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The reluctance of a non-trivial fraction of the population to adhere to social distancing measures – 
and even to get vaccinated – during the COVID-19 pandemic represented a challenge for imposed 
public health policies in many countries around the world. Against this background we study 
the impact of boundedly rational perceptions for the dynamics of epidemics such as the COVID-

19 pandemic in a standard epidemic model extended by a stylized macroeconomic dimension 
similar to Atkeson et al. (2021). We illustrate through which channels misperceptions or even 
“scepticism” concerning the infectiousness of the disease or its mortality rate may undermine the 
effectiveness of lockdowns and other public health policies in the long-run.

1. Introduction

While the epidemiological dynamics of diseases such as COVID-19 have been modeled extensively, e.g., in the literature on com-

partmental epidemiological models based on the seminal work by Kermack and McKendrick (1927), the role of economic conditions 
in the evolution of such epidemics was much less investigated until recently, when works by Atkeson et al. (2021), Eichenbaum et 
al. (2021), and others led to an outright explosion of studies in the new field of “Pandenomics” (Cliffe, 2020).

While in frameworks such as Eichenbaum et al. (2021) the agents fully understand the epidemic and macroeconomic dynamics 
and consider the related health and economic risks in a rational manner, the reactions of a non-trivial number of individuals in many 
countries seem to suggest that other apparently “non-rational” factors may have played an important role in their behavior during 
the COVID-19 pandemic. In this context, one important and relatively less understood phenomenon of the COVID-19 pandemic was 
the existence of a non-trivial fraction of “sceptics” among the population, who can roughly be divided into two groups. The members 
of the first group either doubted the sheer existence of the COVID-19 virus (or explained its existence through conspiracy theories) or 
seemed to be generally reluctant to adhere to the social distance measures ordained by governments around the world. The second 
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group did acknowledge the danger of the COVID-19 pandemic, but believes them to be outweighed by the social and economic costs 
of lockdowns. These sceptics, known e.g. in Germany as “Querdenker” (lit. “lateral thinkers”), not only obtained a certain amount 
of prominence in the political discourse, but also compromised the long-run effectiveness of the vaccination campaigns by hindering 
the accomplishment of “herd immunity” through vaccination. Against this background, we address the following question: what are 
the interactions and feedback loops between scepticism and efficiency of the governmental social distancing measures?

Given the numerous and continuously increasing amount of studies that have emerged since the COVID outbreak by the end 
of 2019, a thorough survey is an impossible task to undertake. Nonetheless, there are a few studies worth mentioning. In the 
behavioral sphere, studies such as Eksin et al. (2019) and Di Guilmi et al. (2022) endogenize the reaction of susceptive individuals 
on physiological measures. Dasaratha (2020), for instance, extends a standard SIR model with endogenous meeting rates based on 
game-theoretic considerations, and Lux (2021) introduces social dynamics into the epidemiological process by assuming that the 
compliance of the population evolves adaptively according to the pandemic’s perceived risk (though without taking into account the 
economic dimension as we do).1 At the intersection between epidemiology and economics, Eichenbaum et al. (2021) were among 
the first to investigate the main economic transmission mechanisms of an epidemic such as COVID-19 in a model of forward-looking 
utility maximizing representative agents with rational expectations. Using the more elaborated heterogenous agents New Keynesian 
(HANK) approach, Kaplan et al. (2020) investigate the distributional consequences of social distancing measures in terms of income 
and wealth in a model calibrated for the United States. Using medium-scale agent-based models, Delli Gatti and Reissl (2020)

and Basurto et al. (2023) analyze the joint dynamics of the epidemic and the economy in a model with various types of agents’ 
heterogeneity. Finally, Basurto et al. (2020) study the efficiency of lockdown policies in a macroeconomic model with explicitly 
decentralized agent interaction.

Regarding the role of scepticism in the context of the COVID-19 pandemic, Allcott et al. (2020) documents the correlation between 
the political orientation of COVID scepticism and compliance to containment measures with the political orientation. Bursztyn et al. 
(2020) study the role of misinformation in mass media broadcasts and the adoption of preventative measures by the population, and 
Charron et al. (2023) study the impact of political polarization, see also Milosh et al. (2021). Mellacher (2023) also investigates the 
role of sceptics in the transmission of the disease in a theoretical model similar to ours, but in a purely epidemiological model with 
no interaction between the economic and the epidemiological spheres. To the best of our knowledge, Faia et al. (2022) is the only 
study besides ours that focuses on agents’ perceptions of public health and economic or financial conditions, though using a different 
methodological approach. Using a survey experiment, the authors investigate how the ability of individuals to select public health-

and economics-related information is related to their prior beliefs. However, they do not focus on the perceived trade-off between 
these two dimensions.

This recent but important strand of the literature considers the sceptic population as an exogenous factor. However, one can 
easily imagine that there exists a feedback loop between the sceptic fraction of the population and government policy. For instance, 
if the pandemic has already caused a significant number of infections, the public may be more willing to accept harsher lockdown 
restrictions on the economy, which in turn limits the reproduction rate of the virus and thus the future infectivity, as discussed e.g. 
by Lux (2021). In other words, the success of lockdown policies could, to some extent, be an endogenous process.

From a more theoretical perspective, the issue of scepticism is intrinsically related to the credibility of government policies. This 
issue has been thoroughly studied over the last three decades in a very different context, namely the credibility of monetary policy 
(see Lohmann, 1992 for an introduction and Aguiar et al., 2013 and Svensson, 2020 for two recent contributions). Among many 
interesting issues from this strand of literature, one that stands out for our research goal is the question of whether the public can 
trust the central bank to reach its policy target e.g. the inflation target. Usually, and following the seminal contribution by Barro and 
Gordon (1983), this question was addressed using models where all agents had rational expectations (RE) and thus fully understood 
the operating principle of the model. In recent times, and particularly after the 2007/08 Global Financial Crisis, the hegemony of 
the Rational Expectations Hypothesis has come under closer scrutiny. It has been increasingly acknowledged by the profession that 
it is important to focus on the effects of bounded rationality and learning, in particular to study models where the economic agents 
cannot simply move immediately to the RE solution, and instead have to learn how to form expectations based on past data (Assenza 
et al., 2021; Hommes and Lustenhouwer, 2019b). In such an environment of behavioral expectations, the credibility of the central 
bank can emerge endogenously under conditions that depend on the specific learning model. Conversely, if these conditions are 
not met, the public may learn to disregard the target of the central bank and to rely instead on off-equilibrium behavior, such as 
following inflation trends (Massaro, 2013; Mokhtarzadeh and Petersen, 2021).

The major theoretical challenge to the behavioral expectations literature is the so-called “wilderness of bounded rationality”: 
there exist a large number of learning models that can have highly heterogeneous dynamic properties. One of the achievements 
of this literature is to limit this wilderness to a small number of candidates as a viable replacement of the RE, among which the 
two most prominent are Adaptive Learning (see Evans and Honkapohja, 2012 for a comprehensive introduction) and the Heuristic 
Switching Model (henceforth HSM; see Brock and Hommes, 1998 for an introduction and Hommes and Lustenhouwer, 2019a for 
a DSGE application).2 In our paper, we will focus on the latter for two reasons. Firstly, this model is well supported by empirical 
and experimental studies in various financial and macroeconomic setups (see Kukacka and Sacht, 2023 for a recent example and 

1 See Funk et al. (2015) for a discussion of nine challenges in incorporating the dynamics of behavior in epidemiological models.
2 In the behavioral literature, this modeling framework is also known as Adaptively Rational Expectations Dynamics (ARED) approach or discrete choice approach 

and encompasses models in which some fraction of the population can have fundamental or even rational expectations. See Matějka and McKay (2015) for the 
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discussion). Secondly, as we will show in this paper, it is relatively straightforward to apply the HSM to the question of endogenous 
lockdown scepticism and much of our setup will directly reflect the previous studies on the credibility of monetary policy.

The HSM is based on the notion that agents, who need to forecast some economic variable and cannot directly calculate the RE 
solution, resort to a small number of simple rules of thumb, such as naive or trend-following expectations. The agents, however, 
are smart in choosing among them: they focus on the rules that were more successful in the past. In the case of monetary policy, 
if the central bank has so far kept the inflation close to (far away from) its target, agents will be more (less) likely to expect this 
fundamental inflation in the future as well, which in turn can bring the inflation closer to (farther away from) its target. This results 
in endogenous dynamics, in which the credibility of the central bank can emerge as a result of learning if the monetary policy is 
fine-tuned to the structure of the economy. As previously mentioned, the HSM can be easily adapted to the question of the COVID-19 
scepticism. In our model, we will assume that the government imposes lockdown measures depending on the incidence rate, i.e. 
number of new daily infections per 100.000 inhabitants. However, the efficiency of the lockdown is scaled down by the share of 
sceptics among the general public, which itself is modeled with HSM. We will consider four versions of the model. In one dimension, 
the number of sceptics decreases with a higher number of either new daily infections or deaths.3 In the second dimension, we will 
study sceptics who either do or do not react to the output gap.

The results of our analysis can be summarized as follows: First, the existence of an endogenous fraction of sceptics in the popula-

tion, who do not follow government-ordered social distancing measures, can undermine the efficacy of such measures significantly. 
Second, the choice of the reference variables that determine the share of sceptics has important implications for the dynamics of 
the epidemic, and its economic consequences. In particular, the bigger the disconnect between the governmental and the public 
policy targets, the more unstable dynamics can emerge. Third, if the recovered population loses virus immunity over time, the model 
predicts that a weaker government response to the virus can lead to both a deeper recession and a higher death toll of the pandemic. 
Finally, a first empirical estimation attempt using a dataset combining the US economic and epidemic data provides statistically 
significant estimates of the two core behavioral model parameters. It thus suggests statistical evidence in favor of evolutionary 
switching dynamics towards scepticism and back towards trusting the government during the US pandemic of 2020 and 2021. To 
the best of our knowledge, our paper is the first one to highlight the trade-off between the economic and epidemiological impacts 
of COVID-19 and its role on the endogenous emergence of “sceptics” in a SEIRD-macroeconomic model. Thus, our study links the 
COVID-scepticism with the epi-macro literature discussed above.

The remainder of this paper is organized as follows: In section 2, we describe the basic epidemiologic SEIRD model and our 
baseline behavioral extensions. We then modify our model by incorporating sceptics into the model in section 3. Further, we inves-

tigate how the dynamics of the model change when the government and the public use alternative reference measures in section 4, 
and section 5 suggests potential policy extension of the model focused on capacity constraints at ICUs and two different immunity 
scenarios. Section 6 then completes the analysis with a Monte Carlo simulation study of the estimation potential of the model and 
subsequently applies the model empirically to US economic and epidemic data. Finally, we draw some conclusions from this paper 
in section 7.

2. A baseline reduced-form behavioral SEIRD-macroeconomic model

For the description of the epidemiological dynamics, we use a compartmental model which describes the evolution of a disease 
such as COVID-19 by dividing the total population into five categories: susceptible (S), exposed (E), infected (I) recovered (R) and 
deceased (D) similarly as in Kaplan et al. (2020).

In discrete time, the baseline SEIRD model reads

Δ𝑆𝑡+1 = 𝛾𝑆𝑅𝑡 − 𝛽𝑡𝑆𝑡𝐼𝑡∕𝑁𝑡 (1)

Δ𝐸𝑡+1 = 𝛽𝑡𝑆𝑡𝐼𝑡∕𝑁𝑡 − 𝜎𝐸𝑡 (2)

Δ𝐼𝑡+1 = 𝜎𝐸𝑡 − (𝛾𝑅 + 𝛾𝐷)𝐼𝑡 (3)

Δ𝑅𝑡+1 = 𝛾𝑅𝐼𝑡 − 𝛾𝑆𝑅𝑡 (4)

Δ𝐷𝑡+1 = 𝛾𝐷𝐼𝑡 (5)

𝑁𝑡+1 =𝑁𝑡 −𝐷𝑡, (6)

where 𝑁𝑡 denotes the current population size, 𝑆𝑡 the number of susceptible people at period 𝑡, 𝐸𝑡 the number of exposed people, 
𝐼𝑡 is the number of infected people at 𝑡, 𝑅𝑡 is the number of recovered people and 𝐷𝑡 the number of deceased people. Please note 
that all the level variables are also subject to non-zero constraints. 𝛽𝑡 is the so-called transmission rate, i.e. the number of extended 
contacts per day. The rate of mortality of the virus is denoted by 𝛾𝐷, and the rate of recovery by 𝛾𝑅, and 𝛾 = 𝛾𝐷 + 𝛾𝑅 is the average 

3 The great uncertainty regarding the true mortality rate of the COVID-19 virus at the onset of the pandemic seems to have led many people to over- or underestimate 
its true threat. As discussed by a recent study by the World Health Organization (Msemburi et al., 2022), the estimated excess mortality due to the COVID-19 pandemic 
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Table 1

Baseline Calibration Parameters.

𝜎 incubation period 1/5.2 Atkeson (2020), Wang et al. (2020)

𝛾 Illness duration rate 1/18 Atkeson (2020)

𝛾𝐷 Death rate 0.004 Own parametrization

𝛾𝑅 Recovery rate 𝛾 − 𝛾𝐷 Own parametrization

𝛾𝑆 Reinfection rate 0.00 Own parametrization

𝛼𝑦 Autoregressive output gap coefficient 0.95 Own parametrization

𝛼𝑖 Infection rate impact on output gap 0.005 Own parametrization

𝛼𝑏 Public health impact on output gap 0.04 Own parametrization

𝛽0 Baseline meeting rate 0.125 Wang et al. (2020)

𝑅0 = 𝛽0∕𝛾 Baseline transmission rate 2.25 Fauci et al. (2020)

𝜇𝑖 Intensity of choice parameter 2.5 Own parametrization

𝜇𝑦 Intensity of choice parameter 100 Own parametrization

duration of the disease. Finally, 𝛾𝑆 represents the waning of the viral immunity that recovered individuals initially acquire. In the 
special case of 𝛾𝑆 = 0, the immunity is permanent, while 𝛾𝑆 > 0 represents gradual immunity loss.4

While a purely epidemiological approach would consider the transmission rate to be as constant, a more realistic approach would 
take into account behavioral as well as policy-induced effects on this variable. In a similar vein as Atkeson et al. (2021) and Flaschel 
et al. (2022) and Lux (2021) we thus endogenize 𝛽𝑡 as follows

𝛽𝑡 =max{0, 𝛽0 − 𝜙𝑔(1 −𝜔𝑡)𝐺𝑡}, (7)

where 𝛽0 is the baseline transmission rate, 𝜙𝑔𝐺𝑡 represents social distancing measures enforced by the government and 𝜔𝑡 is the share 
of sceptics, who undermine these measures. Accordingly, the higher this share is, the less efficient lockdown measures become.5 The 
case with 𝜔𝑡 = 0 represents a scenario with full governmental credibility (akin to the RE solution in monetary policy problems; we 
will discuss how 𝜔𝑡 ⩾ 0 evolves endogenously in the next section).

As discussed by Eichenbaum et al. (2021), the two main channels through which economic activity is related and, in fact, influence 
the number of transmissions are (a) the amount of time spent by people at their working places with other workers and (b) the amount 
of their time spent in consuming (buying) goods and services.6 As an epidemic affects an increasing fraction of the population, both 
types of activities may become less feasible, either because people are too sick to leave their homes, or because people decide to stay 
at home and avoid being infected voluntarily. Further, social distancing policies directly affecting the transmission rate 𝛽𝑡 through 
the imposition of social distancing measures or eventual lockdowns also have a negative impact on economic activity. Accordingly, 
we specify aggregate economic activity (represented here by the output gap 𝑦𝑡) as follows:

𝑦𝑡 = 𝛼𝑦𝑦𝑡−1 − 𝛼𝑖𝐼𝑡∕𝑁𝑡 + 𝛼𝑏(𝛽𝑡−1 − 𝛽0) (8)

where 𝛼𝑖 represents the impact of 𝐼𝑡∕𝑁𝑡 on 𝑦𝑡 due to purely physiological factors, 𝛼𝑏 the impact of the transmission rate on economic 
activity, and 𝛼𝑦 the intrinsic persistence of the output gap process. It should be noted that when 𝐼𝑡 = 0 and 𝛽𝑡 = 𝛽0 (no pandemic 
scenario), the output gap quickly converges to its natural steady state of 𝑦𝑡 = 0.7

Unless otherwise stated, the following simulations are based on the parameter values reported in Table 1. For the epidemiological 
part of the model, we use parameter values used in standard studies such as Atkeson (2020), Wang et al. (2020), and Fauci et al. 
(2020). In particular, following Atkeson (2020) and Wang et al. (2020), we assume an incubation period of 5.2 days and an average 
duration of the disease of 18 days. Further, we assume for the basic reproduction ratio, defined as

0 = 𝛽0∕𝛾,

the value of 2.25 proposed by Fauci et al. (2020).8 Finally, the death rate of the virus seems to fluctuate around the 2% threshold, 
thus we assume 𝛾𝐷 = 0.02∕18 ≈ 0.004 (overall death rate divided by the illness duration).

In numerous countries a key measure for the evolution of the COVID-19 epidemic was the so-called incidence rate 𝑡 , namely 
the number of new cases 𝜎𝐸𝑡 per 100.000 persons.9 In the following analysis, we will thus assume that this variable becomes the 
basis of the lockdown policy with 𝐺𝑡 = 𝑡−1. We have experimented with alternative policy specifications (namely 𝐺𝑡 =Δ𝐷𝑡−1 – that 

4 In the Figures of section 3, we assume that 𝛾𝑆 = 0, and relax this assumption in section 4. Further, one can also introduce new variants of the virus with 𝛾𝑆,𝑡 = 0
for most 𝑡 and 𝛾𝑆,𝜏 = 1 for some specific 𝜏 . We will leave this extension of the model for future studies.

5 Note that this specification captures two alternative scenarios: sceptics simply refusing to follow the official guidelines, or sceptics putting political pressure on 
reducing the severity of these restrictions compared to the government’s default policy.

6 This is, of course, an oversimplification which is qualified by the capability of working from home (available, of course, only to a fraction of the working 
population), as well as by the use of delivery and takeaway services for the purchase of goods and to some extent, services.

7 Given that the model has a relatively fast, daily frequency, we leave out standard economic factors, such as Philips Curve considerations, or the impact of 
expectations on savings.

8 While Wang et al. (2020) propose a value of 3.1 for the description of the outbreak in the Chinese city of Wuhan, estimates for Western countries range between 
2 and 3 (European Center for Disease Control). With a value of 2.25 we are thus on the lower end of the values proposed so far.

9 In Germany, for instance, the 7-day average incidence rate has been prominently used as a threshold value for the implementation of sharp social distancing 
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Fig. 1. The baseline behavioral SIR model with exogenous (baseline) and endogenous (scenario 1) number of extended contacts per day 𝛽𝑡 following an initial infection 
of 100 persons of the population. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

means that the government reacts to the number of daily deaths – and a threshold policy in which higher levels of 𝐺𝑡 are triggered 
by threshold levels of 𝑡−1). Still, the model seemed to lead to similar qualitative policy implications. We leave this issue for future 
studies that could try to identify the optimal policy rule (see Basurto et al., 2023, for some discussion).

Fig. 1 illustrates the baseline dynamics of the model under 𝛽𝑡 = 𝛽0, i.e. without any social distancing measures imposed by the 
government, and thus a constant 0, and under the assumption of a varying 𝛽𝑡. The epidemiologic dynamics are well known by now 
not only to epidemiologists but to a broader public, including economists. An initial infection of a small fraction of the population 
leads ceteris paribus, and in particular under an unchanged reproduction rate 0 (resulting from an unchanged number of daily 
extended contacts 𝛽𝑡 = 𝛽0 and represented by the baseline blue lines in the individual graphs in Fig. 1) to a rapid infection of an 
increasing number of susceptible individuals (which we assume are the totality of the population). Without any public policy aimed 
at reducing the transmission rate 𝛽𝑡 and thus of the reproduction rate 𝑡, the epidemic enters an exponential growth phase which 
leads to a swift spread of the disease over the population in a short period of time. Given the (still constant) mortality rate assumed 
so far, the rapid increase in the number of infected also leads to a significant number of deceased persons. Since the rate of infection 
(number of infected people relative to the population) negatively affects the level of economic activity – represented in our model 
by the output gap variable, see equation (8) – the spread of the disease leads to a negative output gap. Given our parametrization, 
this impact is relatively small, leading, at the peak of the infection, to about a 1% decrease in economic activity due to purely 
physiological reasons, i.e. solely due to the sickness-related reduction of production in the economy.

When a social distancing policy is implemented, the current transmission and reproduction rates 𝛽𝑡 and 𝑡 respectively, are 
reduced. This has opposing effects on the epidemic and economic spheres: In the epidemic sphere, the containment policy leads to a 
significant reduction in the number of newly infected people per day and, given the constant mortality rate of the epidemic, also to 
a lower number of deceased people in the long run. In the economic sphere, by contrast, the slump in economic activity, which in 
the previous case was only due to the pure physiological effects of the epidemic, is magnified by the containment policies.

3. Incorporating sceptics

So far, we have assumed that the contact rate 𝛽𝑡 and the reproduction rate 𝑅0
𝑡

vary only due to government-imposed social 
distancing measures. Further, we have also implicitly assumed that these measures are followed and accepted by the totality of 
the population, which leads to successful containment of the disease, as discussed in the previous section. However, as we have 
discussed before, a non-trivial phenomenon undermined the success of public health policies. It even threatened the achievement of 
herd immunity in the long-run (such as is the case in Germany with its rather low rates of vaccinated people despite the vast vaccine 
supply) was the emergence of COVID-19 “sceptics”, who did not adhere to social-distancing measures.10 In the following, we model 
the compliance to social-distancing measures as an endogenous choice based on the perceived health-related and economic costs 
using the Heuristic Switching framework.

10 Fortunately, the COVID-19 virus mutated through 2022 to a variant with a much lower mortality rate that eased the constraint created by this “sceptic” behavior. 
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3.1. A heuristic switching model of scepticism

As discussed e.g. by Hommes (2013), the Heuristic Switching Model (HSM) is based on the following idea. Suppose that in a 
dynamic system represented by a vector of state variables 𝑧𝑡, agents need to forecast certain variables 𝑥𝑡+1 ∈ 𝑧𝑡+1. For some reason, 
the rational solution is unavailable to or cannot be computed by the agents. Instead, they rely on a set 𝐻 of heuristics of a form 
𝑥𝑒
ℎ,𝑡+1 =𝐻ℎ(𝑧

𝑡), where the superscript 𝑡 denotes the history of the system 𝑧𝑡 (including past values of 𝑥𝑡). Heuristics 𝐻ℎ(⋅) tend to be 
simple, for instance, a simple naive rule is given by 𝑥𝑒

𝑡+1 = 𝑥𝑡 and a simple bias can be represented by 𝑥𝑒
𝑡+1 = 𝑏 for some bias value 𝑏.

Even though the rules are simple, the agents are smart in choosing them. They focus on some measure of success 𝑈ℎ(𝑡) for 
each heuristic, and in the context of forecasting financial or macro variables, a popular metric is squared forecasting error with 
𝑈ℎ(𝑡) = −(𝑥𝑒

ℎ,𝑡
−𝑥𝑡)2. Hence, the agents switch towards the heuristics that have been more successful. Define the logit transformation

𝜔ℎ
𝑡
=

exp(𝜇𝑈ℎ(𝑡))∑
𝑘∈𝐻 exp(𝜇𝑈𝑘(𝑡))

(9)

as the share of the population that at period 𝑡 will use heuristic ℎ. Parameter 𝜇 represents the intensity of choice of the agents: when 
𝜇 = 0, agents choose heuristics at random, when 𝜇→∞, they immediately switch to the best heuristic, and for finite positive values 
of 𝜇, switching is more gradual.

Our model of scepticism will have almost the same structure. Instead of focusing on forecasting heuristics, we will assume that 
there are two forces that agents are subject to:

Pull forces: Agents are pulled towards trusting the government – and thus to reduce their scepticism – if they observe that the 
pandemic “is real”. In this context, we will consider two specifications11:

• 𝑈𝐼
𝑡
=Δ𝐼𝑡 – the number of newly infected persons;

• 𝑈𝐷
𝑡
=Δ𝐷𝑡 – the number of newly deceased persons.

Note that both specifications (with 𝑈𝐶
𝑡

for 𝐶 ∈ {𝐼, 𝐷}, C standing for credibility) refer to observable variables and thus 
imply a tangible experience of the pandemic and its current severity.

Push force: Agents are pushed towards scepticism for two reasons:

• 𝑈𝑁
𝑡

= 0 represents the case in which people are inclined to simply disbelieve the pandemic (or its severity);

• 𝑈𝑌
𝑡
= −𝑦𝑡 represents the case in which people worry about the economic consequences of the social distancing measures.

The two push forces 𝑆 ∈ {𝑁, 𝑌 } (S standing for scepticism) represent the two types of resistance towards lockdown 
measures discussed in the Introduction.

Accordingly, the share of sceptics is endogenized as

𝜔𝑡 =
exp

(
𝜇𝑦𝑈

𝑆
𝑡

)
3 + exp

(
𝜇𝑦𝑈

𝑆
𝑡

)
+ exp

(
𝜇𝑖𝑈

𝐶
𝑡

) , (10)

for 𝑆 ∈ {𝑁, 𝑌 } and 𝐶 ∈ {𝐼, 𝐷}. Note that this leads to four model specifications, which we will refer to as 𝐼∕𝑁 , 𝐷∕𝑁 , 𝐼∕𝑌 and 
𝐷∕𝑌 models. We will consider the 𝐼∕𝑌 specification as the benchmark model since it is likely the most realistic one.

In the standard HSM, the heuristics forecast the same variable, such as inflation. In contrast, our agents weigh two different 
factors, namely the current occurrence of infection (expressed in the count of either new infections or deaths per 100.000 people) 
and the state of the economy. To bring these two variables to a common factor, we weigh them with two different intensity of 
choice parameters. Secondly, the number of infections and deaths can quickly start to grow exponentially. On the other hand, a 
forecasting heuristic can make both a positive and negative mistake, whereas our push and pull forces are always non-negative, with 
Δ𝑡, Δ𝑡, −𝑦𝑡 ⩾ 0. Therefore, for the sake of numerical stability and easier interpretation, we settled on a model, which is analogous 
to an HSM with (1) naive forecasting rules and (2) absolute, instead of squared, forecasting errors.

Finally, note that for 𝑦𝑡−1 = 0 and, depending on the model specification, Δ𝐼𝑡 = 0 or Δ𝐷𝑡 = 0, the share of sceptics becomes 
𝜔𝑜 = 1∕(3 + 1 + 1) = 0.2, i.e. by default 20% of the population does not support the government’s containment policies. Assuming 
such a high population of sceptics in the steady state may seem quite exaggerated. However, as Fig. 2 illustrates, the share of the 
population disagreeing that vaccines (in general, not only COVID-19 vaccines) are safe or effective goes up to 20-30% in some 
countries like France.

3.2. Micro-foundations of the heuristic switching model

In the standard versions of HSM, the popularity of forecasting heuristics (as defined by equation (9)) depends on their relative 
predictive performance. Our model of “pull-push” forces has a similar structure, where the forces represent the attitude of households 
towards social distancing measures: whether the households should trust or distrust the government and its policy. Below we provide 
a stylized choice model that can serve as micro-foundations for the HSM from the previous section.

11 In both cases, we consider absolute numbers here as media often reports epidemic numbers in absolute and not relative terms, for example, relative to the overall 
population or relative to the number of people currently infected. Remark that unless the population dramatically decreases due to the high death toll of the pandemic, 
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the overall and relative number of infections are proportional and thus have no bearing on the model up to the rescaling of the 𝜇 parameters.
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Fig. 2. Vaccine scepticism around the world. Source: Welcome Trust Global Monitor 2018 through Our World in Data.

Consider a mass of symmetric households, which during a pandemic have to decide on how to respond to the announced social 
distancing measures 𝐺𝑡. Given the sharp uncertainty about the dynamics of the pandemic, as well as the high-frequency nature of the 
issue (relative to the more standard quarterly macro setup of DSGE models), we assume that the households are subject to cognitive 
constraints on their rationality and thus address the problem in a myopic fashion.

Suppose that in period 𝑡, household 𝑖 sets its compliance level to 𝐾𝑖,𝑡 ⩾ 0. The household receives utility according to the function 
𝑈𝑖,𝑡(𝐾𝑖,𝑡) = ln𝑢𝑖,𝑡(𝐾𝑖,𝑡), where

𝑢𝑖,𝑡(𝐾𝑖,𝑡) = 𝜅1𝐾𝑖,𝑡 exp(𝑍𝑡) + 𝜅2𝐾𝑖,𝑡 exp
(
𝜅3𝑦𝑡

)
− 𝜅4

(
𝐾𝑖,𝑡 −𝐺𝑡

)
, (11)

for some 𝜅1, 𝜅2, 𝜅3, 𝜅4 ⩾ 0.12

This utility function represents three separate effects of the lockdown compliance. Firstly, while the overall well-being of an 
agent decreases with hazard 𝑍𝑡, individual compliance 𝐾𝑖,𝑡 mitigates the epidemiological hazard by 𝜅1 for a given hazard 𝑍𝑡, 
increasing their well-being. This becomes clear when one considers the partial derivative of the agent’s utility of 𝐾𝑖,𝑡 related to 𝑍𝑡, 
𝜅1 exp(𝑍𝑡), which is increasing in 𝑍𝑡. Secondly, extensive lockdowns require shutting down some sections of the economy, which 
can affect the personal income of many households, particularly those that cannot work from home or are at risk of an extended 
spell of unemployment. This vulnerability on the aggregate level is captured by the parameters 𝜅2 and 𝜅3. Finally, some may find 
the social distancing to be personally challenging, due to psychological issues (like mental health risks from extended isolation) 
or political/ideological concerns (like a mistrust towards governmental intervention). This is measured by the parameter 𝜅4 and 
we assume that the government’s target measure 𝐺𝑡 plays an additional role as a reference point to this effect (for instance by 
normalizing what is the “new normal”).

Under Rational Expectations, the agents would optimize (11), taking into account the fact that 𝑍𝑡 is in fact a function of the 
present and past levels of 𝐾𝑡. Instead, suppose that due to cognitive or informational limitations agents consider two basic heuristics:

• trust in government and comply with 𝐾𝑖,𝑡 =𝐺𝑡, which yields utility equal to

𝑈𝐶
𝑡
= ln{𝜅1𝐺𝑡 exp(𝑍𝑡) + 𝜅2𝐺𝑡 exp

(
𝜅3𝑦𝑡

)
};

• remain sceptic with 𝐾𝑖,𝑡 = 0, which yields utility equal to 𝑈𝑆
𝑡
= ln{𝜅4𝐺𝑡}.

Assuming the simplest switching mechanism (without memory and with the intensity of choice set to 1), the share of sceptics at 
period 𝑡 becomes

𝜔𝑡 =
exp{𝑈𝑆

𝑡
}

exp{𝑈𝑆
𝑡
} + exp{𝑈𝐶

𝑡
}
=

𝜅4𝐺𝑡

𝜅4𝐺𝑡 + 𝜅1𝐺𝑡 exp(𝑍𝑡) + 𝜅2𝐺𝑡 exp
(
𝜅3𝑦𝑡

)

=
exp(−𝜅3𝑦𝑡)

𝜅2∕𝜅4 + (𝜅1∕𝜅4) exp{𝜅3((𝑍𝑡∕𝜅3) − 𝑦𝑡)} + exp(−𝜅3𝑦𝑡)
. (12)

What is the hazard measure 𝑍𝑡? Remark that the risk of catching the disease increases 1) proportionally with the overall economic 
activity and 2) exponentially with the size of the infected population (and is thus correlated with the lagging indicator of deaths). We 
assume that our boundedly rational agents therefore use either 𝑍𝑡 =Δ𝐼𝑡+𝜅3𝑦𝑡 or 𝑍𝑡 =Δ𝐷𝑡+𝜅3𝑦𝑡. Without any loss of generality we 

12 In the HSM literature, it is typically assumed that the agent heterogeneity stems from the relative popularity of forecasting heuristics, whereas the agents are 
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otherwise symmetric. For the sake of simplicity we will follow this approach in our model.
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Fig. 3. The SEIR model with endogenous transmission rate 𝛽𝑡 and a varying fraction of sceptics in the population with 𝜙𝑔 = 0.025 and 𝜇𝑦 = 100, 𝜇𝑖 = 2.5.

can further assume that 𝜅3 = 𝜇𝑦 = 𝜇𝑖, 𝜅2∕𝜅4 = 3 and 𝜅1∕𝜅4 = 1. With these assumptions put together, the sceptic share (12) coincides 
with the one from the main model if the agents consider 𝑦𝑡 in their decision problem (model variants 𝐼∕𝑌 and 𝐷∕𝑌 ).

The share (12) has one interesting special case for 𝜅3 = 0, when the agents are indifferent to losses in the output gap. Here 𝜔𝑡 can 
be rewritten as

𝜔𝑡 =
exp(0)

𝜅2∕𝜅4 + (𝜅1∕𝜅4) exp(𝑍𝑡) + exp(0)
. (13)

We take 𝜅2∕𝜅4 = 3 and 𝜅1∕𝜅4 = 1 as before. Furthermore, we simplify the hazard measure to exclude the output gap as well, 
with 𝑍𝑡 = Δ𝐼𝑡 or 𝑍𝑡 = Δ𝐷𝑡, which yields the 𝐼∕𝑁 and 𝐷∕𝑁 variants of our model. The pandemic demonstrated that this case is 
highly unrealistic. On the other hand, some countries tried to incorporate extensive measures to “freeze” the labor market (such 
as the aforementioned German Kurzarbeit), in an attempt of alleviating the negative economic consequences of lockdowns on the 
households. It is, therefore, important to study this case as an ideal policy target.

3.3. Example dynamics

Fig. 3 illustrates the dynamics of the 𝐼∕𝑌 model for 𝜙𝑔 = 0.025 and 𝜇𝑦 = 100, 𝜇𝑖 = 2.5. As it can be observed, for the chosen 
parameter constellation, the share of sceptics in the population, after a very slight initial increase, decreases from 20% down to 
nearly 10% in the initial phase of the epidemic, where the number of new infections increases significantly, and the output gap 
decreases. However, as the latter increases even further and the percentage share of infected persons in the population decreases, the 
popular sentiment changes, and the share of sceptics increases, leading to a slight increase in the reproduction rate relative to the 
baseline scenario where no sceptics were present, i.e. where the transmission rate (and by extension the reproduction rate) depended 
solely on the government’s containment policies (𝛽𝑡(𝐺𝑡)).

When public health is relatively less valued by the population (𝜇𝑖∕𝜇𝑦 = 0.015), in comparison to the previous parametrization 
(𝜇𝑖∕𝜇𝑦 = 0.025), the share of sceptics increases in relation to the previous case (which we depict here again for better comparison), 
as is illustrated in Fig. 4. The smaller reduction in the reproduction rate resulting from the compromised effectiveness of the gov-

ernment’s containment policies due to the sceptics has non-trivial results for this second parametrization. Regarding the economic 
sphere, the sceptics’ non-adherence to the social distancing measures reduces the fall in the output gap to some extent, as can be 
clearly observed. However, this comes at a great cost, as the disease’s mortality rate (deceased persons as a percent of the total 
population) in the long-run increases by about 1.5 percentage points, from about 11% to about 12.5%.

4. Varieties of scepticism and policy trade-offs

In this section, we first investigate how stricter policy measures may interact with endogenous scepticism in the 𝐼∕𝑌 model, and 
then discuss the trade-offs that policy-makers are faced under the 𝐼∕𝑁 , the 𝐷∕𝑁 and the 𝐷∕𝑌 models besides the 𝐼∕𝑌 model.13

13 In the main part of this paper we will focus on the results for the model with the intensity of choice parameters set to 𝜇𝑖 = 1 and 𝜇𝑦 = 1. A bifurcation analysis 
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suggests that the model has largely robust dynamics to this specification. As intuition would suggest, the higher (lower) 𝜇𝑖 compared with 𝜇𝑦 , the weaker (stronger) 
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Fig. 4. The SEIR model with endogenous transmission rate 𝛽𝑡 and a varying fraction of sceptics in the population with 𝜙𝑔 = 0.025 and 𝜇𝑦 = 100, 𝜇𝑖 = 2.5 (green lines) 
and 𝜇𝑖 = 1.5 (yellow lines).

4.1. Stringency of policy and scepticism

Can a more stringent social distancing policy curb scepticism? We consider three levels of governmental reaction with 𝜙𝑔 ∈
{0.5, 2.5, 50} in the 𝐼∕𝑌 model, which henceforth we will refer to as weak, medium, and strong reactions, respectively.

As illustrated in Fig. 5, a weak government reaction implies a relatively small drop of the transmission rate 𝛽𝑡 in the “burn-

through” phase of the pandemic, thus contributing to the spread of the pandemic. On the other hand, the number of new daily 
infections is so high, that even with a severe drop in the output, the share of sceptics drops to zero, hence the weak response does 
still have some impact on the transmission rate. This is not enough to stop the burn-through from occurring, however, and once 
everyone gets infected and dies or recovers, the output gap goes back to zero, and the share of sceptics converges to its default value 
of 20%.

Very different dynamics occur for medium and strong government reactions. In both cases, the government reacts much more 
stringently and quickly to the rise in new infections, which causes a visibly stronger drop of the transmission rate, to around a third 
of its pre-pandemic level – and thus a prolonged recession of around 5%. However, despite similar economic outcomes, the ratio 
of sceptics is very different in these two scenarios: While it settles close to 20% under the medium policy, under the strong policy, 
the great majority of the population (90%) become sceptical. We observe the following feedback mechanism. A more stringent or 
stronger response means that the government is able to decrease the number of new infections much more quickly. This, in turn, 
implies that the households, in comparison to a medium reaction scenario, observe a similar drop in the output gap, but with a 
substantially smaller number of new infections, and the latter factor contributes to a higher level of scepticism. On the other hand, 
the higher levels of scepticism are counter-balanced by the stronger reaction of the government, and it seems that the net effect 
on the output gap settles at an equilibrium level, which does not depend on the particular strength of the government’s reaction. 
The only difference is a slight change to the number of infections and thus sceptics. Finally, notice that the strong policy has one 
important side-effect: the government reacts with force to a higher incidence rate and thus the number of newly infected quickly 
goes down, which allows for a lower lockdown intensity (as measured through the meeting rate 𝛽𝑡), but at a price of a renewed wave 
of infections in a few periods later. The reason behind this oscillatory pattern of “flash lockdowns” is the length of the incubation 
period, which allows the virus to spread without being first detected from the incidence rate.

This result points to another interesting outcome of the model. Once the government decides to actually react to the spread of the 
epidemic, the specific speed of the response (with a relatively weaker or stronger reaction parameter) does not matter in the sense 
that weaker responses lead to higher infection numbers, which then forces the government to act anyway, only later. In other words, 
the government is not facing a trade-off between less or more severe lockdown, but between imposing a strict lockdown sooner or 
later.

government policy 𝜙𝑔 is required to achieve the same outcome. However, no additional dynamics occur or disappear for reasonable values of these two parameters, 
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which only rescale the efficacy of a given government strength. See Appendix A for some related simulation results.
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Fig. 5. 𝐼∕𝑌 model: Sample simulation for weak (left panels), medium (middle panels) and strong (right panels) reaction variants of the model, with 𝜙𝑔 equal to 
respectively 0.5, 2.5 and 50.

4.2. Varieties of scepticism

So far, we have considered the benchmark 𝐼∕𝑌 model, in which the share of scepticism reacts to the number of infections. Two 
questions can be raised: what if the share of sceptics decreases with the number of deaths, instead of new daily infections; and what 
if instead of the economic costs of lockdowns, the scepticism was fueled by a mere distrust towards the existence of the pandemic? 
To address this issue, we will consider the four versions of the model: 𝐼∕𝑁 , 𝐼∕𝑌 , 𝐷∕𝑁 and 𝐷∕𝑌 .

Sample simulations for a moderate government policy can be found on Fig. 6. The clear pattern is that three models, the 𝐼∕𝑁 , 
𝐼∕𝑌 and 𝐷∕𝑁 have virtually indistinguishable dynamics. In other words, suppose that initially, people are sceptical of the existence 
of the virus, but gain more confidence in the government policy as the number of new daily infections increases – then it does 
not matter whether they suddenly look at the number of deaths instead of infections (the pull towards trusting the government) or 
their scepticism is now driven by the output gap considerations (the push towards scepticism). However, if people start caring about 
deaths (instead of new infections) and stop caring about the output gap at the same time, the feedback between these two forces leads 
to a breakdown of the efficiency of the public policy, and the government starts to struggle with imposing the lockdown rules.

Fig. 7 illustrates the mechanism behind these dynamics. For the two models 𝐼∕𝑁 and 𝐷∕𝑁 , the number of infections and deaths 
quickly reaches the point, where scepticism drops to its default level of 20%, and the government can run its lockdown policy 
quite efficiently. The same happens for the 𝐼∕𝑌 model, in which the output gap initially leads to high shares of scepticism, but the 
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recession is quickly overshadowed by the toll of the pandemic. However, these dynamics are not present in the 𝐷∕𝑌 model.
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Fig. 6. Sample simulations for the four types of scepticism: 𝐼∕𝑁 (blue lines), 𝐼∕𝑌 (red lines), 𝐷∕𝑁 (green lines) and 𝐷∕𝑌 (violet lines) models, for medium 
government policy with 𝜙𝑔 = 2.5. The top and bottom panels display the population and output gap, respectively.

In the 𝐷∕𝑁 and 𝐷∕𝑌 models, as in the 𝐼∕𝑁 and 𝐼∕𝑌 variants, once the number of infections starts to go up, the government 
tries to impose lockdown measures. However, unlike in the 𝐼∕𝑁 and 𝐼∕𝑌 model, the households look at the number of deaths, which 
lag behind the incidence rate, hence they start as being highly sceptical (with 𝜔𝑡 ≈ 1). The difference between the 𝐷∕𝑁 and 𝐷∕𝑌
models is that once the number of daily deaths hits a sufficiently high threshold, in the 𝐷∕𝑁 variant, the households start to trust the 
government on the severity of the pandemic. On the other hand, in the 𝐷∕𝑌 model, this increase in deaths is offset by the output gap, 
keeping scepticism at a high level and thus rendering the government policy less efficient. This lets the virus go unhindered among 
the population, and by the periods 𝑡 = 400 − 600, already half of the population has suffered an infection, fueling the recession. In 
other words, the effects of scepticism are paradoxical: because the population fears a recession, its opposition towards the lockdown 
measures renders those measures inefficient, fueling a burn-through of the virus through the population and a snap recession (as sick 
people stay at home for some time).

Once the virus has burned through half of the population, the number of daily infections starts to decline, which enables the 
government to loosen up the lockdown measures. These two factors contribute to economic recovery, a higher transmission rate, 
and lower rates of scepticism. Summing up, the dynamics in the 𝐷∕𝑌 model resemble the 𝐼∕𝑌 variant, but with weak policy 
parametrization 𝜙𝑔 ≈ 0, where a relatively quicker recession corresponds to the government’s failure to contain the virus.

Fig. 8 displays the bifurcation diagrams for the population and the output gap, for the I/Y and D/Y models. It is clear that the 
difference between these two models, which we observed in the sample simulation for the medium strength government response 
𝜙𝑔 = 2.5, holds for a broad range of policy parametrizations. Remark that the model was calibrated to result in a 2% death toll of 
the infected population. This means that a simulation, by which end only 0.98 of the initial population remains alive, represents the 
epidemiologically worst outcome. On the other hand, the D/Y model simulations, in fact, yield results that are quite close to this 
scenario, even for a relatively strong governmental response, which allows the government to avoid this death toll in the 𝐼∕𝑌 model.

How to interpret these results? In our model, the government is always focused on the incidence rate as the proxy for the severity 
of the pandemic. On the other hand, scepticism exemplifies a lack of coordination between the government and the population in 
terms of policy goals. In the case of the 𝐼∕𝑌 and 𝐷∕𝑌 models, the bone of disagreement is that the public works on a “wider” 
preference structure, with economic consequences of the recession factored in next to the pandemic. In the 𝐷∕𝑁 and 𝐷∕𝑌 models, 
the general public measures the severity of the pandemic with a “slower” indicator (number of deaths, which lag behind the infec-

tions). Our model suggests that as long as the dis-coordination between the government and the population is sufficiently small, the 
government can mitigate it through a stronger policy. However, once the structural reasons for the dis-coordination start to pile up, 
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this becomes more and more difficult, and in 𝐷∕𝑌 model, becomes virtually impossible.
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Fig. 7. Sample simulations for the four types of scepticism: 𝐼∕𝑁 (left-most panels), 𝐼∕𝑌 (second-left panels), 𝐷∕𝑁 (second-right panels) and 𝑁∕𝑌 (right-most panels) 
models, for medium government policy with 𝜙𝑔 = 2.5. Remark that the new daily infections and deaths are presented on a log10 scale.

5. Policy extension: ICU capacity constraint and depleting virus immunity

In the previous sections, we studied the model under two critical assumptions: (1) recovered individuals obtain permanent 
immunity against the virus and (2) the death rate is constant across time. Both assumptions are, in fact, questionable. Firstly, recent 
studies suggest that the immunity against SARS-CoV-2 wanes over time (see for example Townsend et al., 2021). Secondly, the 
average mortality rate of this virus is, in fact, close to 2%, but it has been changing across time and between countries. This can 
at least to some extent be explained by the capacity of the healthcare system, which in most countries was not designed to handle 
a pandemic crisis at the scale caused by SARS-CoV-2.14 From the outset of the pandemic, part of the motivation behind public 
lockdown measures was the fear that clogged hospitals and overburdened medical staff would be unable to attend all patients, 
resulting in excess deaths – and we now have many examples, that this fear was in fact justified, see Rossman et al. (2021) for an 
Israeli case study.
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14 Another factor that we leave out of the model is that the infectivity seems to be weather-dependent. This could be modeled with a time-varying 𝜎𝑡 = 𝜎0 +𝜎1 sin(𝜎2𝑡).
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Fig. 8. 𝐼∕𝑌 versus 𝐷∕𝑌 model: Bifurcation diagrams of Population (left panels) and output gap (right panels) as functions of 𝜙𝑔 . Each vertical slice represents the 
range of outcomes in periods 𝑡 ∈ {1101, … , 1200} for the given parameter 𝜙𝑔 .

In this section, we will study the effect of these two issues in our model. For the sake of tractability of the results, we will always 
consider the benchmark 𝐼∕𝑌 model, and we will focus on four variants resulting from the mix of the following two dimensions: 
Along the first dimension, we consider the cases where 𝛾𝑆 = 0 and 𝛾𝑆 = 0.005. These two cases represent a permanent immunity 
scenario and the scenario, in which the half-life of the virus immunity is around 140 days, respectively. In the second dimension, we 
consider a fixed mortality rate 𝛾𝐷,𝑡 = 𝛾𝐷 and what we call an “explosive mortality scenario”, in which

𝛾𝐷,𝑡 =
⎧⎪⎨⎪⎩

𝛾𝐷 if 𝐼𝑡−1 ⩽ 𝐼,
𝛾𝐷 + (𝛾𝑚𝑎𝑥

𝐷
− 𝛾𝐷)

𝐼𝑡−𝐼
𝑁𝑡−𝐼

∈ [𝛾𝐷, 𝛾𝑚𝑎𝑥𝐷
] else.

(14)

Recall that 𝛾𝐷 = 1∕900 is calibrated so that over the typical illness period of 18 days, 2% of infected will die. We set 𝛾𝑚𝑎𝑥
𝐷

= 1∕180, 
i.e. five times that mortality rate and 𝐼 = 350000 (tenfold of ICU beds in Germany). Equation (14) has the following interpretation. 
Suppose that 10% of the infected require hospitalization with an ICU bed.15 As long as the number of currently infected people 
does not exceed 𝐼 , all COVID-19 patients receive the best possible medical care. However, once the number of infected passes this 
threshold, the hospitals start to get clogged, which results in excess deaths. This effect depends linearly on the number of “excess 

15 In practice, this number could be lower, however, we leave out second-order effects of peaks in COVID-19 cases. In particular, a large number of COVID-19 
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patients may result in patients with other ailments being “crowded out” from, or being afraid to use the hospitals.
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Fig. 9. Sample simulations for the four variants of the Y/N model: benchmark (left-most panels), with explosive mortality (second-left panels), diminishing immunity 
(second-right panels), and both explosive mortality and diminishing immunity (right-most panels). Each panel depicts four levels of government policy: no (𝜙𝑔 = 0; 
blue lines), weak (𝜙𝑔 = 0.5; red lines), medium (𝜙𝑔 = 2.5; green lines) and strong (𝜙𝑔 = 50; violet lines).

patients” over the ICU capacity, and in a hypothetical scenario, in which the whole population is sick, the overall death chance of a 
patient jumps to 10%.

Fig. 9 reports results for the four variants of the model, for four levels of the government’s response as in the previous section. It is 
immediately clear that the explosive mortality rate has a modest impact on its own, unless the government decides not to intervene 
with low values of 𝜙𝑔 . In such a case, the virus has a visibly higher death toll. Indeed, for no intervention at all with 𝜙𝑔 = 0, the 
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accumulated death rate jumps from 2% to 3% and around period 𝑡 = 200, an infected person has twice as large a risk of dying 
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Fig. 10. Time paths of scepticism level 𝜔𝑡 for the model with diminishing immunity (top panels) and diminishing immunity plus explosive mortality (bottom panels), 
for four levels of the government policy reaction: no (𝜙𝑔 = 0; left-most panels), weak (𝜙𝑔 = 0.5; second-left panels), medium (𝜙𝑔 = 2.5; second-right panels) and strong 
(𝜙𝑔 = 50; right-most panels).

compared to periods in which the hospital capacity is not exceeded. Interestingly, this flash pandemic causes a less severe recession 
– it seems that in the peak of events, a high mortality rate eliminates a larger number of infected who would otherwise linger for 
longer (and many of whom would indeed survive).

A diminishing mortality rate has, on the other hand, much more severe effects on the model dynamics. Firstly, the simple trade-off 
between a prolonged recession and a high death toll disappears. In fact, all policies lead to a prolonged recession, which is even more 
severe under more lenient policies (reversing the order from the fixed immunity case). The reason for this outcome is quite intuitive. 
In the model with the permanent immunity of the recovered population and under a weak government response, the virus quickly 
burns through the population and disappears. The same response in the model with diminishing immunity means, however, that the 
virus burns through the population, but at some moment the population of recovered individuals becomes so large, that they can 
sustain a large number of people losing their immunity, which in turns yields a constant trickle of new infections and a constant hit 
to the economy.

The trickle of infected from recovered also implies a relatively higher accumulated death toll, for instance under the medium 
policy, by period 𝑡 = 1200 a visible 0.73% of the population (represent by the green line in Fig. 9) has perished. Only a relatively 
strong policy could counter that, however, as seen in Fig. 10, this also leads to a potentially large share of sceptics in the population. 
Furthermore, strong policy results in much more volatile dynamics, as observed in Fig. 10. Interestingly, an explosive mortality rate 
again only exaggerates these outcomes, as the overall mortality rate stabilizes on a slightly larger level than under the fixed mortality 
variant of the model.

The results of diminishing mortality point to a political danger beyond the scope of this paper. It seems that in the variant of the 
model with diminishing immunity, there is no clear-cut trade-off between the death toll of the pandemic, and the magnitude of the 
recession caused by measures, which the government may want to impose to counter the pandemic. Any response leads to a recession 
and the constant presence of the virus, and now, it seems, the government can choose only between an enormous accumulated death 
toll and an unsettled political situation with a highly volatile share of sceptics. It is impossible to predict if either scenario can be 
sustainable, or would rather lead to massive political backlash.

6. A first empirical estimation attempt

This section outlines how the model could be empirically estimated and describes the results of a partial estimation of the 
core model parameters. More specifically, we first run a Monte Carlo simulation study in line with Kukacka and Sacht (2023). 
The authors propose a multivariate simulated maximum likelihood (SML) approach for macroeconomic Heuristic Switching Models 
whose estimation is infeasible under standard econometric approaches. Along with determining a set of behavioral parameters of 
the US economy, they also demonstrate how the SML method can reliably identify the intensity of choice parameters governing the 
models’ nonlinear dynamics. As our behavioral SEIRD macroeconomic model shares the same belief-driven switching principle, the 
SML estimation method is a natural starting point for its potential empirical application. Next, we discuss the specifics of a suitable 
dataset that combines the US Weekly Economic Index (WEI) data and the epidemic data on new cases of COVID-19 disease. Finally, 
we estimate the two intensity of choice parameters from the core discrete choice switching equation (10), determining the evolution 
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of the population share of sceptics in time.
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Fig. 11. Densities of the parameter estimates: the bold black curves depict the kernel density estimates of the sample densities based on 300 random runs, and the 
bold black vertical lines show the median point estimates. The dashed red vertical lines show the pseudo-true values, and the dashed black vertical lines depict the 
95% confidence intervals of the sample estimates.

6.1. Monte Carlo study

We implement the SML estimation method by Kukacka and Sacht (2023) to the baseline model defined by equations (1) to 
(10) and calibrated according to Table 1. Before the empirical analysis, we first numerically investigate the capability of the SML 
estimator for the model in a controlled Monte Carlo simulation study. We primarily focus on estimating parameters of the core 
behavioral equation (7) that endogenizes the transmission rate 𝛽𝑡 based on social distancing measures enforced by the government 
and the share of sceptics undermining these measures.

A few customizations of the model structure and calibration must be introduced to adapt the model for the econometric analysis. 
First, the deterministic structure is enriched with stochastic terms to allow for estimation. We thus add two i.i.d. idiosyncratic 
shocks drawn from standard normal distribution to the structure of observables: the output gap equation (8) and the expression for 
new cases, 𝐺𝑡 = 𝜎𝐸𝑡−1∕100, 000, determining the government distancing measures. Second, the total population size is calibrated 
concerning the target implementation of the US data to 𝑁 = 330𝑀 . Finally, while keeping the remaining model equations intact, we 
redefine the parameter of the intensity of choice related to switching towards scepticism, 𝜇𝑦 = 𝑘𝜇𝑖, and set 𝑘 = 4. Such expression for 
𝜇𝑦 as a 𝑘-multiple of 𝜇𝑖 does not alter the mathematical structure of the model, but it fosters the numerical optimization search. Also, 
the calibrated value for 𝜇𝑦 needs to be reduced. While its original calibration in Table 1 is well feasible for deterministic simulations 
in the previous sections, it leads to frequent numerical divergences of the model under the stochastic optimization search within a 
broad parameter space. The three pseudo-true parameters subject to estimation are the core behavioral parameters of the baseline 
model: the impact of the social distancing measures from equation (7), 𝜙𝑔 , and the two intensities of choice from equation (10), 𝜇𝑖
and 𝜇𝑦 = 𝑘𝜇𝑖, that drive the switching dynamics towards scepticism and back towards trusting the government.

The setup of the SML estimation algorithm follows the best practice by Kukacka and Sacht (2023). We conduct 300 independent 
Monte Carlo runs to support the statistical validity of the estimation output and analyze time series of 500 observations. The selected 
length is sufficient for a sound simulation-based analysis of the estimator properties for the model, and, at the same time, its order of 
magnitude is still realistic for potential datasets covering the COVID-19 pandemic period. 1,000 approximation points are generated 
from a multivariate normal distribution for the kernel density approximation of the likelihood in each time-point with the optimal 
bandwidth selection based on the Silverman (1986) rule of thumb. The standard BFGS algorithm with an automated step length and 
four random initial points is implemented within a constrained optimization search to minimize negative likelihood.

Fig. 11 summarizes the main results of the Monte Carlo simulation study and demonstrates a very good ability of the SML 
estimator to recover the coefficients of our empirical interest. Sample densities are depicted with the median point estimates in bold 
black and the 95% confidence intervals in dashed black. The pseudo-true values are represented by dashed red and almost perfectly 
overlap with the median estimates, suggesting the unbiasedness of the SML estimator for all three parameters. The impact parameter 
of the government social distancing measures, 𝜙𝑔 , and the relative fraction of the two intensities of choice, 𝑘 = 𝜇𝑦∕𝜇𝑖, are recovered 
nearly perfectly, with minimal and very small sample variance, respectively. Recovering the remaining intensity of choice related to 
switching towards trusting the government, 𝜇𝑖, seems the most challenging, as demonstrated by a positive skewness of the estimator 
distribution with an apparent fat right tail that markedly stretches the 95% confidence interval. Still, even for this parameter, the 
median-based SML estimator is unbiased, as demonstrated by the overlap of the point estimate with the dashed red pseudo-true value. 
All three parameters are thus well identified, and the SML estimator demonstrates additional favorable distributional properties. Our 
Monte Carlo simulation study in a controlled and perfectly specified environment thus provides substantial evidence that the model 
is well designed for empirical application to recover its core behavioral parameters.

6.2. Partial estimation of the core model parameters

Encouraged by the promising results of the simulation study, we now provide an initial attempt for an actual empirical application 
of the behavioral SEIRD macroeconomic model. The most suitable dataset for this purpose consists of US weekly data from January 
25, 2020, to January 1, 2022. It covers almost two years of the onset and the most severe periods of the COVID-19 pandemic, during 
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which the government restrictions were proactively enforced. Hence, it provides us with 102 observations combining the WEI data 
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reported by the New York Fed16 and the US epidemic data on new weekly COVID-19 cases.17 WEI approximates quarterly GDP 
growth based on aggregated information from short-term macro-indicators such as industrial production, unemployment benefits 
paid, etc. The main advantage is its weekly frequency. From the WEI-implied GDP level, we approximate the output gap modeled 
by equation (8) using the standard Hodrick-Prescot filter with a weekly smoothing parameter 𝜆 = 524 ⋅ 6.25 according to Ravn and 
Uhlig (2002). The new weekly cases then capture the newly infected people in absolute terms.

The application of the empirical dataset brings additional challenges. First and foremost, the dataset length barely exceeding 
100 observations is generally questionable and might be limiting for identifying some estimated parameters and obtaining sound 
empirical results (Kukacka and Barunik, 2017). Second, the unprecedented drop in economic activity after the COVID-19 onset in 
2020, followed by a ‘recovery back’ to relatively normal levels in 2021, leads to rather unusual dynamics of the resulting output gap 
time series. It predominantly decreases in the first half of the observed period while increasing back in the second half compared 
to typical cyclical fluctuations around zero. Last, not only is the dataset inevitably noisy, but the model is undoubtedly a simplified 
representation of the relationships driving the data-generating process of the pandemic society and economy. In the end, it turns 
out that a joint empirical estimation of all three parameters of interest is an overly complex task. The impact parameter of the 
government restriction, 𝜙𝑔 , is not identified and needs to be calibrated back to 𝜙𝑔 = 0.025. Its problematic identification under a 
small empirical data sample is unsurprising as it is multiplied with both estimated intensities of choice through the interconnection 
between equations (7) and (10).

Finally, the two intensities of choice, 𝜇𝑖 and 𝜇𝑦, are empirically estimated. The SML estimation procedure reveals median point 
estimates and the 95% sample confidence intervals 𝜇̂𝑖 = 6.65 (2.56 −9.78) and 𝜇̂𝑦 = 40.51 (18.17 −64.94). Hence, while the confidence 
bands are relatively wide compared to simulation-based results, both intensities of choice are statistically significant at the 5% 
level. Importantly, they are also of the same orders of magnitude as the calibrated values of 𝜇𝑖 and 𝜇𝑦 utilized for simulations in 
the previous sections (cf. equation (7)). The empirical results thus provide statistical evidence in favor of evolutionary behavioral 
switching towards scepticism and back towards trusting the government during the US pandemic of 2020 and 2021.

7. Concluding remarks

In this study, we investigated the role of sceptics in the effectiveness of governmental containment policies through a reduced-

form specification of the trade-off between the public health and the economic dimensions in an epidemic such as COVID-19. Despite 
the parsimony of our behavioral SEIRD model, we could model in a reasonable manner how policy or disease scepticism affects 
the transmission rate, the reproduction rate, and thus the general evolution of the disease, as well as the economic sphere. In our 
framework, the level of scepticism is endogenously determined by the state of the pandemic and the economy, which leads to four 
interesting findings.

Firstly, we show that in the presence of sceptics, the government can essentially choose one out of two scenarios: a flash pandemic, 
in which everyone gets infected (with the corresponding high death toll), but the economy quickly recovers; or containing the 
virus, but at the cost of a prolonged economic downturn and a constant trickle of new infections. Ironically, the latter choice fuels 
scepticism, since strict lockdown measures prevent the spread of the disease and cause a recession. Secondly, the specific magnitude 
of the policy reaction plays a little role, since the virus spreads quickly enough to force an even more cautious government to 
eventually impose a strict lockdown. These two results showed the particular viciousness of the virus in our model, which was 
calibrated to the initial Sars-Cov-2 variants.

Thirdly, it is more difficult to impose the lockdown when the government and the general public are misaligned in terms of their 
policy goals. In particular, when the government reacts to the incidence rate, whereas the public cares more about the deaths (which 
lag after the incidence rate) and the output gap (which is inevitably brought by the lockdown), it is visibly more challenging to 
manage the sceptics. This result indicates that real-world lockdown measures need to be backed by clear communication between 
the government and public about the state of the pandemic.

Next, our simulations suggest that ICU capacity constraints play little role as long as the government is willing to impose a strict 
lockdown. However, if the virus immunity can wane over time (as is the case of COVID-19), loose government policy becomes less 
effective than the harsh one. When the government keeps the economy open, recovered individuals gradually return to the pool of 
susceptible population and become infected again, which puts the economy in a state of permanent recession due to labor shortages. 
In our calibration, this recession is, in fact, harsher than the one caused by restrictive lockdowns, and, in addition, it is accompanied 
by a harrowing death toll. Overall, this result suggests that the “just let it go” policy can be both dangerous and counter-productive.

Finally, we outline and analyze how the model could be empirically estimated via the multivariate simulated maximum likelihood 
method. Using a dataset combining the US WEI data and epidemic data on new cases of COVID-19 disease, we subsequently estimate 
the two intensity of choice parameters driving behavioral switching towards scepticism and back towards trusting the government. 
Both coefficients are statistically significant at the 5% level and have the same orders of magnitude as the calibrated values utilized 
for simulations. These empirical results provide sound statistical evidence in favor of the evolutionary dynamics of the population 
share of sceptics during the US pandemic of 2020 and 2021.

The current framework can be extended in various directions. First and foremost, it would be interesting re-calibrate the model 
on the basis of real empirical data. Furthermore, one could introduce the public health vs. economic trade-off in the government’s 

16 Available at www.newyorkfed.org/research/policy/weekly-economic-index.
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17 Available at ourworldindata.org/covid-cases.
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policy function, as well as model the economic dimension in a more detailed manner. Finally, a natural extension of the model is to 
include vaccinations, which could be subject to endogenously formed scepticism on their own. We intend to tackle these and other 
issues in future work.
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Appendix A. Intensity of choice

Warning Figs. A.1–A.4 in this Appendix represent simulations in which the intensity of choice for the pull force was rescaled such 
that 𝜇𝑖 = 1000𝜇̂𝑖. This rescalation was done in order to secure the numerical stability of the simulations.

Fig. A.1. Bifurcation diagram. Population as a function of 𝜇̂𝑖 , for a given value of 𝜇𝑦 . Each vertical slice represents the range of outcomes in periods 
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𝑡 ∈ {1101, … , 1200} for the given parameter 𝜇̂𝑖 .
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Fig. A.2. Bifurcation diagram. Output gap as a function of 𝜇̂𝑖 , for a given value of 𝜇𝑦 . Each vertical slice represents the range of outcomes in periods 
𝑡 ∈ {1101, … , 1200} for the given parameter 𝜇̂𝑖 .
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Fig. A.3. Bifurcation diagram. Population as a function of 𝜇𝑦 , for a given value of 𝜇̂𝑖 . Each vertical slice represents the range of outcomes in periods 
𝑡 ∈ {1101, … , 1200} for the given parameter 𝜇𝑦 .
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Fig. A.4. Bifurcation diagram. Output gap as a function of 𝜇𝑦 , for a given value of 𝜇̂𝑖 . Each vertical slice represents the range of outcomes in periods 
𝑡 ∈ {1101, … , 1200} for the given parameter 𝜇𝑦 .
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