
Citation: Csirmaz, E.P.; Csirmaz, L.

Data Synchronization: A Complete

Theoretical Solution for Filesystems.

Future Internet 2022, 14, 344. https://

doi.org/10.3390/fi14110344

Academic Editor: Davide Tosi

Received: 10 October 2022

Accepted: 18 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Data Synchronization: A Complete Theoretical Solution
for Filesystems
Elod P. Csirmaz 1,∗ and Laszlo Csirmaz 1,2

1 Alfréd Rényi Institute of Mathematics, 1053 Budapest, Hungary
2 Institute of Information Theory and Automation, CZ-182 00 Prague, Czech Republic
* Correspondence: elod@epcsirmaz.com

Abstract: Data reconciliation in general, and filesystem synchronization in particular, lacks rigorous
theoretical foundation. This paper presents, for the first time, a complete analysis of synchronization
for two replicas of a theoretical filesystem. Synchronization has two main stages: identifying the
conflicts, and resolving them. All existing (both theoretical and practical) synchronizers are operation-
based: they define, using some rationale or heuristics, how conflicts are to be resolved without
considering the effect of the resolution on subsequent conflicts. Instead, our approach is declaration-
based: we define what constitutes the resolution of all conflicts, and for each possible scenario we
prove the existence of sequences of operations/commands which convert the replicas into a common
synchronized state. These sequences consist of operations rolling back some local changes, followed
by operations performed on the other replica. The set of rolled-back operations provides the user
with clear and intuitive information on the proposed changes, so she can easily decide whether to
accept them or ask for other alternatives. All possible synchronized states are described by specifying
a set of conflicts, a partial order on the conflicts describing the order in which they need to be resolved,
as well as the effect of each decision on subsequent conflicts. Using this classification, the outcomes
of different conflict resolution policies can be investigated easily.

Keywords: data synchronization; conflict resolution; filesystem theory

MSC: 08A02, 08A70, 68M07, 68P05

1. Introduction and Related Work

This work is a comprehensive treatment of filesystem synchronization and conflict
resolution on a simple but powerful theoretical model of filesystems. Synchronizing
diverged copies of some data stored on a variety of devices and locations is an important
and ubiquitous task. The last two decades have seen tremendous advancement, both
theoretical and practical, in the closely related fields of distributed data storage [1,2] and
group editors [3,4]. This progress has been based on, and has expanded significantly, two
competing theoretical frameworks: Operational Transformation (OT) and Conflict-free
Replicated Data Types (CRDT). OT appeared in the seminal work [5] and was refined later
in [4]. The general idea is that operations are enriched with the context in which they were
generated. Before applying them, they are transformed depending on the context of their
origin and the context where they are to be applied. Main applications are collaborative
editors, the most notable example being Google Docs [6]. The core concept of CRDT
is commutativity, see [1,2]. Basic data types with special operators are devised so that
executing the operators in different orders yield the same results. Examples are counters or
sets with add and delete operators. The basic types are used as building blocks in more
complex applications such as collaborative editors [7], the commercial product Riak [8],
and others.

Both OT and CRDT have been successfully applied in a variety of synchronization
tasks [9,10]. Filesystem synchronization, however, fits very poorly into these frameworks,
mainly because it works under a completely different modus operandi: constant, low
latency communication in OT and CRDT versus a single data exchange in filesystem

Future Internet 2022, 14, 344. https://doi.org/10.3390/fi14110344 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14110344
https://doi.org/10.3390/fi14110344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2449-7923
https://orcid.org/0000-0001-7530-8307
https://doi.org/10.3390/fi14110344
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14110344?type=check_update&version=2


Future Internet 2022, 14, 344 2 of 21

synchronization; frequent loose synchronization with eventual convergence requirement
versus a single but complete synchronization; small number of differences versus sig-
nificant structural differences accumulated during an extended time period; and so on.
Consequently, for a theoretical investigation of filesystem synchronization, we follow a
traditional framework instead, described in e.g., [11] and depicted in Figure 1 adapted
from [12].

Φ

Φ

Φ

Φ1

Φ2

Ψ

Ψ

Ψ

..
..

..
m

er
ge

d
st

at
e

..
..

..

..
..

..
re

pl
ic

as
..

..
..

update detector

update detector

re
co

nc
ile

r

α0

updates

β0
updates

α1

synchronization

β1
synchronization

α

β

Figure 1. Outline of the synchronization process. Identical replicas of the original filesystem Φ
are updated (modified) yielding the divergent replicas Φ1 and Φ2. The reconciler uses the update
information α and β extracted by the update detectors, and generates the synchronizing instructions α1
and β1. These create the identical merged state Ψ when applied to the replicas. The update detectors
determine the update information α and β either by comparing the different states of the replicas
(e.g., Φ1 vs. Φ), or by having access to the update instructions α0 and β0 that were applied to Φ.

Two identical replicas of the original filesystem Φ are updated independently, yielding
the divergent replicas Φ1 and Φ2. In the state-based case the update detector receives the
original (Φ) and the current (Φ1 or Φ2) states, and generates the update information α
(or β) describing the differences between the original filesystem and the replica. In the
operation-based case the update decoder has access to the performed operations α0 (β0)
only. The reconciler receives the information provided by the update detectors and generates
the synchronizing instructions α1 and β1, respectively. These instructions, applied to the
replicas Φ1 and Φ2, create the identical merged state Ψ.

In order to reach such a common synchronized state, existing theoretical and practical
filesystem synchronizers, such as [10,13–17], apply some conflict-resolution strategy. They
identify all (or some) of the conflicts, then apply their strategy to the conflicts one at a
time. These algorithms are typically fixed and defined by some rationale or heuristics, or
dictated by the underlying technology. In contrast, we define what comprises a synchronized
state. Intuitively, it is a maximal consistent merger of the replicas, meaning that no further
changes can be applied to the merged state from those that were applied to the replicas
during the update phase. Then we proceed to prove that every such maximal state (and
only these states) can be reached by resolving the conflicts in some order.

In the meticulous survey [16] of existing theoretical and practical filesystem synchro-
nizers it has been observed that “resolving conflicts is an open problem where [. . . ] most
academic works present arbitrary resolution methods that lack a rationale for their deci-
sions” (page i), and that “a file system can be affected by more than one conflict at once,
which has not been discussed in related academic works” (page 65). By presenting, for
the first time, a complete analysis of the synchronization process for two replicas of a
theoretical filesystem model, we fill these gaps.

Our Contribution

This paper is a complete analysis of the synchronization process of two replicas of
a theoretical filesystem. Our filesystem model together with the commands considered—



Future Internet 2022, 14, 344 3 of 21

such as create, rmdir, or edit—are discussed in Secion 3. The changes between the original
replica and the locally updated versions are captured by a special command set as defined
in Section 4, which also defines algorithms generating this update information.

The important question of which filesystems can, in general, be considered to be a
synchronized state of two divergent replicas is tackled in Section 5. Our definition captures
this notion in its full generality without prescribing how the synchronized state can be
reached. Providing such a declaration-based definition of the synchronized state is one of
our main contributions. Section 6 presents the generic synchronization algorithm based on
conflict resolution. By using different strategies to resolve conflicts, any of the synchronized
states allowed by our definition, and only those, can be the result of the algorithm. Finally,
Section 7 summarizes the results and lists open problems and directions for future research.

2. Methodology

Our filesystem model, defined in Section 3, is arguably simple, but it retains all impor-
tant structural properties of real filesystems. It is this simplicity that allows us to exploit a
rich and intriguing algebraic structure [12,18] which eventually leads to the claimed theo-
retical results. In Section 7 we discuss some possible extensions of the filesystem model.

Depending on the data communicated by the replicas, synchronizers are categorized
as either state-based or operation-based [1,16]. In state-based synchronization replicas send
their current versions of the filesystem, or merely the differences (called diff s) between the
current states and the last known synchronized state [19]. Operation-based synchronizers
transmit the complete log (or trace) of all operations performed by the user [13]. The
synchronization method of this paper is reminiscent of operation-based one, but can also be
considered, with similar overhead, to be state-based. A set of virtual filesystem operations
(commands) will be defined in Section 3. Each of these commands have a clear and intuitive
operational meaning, but are not necessarily available to the end-user. The current state of
the filesystem is described by a special—called canonical—sequence of virtual commands,
which transforms the original filesystem to the actual replica. The update detector can
generate this canonical sequence from the operations performed by the user on the replica
(operation-based) as well as from the differences between the original and final state (state-
based). On Figure 1 these sequences correspond to the information in α and β passed to
the reconciler.

Filesystem synchronization must resolve all conflicts between the replicas. Conflict
resolution, however, should be “intuitively correct,” i.e., discarding all changes made by
both replicas is not a viable alternative. The majority of commercially or theoretically
available synchronizers do not present a rationale to explain their concrete conflict reso-
lution approach [16]. Two notable exceptions are [10] and [9] which describe high-level
consistency philosophies. In [10] the main principles are (1) no lost update: preserve all
updates on all replicas because these updates are equally valid; and (2) no side effects: such
as a merge where objects unexpectedly disappear. While these principles intuitively make
sense, it is easy to see that neither could possibly be upheld for every conflict; even the
authors provide counterexamples. In [9] the relevant consistency requirements are worded
as follows:

R1 intention-confined effect: operations applied to the replicas by the synchronizer must be
based on operations generated by the end-user; and

R2 aggressive effect preservation: the effect of compatible operations should be preserved
fully; and the effect of conflicting operations should be preserved as much as possible.

These requirements are in fact variations of the OT consistency model, see for example
the notion of intention preservation in [4]. (We note that the other two OT principles—
convergence and causality preservation—do not apply to filesystem synchronizers.)

In agreement with R1 and R2 we declare what a synchronized state is, rather than
present an algorithm which generates it. Our declaration can be outlined as follows.
Suppose that the two replicas Φ1 and Φ2 are represented by the canonical sequences α
and β, respectively, that is, Φ1 = αΦ and Φ2 = βΦ, where αΦ is the result of applying



Future Internet 2022, 14, 344 4 of 21

the command sequence α to Φ. The synchronized or merged state Ψ is determined by the
canonical sequence µ as Ψ = µΦ such that

C0 µ is applicable to the original filesystem Φ,
C1 every command in µ can be found either in α, in β, or in both, and
C2 µ is maximal, i.e., no canonical sequence adding more commands to µ can satisfy both

C0 and C1.

Condition C0 is the obvious requirement that the synchronizer must not cause errors.
Condition C1 ensures that the synchronization satisfies the intention-confined effect (no
surprise changes in the merged filesystem) requirement R1 as µ should consist only of
commands which were supplied by the replicas. The other consistency requirement R2 is
guaranteed by C2 as µ is maximal, therefore it preserves as much of the intention of the
users as possible. Note that this definition of a synchronized state is never vacuous. There
are only finitely many sequences which satisfy C0 and C1 (as every command in µ comes
from either α or β and no repetitions are allowed), and there are at least two, namely α and
β. Because of this, the empty sequence (undoing all changes) will not satisfy C2 (assuming
one of α and β is not empty), in line with our requirements.

The declaration-based synchronization is intuitively clear, easy to understand, and
does not use any predetermined conflict-resolving policy. An operational characterization
is proved in Theorem 2. The essence of this theorem is that any merged filesystem Ψ can be
generated from the replica, say Φ1, by

1. rolling back some of the commands in α, followed by (∗)
2. applying some commands from the other sequence β,

and vice versa for the other replica. The commands rolled back represent a minimal set
whose removal resolves all conflicts. These commands also give users a clear understanding
of the changes the synchronizer wants to perform on their filesystem. They are also helpful
when some of the rolled-back commands should be introduced again after the merging
(doing a redo of the undo).

Turning to traditional conflict-based synchronization, Section 6 proves that any dec-
laration-based merged state, and only those states, can be the result of a conflict-based
synchronization algorithm. For each pair of canonical sequences describing the replicas to
be synchronized we define what the conflicting command pairs are. Their resolution uses
the winner/loser paradigm: the winner command is accepted while the loser command is
discarded. It turns out that resolving a conflict may automatically resolve some of the subse-
quent conflicts, but no new conflicts are created. Using this result the outcomes of different
conflict resolving policies can be investigated easily. In particular, the iterative approach [16]
always works, which applies all non-conflicting commands, resolves, in any way, the first
conflict (which might automatically resolve other existing conflicts), and iterates.

3. Definitions

This section defines the basic notation which will be used throughout the rest of the
paper. The exposition follows [12,18] with some substantial modifications. Some results
from these papers are included without proof.

3.1. Namespace and Filesystems

Our filesystem model is arguably simplistic, nevertheless it captures all important
aspects of real-word implementations. In spirit, it is a mixture of identity- and path-based
models [10,16]. Objects are stored in nodes, which are uniquely identified by fixed and
predetermined paths. The set of available nodes is fixed in advance, and no path operations
are considered. Filesystems are required to have the tree-property at all times: in a given
filesystem along any branch starting from any of the root nodes, there must be zero or more
directories, zero or one file, followed by empty nodes. Our model does not support links
(but see Section 7.4), thus the namespace—the set of available nodes or paths—forms a
collection of rooted trees. Filesystems are defined over and populate this fixed namespace.



Future Internet 2022, 14, 344 5 of 21

Formally, the namespace is a set N endowed with the partial function ↑ : N → N
returning the parent of every non-root node (it is not defined on roots). If n = ↑m then n is
the parent of m, and m is a child of n. For two nodes n, m ∈ N we say that n is above m, or n
is an ancestor of m, and write n ≺ m if n = ↑i(m) for some i ≥ 1. As usual, n 4 m means
n ≺ m or n = m. As the parent function induces a tree-like structure, 4 is a partial order.
Two nodes n, m ∈ N are comparable if either n 4 m or m 4 n, and they are uncomparable or
independent otherwise.

A filesystem Φ populates the nodes of the namespace with values. The value stored
at node n ∈ N is denoted by Φ(n). This value can be O indicating that the node is empty
(no content, not to be confused with the empty file); can be D indicating that the node
is a directory; otherwise it is a file storing the complete content (which could happen to
be “no content”). We use O, D and F to denote the type of the content corresponding to
these possibilities. While there is only one value of type O and one value of type D (see
Section 7.3 for a discussion on lifting this limitation), there are many different file values of
type F representing different file contents.

3.2. Internal Filesystem Commands

The synchronizer operates using a specially designed and highly symmetrical set of
internal filesystem commands. They each modify the filesystem at a single node only, and
contain additional information usually not thought of as part of a command which allows
them to be inverted, and makes them amenable to algebraic manipulation. Inventing such
a command set was one of the main contributions of [18].

The commands basically implement creating and deleting files and directories. Modi-
fying a part of a file only is not available as a command; whenever a file is modified, the
new content must be supplied in its entirety. Still, commands issued by a real-life user or
system can be easily transformed into the internal commands; for example, the move or
rename operation can be modeled as a sequence of a delete and a create.

The set of the internal commands is denoted by Ω, and each command σ ∈ Ω has
three components, written as σ = 〈n, x, y〉, as follows:

• n ∈ N is the node on which the command acts,
• x is the content at node n before the command is executed (precondition), and
• y is the content at node n after the command was executed.

Thus rmdir(n) corresponds to the internal command 〈n,D,O〉, which replaces the
directory value at n by the empty value. The command 〈n,O,D〉 creates a directory at
n, but only if the node n has no content, i.e., there is no directory or file at n (a usual
requirement for mkdir(n)). For files f1 and f2 ∈ F the command 〈n, f1, f2〉 replaces f1 stored
at node n by the new content f2. This latter command can be considered to be an equivalent
of edit(n, f1, f2).

Applying σ ∈ Ω to a filesystem Φ is written as the left action σΦ. The command
σ = 〈n, x, y〉 is applicable to Φ if

• Φ contains x at the node n, that is, Φ(n) = x, and
• after changing the content at n to y the filesystem still has the tree property.

If σ is not applicable to Φ then we say that σ breaks the filesystem, and write σΦ = ⊥.
If σ does not break Φ, then σΦ is the filesystem where every node has the same value as in
Φ except for the node n where the new content is y. Command sequences are applied from
left to right, thus (σα)Φ = α(σΦ). The composition of sequences α and β is written as αβ;
occasionally we write it as α ◦ β to emphasize that β is to be executed after α. A sequence
breaks Φ if one of its commands is not applicable. More formally, σα breaks Φ if either σ
breaks Φ, or α breaks σΦ.

Two additional commands will be used, which are denoted by ε and λ, respectively. In
practice they do not occur, and cannot be elements of command sequences, but are useful
in algebraic derivations. The command ε breaks every filesystem, while λ acts as identity:
εΦ = ⊥ and λΦ = Φ for every filesystem Φ.



Future Internet 2022, 14, 344 6 of 21

The command sequences α and β are semantically equivalent, written as α ≡ β if they
have the same effect on all filesystems: αΦ = βΦ for all Φ. We write α Ď β to denote that β
semantically extends α, that is, αΦ = βΦ for all filesystems that α does not break. Clearly,
α ≡ β if and only if both α Ď β and β Ď α. The sequence α is non-breaking if there is at least
one filesystem Φ which α does not break. This is the same as requesting α 6≡ ε.

The inverse of σ = 〈n, x, y〉 is σ−1 = 〈n, y, x〉. For a command sequence α its inverse
is defined in the usual way: α−1 consists of the inverse of the commands in α written
in reverse order. This inverse has the expected property: if α does not break Φ, then
(αα−1)Φ = Φ. In particular, αα−1 Ď λ.

3.3. Command Types and Execution Order

A node value has type O, D, or F depending on whether it is the empty value, a
directory, or a file. For a command σ = 〈n, x, y〉 the type of x is its input type and the
type of y is its output type. Depending on their input and output types commands can be
partitioned into nine disjoint classes. To make their descriptions clearer, we use patterns.
The command 〈n, x, y〉 matches the pattern (n,Px,Py) if the type of x is listed in Px and the
type of y is listed in Py. In a pattern the symbol • matches any value. As an example, every
command matches the pattern 〈•,OFD,DFO〉.

Structural commands change the type of the stored data, while transient commands
retain it. In other words, commands matching 〈•,O,FD〉, 〈•,F,OD〉 or 〈•,D,OF〉 are
structural commands, while those matching 〈•,O,O〉, 〈•,F,F〉 or 〈•,D,D〉 are transient
ones. Commands with identical input and output values are null commands. Every null
command is transient, and transient commands which are not null match the pattern
〈•,F,F〉. If σ is a null command, then σ Ď λ meaning that σ does not change the filesystem
(but can break it), and if σ Ď λ then σ is a null command.

Structural commands are further split into constructors and destructors. Constructor
commands upgrade the type from O to F to D, while destructors downgrade it. That is,
constructors are commands matching 〈•,O,FD〉 or 〈•,F,D〉, while the destructors match
〈•,D,FO〉 or 〈•,F,O〉.

Some command pairs on parent–child nodes can only be executed in a certain order.
This notion is captured by the binary relation σ� τ with the meaning that σ must precede
τ in the execution order.

Definition 1 (Execution order). For a command pair σ, τ ∈ Ω the binary relation σ� τ holds
if the pair matches either 〈n,DF,O〉 � 〈↑n,D,FO〉 or 〈↑n,OF,D〉 � 〈n,O,FD〉. An�-chain
is a sequence of commands such that σ1 � σ2 � · · · � σk. An�-chain connects its first and
last element.

The first case in Definition 1 of the� relation corresponds to the requirement that a
directory cannot be deleted when its descendants are not empty. The second case requires
that before creating a file or directory, the directory holding it should exist. Observe that
σ � τ implies that both σ and τ are structural commands on parent–child nodes, and
either both are constructors or both are destructors. It means that elements of an�-chain
match either the pattern

〈n1,DF,O〉 � 〈n2,D,O〉 � · · · � 〈nk−1,D,O〉 � 〈nk,D,FO〉

where ni+1 is the parent of ni (we move up along a branch), or they match

〈n1,FO,D〉 � 〈n2,O,D〉 � · · · � 〈nk−1,O,D〉 � 〈nk,O,DF〉,

where ni is the parent of ni+1 (we move down). Figure 2 illustrates the structure of �-
chains. The circles represent the nodes on which the commands act: the top, input type row
denotes the types of their values before executing the commands, while the bottom, output



Future Internet 2022, 14, 344 7 of 21

type row shows the types of their values afterwards. The black arrows point towards the
parent nodes, and the read arrows indicate the execution order.

D D D D DFinput type

FO O O O Ooutput type

σ1σ2σ3σ4σ5command

FO O O O Oinput type

D D D D DFoutput type

σ1 σ2 σ3 σ4 σ5command

Figure 2. Structure of an up (left) and down (right)�-chain. Black arrows point to the parent node
and red arrows show the execution order�.

4. Canonical Sequences and Sets

Our synchronizer, including the update detector, relies heavily on the algebraic struc-
ture of internal command sequences. The theory of this structure has been developed
in [12,18]. We provide high-level overviews of the proofs whenever appropriate to make
this paper self-contained and also available to non-experts. For full proofs the reader is
referred to the original papers.

To understand the semantical properties of command sequences, the first step is to
investigate command pairs and determine when they commute, and when they require a
special execution order. Proposition 1 covers the case when the commands act on the same
node, and Proposition 2 considers command pairs on different nodes.

Proposition 1 ([12], Proposition 4). Suppose σ, τ ∈ Ω are on the same node n. Then one of the
following two possibilities hold:
(a) στ Ď ω for some ω ∈ Ω also on the same node n,
(b) στ ≡ ε, that is, the pair breaks every filesystem.

Proof. Suppose σ = 〈n, x1, y1〉 and τ = 〈n, x2, y2〉. If y1 = x2 then (a) holds with
ω = 〈n, x1, y2〉. If y1 6= x2 then (b) holds: if σ does not break the filesystem, then it
leaves y1 at node n. Now τ requires x2 there, but finds a different value, thus breaks the
filesystem.

For two commands we write σ‖τ to mean that the nodes they act on are uncomparable,
i.e., the nodes are different and neither is an ancestor of the other.

Recall that σ is a null command if it has the same input and output value, that is, it is
of the form σ = 〈n, x, x〉.

Proposition 2 ([12], Proposition 5). Suppose σ and τ are non-null commands on different nodes.
Then
(a) if σ ‖ τ then στ ≡ τσ, and
(b) if σ ∦τ then στ 6≡ ε if and only if σ� τ.

Proof. By checking all possibilities.

4.1. Canonical Sequences

Informally, canonical sequences are the “clean” versions of non-breaking command
sequences. The initial definition is a mixture of syntactical and semantical properties.
Proposition 3 defines an algorithm which converts any sequence into a canonical one pu-
rification, and Theorem 1 gives a complete syntactical characterization. An important
consequence of this characterization is that the semantics of a canonical sequence is deter-
mined uniquely by the unordered set of commands it contains. It means that the order of
the commands—up to semantical equivalence—can be recovered from their set only.

Definition 2 (Canonical sequences). A command sequence is canonical if



Future Internet 2022, 14, 344 8 of 21

(a) it does not contain null commands, that is, a command of the form 〈n, x, x〉,
(b) no two commands in the sequence are on the same node, and
(c) it is non-breaking.

Conditions (a) and (b) are clearly syntactical, and can be checked by looking at the
commands in the sequence. In Theorem 1 below we give a purely syntactical characteriza-
tion of canonical sequences. Before stating the theorem we show that canonical sequences
are the “clean” versions of arbitrary command sequences.

Proposition 3 ([18], Theorem 27). For every non-breaking command sequence α there is a
canonical sequence α∗ such that α Ď α∗, that is, if α does not break Φ, then both α and α∗ have the
same effect on Φ.

Proof. Null commands can be deleted from α as they do not change the filesystem (but
may break it). Suppose α has two commands on the same node. Choose two which are
closest to each other; let these be σ1 and σ2, both on node n. The output value of σ1 must be
the same as the input value of σ2 (as α is non-breaking and the value at node n does not
change between σ1 and σ2). If σ1 and σ2 are not next to each other, then using Proposition 2,
either σ1 can be moved forward by swapping it with the immediately following command
(which, by assumption, is on a different node), or σ2 can be moved backward by swapping
it with the immediately preceding command. If none of those swaps can be done, then α
would break every filesystem. Eventually σ1 and σ2 can be moved next to each other. In this
case, however, Proposition 1 implies that σ1σ2 can be replaced by a simgle command.

This proof is constructive and specifies a quadratic algorithm which transforms any
non-breaking sequence into a canonical one. To state the purely syntactical characterization
of canonical sequences we need further definitions.

Definition 3. Let α be a command sequence.
(a) α honors�, if for commands σ, τ ∈ α, σ precedes τ whenever σ� τ.
(b) α is�-connected, if for any two commands σ, τ ∈ α, either σ ‖ τ, or σ and τ are connected

by an�-chain (see Definition 1) whose elements are in α.

Theorem 1 (Syntactical characterization of canonical sequences). A command sequence is
canonical if and only if
(a) it does not contain null commands,
(b) no two commands in the sequence are on the same node,
(c1) it honors�, and
(c2) it is�-connected.

Proof. Let α be a canonical sequence according to Definition 2. To see that if either (c1) or
(c2) fails then α breaks every filesystem, use induction on the length of α. This shows that if
α contains commands on nodes n and m which lie on the same branch, then α must contain
commands on every node between n and m in the right order.

For the reverse direction assume α satisfies conditions (a), (b), (c1) and (c2). We create
a filesystem which α does not break. The values at nodes mentioned in the sequence are
set to the input values of the commands. Values at nodes that are ancestors of the ones
mentioned in the sequence are set to directories. Other nodes of the filesystem remain
empty. This is a valid filesystem, and by property (c2) every command in α has the correct
input value. Using property (c1) one can prove that α works on this filesystem.

4.2. Canonical Sets

An important consequence of Theorem 1 is that the semantics of a canonical sequence
is uniquely determined by the commands it contains. This is expressed formally in the
following Proposition.



Future Internet 2022, 14, 344 9 of 21

Proposition 4 ([12], Theorem 14). If the canonical sequences α and β contain the same commands,
then they are semantically equivalent, that is, αΦ = βΦ for every filesystem.

Proof. In fact, α and β can be transformed into each other using the commutativity rules
given in Proposition 2(a), see ([12], Lemma 10).

Definition 4 (Canonical set). The set A of internal commands is canonical if
(a) it does not contains null commands,
(b) no two commands in A are on the same node, and
(c2) the set A is�-connected, meaning that if two of its commands are on comparable nodes, then

they are connected by an�-chain whose elements are in A.

Commands in a canonical sequence form a canonical set by Theorem 1. In the other
direction, a canonical set can be ordered in many ways to become a canonical sequence—the
only requirement is (c1) which requires that the order honors the relation �. This can
be achieved by using, e.g., topological sort. Any two such orderings give semantically
equivalent sequences, as was proved in Proposition 4. Consequently we can, and will,
use canonical sets in places where command sequences are required with the implicit
understanding that the commands in it are ordered in an appropriate fashion. For example,
we write AΦ to mean αΦ where α contains the elements of A in an order which honors�.

Canonical sets play an essential role in reconciliation (Section 5) and conflict resolution
(Section 6). One of their crucial properties is, as we have seen, that their commands
can be executed in different orders while preserving their semantics—a variant of the
commutativity principle of CRDT [20]. Proposition 5 discusses the special case when a
subset of the commands should be moved to the beginning of the execution line. Then we
define and investigate clusters in a canonical set, and observe that the clusters can be freely
rearranged, and even intertwined.

Definition 5. For a canonical set A we write B b A to indicate that B is not only a subset of A
but can also be moved to the beginning while keeping the semantics, namely A ≡ B ◦ (A r B).

Proposition 5. Let A be a canonical set and B ⊆ A. Then B b A if and only if σ ∈ A, τ ∈ B and
σ� τ imply σ ∈ B. If B b A then both B and A r B are canonical.

Proof. An ordering of A does not break every filesystem if and only if it honors�, see ([12],
Lemma 10). Consequently, if A ≡ B ◦ (Ar B) then this split must honor�, which is exactly
the stated condition. If this condition holds, then A has an ordering which honors� and
in which B precedes A r B.

For the second part it suffices to check that both B and A r B are �-connected.
However, it is immediate from the condition and from the fact that A is�-connected.

The � relation connects commands in a canonical set A. The clusters of A are the
components of this connection graph. All commands in a cluster are constructors, or
all commands are destructors, or the cluster has a single element matching 〈•,F,F〉. Ac-
cordingly, we call the cluster constructor, destructor, or editor, respectively. Nodes of the
commands within a cluster form a connected subtree of the namespace N, and the topmost
elements of the subtrees are pairwise incomparable. In a constructor cluster the “being
the parent” and the� relations coincide, while in a destructor cluster they are the reverse
of each other, see Figure 2. As feasible orders of the commands in A must only honor
the relation�, clusters can freely move around. In a constructor cluster a command can
be executed only after all commands on its ancestors have been executed. In a destructor
cluster it is the other way around: a command can be executed only after all commands on
its descendants have been executed. Editor commands form single-element clusters, thus
they can be executed at any point.



Future Internet 2022, 14, 344 10 of 21

4.3. The Update Detector

Algorithms creating the canonical sets required by the reconciler (see Figure 1) are
described in Propositions 6 and 7. The update detector is either state-based, in which case it
has access to the original and modified filesystems, or it is command-based, in which case it
has access to the exact sequence of commands used to modify the filesystem. Both update
algorithms are highly effective; essentially their runtime is linear in the input size.

Proposition 6 (State-based update detector, ([12], Theorem 19)). Let Φ be the original file-
system and let Φ1 be the replica. The command set

A∗ = {〈n, Φ(n), Φ1(n)〉 : n ∈ N and Φ(n) 6= Φ1(n) }

is canonical, and A∗Φ = Φ1.

Proof. To show that A∗ is canonical we need to check that it is �-connected. By ([18],
Lemma 23) if n ≺ m and Φ and Φ1 differ at n and at m, then they must differ at every node
between n and m. Moreover, the differences follow one of the the patterns on Figure 2, thus
these commands form the required�-chain. A consequence of this is that A∗ does not
break Φ, and since after executing the commands every node will have the output value
from Φ1, we know A∗Φ = Φ1.

The set A∗ can be generated by performing simultaneous depth-first searches on the
visible (non-empty) parts of the filesystems Φ and Φ1. Such an algorithm runs in constant
space, and the running time is linear in the total size of the visible parts of the filesystems.

Figure 3 provides two examples for the result of the state-based update detector. The
namespace N consists of the nodes n1 to n9. The original filesystem Φ contains directories at
nodes n1 to n5 and the empty value at n6 to n9. The first replica deletes all directories, setting
the empty value everywhere. The second replica stores file contents in n5 and in the empty
nodes. The canonical command set transforming Φ into Φ1 consists of the five commands
A = {σ1, σ2, σ3, σ4, σ5} where σi = 〈ni,D,O〉 corresponding to the five differences between
Φ and Φ1. The second command set also has five commands B = {τ5, τ6, τ7, τ8, τ9} with
τ5 = 〈n5,D, f5〉 and τi = 〈ni,O, fi〉 for i > 5. The set A has a single execution order honoring
�, namely σ5, σ4, σ3, σ2, σ1. Any ordering of the commands in B honors �, as no two
commands in B are�-related.

Original filesystem Φ

D D D D D
n1 n2 n3 n4 n5

n6 n7 n8 n9
O O O O

First replica Φ1

O O O O O
n1 n2 n3 n4 n5

n6 n7 n8 n9
O O O O

Second replica Φ2

D D D D f5
n1 n2 n3 n4 n5

n6 n7 n8 n9
f6 f7 f8 f9

Figure 3. Illustrating the update detector. The nodes are, from left to right, n1 to n5 in the top row,
and n6 to n9 in the bottom row. The first replica deletes all directories, the second replica stores file
content fi at node ni.

Proposition 7 (Command-based update detector). Let α be a command sequence that trans-
forms the original filesystem Φ into the replica Φ1. The following procedure creates a canonical set
A∗ for which A∗Φ = αΦ = Φ1. Let A∗ be empty initially, and iterate over the commands in α
from left to right. Let the next command be σ. If there is no command in A∗ on the same node as σ,
add σ to A∗. If σ∗ ∈ A∗ and σ are on the same node, then using Proposition 1(a) replace σ∗ with
the single command corresponding to the composition σ∗σ. Finally, when the iteration ends, delete
the null-commands from A∗.

Proof. It is clear that on each node of the filesystem the sequence α and the set A∗ have the
same effect. Consequently A∗ is equivalent to the command set created in Proposition 6,
therefore it is canonical.



Future Internet 2022, 14, 344 11 of 21

If a hash value of the nodes is also stored, the algorithm can be implented so that its
time and space complexity is linear in the length of sequence α.

5. The Reconciler—Synchronizing Two Replicas

The update detector—either state-based or operation-based—passes the canonical
sets A and B to the reconciler, see Figure 1. These sets describe, in a straightforward and
intuitive way, how the replicas Φ1 and Φ2 relate to the original filesystem Φ. As discussed
in Section 2, the merged filesystem is also specified by a canonical set M (that of the
sequence µ) to be applied to the original Φ. The next definition, which is the formalization
of the informal discussion in Section 2 about synchronization, declares when the command
set M represents an intuitively correct synchronization.

Definition 6 (Merger command set). The merger of the canonical sets A and B is a maximal
canonical set M ⊆ A ∪ B, meaning that no proper superset of M within A ∪ B is canonical.

Note that the merger M is not necessarily unique, and typically many different mergers
exist (see the example below). This definition covers every permissible synchronization
outcome which satisfies both the intention-confined effect R1 (M is a subset of A ∪ B) and the
aggressive effect preservation R2 (M is maximal) requirements as discussed in Section 2. When
performing the actual file synchronization, one of the mergers should be chosen, either
by the system or the user. Section 6 discusses how this choice can be made by successive
conflict resolutions.

In this section we prove that every synchronized state defined by a merger M has
a clear operational characterization: both replicas can be transformed into the merged
state by first rolling back some of the commands executed earlier on this replica, and then
applying some commands executed on the other replica. Using the terminology of [12], the
canonical sets A and B are called refluent if there is filesystem on which both of them work
(neither of them breaks). This condition is clearly met when A and B describe two replicas,
as both are applied to their common original filesystem.

Theorem 2. Let A and B be refluent canonical sets and M ⊆ A ∪ B be a merger. Then
(a) M Ě A ◦ A−1

1 ◦ B′, where A1 = A r M ⊆ A and B′ = M r A ⊆ B,
(b) M Ě B ◦ B−1

1 ◦ A′ where B1 = B r M ⊆ B and A′ = M r B ⊆ A,
(c) if both A and B are applicable to a filesystem, then so are M, A ◦ A−1

1 ◦ B′ and B ◦ B−1
1 ◦ A′.

In case of synchronizing the replicas Φ1 = AΦ and Φ2 = BΦ, let Ψ = MΦ be (one of)
the merged filesystem(s). According to this theorem, we have

Ψ = MΦ = (A ◦ A−1
1 ◦ B′)Φ = B′(A−1

1 Φ1), and

Ψ = MΦ = (B ◦ B−1
1 ◦ A′)Φ = A′(B−1

1 Φ2).

The first line says that the replica Φ1 can be transformed into the synchronized file-
system Ψ first by applying A−1

1 , that is, rolling back those commands in A which are not in
M, and then applying some further commands B′ from B. The similar statement for the
other replica Φ2 follows from the second line. This justifies the informal statement (∗) in
Section 2.

Theorem 2 is illustrated on the filesystems in Figure 3. The canonical sets transforming
the original filesystem to the replicas are A = {σ1, σ2, σ3, σ4, σ5} (where σi = 〈ni,D,O〉) and
B = {τ5, τ6, τ7, τ8, τ9} (where τi = 〈ni,OD, fi〉), respectively. The synchronized states shown
on Figure 4 correspond to the mergers M1 = {σ5, τ6, τ7, τ8, τ9}, M2 = {σ4, σ5, τ6, τ7, τ8},
and M3 = {σ2, σ3, σ4, σ5, τ6}, respectively. Altogether there are six mergers of A and B
depending on how many levels of the directory erasures in A are kept. To get Ψ1 from the
replica Φ1 we first roll back the commands σ1, σ2, σ3 and σ4 in this order (commands in the
set A r M1), which restores the four directories. Then we apply the commands τ6, τ7, τ8, τ9



Future Internet 2022, 14, 344 12 of 21

from the other command set B to set the file values. Getting Ψ1 from the second replica
requires fewer commands. First roll back τ5 (the only member of B r M1) restoring the
directory at n5, then apply σ5 to erase this directory.

Merged copy Ψ1

D D D D O
n1 n2 n3 n4 n5

n6 n7 n8 n9
f6 f7 f8 f9

Merged copy Ψ2

D D D O O
n1 n2 n3 n4 n5

n6 n7 n8 n9
f6 f7 f8 O

Merged copy Ψ3

D O O O O
n1 n2 n3 n4 n5

n6 n7 n8 n9
f6 O O O

Figure 4. Three possible results of synchronizing the filesystems in Figure 3.

The proof of Theorem 2 uses some intricate properties of canonical sets and mergers
which we prove first.

Proposition 8. Let A and B be refluent canonical sets with τ ∈ A, σ ∈ A ∪ B and σ� τ. Then
σ ∈ A.

Proof. Let σ, τ be on nodes n and m, respectively, and Φ be any filesystem on which
both A and B work. The value Φ(n) is the input value of σ, and Φ(m) is the input
value of τ. Now σ � τ matches either the pattern 〈n,DF,O〉 � 〈↑n,D,FO〉 or the
pattern 〈↑m,OF,D〉 � 〈m,O,FD〉, see Definition 1. If A has no command on node n, then
executing τ would break Φ as Φ(n) still has its original value. Thus let σ′ ∈ A be on node
n. The input value of σ′ is the same as that of σ, moreover σ′ � τ (as A is canonical and σ′

and τ are on parent–child nodes). Then the output values of σ′ and σ are also equal since
they are either both O or D, thus σ = σ′.

A similar statement holds for mergers, but the proof is more involved.

Proposition 9. Let A and B be refluent canonical sets, M ⊆ A ∪ B be a merger with τ ∈ M,
σ ∈ A ∪ B and σ� τ. Then σ ∈ M.

Proof. Let σ and τ be a lowest counterexample to the claim, and n and m be their respective
nodes. By “lowest” we mean that there is no other counterexample pair σ∗, τ∗ where the
node of σ∗ would be below n.

The argument of the proof of Proposition 8 gives that if M has a command on n
(the node of σ), then σ ∈ M. Thus σ cannot be added to M only if M already contains
a command σ′ on a node n′ such that n′ and n are comparable and σ′ and σ cannot be
connected by an �-chain. If m and n′ are comparable, then there is an �-chain in M
between τ and σ′ as both are in M. As no command in M is on n, the node n cannot be
between m and n′, but then σ� τ � · · · � σ′ is an�-chain in M connecting σ and σ′, a
contradiction. (Note that the chain between τ and σ′ cannot be in the other direction.)

Therefore m and n′ are uncomparable, which means that m and n′ are both below n,
consequently σ and τ are constructors. Let Φ be any filesystem on which both A and B
work. As σ matches 〈n,OF,D〉, Φ(n) is either empty or is a file. It means that all nodes
below n are empty, in particular Φ(n′) = O, and σ′ changes this empty value to something
else. Now suppose σ′ ∈ A. As A does not break Φ, it must change the non-directory
value at n to a directory, consequently σ ∈ A as well. Then there is an�-chain between
σ and σ′ in A starting with σ and ending with σ′ ∈ M. As σ was chosen to be the lowest
counterexample, all elements of this chain are in M, which is a contradiction again.

Recall from Proposition 5 that B b A if and only if B ⊆ A and there are no σ� τ such
that τ ∈ B and σ ∈ A r B.

Proposition 10. Let A, B be refluent canonical sets, and M be a merger. Then A ∩M b A, and
A ∩M b M.



Future Internet 2022, 14, 344 13 of 21

Proof. Both statements follow from the combination of Propositions 8 and 9. If τ ∈ A ∩M
and σ� τ with σ ∈ A ∪ B, then σ ∈ A ∩M.

Claim (a) of Theorem 2 follows immediately from Proposition 10. Let A2 = A ∩M,
A1 = A r M, and B′ = M r A. By Propositions 10 and 5 we have A = A2 ◦ A1, and
M = A2 ◦ B′. Thus

M = A2 ◦ B′ Ě (A2 ◦ A1 ◦ A−1
1 ) ◦ B′ = A ◦ A−1

1 ◦ B′,

and a similar reasoning gives claim (b).

Recall that the notation σ ‖ τ means that the nodes which the commands σ and τ are
acting on are uncomparable (that is, independent). We write σ ‖ B to mean that for every
τ ∈ B we have σ ‖ τ, and A ‖ B to mean that for every σ ∈ A we have σ ‖ B.

Proposition 11. Suppose that the canonical sets A and B are applicable to the filesystem Φ;
moreover, A r B ‖ B r A. Then A ∪ B is canonical and is applicable to Φ.

Proof. First we show that A ∪ B is canonical. This is so as A r B and B r A do not have
commands on comparable or coinciding nodes, thus any two commands in A ∪ B on
comparable nodes are both in A, or are both in B. Second, A ∪ B is applicable to Φ when A
and B are disjoint as in this case, by assumption, A ‖ B, see also ([18], Lemma 36).

When A and B are not disjoint, let C = A ∩ B. By Proposition 8, C b A, thus
A ≡ C ◦ (A r C) which means AΦ = (A r C)(CΦ). Similarly, BΦ = (B r C)(CΦ).
Applying the first case of this proof to the disjoint sets A r C, B r C and the filesystem
CΦ shows that (A ∪ B)r C is applicable to CΦ. Since C b (A ∪ B) also holds, we get that
A ∪ B is applicable to Φ.

After these preparations claim (c) of Theorem 2 can be proved as follows. Let
A2 = A∩M and B2 = B∩M. Then A2 ∪ B2 = M and Mr A2 = B2 r A2. Now A2 b M by
Proposition 10, which means that A2 is canonical and M ≡ A2 ◦ (Mr A2) = A2 ◦ (B2 r A2),
and similarly M ≡ B2 ◦ (A2 r B2). We claim that A2 r B2 ‖ B2 r A2. This is because these
sets are disjoint and if σ in the first set and τ in the second set are on comparable nodes,
then they are�-connected (as both are in the canonical set M), thus in any ordering of M
which honors� they are in a fixed order, but in A2 ◦ (B2 r A2) σ comes before τ, and in
B2 ◦ (A2 r B2) τ comes before σ, which is a contradiction.

Let Φ be a filesystem to which both A and B can be applied. Again by Proposition 10,
A2 b A, thus A2 is also applicable to Φ, and similarly B2 is applicable to Φ. By Proposi-
tion 11, M = A2 ∪ B2 is also applicable to Φ, which is the first claim in Theorem 2 (c). For
the other two claims observe that A1 = A r M = A r A2 and B′ = M r A = M r A2. We
know A2 b A, thus A ◦ A−1

1 = A2 ◦ A1 ◦ A−1
1 , which is applicable to Φ and gives A2Φ.

Since A2 b M and M is applicable to Φ, M r A2 = B′ is applicable to A2Φ. All together,
A ◦ A−1

1 ◦ B′ is applicable to Φ, as claimed. Similar reasoning gives that B ◦ B−1
1 ◦ A′ is also

applicable to Φ.

6. Synchronization by Conflict Resolution

In the realm of file synchronization a conflict is represented by two filesystem com-
mands which can be executed individually, but not together. Resolving the conflict means
choosing one of the following actions (see, among others, [9,16]):

• discard both commands,
• discard one command and keep the other (loser/winner paradigm), or
• replace one or both commands by a new one.

Only the second alternative satisfies both the intention-confined effect principle R1 (use
only commands issued by the user), and the aggressive effect preservation principle R2 (carry
over as many operations as possible). Our synchronizer uses this loser/winner paradigm
to solve all conflicts. Resolving a conflict might create new ones, or automatically solve—or



Future Internet 2022, 14, 344 14 of 21

make irrelevant—others. Thus after each step the set of conflicts has to be regenerated, or
at least revalidated/reviewed. Termination of the synchronization process is not automatic
and has to be proved, see [16]. Fortunately, in our case no new conflicts are generated, and
resolved and disappearing conflicts can be identified easily. As each step eliminates at least
one conflict, the synchronizer clearly stops after finitely many steps.

6.1. Theoretical Foundation

In this subsection we fix the refluent canonical sets A and B and the merger M which
the synchronization is supposed to reach, but is not necessarily known at the start. First
we show that synchronization can be reduced to the case when A and B are disjoint
(though they might contain different commands on the same node). Then we define when
a command pair represents a conflict, and show that this notion has the expected properties:
a merger M does not contain conflicting pairs, and if there are no conflicts, then M is the
disjoint union of A and B. The main novelty of our conflict resolution algorithm is that
instead using the winner to build up the merger, it only discards the losing command from
future considerations. In other words, the algorithm thins out the sets A and B until only
the merger M remains.

Proposition 12. Let A, B be refluent canonical sets, and M be a merger. Then (a) A ∩ B b A and
A ∩ B b B, (b) A ∩ B ⊆ M, and (c) A ∩ B b M.

Proof. Claim (a) follows from Proposition 8 since if τ ∈ A ∩ B, σ ∈ A ∪ B and σ� τ, then
σ ∈ A ∩ B. From this and from (b) claim (c) follows, too.

To prove (b) it suffices to check that M ∪ (A ∩ B) is canonical. First, all commands in
this union are on different nodes. Both M and A ∩ B are canonical, so if their union were
not, then there are commands σ ∈ A∩ B and σ′ ∈ Mr (A∩ B) on comparable nodes which
are not connected by an�-chain in M ∪ (A∩ B). Assume σ′ ∈ A. There is a chain between
σ and σ′ in A. Since A ∩ B b A, we know this chain has the direction σ� · · · � σ′. From
this and because σ′ ∈ M, we know all members of this chain are in M based on Proposition
9, which is a contradiction.

Let C = A ∩ B and let Φ be a filesystem which shows that A and B are refluent, that is,
both A and B work on Φ. Let A′ = A r C, B′ = B r C, and M′ = M r C; observe that the
command sets A′ and B′ are disjoint. By Proposition 12 C is canonical and can be moved to
the front of A and B and M; moreover A′ and B′ and M′ are also canonical. Now A′ and B′

are refluent (both are applicable to CΦ), and M′ is a merger for A′ and B′. The converse of
the last statement is also true: if M∗ is any merger of A′ and B′, then C ∪M∗ is a merger of
A and B. Consequently it suffices to find the merger M′ of the disjoint command sets A′

and B′, and then adding the intersection A ∩ B to M′. For this reason, from this point on
we assume that A and B share no commands.

Definition 7. Let A and B be fixed disjoint, refluent canonical sets. The pair (σ, τ) is a conflict
if σ ∈ A, τ ∈ B and σ ∦ τ, that is, the nodes of σ and τ are comparable (including when they
coincide).

The conflict graph is the bipartite graph with the disjoint command sets A and B as
the two classes, and an edge between σ ∈ A and τ ∈ B if they are in conflict. Figure 5a
shows the conflict graph of the synchronization problem depicted on Figure 3. As an
example, command σ5 is connected to τ5 only, as both σ5 and τ5 are on node n5, while n5 is
independent of the nodes n6, . . . , n9 on which the other commands in B are.



Future Internet 2022, 14, 344 15 of 21

σ1 σ2 σ3 σ4 σ5

τ6 τ7 τ8 τ9 τ5

a)

σ1 σ2 σ3 σ4 σ5

τ6 τ7 τ8 τ9 τ5

b)

σ1 σ2 σ3 σ4 σ5

τ6 τ7 τ8 τ9 τ5

c)

Figure 5. (a) The conflict graph of the synchronization problem of Figure 3. The conflict (σ2, τ7) is
resolved with the winner τ7. (b) The conflict graph after resolving (σ2, τ7); commands σ1 and σ2 are
deleted. The next conflict we resolve is (σ4, τ5). (c) The conflict graph after resolving (σ4, τ5) with the
winner σ4; commands τ9, τ5 are deleted. The final conflict graph contains the commands σ4, σ5, τ6, τ7,
τ8, and no edges.

Proposition 13. It is impossible that both commands of the conflict (σ, τ) are in M.

Proof. The meanings of the symbols are as in Definition 7. Suppose by contradiction that
both are in M. As they are on comparable nodes, there is an�-chain in M between σ and
τ. Consequently there are two consecutive commands in this chain so that one is in A and
the other is in B, say σ′ � τ′, σ′ ∈ A and τ′ ∈ B. However, Proposition 8 says that in this
case σ′ ∈ B, contradicting that A and B are disjoint.

Proposition 14. Suppose (σ, τ) is a conflict, σ′ ∈ A and σ� σ′. Then (σ′, τ) is also a conflict.

Proof. Let σ, σ′ be on nodes n and n′, respectively. If n′ is the parent of n, then the node
of τ is comparable to n′, thus we are done. Therefore n is the parent of n′, σ and σ′ are
constructors, and σ matches 〈n,OF,D〉. If the node of τ is not below n, then we are done. If
it is, then the input type of τ is O (as in the original filesystem Φ, Φ(n) is not a directory,
therefore every node below it is empty). For the same reason the command set B must
contain a command on node n (otherwise when executing τ, Φ still has the original content
at n, and then τ breaks Φ). This command has the same input type as σ, must create a
directory, thus it is equal to σ, contradicting that A and B are disjoint.

By symmetry, the same claim holds when A and B are swapped. Fix σ ∈ A, and split
B into Bok

σ and Bconf
σ as follows:

Bok
σ = {τ ∈ B : (σ, τ) is not a conflict} = {τ ∈ B : σ ‖ τ},

Bconf
σ = {τ ∈ B : (σ, τ) is a conflict} = {τ ∈ B : σ ∦τ}.

We know Bok
σ b B by Propositions 5 and 14, which means that if Φ is a filesystem

B does not break, then neither does Bok
σ . Moreover, if σ � σ′, then Bconf

σ ⊆ Bconf
σ′ . In

particular, if Bconf
σ′ is empty, then so is Bconf

σ . Next we show that if there are no conflicts,
then the synchronization is done; however, we need a stronger statement which will be
used to justify the correctness of the synchronization process.

Proposition 15. Suppose Bconf
σ is empty, that is, no τ ∈ B is in conflict with σ ∈ A. Then σ ∈ M.

Proof. It is enough to show that M ∪ {σ} is canonical. Since σ ‖ B, it has at most one
command on every node. It can only be non-canonical if there is a τ ∈ M on a related node
that cannot be connected to σ using an�-chain from the commands in M. This τ must be
in A, which has a chain between σ and τ. If this chain goes in the direction σ� · · · � τ,
then σ ∈ M by Proposition 9. Otherwise we know τ � · · · � σ, and based on the remark
above, Bconf

ω is empty for all members of this chain and so are independent of B. This means
the chain can be added to M, which is a contradiction.

Corollary 1 (Termination). If there are no conflicts, then the merger M is A ∪ B.



Future Internet 2022, 14, 344 16 of 21

Proof. By Proposition 15 every command in A is in M, and similarly B ⊆ M. As M is a
subset of A ∪ B, they must be equal.

6.2. The Synchronization Algorithm

The input of the synchronization algorithm is (Ao, Bo), which is a pair of refluent
canonical command sets. The goal is to find, using successive conflict resolution steps, a
merger command set M that fits Definition 6. In addition, we aim to show that our algorithm
can produce any of the mergers allowed by the definition, and only valid mergers. To
achieve this, the algorithm accepts a pre-set merger Mo as an optional argument. Whenever
the algorithm needs to make an otherwise arbitrary choice, Mo is used to choose one of the
possibilities. While choosing any of the possibilities will generate a valid merger, guiding
the choice will guarantee that Mo will be generated.

According to the discussion in Section 6.1, the synchronization algorithm has two
main components. The first one, called Algorithm 1, reduces the general problem to the
special case when the input command sets have no common elements. Properties of the
merger set proved in Proposition 12 provide the foundation of the reduction. The second
component, called Algorithm 2, assumes that its input command sets Ao and Bo are disjoint
so that it can rely on the intrinsic properties of the conflict graph when generating the
merger M. The two algorithms are visalized in Figures 6 and 7, respectively. The detailed
description is followed by the proofs of the correctness and a short discussion on time and
space complexity.

C=Ao∩Bo

AorC

BorC

MorC

M′∪C

Ao

Bo

Mo

MM′
call

Alg. 2

Figure 6. Outline of Algorithm 1. Given the input (Ao, Bo, Mo), extract the common part C of Ao and
Bo, and call Algorithm 2 with the reduced sets. Finally, add C to the returned M′ to generate the
output M.

Algorithm 1 (Synchronization in the general case). Let C = Ao ∩ Bo. Execute Algorithm 2
with the command sets Ao r C and Bo r C. If Mo is specified, then it must satisfy C ⊆ Mo;
in this case pass Mo r C as the optional input to Algorithm 2. When Algorithm 2 returns
M′, return M = C ∪M′.

Correctness of Algorithm 1. As discussed after the proof of Proposition 12, Ao r C and
Bo r C are refluent canonical sets, and C is an initial segment of every merger of Ao and Bo.
Moreover, if Mo is a merger of Ao and Bo, then Mo r C is a merger of Ao r C and Bo r C.
From here the correctness of the algorithm follows easily.

Complexity of Algorithm 1. Apart from the time and space requirements of Algorithm 2,
the five operations here require computing the union, intersection and difference of sets.
Using hashing techniques, these operations can be performed both in time and space linear
in the input size.

Inputs of the main Algorithm 2 are the disjoint refluent canonical sets Ao and Bo, and
the optional target merger Mo of Ao and Bo. The goal is to produce a merger M. If Mo is
given, then, at the end, M and Mo must be equal.

The algorithm maintains two command sets A and B, initially set to Ao and Bo. During
execution these sets satisfy the following invariants:

1. A b Ao, B b Bo, consequently A and B are refluent canonical subsets of Ao and Bo;
2. all mergers of A and B are mergers of Ao and Bo;
3. if Mo is specified, then Mo is a merger of A and B.



Future Internet 2022, 14, 344 17 of 21

In each iteration one or more commands are deleted either from A or from B until only the
commands of the merger remain.

Ao

Bo

Mo

A0→A

B0→B

Initialize:

find conflict
σ∈A, τ∈B

found

not found

determine
the winner

reduce set
of loser

Iterate:

M=A∪B M

Finish:

Figure 7. Outline of Algorithm 2. The Initialize step sets A and B. The Iterate step is executed until no
more conflicts are found. Conflicts are resolved using the hint from the additional input Mo, then the
command sets A and B are reduced. If no conflict remains, the merger M = A ∪ B is returned by the
Finalize step.

Algorithm 2 (Synchronization of disjunct sets). Initialize: Set Ao → A and Bo → B.
Iterate: Choose σ ∈ A and τ ∈ B such that (σ, τ) is a conflict. If no such pair exists, go to

Finish. If Mo is given, choose a conflict so that either σ or τ is in Mo.
Conflict resolution: Out of σ and τ, choose the winner and the loser commands. If Mo

is given, let the winner be the one in Mo. If σ is the winner, delete all commands from
B which are in conflict with σ (including τ). If τ is the winner, delete all commands
from A which are in conflict with τ. Go back to Iterate.

Finish: Return A ∪ B as the merger.

Execution of Algorithm 2 is illustrated in Figure 5. The initial command sets are
A = {σ1, . . . , σ5} and B = {τ6, . . . , τ5}. In the first iteration τ7 ∈ B is the winner; therefore,
commands in A which are in conflict with τ7 (σ1 and σ2) are removed from A. In the next
iteration the winner is σ4 ∈ A, and τ9 and τ5 are removed from B. In the last iteration σ3
is removed from A, thus the remaining sets are A = {σ4, σ5} and B = {τ6, τ7, τ8}. The
returned merger is A ∪ B.

Correctness of Algorithm 2. After the initialization step all three invariants hold. The
algorithm terminates as in each iteration the total number of remaining conflicts strictly
decreases. When it terminates, the returned set A ∪ B = M is a merger of the original
command sets Ao and Bo. This is because at that point there are no conflicts between A and
B, thus, by Corollary 1, M is a merger of A and B—in fact, the only one—, and then the
second invariant guarantees that M is also a merger of Ao and Bo. If Mo was submitted to
the algorithm, then the third invariant ensures M = Mo. Thus we only need to show that
the iteration preserves all three invariants. Suppose there is a conflict (σ, τ) between A and
B, and the winner of the conflict is σ ∈ A.

Invariant 1. Commands in conflict with σ are deleted from B, thus B is replaced by the
set

Bok
σ = {τ′ ∈ B : (σ, τ′) is not a conflict}.

Proposition 14 (see the discussion following the proof) and the invariant imply
Bok

σ b B b Bo. Consequently the invariant B b Bo remains true.
Invariant 2. We know that if a merger of A and B contains σ, then it cannot contain

any of the discarded elements of B (see Proposition 13). We also know that all mergers
of A and Bok

σ contain σ by Proposition 15 as it is not in conflict with any other command.
Consequently the set of mergers of A and Bok

σ consists of those mergers of A and B that
contain σ, and the invariant continues to hold.

Invariant 3. If Mo was specified for the algorithm, then we chose the winner accordingly,
and so σ ∈ Mo. A consequence of the discussion above is that Mo remains part of the set of
mergers of A and Bok

σ .
Finally we show that if Mo is specified, then one of the conflicting commands can be

chosen from Mo. By Proposition 15 if σ ∈ A is not in conflict with any command in B, then



Future Internet 2022, 14, 344 18 of 21

σ is in every merger of A and B; in particular, it is in Mo by the third invariant. Thus, if
no conflicting commands remain in Mo, but there is a conflict, then Mo would be a proper
subset of the merger returned by the algorithm, which is absurd.

Complexity of Algorithm 2. Both the Initialization and Finish steps can be done in time
and space that is linear in the input size. Updating the sets A and B in the Iteration step
discards some of their elements which will never be used again. It means the total time
used by the updates is bounded by the number of elements in the original input set Ao ∪ Bo.
Finding conflicting pairs in constant time, however, requires building a structure which
stores the bipartite conflict graph. This requires time and space which is proportional to the
number of nodes (commands in Ao and Bo) plus the number of conflicting pairs. It means
that Algorithm 2 can be implemented with both time and space complexity that is linear in
the input size plus the total number of conflicts. While the latter number can be expected
to be comparable to the input size, in the worst case it can be quadratic, meaning that this
implementation guarantees at most quadratic time and space complexity.

We conjecture that a more efficient implementation of Algorithm 2 can be created
using the structural properties of the conflict graph. Some of those properties are discussed
in the next Section.

6.3. Structural Properties of the Conflict Graph

We call a conflict between two commands structural if the out types of the commands
are different, and a content conflict otherwise. An example for a content conflict is when
both replicas replace the same directory with different file contents. The best resolution of a
content conflict cannot necessarily be achieved by the above winner/loser paradigm, as
it uses filesystem-level information only. Fortunately, content conflicts are represented in
the conflict graph as isolated edges. It means that all of these conflicts must (and can) be
resolved independently of all the other conflicts. We deem it good practice to resolve all
content conflicts first.

If (σ, τ) is a conflicting pair and σ′ ∈ A is on a node which is above the node of
σ, then (σ′, τ) is also a conflicting pair. Proposition 14 implies the same when σ � σ′.
Consequently all elements of a constructor cluster (see Section 4.2) of A are in conflict with
exactly the same elements of B, and so the whole constructor cluster can be replaced by a
single graph node, thus reducing the graph size. Figure 5 shows the typical structure of
conflict graphs. Elements of the destructor chain σ5 � σ4 � · · · � σ1 are connected to
more and more conflicting commands (this is so as the corresponding nodes go upwards).
Choosing τ5 as a winner automatically resolves all conflicts by wiping out all σi.

Automatic conflict-based synchronizers typically give precedence to constructors in
conflicts between a constructor and a destructor command [10,16], arguing that it is easier
to remove some content again than recreating it. While this is good guidance most of the
time, one has to be aware that in the current framework, replacing a directory node with
some file content is a destructor. Confronted with the conflicting constructor command that
creates a file under the same directory, marking this latter command as the winner is not
self-evident.

7. Conclusions

We have presented a complete theoretical investigation of filesystem synchronization.
Our definition of a filesystem is arguably simplistic, but it captures the important features of
real-word implementations. The changes between the original and the updated filesystems
are encoded using a sequence of virtual filesystem commands. The synchronizer receives
two sequences corresponding to the two replicas to be synchronized, and produces a
third sequence which describes the synchronized, or merged state. Definition 6 gives an
intuitively correct and convincing description of when the resulting sequence leads to a
meaningful merged filesystem. In Section 5 we proved an operational characterization



Future Internet 2022, 14, 344 19 of 21

of the possible merged filesystems. The main result of Section 6 is a conflict-based non-
deterministic synchronization algorithm which creates exactly those merger sequences
which are allowed by Definition 6. The simplicity of this algorithm and the complexity
of proving its correctness was a surprise to us. Its success underlines the power of the
algebraic framework of file synchronization developed in [18].

Multiple questions and possible extensions of the current work remain which are the
subject of future research. Some of them are discussed in the next subsections.

7.1. Synchronizing More Than Two Replicas

The first natural question is to extend the synchronization algorithm from two to three
or more replicas. An encouraging observation is that if several canonical sets are pairwise
refluent (for any pair there is a filesystem on which both of them work), then they are jointly
refluent, meaning that there is a single filesystem on which all of them work. The natural
extension of Definition 6 for three canonical sets A, B and C is to define their merger as a
maximal canonical set M ⊆ A ∪ B ∪ C. This definition has the additional advantage that it
is symmetric in the filesystems, and does not give precedence to any of them over the others.
We can prove that such a merger also satisfies an operational characterization similar to the
one stated in Theorem 2. It seems that such a three-way merger can be generated first by
merging A and B to M, and then merging M and C. Is this claim true?

Another question is whether the general task of finding a three-way merger can be
reduced to the case when A, B and C are pairwise disjoint. Finally, at least in the case when
the sets A, B, C are pairwise disjoint, whether the following variant of the Iteration step of
Algorithm 2 generates a 3-way merger, and if yes, whether it generates all possibilities:

Iterate: Pick a winner command σ from A ∪ B ∪ C, and discard those commands from
the other two sets which are in conflict with σ.

7.2. Efficiency of the Algorithms

Algorithm 1 can be implemented with a runtime that increases linearly with the
size of its input, so it is efficient. The trivial running time estimation of Algorithm 2 is
proportional to the product of the sizes of the command sets A and B—assuming that the
“above” relation in the node structure N can be checked in constant time, as generating the
conflict graph takes that much time. Section 6.3 discusses some possible improvements
by exploiting the structure of the conflict graph. As to whether the running time of the
algorithm can be improved significantly, or it is substantially quadratic, our conjecture is
that the algorithm can be made sub-quadratic.

7.3. Attributes

Attributes typically store metainformation about a node, such as different timestamps
(e.g., creation date, last modification or last access) and permissions (e.g., read and write
access), and whether the metainformation refers to the node only or to the whole subtree
below it. Attributes are set and modified either automatically, or by special filesystem
commands. In our filesystem model attributes can be best modeled by storing them as node
content. For file nodes it means that the attributes are added to the actual file content, which
means that any change to the attributes can be handled as a change in content. Therefore,
file attributes pose no special problems and can be integrated seamlessly into our model.
Handling directory attributes, however, is a challenging open problem. A general algebraic
framework of filesystems allowing content in directory (and even in empty) nodes was
developed in [12] at the expense of more complicated notions and theorems. Unfortunately,
with this extension many of the Propositions in Sections 5 and 6 on which the correctness
of our method relies do not remain true. To illustrate the problem, suppose A changes
some attribute from “private” to “public” at some directory node n, and creates a file
under n; while B, under the impression that the directory is still private, creates another
file under it. Then the file creation command from B cannot be unconditionally moved to
the merging sequence.



Future Internet 2022, 14, 344 20 of 21

One possible solution is to consider and resolve all attribute conflicts (including when
A and B modify attributes at the same node differently) as the first stage of the synchro-
nization process, and then proceed according to the algorithms described in this paper.
This approach, however, is not necessarily compatible with our declarative Definition 6 of
what a synchronized state is. It is not even clear whether all possible mergers satisfying
this definition are intuitively correct or not if directory attributes are taken into account.

7.4. Links

From the user’s perspective, a link between the nodes n and n′ is a promise, or a com-
mitment, that the filesystem at and below n is exactly the same as at and below n′. Executing
a command below n automatically executes the same command on the corresponding node
below n′. A link system must be loopless meaning that any node has only finitely many
other nodes equivalent to it. In particular, n and n′ must be uncomparable nodes.

If the original filesystem Φ contains links, but the users do not have tools or per-
missions to manipulate them, the following synchronization method works. The update
detector, knowing the link structure, unfolds it, and replaces each user command by the
collection of all “hidden” or “implicit” commands on the equivalent nodes. After creating
the canonical command set A, it marks the commands which are on equivalent nodes. For
the merger M to be applicable to Φ it must also contain, with each command in M, all of
its equivalents. This can be achieved by the following modification to the Iterate part of
Algorithm 2: if σ is chosen as a winner, then all commands equivalent to it will be winners
as well.

It is an open problem to introduce filesystem commands which manipulate the link
structure and can be incorporated into our synchronization process.

Author Contributions: All authors contributed equally to this word. All authors have read and
agreed to the published version of the manuscript.

Funding: The research of the second author (L.C.) has been supported by the GACR project number
19-04579S and by the Lendulet Program of the HAS, which is thankfully acknowledged.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CRDT Conflict-free Replicated Data Type
CSCW Computer Supported Collaborative Work
OT Operational Transformation
O, F, D empty, file, and directory content
Φ, Ψ filesystem

References
1. Preguiça, N. Conflict-free replicated data types: An overview. arXiv 2018, arXiv:1806.10254.
2. Shapiro, M.; Preguiça, N.; Baquero, C.; Zawirski, M. Conflict-free replicated data types. In Stabilization, Safety, and Security of

Distributed Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 386–400.
3. Sun, C.; Jia, X.; Zhang, Y.; Yang, Y.; Chen, D. Achieving convergence, causality preservation, and intention preservation in

real-time cooperative editing systems. ACM Trans. Comput. Hum. Interact. 1998, 5, 63–108. [CrossRef]
4. Sun, C.; Ellis, C. Operational transformation in real-time group editors. In Proceedings of the Computer Supported Cooperative

Work Seattle, Washington, DC, USA, 14–18 November 1998; pp. 59–68.
5. Ellis, C.A.; Gibbs, S.J. Concurrency control in groupware systems. In Proceedings of the SIGMOID conference on Management of

Data, Portland, OR, USA, 31 May–2 June 1989; pp. 399–407.
6. Day-Richter, J. What’s Different about the New Google Docs: Making Collaboration Fast. Available online: https://drive.

googleblog.com/2010/09/whats-different-about-new-google-docs.html (accessed on 9 September 2022).

http://doi.org/10.1145/274444.274447
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html


Future Internet 2022, 14, 344 21 of 21

7. Nicolaescu, P.; Jahns, K.; Derntl, M.; Klamma, R. Near real-time peer-to-peer shared editing on extensible data types. In
Proceedings of the 19th International Conference on Supporting Group Work, Sanibel Island, FL, USA, 13–16 November 2016;
pp. 39–49. [CrossRef]

8. Klophaus, R. Riak Core: Building distributed applications without shared state. In Proceedings of the SIGPLAN Commercial
Users of Functional Programming (CUFP ’10), Baltimore, MD, USA, 1–2 October 2010; Article 14. [CrossRef]

9. Ng, A.; Sun, C. Operational transformation for real-time synchronization of shared workspace in cloud storage. In Proceedings of
the 19th International Conference on Supporting Group Work, Sanibel Island, FL, USA, 13–16 November 2016; pp. 61–70.

10. Tao, V.; Shapiro, M.; Rancurel, V. Merging semantics for conflict updates in geo-distributed file systems. In Proceedings of the
15th ACM International Systems and Storage Conference, Haifa, Israel, 13–15 June 2015.

11. Balasubramaniam, S.; Pierce, B.C. What is a File Synchronizer? In Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking, Dallas, TX, USA, 25–30 October 1998; pp. 98–108.

12. Csirmaz, E.P.; Csirmaz, L. Algebra of Data Reconciliation. Stud. Sci. Math. Hung. 2022. [CrossRef]
13. Kermarrec, A.; Rowstron, A.; Shapiro, M.; Druschel, P. The IceCube approach to the reconciliation of divergent replicas.

In Proceedings of the ACM Symposium on principles of distributed computing 2001, Newport, RI, USA, 25–27 June 2001;
pp. 210–218.

14. Martins, V.; Pacitti, E.; Valduriez, P. Distributed semantic reconciliation of replicated data. In Proceedings of the CDUR, Paris,
France, 2–4 November 2005; pp. 48–53.

15. Pierce, B.C.; Vouillon, J. What’s in Unison? A Formal Specification and Reference Implementation of a File Synchronizer. U.
of Pennsylvania Technical Reports (CIS) 40. 2004. Available online: http://repository.upenn.edu/cis_reports/40 (accessed on 9
September 2022).

16. Shekow, M. Syncpal: A Simple and Iterative Reconciliation Algorithm for File Synchronizers. Ph.D. Thesis, Aachen University,
Aachen, Germany, 2019.

17. Terry, D.B.; Theimer, M.M.; Petersen, K.; Demers, A.J.; Spreitzer, M.J.; Hauser, C.H. Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage System. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles,
Mountain, CO, USA, 3–6 December 1995; pp. 172–182.

18. Csirmaz, E.P. Algebraic File Synchronization: Adequacy and Completeness. arXiv 2016, arXiv:1601.01736.
19. Antkiewicz, M.; Czarnecki, K. Design space of heterogeneous synchronization. In Proceedings of the GTTSE 2007: International

Summerschool on Generative and Transformational Techniques in Software Engineering 2007, Braga, Portugal, 2–7 July 2007;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–46.

20. Preguiça, N.; Marques, J.M.; Shapiro, M.; Letia, M. A commutative replicated data type for cooperative editing. In Proceedings of
the 2009 29th International Conference on Distributed Computing Systems, Montreal, QC, Canada, 23–26 June 2009; pp. 395–403.

http://dx.doi.org/10.1145/2957276.2957310
http://dx.doi.org/10.1145/1900160.1900176
http://dx.doi.org/10.1556/012.2022.01529
http://repository.upenn.edu/cis_reports/40

	Introduction and Related Work
	Methodology
	Definitions
	Namespace and Filesystems
	Internal Filesystem Commands
	Command Types and Execution Order

	Canonical Sequences and Sets
	Canonical Sequences
	Canonical Sets
	The Update Detector

	The Reconciler—Synchronizing Two Replicas
	Synchronization by Conflict Resolution
	Theoretical Foundation
	The Synchronization Algorithm
	Structural Properties of the Conflict Graph

	Conclusions
	Synchronizing More Than Two Replicas
	Efficiency of the Algorithms
	Attributes
	Links

	References

