS-AC100 � 

m 17 = E(r 2 t r 
2 
t−1 ) SQR-AC1 � � 

m 18 = E(r 2 t r 
2 
t−5 ) SQR-AC5 � 

m 19 = E(r 2 t r 
2 
t−10 ) SQR-AC10 � 

m 20 = E(r 2 t r 
2 
t−15 ) SQR-AC15 � 

m 21 = E(r 2 t r 
2 
t−20 ) SQR-AC20 � 

m 22 = E(r 2 t r 
2 
t−25 ) SQR-AC25 � 

Note: Benchmark naming is based on the underlying papers: 

Chen and Lux (2018) for CHL4 and CHL15 ; Franke and Wester- 

hoff (2012) for FW9 . 

 

 

 

 

 

 

 

 

 

 

 

The SMM is implemented with the overlapping block bootstrap weighting matrix with bootstrap size B = 50 0 0 as de-

scribed in Section 2.2 ( Franke and Westerhoff, 2011; 2012 ). For the SMM optimizations, simulated moments are computed 

as averages over 100 independent simulations. Interestingly, while for more simulations, the computational time increases 

linearly, for 250 simulations, the estimation precision increases by not even 3%. Finally, a default recommended differential 

evolution optimizer from the BlackBoxOptim.jl package is used. The optimization algorithm was tested against com- 

peting optimizers available in other packages, such as the standard Optim.jl , and it delivers the best performance for the

given optimization problem. Technically, we constrain the optimization by 40 0 0 functional evaluations (20 0 0 for the MSM

model as its relative simplicity ensures faster convergence). Based on our preliminary analysis, allowing for more evaluations 

linearly increases the computational time without delivering better estimation precision. 

6. Analysis of results 

Figure 1 presents the outputs of the two machine learning procedures, BSME and FSMS, for all three testbed models. We

apply the proposed methodology first to the MSM model as a challenge to its basic functionality, having important practical 

implications due to the computational difficulty of analytical estimation approaches for more complex specifications of the 

model ( Lux, 2022c ). For the simple financial agent-based model of herding by Alfarano et al. (2008) , several moment condi-

tions can be derived analytically, and one can potentially apply standard GMM estimation ( Ghonghadze and Lux, 2016 ). Still,

the complexity of the model calls for a more flexible SMM approach. Finally, for the Franke and Westerhoff (2012) model,

various subsets of its seven parameters are typically estimated. However, our ultimate goal is to estimate the complete 

parameter set simultaneously. Thus, the results obtained for these two financial agent-based models have important impli- 

cations, as one has to address the moment set selection issue in empirical practice. 

6.1. Two machine learning processes 

In each round of the BSME algorithm, one moment is eliminated from the initially full moment set such that the set

achieving the lowest RMSE ˆ θ in the given round determines the elimination. This principle is reversed for FSMS, i.e., the 

moments are gradually added to an initially empty set. Therefore, the number of moments included coincides with the 

selection round for FSMS. Conversely, the first round of BSME procedure considers the largest sets of 21 moments, and each

subsequent round lowers the number of moments by one. 

For the MSM model with two estimated parameters, both algorithms effectively detect the most important moments as 

the sets of size two already provide strong estimation performance, which remains stable for all larger sets. However, there 

is a sizeable difference in the quality of individual estimates for the other two models. Especially for FSMS, the increasing

complexity of the models with a larger number of estimated parameters requires more crucial moments to be included to 

sufficiently describe their dynamics. This typically results in an initial steep decline in RMSE ˆ θ for FSMS in panels (d) and (f)

as more moments gradually come into play. The variation of the estimation performance for the two agent-based models is 
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Fig. 1. Results for BSME and FSMS. 

Note: Transparent points depict results for all moment sets involved in the selection process, numbered gray points depict results for the best performing 

moment sets of each selection round, and named black points depict results for the benchmark moment sets according to Table 1 . For visualization 

purposes, moment sets with high RMSE ˆ θ compared to the benchmark sets are excluded. The number of moments included in a set coincides with the 

selection round for FSMS; for BSME, this relationship is reversed: the results of the first BSME round are associated with 21 moments, the second round 

with 20 moments, etc. 

 

 

larger than the random walk model and relatively stable across most rounds except for the smallest sets, where it naturally

increases. 

6.2. Three benchmark moment sets 

Immediately, one can observe that the performance of all three benchmark sets taken from Franke and Wester- 

hoff (2012) and Chen and Lux (2018) is not nearly as good as that of most moment sets identified by both algorithms
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for the two agent-based models. This contrasts with the straightforward case of the MSM model, panels (a) and (b), where

the benchmark sets provide practically the same estimation performance as the best sets of size two and larger. For the

other two agent-based frameworks, the performance of benchmarks is positively related to the number of parameters they 

contain. Especially for the Alfarano et al. (2008) model, while the CHL4 benchmark appears strongly inferior, the CHL15 set 

achieves a slightly worse but comparable performance to that of the best moment sets identified by our method. This is not

surprising as it has been suggested and thoroughly analyzed by one of the model’s authors. The performance of the FW9

benchmark lies between these two but, by far, falls short of the performance of the best moment sets. Finally, we observe

a disproportional difference between the performance of the CHL4 benchmark and the best moment sets identified by the 

two procedures. While for BSME, all sets of length four or more strongly outperform CHL4 , FSMS performs worse in this

respect. The explanation lies in the inherent differences between the two procedures and the potential interplay between 

different moments. We elaborate on this phenomenon further in Sections 6.3, 8.1 , and 8.2 . Unlike for the previous model, for

Franke and Westerhoff (2012) and the comparison FW9 vs. CHL15 benchmarks, the improvement is much smaller, primarily 

because the FW9 benchmark was explicitly designed for the given model. 

6.3. BSME, FSMS specifics for individual models 

Looking at Fig. 1 , panel (b), one can notice a large variance at the moment set performance in the second round of

FSMS, with set #27 of size two strongly outperforming most of the other moment sets. The selected moment is ABS-MEAN 

supplementing RAW-VAR chosen in the first round. Furthermore, the estimation precision measured by RMSE ˆ θ increases 

markedly. The dispersion then practically disappears in the next rounds. This follows the notion that the two different 

measures of volatility capture the dynamics of the MSM model almost perfectly, while other moments provide no added 

value to the estimation. Similarly, the results in panel (a) for BSME exhibit practically no variation under the elimination 

process up to the moment size of two. 

Focusing on panel (c) for the BSME process, instead of only two moments crucial to the SMM performance for the pre-

vious model, interactions of multiple moments are necessary for the proper estimation of the Alfarano et al. (2008) model.

This claim is further supported by the benchmark moment set CHL15 performance, which almost reaches the estimation 

performance of the best moment sets identified by the two machine learning algorithms. Panel (d) for FSMS suggests that 

slightly larger sets lead to more efficient estimation than sets of only three or four moments. While adding the fifth and

sixth moments produces a considerable performance enhancement, the improvement curve achieves relative flatness in the 

subsequent steps. 

Panel (f) depicting the FSMS process for the Franke and Westerhoff (2012) model reveals an apparent steep decrease 

in RMSE ˆ θ with additional moments up to round no. 7. This means that multiple moment functions gradually add to the

explanatory power of the expanding set up to some saturation level for a complex model with many estimated parameters. 

Interestingly, in panel (e) displaying the BSME process, even the best set consisting of only five moments demonstrates 

estimation performance similar to all larger best sets. This is surprising because, in theory, the such set is too small to

identify the estimated parameters. Part of the reason may be that the moments excluded in the corresponding elimination 

rounds are among the least impactful across the whole procedure. Also, the BSME algorithm tends to preserve valuable 

moment interactions that may provide enough information to identify additional parameters. 

6.4. Effective moment set selection 

Figure 2 depicts the effective moment set selection as described in Section 3.4 . The full vertical line corresponds to the

choice of the effective moment set lying within the 95% confidence band of the overall best set. Effective sets represent

less complex parsimonious alternatives to the overall best moment sets and are, by definition, always their subsets. As 

such, they contain only the key moments necessary for adequate estimation performance. The specific composition of the 

effective moment sets and the overall best sets is further described in detail in Table 2 , and their estimation performance is

summarized in Table 3 . 

Results in Figs. 1 and 2 suggest that especially for the MSM and Franke and Westerhoff (2012) models, the effective 

moment sets are also the minimal possible sets for which the model parameters are just-identified. This corresponds to the 

standard econometric method of moments. The other moments, on the use of which the SMM is based, deliver almost no

improvement to the estimation performance for the best sets of individual rounds but tend to decrease the dispersion of 

estimation performance of other sets of the same size for the Franke and Westerhoff (2012) model. Thus, one must select 

the correct effective moment set because otherwise, some larger sets that can take advantage of the SMM-related over- 

identification of parameters will likely be more efficient. While our selection algorithms ensure that the most appropriate 

effective moment set is indeed selected, if someone were to experiment intuitively/manually with the moment selection, 

the SMM approach represented by more than the minimal number of moments would undoubtedly be helpful, since, due 

to the decreasing dispersion across different sets, it reduces the risk of a suboptimal pick. 
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Table 2 

Moments sets: composition of the effective and overall best sets. 

MSM ALW (2008) FW (2012) 

BSME FSMS BSME FSMS BSME FSMS 

Effective set #250 #27 #238 #128 #224 #118 

Overall best set #246 #140 #190 #192 #187 #239 

Moment function Label 

m 1 = E(r 2 t ) RAW-VAR 1 1 1 3 2 7 

m 2 = E(r 4 t ) RAW-KURT 2 4 5 

m 3 = E(r t r t−1 ) RAW-AC1 10 11 

m 4 = E(r t r t−2 ) RAW-AC2 10 11 12 

m 5 = E(r t r t−3 ) RAW-AC3 6 18 

m 6 = E(| r t | ) ABS-MEAN 2 2 3 5 3 3 

m 7 = Hil l (| r t | , 5) ABS-HILL2.5 5 6 9 8 

m 8 = Hil l (| r t | , 5) ABS-HILL5 7 9 9 1 6 

m 9 = E(| r t || r t−1 | ) ABS-AC1 17 

m 1 0 = E(| r t || r t−5 | ) ABS-AC5 8 14 

m 1 1 = E(| r t || r t−10 | ) ABS-AC10 5 15 

m 1 2 = E(| r t || r t−15 | ) ABS-AC15 12 

m 13 = E(| r t || r t−20 | ) ABS-AC20 

m 14 = E(| r t || r t−25 | ) ABS-AC25 7 2 4 9 

m 15 = E(| r t || r t−50 | ) ABS-AC50 10 

m 16 = E(| r t || r t−100 | ) ABS-AC100 4 1 8 4 

m 17 = E(r 2 t r 
2 
t−1 ) SQR-AC1 8 7 10 

m 18 = E(r 2 t r 
2 
t−5 ) SQR-AC5 6 6 8 12 16 

m 19 = E(r 2 t r 
2 
t−10 ) SQR-AC10 5 7 13 

m 20 = E(r 2 t r 
2 
t−15 ) SQR-AC15 

m 21 = E(r 2 t r 
2 
t−20 ) SQR-AC20 3 1 

m 22 = E(r 2 t r 
2 
t−25 ) SQR-AC25 3 4 2 

Note: ‘MSM’ is the Markov-switching multifractal model, ‘ALW (2008)’ is the 

Alfarano et al. (2008) model, and ‘FW (2012)’ is the Franke and Westerhoff (2012) model. 

The moments belonging to effective (sub-)sets are in bold, and other moments supplementing 

effective sets into overall best sets are in footnote size. The depicted number corresponds to 

the importance of the given moment. That means, for BSME, the most important moment elim- 

inated last is marked by ‘1’, the second-last by ‘2’, etc., while for FSMS, it directly corresponds 

to the round in which the respective moment was selected as presented in Fig. 1 . 

Table 3 

Estimation improvements: overall best and effective sets. 

CHL4 FW9 CHL15 

Markov-switching multifractal model—2 parameters 

Benchmark RMSE ˆ θ 0.0220 0.0241 0.0244 

FSMS—Best set #140 (8) 0.0201 8.6% 16.6% 17.6% 

FSMS—Efficient set #27 (2) 0.0205 6.8% 14.9% 16.0% 

BSME—Best set #246 (3) 0.0202 8.2% 16.2% 17.2% 

BSME—Efficient set #250 (2) 0.0205 6.8% 14.9% 16.0% 

Alfarano et al.(2008) —3 parameters 

Benchmark RMSE ˆ θ 0.829 0.781 0.386 

BSME—Overall best set #190 (10) 0.292 64.8% 62.6% 24.4% 

BSME—Effective set #238 (5) 0.331 60.1% 57.6% 14.2% 

FSMS—Overall best set #192 (12) 0.285 65.6% 63.5% 26.2% 

FSMS—Effective set #128 (7) 0.311 62.5% 60.2% 19.4% 

Franke and Westerhoff (2012) —7 parameters 

Benchmark RMSE ˆ θ 0.568 0.501 

BSME—Overall best set #187 (11) 0.355 37.5% 29.1% 

BSME—Effective set #224 (7) 0.373 34.3% 25.5% 

FSMS—Overall best set #239 (18) 0.363 36.1% 27.5% 

FSMS—Effective set #118 (7) 0.390 31.3% 22.2% 

Note: Numbers in parentheses after set numbers indicate the set size. Estimation 

improvements compared to the benchmark moment sets are reported in %. 
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Fig. 2. Effective moment sets. 

Note: Black points depict the mean normalized bias b( ̂ θ) (8) for each of the best moment sets of each round presented in Fig. 1 and its corresponding 95% 

confidence band. The dashed horizontal line represents the upper 95% confidence bound for the overall best moment set. The full vertical line marks the 

effective moment set. For visualization purposes, moment sets with high b( ̂ θ) are excluded. 

 

 

6.5. Composition of the effective and overall best sets 

The composition of the resulting sets is presented in Table 2 . 3 The moments belonging to effective (sub-)sets are in bold,

and other moments supplementing effective sets into overall best sets are in footnote size. One can thus study essential 

similarities and differences between the two pairwise algorithms. For the MSM model, RAW-VAR survives until the very 

end of the BSME elimination process, and it is selected first for FSMS. Next, ABS-MEAN also reveals its crucial importance.
3 The remaining machine learning evolution of the moments in each round is presented in Appendix B for completeness. 
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This moment is the second last elimination and the second inclusion, additionally reflecting the impact of the calibrated 

unconditional volatility σ . The two identical effective sets selected in both directions thus indicate a considerable degree 

of stability of our method. Finally, some autocorrelations of squared returns, and a measure of heavy tails, ABS-HILL5, also 

appear potentially useful for capturing the model dynamics. 

The two procedures lead to very similar outcomes for the Alfarano et al. (2008) model. Concretely, the seven moments

eliminated last by BSME overlap almost perfectly with those seven selected first by FSMS. The only insignificant difference 

is the exchange of SQR-AC1 and SQR-AC5. For FSMS, two high-order autocorrelations of absolute returns, ABS-AC100 and 

ABS-AC25, are selected first, thereby reflecting a more complex nature of the model output and the importance of volatility 

clustering and potentially long memory for model dynamics. The BSME elimination procedure retains to the very end, on 

the other hand, ABS-MEAN, RAW-KURT, and RAW-VAR. Interestingly, two different measures of volatility, RAW-VAR and 

ABS-MEAN, and two measures of excess kurtosis and heavy tails, RAW-KURT and ABS-HILL2.5, make it to the parsimonious 

effective sets. 

The comparison of the two processes for the Franke and Westerhoff (2012) model does not tell such a consistent story as 

for the two simpler models above. This is, however, expected for such a complex model with many estimated parameters. 

Still, crucial measures of volatility, RAW-VAR and ABS-MEAN, important measures of heavy tails, RAW-KURT and ABS-HILL5, 

and a composition of several high-order autocorrelations of returns highlighting the impact of volatility clustering and po- 

tentially long memory make it to both effective sets. Intriguingly, the first-order autocorrelation of raw returns (RAW-AC1) 

capturing the unpredictability of price changes, which is the only moments shared by all three benchmarks (see Table 1 ), is

not part of any of the effective sets for any model. 

6.6. Estimation improvements for the overall best and effective sets 

Table 3 compares the performance of all important moment sets. Based on the previous interpretation, all twelve identi- 

fied sets outperform all benchmark sets. Very similar RMSE ˆ θ values for the MSM model stem from ‘sufficiently perfect’ esti- 

mation of the two model parameters based on already two moments identified by both stepwise approaches. The most sig- 

nificant improvements of more than 60% can be observed for the Alfarano et al. (2008) model against CHL4 and FW9 bench-

marks, regardless of whether the overall best or effective sets are being compared. Overall, the four detected moment sets 

reveal comparable estimation performance. Still, FSMS identifies slightly better-performing sets. Only smaller improvements 

between 14 and 26% are achieved against CHL15 . The essential comparison for the Franke and Westerhoff (2012) model is 

against FW9 . Here, the estimation improvements achieve between 31 and 38% while the improvements against CHL15 reach 

between 22 and 29%. In this case, BSME identifies slightly better-performing sets. 

Interestingly, for the MSM model with the identical model setup, Lux (2022c , his Tab. 1) achieves the best estimation

performance with RMSE ˆ θ = 0.048 and RMSE ˆ θ = 0.052 recomputed according to (7) , using the maximum likelihood and

simulated maximum likelihood, respectively. Moreover, for the Alfarano et al. (2008) model, Lux (2018 , his Tab. 1) achieves

the best performance with RMSE ˆ θ = 0.229 using sequential Monte Carlo based on a particle filter, while Lux (2022a , his Tab.

1, Method 3 and Method 2) achieves the best performance with RMSE ˆ θ = 0.188 and RMSE ˆ θ = 0.260 using the approximate

Bayesian computation method. Furthermore, for the Franke and Westerhoff (2012) model, Platt (2022 , his Tab. 7) achieves 

the best performance with RMSE ˆ θ = 0.404 using the likelihood-based Bayesian method utilizing a neural network. 

6.7. Convergence of the parameter estimates 

Finally, Fig. C.4 in Appendix C displays how the estimation performance in terms of graphically distinguished bias and 

variance evolves across elimination/selection rounds for each parameter separately. It allows for analyzing the convergence 

towards the true values and the reduction of variance with increasing the set of moments. Regarding true values, we em-

phasize that the model parameterizations and optimization constraints are always based either on the original paper in- 

troducing the model, as for Franke and Westerhoff (2012) , or a most relevant follow-up econometric research of the same 

models, specifically Lux (2022c,a) and Platt (2022) . All parameterizations are specified in detail in Section 4 . 

For clarity, we only comment on the most apparent patterns for each model. Panels (a) and (b) reveal a relative similarity

for the estimation of the two parameters for the MSM model. We observe no bias and minimal variance of the estimator;

only the m 0 parameter defining the interval of the Binomial distribution for the renewed volatility components requires two 

moments to be identified, while the unconditional volatility σ is already estimated almost perfectly by RAW-VAR. In panels 

(c) and (d), the often observed challenge in the estimation of the intensity of autonomous switches a ( Chen and Lux, 2018;

Lux, 2022a ) is confirmed for the Alfarano et al. (2008) model. The SMM estimator naturally needs at least three parameters

to stabilize its bias and variance. However, it then reveals a very stable behavior for all three parameters, very slightly con-

verging in the number of moments, except for FSMS and very large sets for a and the smallest sets for the standard deviation

of fundamental innovations σ f . Similarly to the previous case, panels (e) and (f) also support the theoretical necessity of at

least seven moments to gain stabilized behavior of the estimator in the case of the Franke and Westerhoff (2012) model.

Otherwise, we face extensive volatility and serious biases for most model parameters. Estimation of the two adjustment 

coefficients of the fundamentalists’ and chartists’ demands, φ and χ , turns out to be the most complicated as we observe a

stable upward bias and large variance for the latter and a potential for statistical insignificance at the 5% level for both. 
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6.8. Alternative weighting matrices 

While the utilized weighting matrix W can be any positive-definite matrix of given dimensions, estimation efficiency is 

highly dependent on its selection. At the same time, only a very limited number of studies compare various approaches

to its construction. We thus quantify the sensitivity of the SMM estimation performance concerning different weighting 

matrices for our most complex testbed Franke and Westerhoff (2012) model. Specifically, we analyze the performance of the 

two effective moment sets identified by our algorithms vs. the two natural benchmarks. 

The four alternative approaches comprise the trivial identity matrix, which essentially neglects the importance of mo- 

ments’ sampling variability; and the simplified diagonal overlapping block bootstrap matrix in which the off-diagonal com- 

ponents are ignored ( Boivin and Giannoni, 2006; Franke, 2009; Franke et al., 2015; Franke, 2018; Jang and Sacht, 2016;

2021 , provide discussions on practical and economic rationale of this simplification). Next, the non-overlapping block boot- 

strap weighting matrix used in Franke and Westerhoff (2012) for which the empirical series is divided into non-overlapping 

blocks resulting in less variability in the bootstrapped series; and the history sampling bootstrap matrix utilized by Franke and

Westerhoff (2016) where points and their corresponding history are sampled individually to avoid the joint-point problem 

of block bootstrap. 

Table D.7 in Appendix D is to be compared to the bottom part of Table 3 with our standard overlapping block bootstrap

setup. One directly observes that the trivialized setup with the identity matrix delivers largely inferior results. The RMSE ˆ θ
for the effective sets are roughly twice as large, and for the benchmarks, roughly half as large compared to our initial

results. Importantly, very small and even negative improvements suggest that benchmarks deliver comparable or even better 

estimation performance. Similarly, the diagonal matrix is associated with much worse performance for our effective sets, but 

it shows only slightly worse RMSE ˆ θ for the benchmarks. 

On the other hand, while generally delivering slightly worse performances and estimation improvements, the non- 

overlapping block bootstrap and the history sampling bootstrap are comparable to the overlapping block bootstrap matrix. 

Conversely, it is worth commenting that while the RMSE ˆ θ values for the target FW9 benchmark are very similar among all

three approaches, the history sampling bootstrap matrix seems worth strong recommending for the CHL15 moment set for 

which it delivers markedly better estimation performance. In contrast, the non-overlapping block bootstrap largely fails for 

this benchmark. Nevertheless, the relative estimation improvements are positive in all but one case. 

7. Empirical application 

We now examine how the resulting moment sets identified by our approach can cope with real-world financial data. 

This empirical exercise also serves as an important out-of-sample verification tool as our extension on top of the SMM 

is essentially based on an in-sample simulation-based analysis. We again estimate our most complex testbed model by 

Franke and Westerhoff (2012) using the four moment sets suggested by our algorithms. We also directly compare these 

results to the performance of the two natural benchmark sets: FW9 by the same authors and CHL15 by Chen and Lux (2018) .

Regarding empirical data, we follow the best research practice and apply the SMM estimation routine to the log-returns of 

the S&P 500. The sample covers the period from 1980-01-02 to 2022-09-08, with 10745 observations [database accessed 

on 2022-09-12]. We kindly refer the reader to the GitHub repository for downloading the dataset. For the moment sets 

larger than the number of estimated parameters, we apply the J-test of overidentifying restrictions (4) to assess the model’s

validity and replicate the characteristics of empirical data. 

7.1. Estimation setup 

The empirical estimation procedure adopts the setup of the Monte Carlo simulation study with two minor alterations. 

First, as an individual estimation task can take full advantage of our computing budget, we foster the statistical validity by

increasing the number of independent replications to 500 to face noisy empirical data better. Second, based on a preliminary 

exploration with the specified dataset and taking specific findings of Section 6.7 into account, we slightly modify constraints 

of the parameter space to support optimization search and to customize it for all six moment sets. While the numerical

study adopts intervals used in Platt (2022) , empirical optimization constraints for the recent dataset are summarized in 

Table 4 . Most notably, we shrink the interval for the fundamentalists’ adjustment parameters φ as the empirical estimates 

always stick near the lower boundary. On the other hand, we significantly extend the intervals for the herding and price

misalignment parameters, αn and αp , to avoid hitting the upper boundary. 

7.2. Empirical results 

The results summarized in Table 4 strongly support our simple machine learning methodology and three of the four 

resulting moments sets. First and foremost, models originating from both benchmarks are rejected by the J-test at the 

5% significance level as the true models ( CHL15 very strongly and FW9 weakly with the p-value of 4 . 2% ). Conversely, the

parameterization implied by the overall best set #187, which is identified by BSME and includes 11 moments, is not rejected

as being a good approximation of the data generation process with a high probability as the corresponding p-value exceeds 

54%. Unfortunately, the model specification test is not applicable to the two effective sets as they consist of only seven
382 

https://github.com/jirikukacka/Zila_Kukacka_Moment_Selection


E. Zila and J. Kukacka Journal of Economic Behavior and Organization 212 (2023) 366–391 

Table 4 

Franke and Westerhoff (2012) : results of the empirical study for S&P 500 data. 

Benchmarks Resulting moment sets (see Table 3 ) 

FW9 CHL15 BSME best BSME eff. FSMS best FSMS eff. 

Par./No. (D) 9 15 #187 (11) #224 (7) #239 (18) #118 (7) 

ˆ φ 0.010 0.009 0.025 0.020 0.011 0.016 

〈 0 , 0 . 1 〉 (0.005, 0.012) (0.008, 0.010) (0.013, 0.061) (0.013, 0.055) (0.008, 0.017) (0.012, 0.020) 

ˆ χ 0.767 0.991 2.04 2.01 0.694 2.03 

〈 0 , 4 〉 (0.018, 2.39) (0.034, 2.92) (0.117, 3.86) (0.095, 3.93) (0.011, 2.30) (0.132, 3.92) 

ˆ σ f 0.870 0.841 0.821 0.835 0.850 0.858 

〈 0 . 5 , 1 〉 (0.853, 0.882) (0.819, 0.862) (0.770, 0.851) (0.760, 0.868) (0.818, 0.872) (0.828, 0.877) 

ˆ σc 4.21 4.57 3.92 4.02 4.36 3.78 

〈 2 , 6 〉 (3.27, 5.30) (4.17, 5.23) (3.39, 4.90) (3.03, 5.29) (3.27, 5.69) (3.28, 4.67) 

ˆ α0 0.022 −0.142 −0.239 −0.182 −0.133 −0.206 

〈−0 . 5 , 0 . 5 〉 ( −0.218, 0.276) ( −0.223, −0.089) ( −0.459, −0.131) ( −0.408, 0.162) ( −0.276, 0.090) ( −0.294, −0.100) 

ˆ αn 1.74 1.98 2.39 2.14 2.13 1.95 

〈 1 , 4 〉 (1.31, 2.44) (1.74, 2.33) (1.95, 2.97) (1.41, 2.88) (1.64, 2.52) (1.66, 2.28) 

ˆ αp 24.32 28.56 13.32 13.12 22.91 17.41 

〈 5 , 35 〉 (13.33, 29.35) (24.79, 32.58) (10.18, 19.21) (9.24, 19.16) (15.74, 29.63) (12.12, 24.69) 

J̄ = J( ̂ θ) 6.32 29.38 3.10 1.68 42.30 2.39 

(5.88, 6.84) (28.26, 30.62) (2.37, 3.72) (1.37, 1.94) (38.60, 44.64) (1.80, 3.01) 

χ2 
D −7 (5%) 5.99 15.51 9.49 – 19.68 –

p-value 0.042 0.000 0.541 – 0.000 –

J-test (5%) reject H 0 reject H 0 not reject H 0 – reject H 0 –

Note: The constraints for optimization are given in 〈〉 brackets. The sample means based on 500 random runs are reported, while the 95% 

confidence intervals of the sample estimates are reported in () parentheses. The figures are rounded to 2 or 3 decimal places. 

 

 

 

 

 

 

 

 

moments while the same number of model parameters is estimated. Still, we observe two very small values of optimized 

J( ̂  θ) , 1.68 and 2.39, which at least suggest a very good fit to the empirical dataset, although not statistically evaluable.

Importantly, however, due to the inevitable misspecifications of any model, the credibility of J( ̂  θ) statistics derived from 

alternative moments should not be considered inferior to those based on the efficient moments. Finally, the only set strongly 

rejected by the J-test is the overall best set #239 identified by FSMS that includes 18 moments. The empirical results for this

set highlight the potential issue of the large moment sets that can perform superbly in-sample, especially in simulations, 

but might ultimately deliver poor out-of-sample estimation performance. 

Focusing on the means and 95% confidence intervals of the individual estimates, we generally observe smaller, compared 

to the past literature ( Franke and Westerhoff, 2012; 2016 ), but statistically significant fundamentalists’ adjustment param- 

eters φ. The difference is not surprising as our empirical dataset also covers the Global Financial Crisis of 20 07–20 08, the

resulting Great Recession period, the COVID-19 recession, and the ongoing Russian invasion of Ukraine. Next, the models 

generally rejected as a good approximation of the data generation process are associated with nearly insignificant chartists’ 

adjustment parameters χ , whose challenging estimation nature has been revealed already in Section 6.7 . The volatility of 

the fundamentalists’ noise term, σ f , keeps the magnitude similar to estimates reported in the past. However, the other 

volatility associated with chartists, σc , roughly doubles, contributing to the consistent story of a less stable stock market in 

the last two decades. Finally, while αn and αp representing the herding and price misalignment parameters, respectively, are 

again estimated comparably to the past literature, the predisposition constant α0 is only statistically significantly negative 

for the CHL15 benchmark, the overall best set #187 (BSME), and the effective set #118 (FSMS). 

8. Discussion 

In the final discussion, we first consider the relationship between the complexity of the models and the size of the

identified moment sets and compare and contrast the specifics of the two algorithms. Next, we study particular moments 

prioritized by both procedures across all models, and finally, we summarize our recommendations for practical SMM appli- 

cations. 

8.1. Sizes and overlaps of the identified moment sets 

The main analysis focuses on the connection between the number of moments and the resulting SMM estimation perfor- 

mance. However, an important link also arises between the number of parameters and the size of the suggested moments 

sets. Table 5 displays sizes of the overall best and effective moment sets. One immediately notices a generally positive rela-

tionship. Moreover, for all three models, the sets chosen by BSME are smaller/not larger than those identified by FSMS. The

difference stems from the very nature of the two algorithms and a greater ability of BSME to take advantage of the interplay

between specific moments. While in the first rounds of the selection process, FSMS is forced to choose the moments accord- 

ing to their solo performance, for BSME, such a complex interplay is considered from the very beginning of the process of
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Table 5 

Moment sets: sizes, intersections, unions. 

BSME FSMS 
⋂ ⋃ 

Markov-switching multifractal model—2 parameters 

Overall best set 3 8 3 8 

Effective set 2 2 2 2 

Alfarano et al.(2008) —3 parameters 

Overall best set 10 12 10 12 

Effective set 5 7 5 7 

Franke and Westerhoff (2012) —7 parameters 

Overall best set 11 18 10 19 

Effective set 7 7 3 11 

Note: BSME and FSMS columns correspond to the size of the moment set identified by the algo- 

rithm, 
⋂ 

and 
⋃ 

to the number of moments of the intersection and union of the effective moment 

sets. Numbers in parentheses indicate the RMSE ˆ θ of the given intersection/union. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gradual elimination of the full moment set. In other words, parameters identified as crucial in the first rounds of the FSMS

procedure can be found to be less important or even redundant from the perspective of the BSME search if a combination

of some already included moments largely compensates for their absence. 

The same argumentation explains the different patterns in the two columns of Fig. 1 for the two agent-based models.

For BSME, the step-by-step elimination process results in a greater estimating efficiency until the last rounds, followed by 

large jumps in the RMSE ˆ θ for the smallest moment sets. In contrast, the FSMS expanding set leads to a hyperbolic-like

shape of the imaginary efficiency curve, which gradually decreases and reaches relative flatness only in the later stages of 

the selection process. 

The numbers of intersecting moments indicate that both algorithms prioritize very similar moment conditions. We even 

observe that for the MSM and Alfarano et al. (2008) models, the sets identified by BSME are exact subsets of those suggested

by FSMS. The two overall best sets almost perfectly overlap also for the Franke and Westerhoff (2012) model and share a 

total of 10 moments. On the contrary, both effective sets, including seven elements, only share three crucial moments, the 

indicators of the overall volatility and a measure of heavy tails (ABS-MEAN, RAW-VAR, and ABS-HILL5), while the composi- 

tion of autocorrelations differs. A potential absence of some specific moment, thus, does not seem to matter much for this

model due to the interplay between other moments that can fully compensate for it. 

8.2. Moment composition across models 

The previous section concludes that the suggested moment sets share many elements for each model, even though their 

sizes vary. However, we have not considered the particular composition of the moment sets across all models from an 

aggregate perspective. For clarity, we only focus on the effective moment sets that are, by definition, always the subsets of

the overall best sets and, as such, contain only the key moments. The evolution of their compositions is summarized in bold

in Table 2 that allows for a straightforward analysis of the moment preference stability across the two algorithms and the

overall moment importance across the three modeling approaches. 

At first glance, a densely populated upper part of Table 2 shows that key measures of heavy tails of the returns’ distri-

bution, together with standard ‘scale’ moments capturing overall volatility (RAW-VAR, ABS-MEAN), are crucial for the SMM 

performance. Importantly, the benchmark sets summarized in Table 1 always include only one of the possible measures for 

a given phenomenon. In contrast, three effective sets for agent-based models include both RAW-KURT and one of the Hill 

estimators, and all six effective sets include both RAW-VAR and ABS-MEAN. Next, focusing on the measures of clustered 

volatility and potentially long-memory patterns in the middle and bottom parts, autocorrelations of absolute returns are 

generally more critical than those of squared returns for financial agent-based models. Also, while some high-order auto- 

correlations are essential for capturing the phenomenon of volatility clustering, their actual composition does not matter 

crucially due to mutual interactions between the moments that compensate for the impact of one particular. 

An additional seemingly surprising observation valid across all three models is that the measures of one of the most 

pronounced stylized facts, the unpredictability of raw returns, are generally not crucial for the performance of SMM. Au- 

tocorrelations of raw returns up to the third lag (RAW-AC1, RAW-AC2, and RAW-AC3) make it to the composition of an

effective set only in one of six cases, and even then, it is selected as its last element. One could, however, already have

expected this behavior based on the respective descriptive statistics regarding the AR(1) dynamics in Table A.6 , where au-

tocorrelation coefficients on the first lag are negligible. Thus, the values of RAW-AC1 to RAW-AC3 contribute negligibly also 

to the overall criterion distance function J(θ) in (2) . We hypothesize that these moments would gain markedly more impor-

tance if the absence of autocorrelation in raw returns is violated in some other financial model. However, our testbed ones

do replicate this essential empirical stylized fact well. 
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8.3. Recommendations for practical application 

Overall, while the algorithms follow their specific paths, our extension identifies very similar key moment conditions 

for the simpler of the two testbed financial agent-based models using both procedures. For the more complex model, the 

two algorithms lead to the same core of the moment sets while the compositions of additional autocorrelations differ. 

Importantly, BSME generally prefers parsimonious sets that better avoid the problem of a superb in-sample performance 

potentially followed by a poor out-of-sample empirical fit, as observed in our empirical application. 

Considering the results of the simulation analysis enriched by the findings of the resulting out-of-sample empirical ap- 

plication, our general recommendation for the potential users of our methodology is to follow the structure of Section 7 .

That means considering both overall best and effective sets identified by the two algorithms, provided their sizes are not 

too large. Next, contrast their empirical estimation performance to few moment sets used in the literature. The J-test of

overidentifying restrictions provides a rigorous model comparison and validation guidance. When a suggested set seems 

unnecessarily large, typically produced by FSMS, it is recommended to prefer a smaller companion set, typically suggested 

by BSME. 

Effective sets represent less complex parsimonious subset alternatives to the overall best moment sets, demonstrating 

comparable performance while decreasing the necessary computing budget. However, for models with many estimated pa- 

rameters, they tend to be of the same size. This, unfortunately, inhibits rigorous statistical testing of the estimated model 

fit to the moment characteristics of the empirical dataset. Thus, if an effective set is at least one element larger, this is

generally the most preferred option for a single empirical application. 

9. Conclusion 

This paper introduces machine learning feature selection methods to agent-based econometrics. We propose a machine 

learning extension of the SMM to expand the estimation methodology for analytically intractable financial agent-based 

models. The complexity or latency of some variables often prevents the application of standard econometric tools, such 

as the GMM or maximum likelihood. Therefore, simulated counterparts are traditionally employed instead. However, the 

most prominent alternative is the SMM, which faces several difficulties. 

Specifying the moments used for the estimation and the potential arbitrariness of this choice are among the most con- 

cerning problems of the method. The moment sets are traditionally hand-crafted intuitively concerning the stylized facts of 

financial data. However, an insufficient number of moments may be provided to the estimation method, with vital parts of 

the model dynamics not captured. On the other hand, in practical applications to small samples, too many moments can 

complicate the estimation of the covariance matrix of the moment conditions. The proposed extension thus automates this 

choice. The main aim is to identify preferable moment sets for a given model yielding superior estimation performance. 

The intuition behind our methodology follows one of the most straightforward and earliest applications of machine learn- 

ing in econometrics. Specifically, it revolves around the techniques defined within the stepwise regression framework. In- 

stead of model selection, we apply them to select the set of moments used by the SMM. We propose two algorithms, back-

ward stepwise moment elimination (BSME) and forward stepwise moment selection (FSMS). Subsequently, we test them 

on three models with increasing complexity. The testbed models include the discrete-time regime-switching MSM and two 

popular financial agent-based frameworks. The results are compared with estimates generated using three benchmark mo- 

ment sets standardly used in the literature and constructed specifically for the given models. 

We find that the two algorithms consistently detect the most important moments for every model. The moment sets 

identified by our methodology achieve a substantial performance gain over the benchmarks. Consequently, we apply these 

preferable sets in an out-of-sample empirical exercise to successfully estimate the Franke and Westerhoff (2012) model using 

S&P 500 data. 

As a follow-up to this work, if the full moment set was appropriately expanded, then an application study of our method-

ology to small-scale macroeconomic agent-based models could be conducted as well. Moreover, other specifications of the 

selection techniques might be used to boost its performance. For instance, stepwise selection of moment couples could be 

applied; however, the considerably increased computational burden must be taken into account. 

Availability of data and materials 

The empirical dataset collected and analyzed during the current study and a sample Julia code for an illustrative repli-

cation of the results are available in the GitHub repository: github.com/jirikukacka/Zila _ Kukacka _ Moment _ Selection [created 

2022-10-11]. 
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Appendix A. Model outputs and descriptive statistics 
Fig. A.3. Model outputs. 

Note: The figure displays typical time series outputs of the testbed models under the general simulation setup. For visual clarity, only a period of length 

10 0 0 is used for generation. 
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Table A.6 

Descriptive statistics. 

MSM ALW (2008) FW (2012) 

Mean 0.00 0.00 0.00 

( −0.02;0.02) (0.00;0.00) (0.00;0.00) 

SD 1.00 0.04 0.01 

(0.94;1.05) (0.04;0.05) (0.01;0.01) 

Skew 0.00 0.00 0.00 

( −0.10;0.10) ( −0.10;0.11) ( −0.15;0.16) 

Ex Kurt 1.08 0.88 1.79 

(0.76;1.49) (0.51;1.24) (1.29;2.31) ̂ AR (1) 0.00 0.00 0.01 

( −0.03;0.03) ( −0.03;0.03) ( −0.02;0.04) 

L-B 8.7% 9.7% 15.6% 

J-B 100.0% 100.0% 100.0% 

ADF 100.0% 100.0% 100.0% 

KPSS 4.8% 2.2% 0.0% 

G2012 6.1;6.6;6.0;4.8% 6.3;5.4;5.5;4.0% 4.7;4.6;5.2;5.6% 

DGG2020 5.0% 4.6% 6.2% 

Note: ‘MSM’ is the Markov-switching multifractal model, ‘ALW(2008)’ is the Alfarano et al. (2008) 

model, and ‘FW(2012)’ is the Franke and Westerhoff (2012) model. The averaged results are based 

on 10 0 0 random runs and the general simulation setup. The resulting 95% sample confidence inter- 

vals are reported in parentheses. ̂ AR (1) reports the estimated AR(1) coefficient based on an ARIMA 

(1,0,0) model. Rejection rates based on a 5% significance level are reported for the statistical tests: 

H 0 for the Ljung-Box test (L-B) is ‘no autocorrelation on the first lag,’ H 0 for the Jarque-Bera test 

(J-B) is ‘normality,’ H 0 for the Augmented Dickey-Fuller test (ADF) with constant is ‘unit root pres- 

ence/covariance nonstationarity,’ H 0 for the Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) is ‘level 

stationarity,’ H 0 for the Grazzini (2012) test (G2012) is ‘ergodicity’ based on the first four moments, 

and H 0 for the Delli Gatti and Grazzini (2020) test (DGG2020) is ‘ergodicity’. The figures are rounded 

to one or two decimal places. 

 

 

Appendix B. Machine learning evolutions 

The following evolutions are coded according to labels in Table 1 : 

• Markov-switching multifractal model: 

– BSME: ABS-AC15 → RAW-AC1 → RAW-AC3 → SQR-AC15 → RAW-KURT → SQR-AC5 → ABS-AC10 → SQR-AC20 

→ SQR-AC1 → SQR-AC10 → ABS-HILL2.5 → ABS-AC50 → RAW-AC2 → ABS-AC5 → ABS-AC100 → ABS-AC1 → 

ABS-AC25 → ABS-AC20 → ABS-HILL5 → (beginning of the overall best set #246) SQR-AC25 → (beginning of 

the effective set #250) ABS-MEAN → RAW-VAR, 

– FSMS: RAW-VAR → ABS-MEAN (end of the effective set #27) → SQR-AC20 → SQR-AC25 → SQR-AC10 → SQR- 

AC5 → ABS-HILL5 → ABS-AC5 (end of the overall best set #140) → RAW-AC3 → ABS-AC25 → ABS-AC100 →
RAW-AC1 → SQR-AC1 → ABS-AC15 → ABS-HILL2.5 → ABS-AC20 → ABS-AC50 → ABS-AC1 → RAW-KURT → 

SQR-AC15 → RAW-AC2 → ABS-AC10. 
• Alfarano et al. (2008) : 

– BSME: ABS-AC10 → ABS-AC15 → SQR-AC20 → ABS-AC20 → ABS-AC1 → ABS-AC50 → RAW-AC3 → SQR-AC25 

→ ABS-AC5 → SQR-AC15 → SQR-AC10 → RAW-AC1 → (beginning of the overall best set #190) RAW-AC2 → 

ABS-HILL5 → SQR-AC1 → ABS-AC25 → SQR-AC5 → (beginning of the effective set #238) ABS-HILL2.5 → ABS- 

AC100 → ABS-MEAN → RAW-KURT → RAW-VAR, 

– FSMS: ABS-AC100 → ABS-AC25 → RAW-VAR → RAW-KURT → ABS-MEAN → ABS-HILL2.5 → SQR-AC1 (end of 

the effective set #128) → SQR-AC5 → ABS-HILL5 → RAW-AC1 → RAW-AC2 → ABS-AC15 (end of the overall 

best set #192) → SQR-AC20 → RAW-AC3 → ABS-AC20 → SQR-AC15 → ABS-AC50 → SQR-AC10 → ABS-AC10 → 

SQR-AC25 → ABS-AC5 → ABS-AC1. 
• Franke and Westerhoff (2012) : 

– BSME: ABS-AC5 → RAW-AC2 → ABS-AC50 → SQR-AC15 → RAW-KURT → SQR-AC25 → ABS-AC1 → ABS-AC15 

→ RAW-AC1 → ABS-AC20 → SQR-AC20 → (beginning of the overall best set #187) SQR-AC5 → SQR-AC1 → 

ABS-HILL2.5 → ABS-AC100 → (beginning of the effective set #224) SQR-AC10 → RAW-AC3 → ABS-AC10 → 

ABS-AC25 → ABS-MEAN → RAW-VAR → ABS-HILL5, 

– FSMS: SQR-AC20 → SQR-AC25 → ABS-MEAN → ABS-AC100 → RAW-KURT → ABS-HILL5 → RAW-VAR (end of 

the effective set #118) → ABS-HILL2.5 → ABS-AC25 → ABS-AC50 → RAW-AC1 → RAW-AC2 → SQR-AC10 → 

ABS-AC5 → ABS-AC10 → SQR-AC5 → ABS-AC1 → RAW-AC3 (end of the overall best set #239) → ABS-AC20 →
ABS-AC15 → SQR-AC15 → SQR-AC1. 
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Appendix C. Evolution of the parameter estimates 

Fig. C.4. Evolution of the parameter estimates across machine learning rounds. 

Note: The dashed horizontal line represents the true parameter value, the full line corresponds to its estimate for the best moment set of the respective

round, and the gray area shows its 95% sample confidence band. 
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Fig. C.4. Continued 
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Appendix D. Alternative weighting matrices 

Table D.7 

Franke and Westerhoff (2012) : alternative weighting matrices. 

FW9 CHL15 

Identity matrix 

Benchmark RMSE ˆ θ 0.767 0.843 

BSME—Effective set #224 0.732 4.6% 13.2% 

FSMS—Effective set #118 0.814 −6.1% 3.4% 

Diagonal overlapping block bootstrap weighting matrix 

Benchmark RMSE ˆ θ 0.610 0.521 

BSME—Effective set #224 0.530 13.1% −1.7% 

FSMS—Effective set #118 0.549 10.0% −5.4% 

Non-overlapping block bootstrap weighting matrix 

Benchmark RMSE ˆ θ 0.580 0.671 

BSME—Effective set #224 0.405 30.2% 39.6% 

FSMS—Effective set #118 0.408 29.7% 39.2% 

History sampling bootstrap weighting matrix 

Benchmark RMSE ˆ θ 0.557 0.443 

BSME—Effective set #224 0.445 20.1% −0.5% 

FSMS—Effective set #118 0.409 26.6% 7.7% 

Note: Estimation improvements compared to the benchmark moment sets are reported in %. 
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