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The paper deals with a risk averse dynamic programming problem with infinite horizon. First, the 
required assumptions are formulated to have the problem well defined. Then the Bellman equation is 
derived, which may be also seen as a standalone reinforcement learning problem. The fact that the 
Bellman operator is contraction is proved, guaranteeing convergence of various solution algorithms used 
for dynamic programming as well as reinforcement learning problems, which we demonstrate on the 
value iteration and the policy iteration algorithms.
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1. Introduction

Risk averse variants of dynamic programming are widely stud-
ied. Our work is very close to [4] where, for a very similar set-
ting, the convergence of the Value iteration algorithm is proved. 
The contribution of our work is two-fold. First, instead of compli-
cated axiomatic definition, we define the conditional risk measures 
constructively by means of their risk envelopes; consequently, the 
whole exposition, including proofs, is much simpler. Second, in-
stead of the convergence of a particular solution algorithm, we 
prove the contractive property of the Bellman operator, which can 
be then plugged into convergence proofs of many different al-
gorithms; we demonstrate this with the Value iteration and the 
Policy iteration algorithms.

Let (�, F , P ) be a probability space and let F := (F0, . . . ,
Ft , . . . ) be a filtration, i.e. a sequence of increasing sigma alge-
bras: F0 ⊂ F1 ⊂ ... ⊂ F . Further, consider a real process {Zt} , t =
1, 2, ..., adapted to the filtration (F1, F2, . . . ), specifically Zt ∈
L2(Ft), t = 1, 2, .... For most applications, it suffices to assume that 
� = (0, 1) × (0, 1) × . . . , that P = U (0, 1) ⊗ U (0, 1) ⊗ . . . where U
is the uniform distribution, and that Ft ⊆ σ(�1, . . . , �2t+1) (see 
[3], Chp. 8).1 In this case, we can put Zt = qt(�2t |Ft−1) where, for 
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1 In this setting, the 2nd, 4th, . . . , underlying variables “drive” the process Z while 
the 1st, 3rd, . . . , ones “stand behind” the additional stochasticity generating the 
corresponding sigma algebras. This setting could not be used only if Ft would be 
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any t > 0, qt is the quantile function of the required conditional 
distribution of Zt given Ft−1.

For the process Zt , t > 0, we use coherent conditional risk mea-
sures: σt|Ft−1(Zt), t > 0. By saying that a conditional risk measure 
is coherent we mean it is measurable, monotonous (σt|Ft−1 (X) ≥
σt|Ft−1(Y ) for any random variables X ≥ Y , X, Y ∈ L2), sub-additive 
(σt|Ft−1(X + Y ) ≤ σt|Ft−1 (X) + σt|Ft−1(Y ) for any random variables 
X, Y ∈ L2) translation invariant (σt|Ft−1(X + C)) = σt|Ft−1 (X) +
C for any C ∈ L2(Ft−1), X ∈ L2) and positively homogeneous 
(σt|Ft−1(�X)) = �σt|Ft−1 (X) for any � ∈ L2(Ft−1), X ∈ L2). Next 
we construct nested risk measures:

ρt(Zt) = σ1|F0(σ2|F1(...σt|Ft−1(Zt))), t = 1,2, ....

It can be easily seen that, once F0 is trivial, ρt(Zt) is a deter-
ministic coherent risk measure. We will be interested in its limit 
version:

ρ∞(Z) = lim
t→∞ρt(Zt) a.s. (1)

Such a limit, however, may not exist in general. Next we state suffi-
cient conditions for its existence, general enough for our purposes.

Definition 1. We say that process {Zt} , t = 1, 2, ..., has uniformly 
bounded support if there exist finite a < b such that support(Zt) ⊆
〈a,b〉 for all t .

generated by a non-Borel random element while e.g. real random sequences, pro-
cesses or measures are Borel random elements.
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Definition 2. We say that conditional risk measure σt|Ft−1 is 
support-bounded if, for every X ∈ L2, we have
σt|Ft−1(X) ∈ 〈essinf(X),esssup(X)〉.

Remark 1. All E(•|Ft−1), CVaRα(•|Ft−1), α ∈ (0, 1), and esssup(•)

are support-bounded conditional risk measures.

Theorem 1. Let process {Zt} , t = 1, 2, ..., be a.s. non-increasing, and let 
it have uniformly bounded support. Assume that a conditional risk mea-
sure σt|Ft−1(Zt) is coherent and support-bounded for all t. Then ρ∞(Z)

exists.

Proof. First, thanks to the nested form of ρt and the fact that 
conditional risk measures σt|Ft−1 are support-bounded, we have 
bounded sequence ρt(Zt), t = 1, 2, .... Second,

ρt(Zt) − ρt+1(Zt+1) = ρt(Zt) − ρt(σt+1|Ft (Zt+1))

≥ ρt(Zt) − ρt(σt+1|Ft (Zt))

= ρt(Zt) − ρt(Zt) = 0,

where the inequality follows from (i) coherency of σt+1|Ft and (ii) 
the fact that {Zt} is a.s. non-increasing, t = 1, 2, .... Hence, the se-
quence ρt(Zt), t = 1, 2, . . . is non-increasing. Since every bounded 
non-increasing sequence has a limit, ρ∞(Z) exists, which com-
pletes the proof. �
It is well known (see [1]) that every coherent risk measure σ can 
be expressed in a dual form: σ(X) = supQ ∈M

∫
X(ω)Q (ω)P (dω), 

where P is an underlying probability measure, and M = {Q ∈ L2 :
Q ≥ 0, EP (Q ) = 1, EP (X Q ) ≤ σ(X), X ∈ L2} is a set of probabil-
ity distributions known as risk envelope. Especially, if P = U (0, 1), 
then σ(X) = supQ ∈M′

∫ 1
0 qX (ω)Q (ω)dω where M′ is a (possibly 

different) risk envelope and qX is a quantile function of X . Clearly, 
as conditional risk measures become coherent risk measures once 
the conditioning random element is fixed, they can be expressed 
by means of a dual representation, too.

Generally, the risk envelope can depend on the conditioning 
random element; however, we shall further study a special case 
when this is not considered and, moreover, the risk envelope does 
not depend on t:

σt|Ft−1(X) = �(L(X |Ft−1)), t ≥ 1,

�(L) = sup
Q ∈M

1∫
0

qL(x)Q (x)dx, (2)

where M is a (deterministic) risk envelope and qL is a quantile 
function corresponding to L. Assumption (2) is a clear restriction: 
without this assumption, for instance, it could be σ2|F1 = 1[Z1 >

0]CVaRα(Z2|Z1) +1[Z1 ≤ 0]esssup(Z2); however, having (2), all the 
conditional measures have to be “of the same type”, e.g., CVaR 
with level α, which is, however, usually the case in practice. The 
following Proposition states a recursive property of ρ∞ .

Proposition 1. Assume (2). Let F1 be trivial (implying that Z1 is deter-
ministic) and let

0 ≤ Zt − Zt+1 ≤ εt, t > 0, (3)

where εt is deterministic with 
∑

t εt finite. Then ρ∞ , defined by (2), ex-
ists and

ρ∞(Z) = Z1 + σ(ρ∞(Z ′)),
where Z ′

t = Zt+1 − Z1, t > 0 and σ(X) = �(L(X)) for any random 
variable X (see (2)).
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Note that σ is an unconditional coherent risk measure. First we 
prove the following lemma:

Lemma 1. (i) Let Z1 be bounded and let (3) hold. Let σt|Ft−1(Zt) be 
defined by (2) and let it be support-bounded for all t. Then ρ∞(Z) ex-
ists and the convergence in (1) is uniform; in particular, 0 ≤ ρt(Zt) −
ρ∞(Z) ≤ ∑∞

τ=t ετ .
(ii) For any coherent risk measure σ and any real random sequence Zt

uniformly converging a.s. to a random variable Z�, σ(Zt) → σ(Z�).

Proof of Lemma. (i) Clearly, Zt fulfills the assumptions of Theo-
rem 1, so ρ∞(Z) exists. Denote et = ∑

τ≥t ετ . For any t > 0 and 
s > 0, knowing that ρt(Zt) is non-increasing, we have

0 ≤ ρt(Zt) − ρt+s(Zt+s) ≤ ρt(Zt) − ρt+s(Zt − et)

= ρt(Zt) − ρt(Zt − et) = et .

Recall that et is deterministic, therefore ρt(Zt) is Cauchy sequence 
in sup norm, hence uniformly convergent (L∞ is Banach space).
(ii) Let Zt → Z� uniformly. Then there exists a sequence et → 0
such that Z� − et ≤ Zt ≤ Z� + et , so, by coherence, σ(Z�) − et ≤
σ(Zt) ≤ σ(Z�) + et implying σ(Zt) → σ(Z�). �
Proof of the Proposition. Thanks to Theorem 1, the limit defining 
the l.h.s. exists. From the definition and the coherence property

ρ∞(Z) = lim
t→∞ρt(Zt) = Z1 + lim

t→∞(σ (St))

where S1 = 0 and

St =σ2|F1(. . . σt|Ft−1(Z ′
t−1) . . . )

=�(L(�(. . .�(L(Z ′
t−1|Ft−1) . . . )|F0)), t ≥ 0.

By Lemma 1 (i), St converges uniformly to ρ∞(Z ′), so, by (ii) of the 
same Lemma, limt→∞(σ (St)) = σ(limt→∞ St) = σ(ρ∞(Z ′)). �
2. Contractiveness of the Bellman operator

Consider a dynamic programming problem

V (s1)
def= sup

a1(s1)∈X(s1),at+1∈A,t≥1
�∞(Y s1,a1(s1),a2,...), s1 ∈ S,

Y s1,a1(s1),a2,...
t =

t∑
τ=1

γ τ−1r(sτ ,aτ (sτ )),

st+1 = T (st,at(st), Wt+1), t ≥ 1.

Here,

• Wt ∈ X , t ≥ 1, are i.i.d. (we may assume that X = (0, 1) and 
Wt ∼ U (0.1) as above),

• T : S × A × X → S is a jointly measurable mapping, where 
S is a complete state space and A is a (measurable) action 
space,

• 0 ≤ r(•) ≤ br , where br is deterministic,
• �∞(Z) = −ρ∞(−Z), where ρ∞ is a limit nested risk measure 

(1) defined by filtration Ft
def= σ(Wt) and a support-bounded 

coherent risk measure σ as in (2),
• A = {a : S → A : a(s) ∈ X(s)}, X(s) = {a ∈ A, f (a, s) ≥ 0} �= ∅, 

s ∈ S , where f :A × S →Rk is jointly measurable,
• γ < 1 is a discount factor.

Since r is uniformly bounded non-negative and γ < 1, pro-
cess Y s1,a1(s1),a2,... has uniformly bounded support (with respect 
to both X and the policies) and is non-decreasing. Combined with 
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the assumption of coherent support-bounded conditional risk mea-
sure σ , it guarantees existence of �∞ for any sequence of policies 
a1(s1), a2, . . . . Hence, the problem is well defined. Moreover, by an 
application of the Measurable projection theorem, similar to Debut 
theorem, V is measurable (note that the problem can be expressed 
as a free maximization with the indicators of X ’s multiplying the 
r’s, and that the resulting function is jointly measurable).

Proposition 2. (Bellman Equation)

V (s) = sup
a∈X(s)

[r(s,a) + γ ς(V (T (s,a, W )))], s ∈ S, (4)

W ∼ U (0,1), where ς(Z) = −σ(−Z).

Note that (4) may be also understood as a definition of a risk-
averse version of a reinforcement learning problem (see [5]).

Proof. Fix s1 ∈ S . Thanks to Proposition 1, Lemma 1 (i), and basic 
properties of sup, we have

V (s1) = sup
a1(s1)∈X(s1)

⎡
⎢⎢⎢⎢⎢⎣

r(s1,a1(s1)) + γ sup
at∈A,t≥2

ς
(

Za2,a3,...
)

︸ ︷︷ ︸
=ς( Ẑ)

⎤
⎥⎥⎥⎥⎥⎦

,

Za2,a3,... = �∞(Y s2,a2(s2),a3,...),

Ẑ = sup
a2(s2)∈X(s2),at∈A,t>2

Za2,a3,...,

where st+1 = T (st , at, Wt+1), t ≥ 1. Note that both Z and Ẑ are 
(possibly) random (but only) F2-measurable. To prove the “=” un-
der the underbrace, note that ≤ follows directly from the mono-
tonicity of ς ; as for ≥, we have, by the definition of (the finite) 
sup, that, for each ε , there exists feasible a2, a3, . . . such that 
Ẑ − Za2,a3,... ≤ ε (note that we maximize separately for each value 
of s2), i.e. there exist a uniformly convergent sequence of feasi-
ble Z1, Z2, . . . converging to Ẑ . By Lemma 1 (ii), ς(Zk) →k ς( Ẑ)

which implies ≥. �
Next we formulate our main result, which makes many solution 

techniques applicable to the risk-averse problems.

Theorem 2. The operator

B : (B V )(s)
def= sup

a∈A(s)
[r(s,a) + γ ς(V (T (s,a, W ))]

is a γ contraction w.r.t. sup norm.

Proof. Let ε > 0, for any value function V , denote aV ,s (a selected) 
ε-optimal solution of supa∈A(s)[r(s, a) + γ ς(V (T (s, a, W ))] and:

Q V ,s ∈ ε − arg maxQ ∈M
∫ 1

0 −V (T (s, aU ,s, w))Q (w)dw . Then

‖BU − B V ‖∞ = sup
s∈SU

def={s:(BU )(s)>(B V )(s))}
[(BU )(s) − (B V )(s)]

︸ ︷︷ ︸
bU

∨ sup
s∈S V

def={s:(BU )(s)≤(B V )(s))}
[(B V )(s) − (BU )(s)]

︸ ︷︷ ︸
bV

Further we have
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bU ≤ sup
s∈SU

[(BU )(s) − r(s,aU ,s) − γ ς(V (T (s,aU ,s, W )))]

≤ sup
s∈SU

[r(s,aU ,s) − r(s,aU ,s) + γ ς(U (T (s,aU ,s, W )))

− γ ς(V (T (s,aU ,s, W )))] + ε

=γ sup
s∈SU

[− sup
Q ∈M

1∫
0

−U (T (s,aU ,s, w))Q (w)dw

+ sup
Q ∈M

1∫
0

−V (T (s,aU ,s, w))Q (w)dw] + ε

≤γ sup
s∈SU

[−
1∫

0

−U (T (s,aU ,s, w))Q V ,s(w)dw

+
1∫

0

−V (T (s,aU ,s, w))Q V ,s(w)dw] + 2ε

≤γ sup
s∈SU

1∫
0

|U (T (s,aU ,s, w)) − V (T (s,aU ,s, w))|Q V ,s(w)dw

+ 2ε ≤ γ ‖U − V ‖∞ + 2ε

(the last inequality holds because Q (w)dw is a probability mea-
sure). By releasing ε and performing a limit transition, we get that 
bU ≤ γ ‖U − V ‖∞ . By making analogous steps for bV , we get the 
Theorem. �
Next we demonstrate the convergence of two well known solution 
algorithms (see [5]): For any a ∈ A, denote

V a : (V a)(s) = �∞(

∞∑
t=1

γ t−1r(st,a(st))),

st+1 = T (st,a(st), Wt+1), t ≥ 1,

and

C : (C V )(s)
def= arg max

a∈A(s)
[r(s,a) + γ ς(V (T (s,a, W )))],

where the choice of the optimal policy is arbitrary. Let θ be a pre-
chosen precision level. Assume C is well defined (i.e. at least one 
arg max always exists).

Value Iteration Policy Iteration
choose bounded V0 : S → [0, ∞)

n ← 0
repeat

n ← n + 1
Vn ← B Vn−1

until ‖Vn − Vn−1‖∞ ≤ θ

choose a0 ∈ A
n ← 0
repeat

n ← n + 1
an ← C V an−1

until ‖V an − V an−1‖∞ ≤ θ

The following result is a direct consequence of the Banach Fixed 
Point Theorem (see [2], 1.1) and the equivalence of the value func-
tions and the (classes of) policies.

Theorem 3. There exists V� solving (4). Moreover,

‖Vn − V�‖∞ ≤ γ n

1 − γ
‖V 1 − V 0‖∞,

‖V an − V�‖∞ ≤ γ n

1 − γ
‖V a1 − V a0‖∞,

for any n.
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Corollary 1. Both the Value iteration algorithm and the Policy iteration 
algorithm converge at a geometric rate and stop after a finite number of 
steps.

Remark 2. Versions using ε-optimal solutions may be formulated; 
however, the ε ’s have to gradually decrease. In particular, it has to 
be εn ∼ γ n .
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