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Abstract: By using a class of aggregation control functions, we introduce the concept of multiple-
HU-OS1-stability and get an optimum approximation for a nonlinear single fractional differential
equation (NS-ABC-FDE) with a Mittag–Leffler kernel. We apply an alternative fixed-point theorem
to prove the existence of a unique solution and the multiple-HU-OS1-stability for the NS-ABC-FDE
in the symmetric matrix-valued FBS. Finally, with an example, we show the application of the
obtained results.
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1. Introduction

In this research, we consider the NS-ABC-FD equation, which is as follows, and then
investigate its multiple-HU-OS1-stability using a multiple fuzzy controller. We have{

A BC
0Dε

[
∆θ

[ABC
0D$0 ψ(X)

]]
= −φ∗1 (X, ψ(X)),

Φp

[
A BC

0D$0 ψ(X)
]∣∣∣

X=0
= 0, ψ(1) = 0,

(1)

for ε, $0 ∈ (0, 1] and the continuous function φ∗1 (X, ψ(X)) ∈ C[i, j], i = 0, j = 1. Dε and
D$0 are A BC -fractional derivative operators. ∆θ(m) is the nonlinear operator such that
∆θ(m) = |m|θ−2m, 1

θ + 1
η = 1 and ∆−1

θ = ∆η . Also, for X ∈ (0, 1], ψ(X) > 0. Researchers
have recently investigated the existence of a unique solution for another A BC -FDE defined by{

A BCD$0 ψ(X) = φ∗1 (X, ψ(X)),
ψ(0) = ψ0,

(2)

where A BC
0Dε is the A BC -fractional derivative operator and $0 ∈ (0, 1), A BC

0Dεψ(X),
φ∗1 (X, ψ(X)) ∈ C[i, j] [1]. The function ψ(X) in Equation (2) is the same function in
Equation (1).

The rest of this article is organized as follows. In the Section 2, we first state the
basic concepts and theorems needed to prove the new results. To do so, we introduce
the SMVFBS, the multiple control function and define the Mittag–Leffler function (M-L-
F), the Wright function (W-F) and H-Fox function (H-F-F); then, we further consider the
aggregation function (AG-F) as well as the optimal function which the minimum function
as the control function. In Section 3, we state and prove the main theorem, the multiple-
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HU-OS1-stability of the NS-ABC-FDE, using the desired control function. At the end, we
provide an example to demonstrate the application of the theorem.

2. Preliminaries

In this section, we provide the basic concepts, theorems, and definitions needed to
prove the main results.

Definition 1. The A BC fractional derivative of the function Z ∈ L∗(i, j), where Ξ∗ ∈ [0, 1], is
defined by [2]

A BC
0DΞ∗

ζ Z(ζ) =
W(Ξ∗)
1− ς

∫ ζ

0
Z ′($0)EΞ∗

[
−Ξ∗(ζ − k)ς

1− Ξ∗

]
dk,

such that forW(Ξ∗) satisfyingW(0) =W(1) = 1.

Definition 2. A B-Riemann–Liouville fractional derivative of the function Z ∈ L∗(i, j), is
described as follows,

A BC
0DΞ∗

ζ Z(ζ) =
W(Ξ∗)
1− Ξ∗

d
dζ

∫ ζ

0
Z($0)E∗Ξ

[
−Ξ∗(ζ − k)Ξ∗

1− Ξ∗

]
d$,

where Ξ∗ ∈ [0, 1].

Definition 3. A B-fractional integral of the function Z ∈ L∗(i, j), 0 < Ξ∗ < 1 is given by [3]:

A B
0IΞ∗

ζ Z(ζ) =
1− Ξ∗

W(Ξ∗)
Z(ζ) + Ξ∗

W(Ξ∗)Γ(Ξ∗)

∫ ζ

0
Z($0)(ζ − k)Ξ∗−1d$.

Lemma 1 ([4,5]). The Newton–Leibniz formula for the A BC -fractional derivative and A BC -
fractional integral of the function Z satisfy

A B
0IΞ∗

ζ

(
A BC

0DΞ∗
ζ Z(ζ)

)
= Z(ζ)−Z(0). (3)

This formula has also been proved for the Caputo–Fabrizio derivative in both continuous and discrete
states, as well as for the same derivative in the discrete state.

Definition 4. The Riemann–Liouville fractional integral of order Ξ∗ > 0 for the function Q :
(0,+∞)→ R is defined as follows, [6]

IΞ∗Q(X) = 1
Γ(Ξ∗)

∫ X

0
(X− k)Ξ∗−1Q(k)dk,

where for Re(Ξ∗) > 0, and

Γ(Ξ∗) =
∫ +∞

0
exp(−k)kΞ∗−1dk.

Definition 5 ([6]). For a continuous function Q(X) : (0,+∞) → R, the Caputo fractional
derivative is defined as follows,

D$0Q(X) = 1
Γ(λ− $0)

∫ X

0
(X− k)λ−$0−1Qλ(k)dk, (4)

where λ = [$0] + 1 and [$0] is the integer part of $0.
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Lemma 2 ([6]). For any Ξ ∈ (`− 1, `] and Q ∈ C`−1, the following equation holds

IΞDΞQ(X) = Q(X) + g0 + g1X+ g2X
2 + . . . + g`−1X

`−1,

where gλ ∈ R, λ = 0, 1, 2, . . . , `− 1.

Remark 1 ([4]). ψ(X) is a solution of (1) if and only if for σ, $0 ∈ (0, 1], φ∗1 (X, ψ(X)) ∈ C[0, 1]
and φ∗1 (0, ψ(0)) = 0, we have

ψ(X) =
∫ 1

0
G$0(X, k)∆η

(
A BIε

0 [φ
∗
1 (X, φ(X))]

)
dX,

where

G$0(X, k) =


$0
W($0)

(1−k)$0−1

Γ($0)
− $0
W($0)

(X−k)$0−1

Γ($0)
k ≤ X,

$0
W($0)

(1−k)$0−1

Γ($0)
k ≥ X,

(5)

for the function G$0(X, k) defined by Equation (5), we have

• G$0(X, k) > 0 for all k,X ∈ (0, 1);
• the function G$0(X, k) is a decreasing multivalued function and

G$0(0, k) = maxX∈[0,1] G
$0(X, k); and

• with an assumption of 0 ≤ X$0−1 ≤ 0.5, G$0(X, k) ≥ Xε−1 maxX∈[0,1] G
$0(X, k) for

k,X ∈ (0, 1).

Definition 6 ([7]). Due to the importance of M-L-F in fractional calculus, this function, which is a
generalization of the exponential function, defined by

Eσ(w) =
+∞

∑
`=0

w`

Γ(`σ + 1)
,

where σ ∈ C, Re(σ) > 0 and Γ(z) is a gamma function. The first generalization of the M-L-F
with two parameters is shown by the following series,

Eσ,ε(w) =
+∞

∑
`=0

w`

Γ(`σ + ε)
,

with σ, ε ∈ C, Re(σ) > 0 and Re(ε) > 0.

Definition 7 ([7]). For wh = exp{(log |w|+ i arg w)} and the path J in the complex plane C ,
H-F-F is defined as follows,

Ha,b
c,d(w) =

1
2πi

∫
J

H a,b
c,d (h)whdh, (6)

where

H a,b
c,d (h) =

S(h)T(h)
D(h)R(h) , (7)

S(h) =
a

∏
=1

Γ(k −Mw), T(h) =
b

∏
=1

Γ(1−m +Nh), (8)

D(h) =
d

∏
=a+1

Γ(1− k +Mh), R(h) =
c

∏
=b+1

Γ(m −Nh), (9)
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with 0 ≤ b ≤ c, 1 ≤ a ≤ d, {m, k} ∈ C, {N,M} ∈ R+. An empty product, when it occurs,
is taken to be one. So

b = 0←→ T(h) = 1, a = d←→ D(h) = 1, and a = c←→ R(h) = 1.

Due to the occurrence of the factor wh in the integrand of (6). the H function is, in general, multi-
valued, but it can be made one-valued on the Riemann surface of log w by choosing a proper branch.
We also note that when the σ and ε are equal to 1, we obtain the G-functions Ga,b

c,d(w). The above
integral representation of the H functions, by involving products and ratios of Gamma functions, is
known to be of Mellin–Barnes integral type. A compact notation is usually adopted for (6)

Ha,b
c,q(w) = Ha,b

c,d

[
w

∣∣∣∣∣(m, σ)=1,··· ,c

(k, ε)=1,··· ,c

]
.

Definition 8 ([7]). The classical W-F of order 1/(1 + σ) that we denote by Wσ,ε(w) is defined by
the series representation convergent in the whole complex plane,

Wσ,ε(w) =
+∞

∑
`=0

w`

`!Γ(σ`+ ε)
,

for σ > −1, ε > 0, w ∈ R.

Definition 9 ([7]). We consider the interval U as [0, 1]. function A (`) : U` −→ U for fixed ` ∈ N,
is an `-ary-AG-F if it is nondecreasing in each variable, that is

∀ı ∈ {1, · · · , `}, pı ≤ qı implies that A (`)(p1, · · · , p`) ≤ A (`)(q1, · · · , q`)

holds for arbitrary `-tuples (p1, · · · , p`) ∈ U`, (q1, · · · , q`) ∈ U`, and fulfills the BV conditions, i.e.,

A (`)(0, · · · , 0) = 0 and A (`)(1, · · · , 1) = 1,

or, equivalently,

inf
w∈U`

A (`)(w) = infU and sup
w∈U`

A (`)(w) = supU.

A specific case is the aggregation of a singleton, i.e., the unary function A (1) : U→ U for all
w ∈ U. A (1)(w) = w convention is considered for this function.

For simplicity, we denote the AG-F A (`) by A , where ` is the number of function
variables. In the following, we mention some examples of AG-F.

• A M : U` −→ U, which is the arithmetic mean function, is defined as follows:

A M (E) = 1
`

`

∑
ı=1

wı.

• G M : U` −→ U, which is the geometric mean function, is defined as follows:

G M (E) =
(

`

∏
ı=1

wı

) 1
`

.

• Pr : U` −→ U, which is the projection function, is defined as follows:

Pr(w) = wr,

where r ∈ [`] and with rth argument. In this definition, w(r) is the rth lowest coordinate
of w, i.e.,
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w(1) ≤ · · · ≤ w(r) ≤ · · ·w(`).

The projection function is defined as follows in the first and last coordinates, respectively:

PF(w) = P1(w) = w1. (10)

PL(w) = P`(w) = w`.

In addition, the order statistic function OSr : U` −→ U is defined as follows with the
rth argument and the rth lowest coordinate,

OSr(w) = w(r),

for any r ∈ [`]. Similarly, the extreme order statistics w(1) and w(`) are respectively the
minimum and maximum functions,

Min(w) = OS1(w) = min{w1, · · · , w`}, (11)

Max(w) = OS`(w) = max{w1, · · · , w`},

which will sometimes be written by means of the lattice operations ∧ and ∨, respec-
tively, that is,

Min(w) =
∧̀
ı=1

wı and Max(w) =
∨̀
ı=1

wı. (12)

• The median of an odd number of values (w1, · · · , w2r−1) is simply defined by

Med(w1, · · · , w2r−1) = w(r).

For an even number of values (w1, · · · , w2r−1), the median is defined by

Med(w1, · · · , w2r) = A M (w(r), w(r+1)) =
w(r) + w(r+1)

2
.

Definition 10. Z : In → R̄ is an idempotent function if δZ = id, that is, Z(`.w) = w for all w ∈ I.
Idempotency is in some areas supposed to be a natural property of AG-Fs, e.g., in multicriteria
decision making, where it is commonly accepted that if all criteria are satisfied at the same degree w,
implicitly assuming the commensurateness of criteria, then also the overall score should be w.

The AG-F introduced above are idempotent. Here are some examples of nonidempo-
tent AG-Fs.

• The product ∏(W) = ∏`
ι=1(Wι) (I ∈ {|0, 1|, |0,+∞|, |1,+∞|}), where |ı, | means

any of four kinds of intervals, with boundary points ı and , and with convention
0×+∞ = 0.

• The sum function ∑(W) = ∑`
ι=1(Wι) (I ∈ {|0,+∞|, | −∞, 0|, | −∞,+∞|},+∞ +

(−∞) = −∞).

Consider a set of all diagonal matrices of dimension ` with values [0, 1] as follows,

diag M`([0, 1]) =


m1

. . .
m`

 = diag[m1, · · · , m`], m1, . . . , m`∈[0, 1]

,

we have
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m = diag[m1, · · · , m`], k = diag[k1, · · · , k`] ∈ diag M`([0, 1]),

m � k if and only if mı ≤ kı for every ı = 1, . . . , `.

Each m ∈ diag M`([0, 1]), is defined as follows,

m = diag[m, . . . , m],

where m∈[0, 1]. Based on this, we can consider the following items,

diag[1, . . . , 1] = 1 (13)

diag[0, . . . , 0] = 0.

Definition 11 ([6]). A mapping ~ : diagM`([0, 1]) × diagM`([0, 1]) → diagM`([0, 1]) is
called a GTN if:

(a) (∀m∈diagM`([0, 1]))(m~1) = m) (boundary condition);
(b) (∀(m, k) ∈ (diagM`([0, 1]))2)(m ~ k = k ~ m) (commutativity);
(c) (∀(m, k, c) ∈ (diagM`([0, 1]))3)(m ~ (k ~ c) = (m ~ k)~ c) (associativity);
(d) (∀(m1, k2, k1, k2) ∈ (diagM`([0, 1]))4)(m1 � m2 and k1 � k2 implies that m1 ~k1 �

m2 ~ k2) (monotonicity);

If for every m, k ∈ diagM`([0, 1]) and each sequence {mn} and {kn} converging to m and
k we get

lim
n
(mn ~ kn) = m ~ k,

therefore, ~ is continuous in diagM`([0, 1]) (briefly CGTN).

For instance,

(1) Define ~M : diagM`([0, 1])× diagM`([0, 1])→ diagM`([0, 1]), such that

m ~M s = diag[m1, · · · , m`]~M diag[k1, · · · , k`] = diag[min{m1, k1}, · · · , min{m`, k`}],

then ~M is CGTN (minimum CGTN).
(2) Define ~P : diagM`([0, 1])× diagM`([0, 1])→ diagM`([0, 1]), such that

m ~P k = diag[m1, · · · , m`]~P diag[k1, · · · , k`] = diag[m1.k1, · · · , m`.k`],

then ~P is CGTN (product CGTN).
(3) Define ~L : diagM`([0, 1])× diagM`([0, 1])→ diagM`([0, 1]), such that

m ~L k = diag[m1, · · · , m`]~L diag[k1, · · · , k`] = diag[max{m1 + k1 − 1, 0}, · · · , max{m` + k` − 1, 0}],

then ~P is CGTN (Lukasiewicz CGTN).

Numerical examples of CGTN include the following: 3
10

15
100

25
100

~M

 2
10

5
10

7
10

 =

 2
10

15
100

25
100

,

 3
10

15
100

25
100

~P

 2
10

5
10

7
10

 =

 6
100

75
1000

175
1000

,
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 3
10

15
100

25
100

~L

 2
10

5
10

7
10

 =

0
0

0

.

We get

diag
[

3
10

,
15

100
,

25
100

]
~M diag

[
2

10
,

5
10

,
7

10

]
� diag

[
3
10

,
15

100
,

25
100

]
~P diag

[
2

10
,

5
10

,
7

10

]
� diag

[
3
10

,
15

100
,

25
100

]
~L diag

[
2

10
,

5
10

,
7

10

]
.

By observing the above calculations, we have in general ~M � ~P � ~L. We consider
the increasing MVFF Ω : A×(0,+∞) → diagM`((0, 1]) on the linear space as A. This
function is continuous from the left, and also limη→+∞ Ω(X, η) = 1 for any X ∈ A. If Π is
another MVFF, then for the relation �, we have

Ω - Π if and only if Ω(X, η) � Π(X, η), ∀η ∈ (0,+∞) and X∈A.

Definition 12. Consider the CGTN ~, linear space A and N : A×(0,+∞)→ diagM`((0, 1])
MVFS. Triple (A, N ,~) is called a SMVFNS if

(ℵ1) N (X, η) = 1 for all η ∈ (0,+∞) if and only if X = 0 ;
(ℵ2) N (κX, η) = N (X, η

|κ| ) for each X ∈ A and κ ∈ C with κ 6= 0;

(ℵ3) N (X+ w, η + z) � N (X, η)~A(w, z) for each X ∈ A and η, z ∈ (0,+∞); and
(ℵ4) limη→+∞ N (X, η) = 1 for any η ∈ (0,+∞) and for all X ∈ A.

A complete SMVFNS is called SMVFBS [7].
For values X ∈ [0, j], consider the function

Υ(X, η) = diag
[

Eœ,ffl(
−‖X‖

η
), wœ,Æ(

−‖X‖
η

),Ha,b
c,d(
−‖X‖

η
), exp(

−‖X‖
η

)

]
. (14)

Next, η we calculate the aggregation functions introduced above for different values
and present the results in the table below. By comparing the obtained results, we consider
the aggregation function of the minimum type to construct the control function. Therefore,
we define the control function as follows:

OS1

(
Υ(X, η)

)
= diag

[
OS1

(
Υ(X, τ)

)
, OS1

(
Υ(X, η)

)
, OS1

(
Υ(X, η)

)
, OS1

(
Υ(X, η)

)]
. (15)

Table 1 and Figure 1a–d help us to select optimum control function for our results.

Table 1. AG-F for values between [0, 1].

X AM(Υ) GM(Υ) Max(Υ) Min(Υ) Med(Υ)

0.3 0.5540371052 0.04976153601 0.9277434863 0.00001592635752 0.6441945045
0.7 0.5942022428 0.08097542674 0.8394570208 0.00008671016872 0.7686326200

0.08 0.5373090256 0.02481652708 0.9801986733 1.132540979 ∗ 10(−6) 0.5845181485
0.02 0.5333511999 0.01229055756 0.9950124792 7.078381120 ∗ 10(−8) 0.5691961250
0.15 0.5334040942 0.03384570181 0.9631944177 3.981589380 ∗ 10(−6) 0.5852089885
0.4 0.5628480235 0.05837554961 0.9048374180 0.00002831352448 0.6732631810
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(a) (b)

(c) (d)

Figure 1. Graph of AG-Fs AM and GM for, τ = 4 and different values X. (a) The aggregation arith-
metic mean function for X ∈ (0, 1). (b) The aggregation arithmetic mean function for X ∈ (0.14, 0.28).
(c) The aggregation geometric mean function for X ∈ (0.14, 0.28). (d) The aggregation geometric
mean function for X ∈ (0, 1).

Theorem 1 ([7]). Consider the [0,+∞]-valued metric space (A, δ). For f, h ∈ A, construct the
self-mapping Y on A by

δ(Yf,Yh) ≤ ν δ(h, f),

where ν < 1.Let f ∈ A. Therefore,

(i) δ
(
Yef,Ye+1f

)
= +∞, ∀ e ∈ N,

or

(ii) there is a e0 ∈ N where δ
(
Yeu,Ye+1f

)
< +∞, ∀ e ≥ e0.

Then

(1) Yef→ h∗ of Y as a FP
(2) in B∗ = {h ∈ A | δ(Ye0 f, h) < ∞}, h∗ is the unique FP of Y ;
(3) (1− ν)δ(h, h∗) ≤ δ(h,Yh) for each h ∈ A.

Definition 13. Let function OS1

(
Υ(X, η)

)
be a MVFF. The Equation (1) is said to be multiple-

HU-OS1 stable, if ψ(X) is a given differentiable function satisfying

N

(
A BC

0Dε
[
∆θ

[
A BC

0D$0 ψ(X)
]]

+ φ∗1 (X, ψ(X)), η

)
�OS1

(
Υ(X, η)

)
, (16)
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for X ∈ [0, j], and we can find a solution ℘(X) of Equation (1) such that for some γ > 0,

N

(
℘(X)− ψ(X), η

)
�OS1

(
Υ(X,

η

γ
)

)
.

Our method can be used to get new results from [8–11].

3. Multiple-HU-OS1 Stability for NS-ABC-FDE

Now, we use the FPT based on the Theorem 1 to show (1) is multiple-HU-OS1 stable

in SMVFBS (A, N ,~) with MVFF OS1

(
Υ(X, η)

)
.

We define the set F as follows

F = {ψ : L→ Rn, ψ is differentiable},

and δ : F ×F → [0,+∞], is given by

δ(ψ,℘) = inf
{
℘ ∈ [0,+∞) : N

(
ψ(X)− ℘(X), η

)
�OS1

(
Υ(X,

η

℘
)

)
, ∀ ψ,℘ ∈ F ,

X ∈ [0, j], η ∈ (0,+∞)

}
.

Theorem 2. (F , δ) is a complete [0,+∞]-valued metric space.

Proof. We first have δ(ψ,℘) = 0 if and only if ψ = ℘. Assume that δ(ψ,℘) = 0, then

inf
{

ϑ ∈ [0,+∞) :N
(

ψ(X)− ℘(X), η

)
�OS1

(
Υ(X,

η

ϑ
)

)
, ∀ ψ,℘ ∈ F ,

x ∈ [0, j], η ∈ (0,+∞)

}
= 0,

and then

N

(
ψ(X)− ℘(X), η

)
�OS1

(
Υ(x,

η

ϑ
)

)
,

for all ϑ ∈ [0,+∞). Let ϑ tend to zero in the above inequality, we get

N

(
ψ(X)− ℘(X), η

)
= 1.

Thus ψ(X) = ℘(X) for every X ∈ [0, j], and vice versa. Moreover, we have δ(ψ,℘) =
δ(℘, ψ) for every ψ,℘ ∈ F . Now, let δ(ψ,℘) = α1 ∈ (0,+∞) and δ(℘, w) = α2 ∈ (0,+∞).
Then, we have

N

(
ψ(X)− ℘(X), η

)
� OS1

(
Υ(X,

η

α1
)

)
,

and

N

(
℘(X)−w(X), η

)
� OS1

(
Υ(X,

η

α2
)

)
,

for each η ∈ (0,+∞). Then we have
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N

(
(ψ(X)−w(X), (α1 + α2)η

)
�
[
N

(
(ψ(X)− ℘(X), (α1)η

)
~N

(
(℘(X)−w(X), (α2)η

)]
�OS1

(
Υ(X, η)

)
~OS1

(
Υ(X, η)

)
= OS1

(
Υ(X, η)

)
,

and then, δ(℘, w) ≤ α1 + α2 and δ(℘, w)≤δ(ψ,℘) + δ(℘, w). Now we show that (F , δ) is
complete. For this purpose, we consider a Cauchy sequence like {℘k} and assume that
X ∈ [0, j], τ ∈ (0,+∞), η ∈ (0,+∞). We consider

OS1

(
Υ(X, η)

)
� 1−=.

For αβ < ς choose q0 ∈ N where

δ(℘q,℘p) < α for all q, p ≥ q0.

Consequently,

N

(
℘q(X)− ℘p(X), η

)
�N

(
℘q(X)− ℘p(X), αη

)
�OS1

(
Υ(X, η)

)
� 1−=,

and so

N

(
℘q(X)− ℘p(X), η

)
� 1−=,

and then {℘q(X)}k is a Cauchy sequence in complete space (A, N ,~) on compact set
[0, j] and uniformly converges to ℘ : [0, j] → A. Therefore, taking into account the uni-
formly convergent property, ℘ ∈ F , that is, ℘ is a differentiable function. Therefore, the
completeness of (F , δ) is the result.

Here, we are ready to study multiple-HU-OS1 stability and approximate NS-ABC-
FDEs (1).

Theorem 3. Let (A, N ,~) be a SMVFBS and consider the constants ε, γ and $ where
0 < εγ$ < 1. Let

I

N

(
G$0(X, ξ)∆κ

(
φ∗1 (X, ψ(X))− φ∗1 (X,℘(X))

)
, η

)
�N

(
ψ(X)− ℘(X),

η

γ

)
, (17)

I

N

(
ψ(X), η

)
�OS1

(
Υ(X, η)

)
implies that

N

(
Iψ(X), η

)
�OS1

(
Υ(X,

η

ε
)

)
. (18)
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I By considering the MVFF OS1 : [0, 1] −→ [0, 1] as the control function, we have

inf
ξ∈E1

OS1

(
Υ(ξ, η)

)
� OS1

(
Υ(X,

η

P$
)

)
. (19)

Let ψ : [0, j]→ A be a differentiable function satisfying

N

(
A BC

0Dε
[
∆θ

[
A BC

0D$0 ψ(X)
]]

+ φ∗1 (X, ψ(X)), η

)
�OS1

(
Υ(X, η)

)
, (20)

and then, there is a unique solution ℘ : [0, j]→ A for Equation (1) such that

N

(
ψ(X)− ℘(X), η

)
�OS1

(
Υ(X,

η

z)

)
,

where z = εγς
1−εγς , X ∈ [0, j] and η ∈ (0,+∞).

Proof. We set
F := {℘ : [0, j]→ A,℘ is differentiable},

and introduce the [0,+∞]-valued metric on F as

inf
{
B ∈ [0,+∞) :N

(
ψ(X)− ℘(X)), η

)
�OS1

(
Υ(X,

η

B
)

)
, ∀ ℘, ψ ∈ F ,

X ∈ [0, j], η∈(0,+∞)

}
= 0.

By Theorem 2, we have (F , δ) is a complete [0,+∞]-valued metric space.

Step 1. Now, we define the mappingR∗ : F → F , as follows,

R∗(ψ(X)) =
∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
dk, (21)

for X ∈ [0, j].
Let ψ,℘ ∈ F and consider the coefficient Bψ℘ ∈ [0,+∞] with δ(ψ,℘) ≤ Bψ℘, thus

N

(
ψ(X)− ℘(X),Bψ℘η

)
�OS1

(
Υ(X, η)

)
,

for all ψ,℘ ∈ F , X ∈ [0, j] and η ∈ (0,+∞). Applying (ℵ2) and (ℵ3), we imply that

N

(
R∗(ψ(X))−R∗(℘(X)),Bψ℘η

)
(22)

= N

( ∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
dk−

∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X,℘(X))]

)
dk,Bψ℘η

)
= N

( ∫ 1

0

(
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
−G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X,℘(X))]

))
dk,Bψ℘η

)
= N

( ∫ 1

0

(
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))− φ∗1 (X,℘(X))]

)
dk,Bψ℘η

)
.

In the following, we have
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(1)

N

(
G$0(X, ξ)∆κ

([
φ∗1 (X, ψ(X))− φ∗1 (X,℘(X)

)])
,Bψ℘η

)
(23)

� N

((
G$0(X, ξ)∆κ

([
ψ(X)− ℘(X

)])
),
Bψ℘η

γ

)
� OS1

(
Υ(X,

η

γ
)

)
,

(2)

N

(
A BIε

0

∫ 1

0

(
G$0(X, k)∆κ([φ

∗
1 (X, ψ(X))− φ∗1 (X,℘(X))])dk,Bψ℘η

)
(24)

= N

(
A BIε

0 lim
‖ȳ‖→0

n

∑
j=1

(
G$0(X, ȳj)∆κ

([
φ∗1 (X, ψ(X))− φ∗1 (X,℘(X)

)])
)∆ȳj,Bψ℘η

)

= lim
‖ȳ‖→0

N

(
A BIε

0

n

∑
j=1

(
G$0(X, ȳj)∆κ

([
φ∗1 (X, ψ(X))− φ∗1 (X,℘(X)

)])
)∆ȳj,Bψ℘η

)

� lim
‖ȳ‖→0

~MN

(
A BIε

0

(
G$0(X, ȳj)∆κ

([
φ∗1 (X, ψ(X))− φ∗1 (X,℘(X)

)])
)∆ȳj,

Bψ℘η

k

)
� inf

ξ∈E1
N

(
A BIε

0

(
G$0(X, ξ)∆κ

([
φ∗1 (X, ψ(X))− φ∗1 (X,℘(X)

)])
),

kBψ℘η

kP

)
� inf

ξ∈E1
N

(
G$0(X, ξ)∆κ

([
φ∗1 (X, ψ(X))− φ∗1 (X,℘(X)

)])
,

kBψ℘η

kPε

)
� inf

ξ∈E1
N

(
G$0(X, ξ)∆κ

([
ψ(X)− ℘(X

)])
,

kBψ℘η

kPεγ

)
� inf

ξ∈E1
OS1

(
Υ(ξ,

η

Pεγ
)

)
� OS1

(
Υ(X,

η

εγ$
)

)
.

From (22)–(24), we have

N

( ∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
dk−

∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X,℘(X))]

)
dk,Bψ℘η

)
(25)

� OS1

(
Υ(X,

η

εγ$
)

)
,

which implies that

δ(R∗(ψ(X)),R∗(℘(X))) ≤ Bψ℘εγ$,

and then

δ(R∗(ψ(X)),R∗(℘(X))) ≤ εγ$δ(ψ,℘),

where 0 < εγ$ < 1; therefore,R∗ is a contractional mapping.
Step 2. We will show that δ(R∗(ψ(X)), ψ(X)) < +∞.
Let ℘ ∈ F , and we have



Symmetry 2022, 14, 2667 13 of 16

N

(
R∗(ψ(X))− ψ(X), η

)
(26)

= N

( ∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
dk− A BIε

0
A BC

0Dεψ(X), η

)
= N

([
$0

W($0)
I$0
X=1 −

$0

W($0)
I$0
X

]
∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
− A BIε

0
A BC

0Dεψ(X), η

)
= N

([
1− $0

W($0)
+

$0

W($0)
I$0
X=1

]
∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
−
[

1− $0

W($0)
+

$0

W($0)
I$0
X

]
∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
− A BIε

0
A BC

0Dεψ(X), η

)
= N

(
A BIε

0

(
∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
|X=1 − A BIε

0

(
∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
−

A BIε
0
A BC

0Dεψ(X), η

)
= N

(
A BIε

0

(
− ∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
− A BIε

0
A BC

0Dεψ(X), η

)
= N

(
A BIε

0

[(
− ∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
− A BC

0Dεψ(X)

]
, η

)
= N

(
A BIε

0

[(
− ∆κ

[
A BC

0Dεψ(X)

]
− A BIε

0 [φ
∗
1 (X, ψ(X))]

)
η

)]
= N

(
A BIε

0

[
A BC

0Dε
[
∆θ

[
A BC

0D$0 ψ(X)
]]

+ φ∗1 (X, ψ(X))

]
� OS1

(
Ψ(X,

η

ε
)

)
,

for every η ∈ (0,+∞). Then we have δ(R∗(ψ(X)), ψ(X)) < +∞.
Therefore, all conditions of Theorem 1 are satisfied. Thus,

(1) {R∗κψ(X)} → ψ (a FP); and
(2) in F ∗ = {℘ ∈ F : d(R∗℘,℘) < +∞} we getR∗ψ(X) = ψ(X) or equivalently

ψ(X) =
∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
dk. (27)

By using (27), we get

A BC
0Dε

[
∆θ

[
A BC

0D$0 ψ(X)
]]

= −φ∗1 (X, ψ(X)), X ∈ L := [0, j]. (28)

(3) By using Inequality (26), we get

δ(ψ, ψ) ≤ 1
1− εγ$

δ(R∗ψ, ψ) ≤ ε

1− εγ$
.

Hence, the Equation (1) is multiple-HU-OS1 stable.

Assume that

i =
ε

1− εγ$
.
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and consider T satisfying (28), then

A BC
0Dε

[
∆θ

[
A BC

0D$0T(X)
]]

= −φ∗1 (X,T(X)), X ∈ L := [0, j]. (29)

To show T is a FP of F ∗ and T ∈ F ∗, we apply (29), and getR∗T = T.
Now, we show that d(R∗ψ(X),T) < ∞. Let ψ(X) ∈ F , δ(ψ(X),T(X)) < i, i.e.,

N

(
ψ(X)− T(X), η

)
� OS1

(
Υ(X,

η

i)

)
, (30)

From (17), (30) we have

N

(
G$0(X, k)∆κ

(
φ∗1 (X, ψ(X))− φ∗1 (X,T(X))

)
, η

)
�N

(
ψ(X)− T(X),

η

γ

)
� OS1

(
Υ(X,

η

γi)

)
, (31)

and using Equation (29), we get

N

(
R∗(ψ(X))− T(X), η

)
= N

( ∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, ψ(X))]

)
dk−

∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X,T(X))]

)
dk, η

)
= N

( ∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, φ(X)− φ∗1 (X,T(X))]

)
dk, η

)
.

In the sequel, considering Equation (30) and using step 1, we have

N

( ∫ 1

0
G$0(X, k)∆κ

(
A BIε

0 [φ
∗
1 (X, φ(X)− φ∗1 (X,T(X))]

)
dk, η

)
(32)

� OS1

(
Υ(X,

η

εγ$

)
� OS1

(
Υ(X,

η

iεγ$

)
,

and then
δ(R∗(ψ(X)),T) ≤ εγ$i < +∞.

4. Application

Example 1. For the NS-ABC-FDE
D 3

4

[
∆5

[
D 1

4 ψ(X)
]]

+

[√
ψ + 1

ψ 3
33

]
= 0,(

∆5

[
D 3

4 ψ(X)
)])
|X=0 = 0 =

(
∆5

(
D 1

4 ψ(X)
))′∣∣∣∣

X=0
, ψ(1) = 0 = ψ′(0),

(33)

in which θ = 5, κ = 5
9 , j = 1, ε = 3

4 , γ = 1
8 , $ = 5

8 , $0 = 1
4 , i = 2

100 , and
φ∗1 (X, ψ(X)) =

√
ψ + 1

ψ 3
33

where φ∗1 ∈ C((0, 1)× (0,+∞)), we have that

I

N

(
G

1
4 (X, ξ)∆ 5

9

(√
ψ +

1
ψ 3

33
−√℘+

1
℘ 3

33
, η

)
�N

(
ψ(X)− ℘(X)

)
, 8η

)
. (34)
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I By considering the MVFF OS1 : [0, 1] −→ [0, 1] as the control function, we have

inf
ξ∈E1

OS1

(
Υ(ξ, η)

)
� OS1

(
Υ(X,

η
5
8 P

)

)
. (35)

If ψ ∈ C(L,Rn) satisfying

N

(
D

3
4

[
∆5

[
D

1
4 ψ(X)

]]
+

[√
ψ +

1
ψ 3

33

]
, η

)
�OS1

(
Υ(X, η)

)
, (36)

then there is ℘ ∈ C(L,Rn) from (33), such that

R∗(ψ(X)) =
∫ 1

0
G

1
4 (X, k)∆ 5

9

(
A BI

3
4

0 [φ
∗
1 (X, ψ(X))]

)
dk.

Therefore,

δ(ψ,℘) ≤ z,

and

N

(
ψ(X)− ℘(X), η

)
�OS1

(
Υ(X,

η

z)

)
,

where in z = εγ$
1−εγ$ = 0.0622406639.

Figure 2 supports our results in the Example 1.

(a) (b)

(c) (d)

Figure 2. Diagrams of the exact solution of Equation (1) for different values (a) X ∈ (0, 8
5 ), $ ∈ ( 1

2 , 7
10 );

(b) X ∈ ( 8
10 , 9

10 ), $ ∈ ( 8
5 , 11

5 ); (c) X ∈ ( 1
2 , 1), $ ∈ ( 1

5 , 1); (d) X ∈ ( 1
8 , 1), $ ∈ ( 2

7 , 10
7 ).
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5. Conclusions

By applying the optimal control function, we have studied the multiple-HU-OS1-
stability of NS-ABC-FDE. We furthermore have proven the existence of unique solu-
tion to the equation and the multiple-HU-OS1-stability by using the SMVFBS and the
FPT. At the end, we have demonstrated the application of the obtained results with an
illustrative example.
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