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The primary goal is to define conditional belief functions in the Dempster-Shafer theory. 
We do so similarly to probability theory’s notion of conditional probability tables. 
Conditional belief functions are necessary for constructing directed graphical belief 
function models in the same sense as conditional probability tables are necessary for 
constructing Bayesian networks. We provide examples of conditional belief functions, 
including those obtained by Smets’ conditional embedding. Besides defining conditional 
belief functions, we state and prove a few basic properties of conditionals. In the 
belief-function literature, conditionals are defined starting from a joint belief function. 
Conditionals are then defined using the removal operator, an inverse of Dempster’s 
combination operator. When such conditionals are well-defined belief functions, we show 
that our definition is equivalent to these definitions.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

The main goal of this article is to review the concept of conditional belief functions in the Dempster-Shafer (D-S) theory 
of belief functions [10,20], provide a formal definition, state some basic properties, and provide some examples.

Several theories of belief functions use the representation of belief functions but differ in the combination operators 
and corresponding semantics. The D-S theory uses Dempster’s combination rule [10]. Fagin and Halpern [11] propose an 
alternative combination rule interpreting belief functions as credal sets [13]. These two theories of belief functions are 
different. A comparison of these two theories is outside the scope of this paper. Here, we are concerned exclusively with 
the D-S theory.

One of the earliest to define conditional belief functions for the D-S theory is Smets [29]. Other contributions on condi-
tional belief functions are (in chronological order) [21,23,8,25,1,32,2,6,7].

Shafer [21] is concerned about parametric models. There is a discrete parameter variable � and a data variable X . We 
have a prior basic probability assignment (BPA) m� for �. We have a conditional model for the data, BPA mXθ for X in the 
context θ ∈ �� . Based on a dataset of n independent observations of X , the task is to compute the posterior belief function 
for �. The BPAs mXθ for X in the context θ ∈ � are converted to a conditional BPA mX |θ for (�, X) using Smets’ conditional 
embedding. The marginal of mX |θ for � is vacuous. The conditionals BPA mX |θ are combined using Dempster’s rule resulting 

* Corresponding author.
E-mail address: pshenoy@ku.edu (P.P. Shenoy).
https://doi.org/10.1016/j.ijar.2023.108976
0888-613X/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

https://doi.org/10.1016/j.ijar.2023.108976
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2023.108976&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pshenoy@ku.edu
https://doi.org/10.1016/j.ijar.2023.108976
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Jiroušek, V. Kratochvíl and P.P. Shenoy International Journal of Approximate Reasoning 160 (2023) 108976
in the conditional mX |� . This assumes that the BPAs mX |θ are distinct, which may be reasonable if the number of elements 
of �� is small. Shafer also looks at the case where BPAs mX |θ are not independent, and some known distributions describe 
the dependency.

Shafer [23] discusses conditionals abstractly in the framework of a commutative semigroup (�, ⊗), where � is a set of 
potentials, and ⊗ : � × � → � is a binary combination operator that is commutative and associative. He discusses condi-
tionals as potentials extending another potential’s domain. He calls such conditionals ‘continuers.’ Thus, ψ is a continuer of 
σ from r to r ∪ s if and only if σ ↓r ⊕ψ = σ ↓r∪s . Here, ψ and σ are potentials, and σ ↓r denotes the marginal of σ for r, and 
r and s are disjoint subsets of variables. The paper focuses on the computation of marginals of a commutative semigroup 
with a marginalization operator, and some interesting properties of continuers are stated.

Cano et al. [8] define conditionals abstractly in the framework of valuation-based systems. Still, they do require that 
the marginal m(s|r)↓r of conditional m(s|r) is a vacuous valuation for r. The focus is on finding marginals by propagating 
conditional valuations in a directed acyclic graph.

Shenoy [25] describes conditional valuations using the removal operator, which is an inverse of the combination operator. 
For the D-S theory, the removal operator corresponds to the pointwise division of commonality functions followed by 
normalization. If σ is a BPA for subset t of variables, and r and s are disjoint subsets of t , then conditional belief function 
σ(s|r) is defined as σ ↓r∪s 	 σ ↓r . A consequence of this definition is that the marginal of σ(s|r) for r is vacuous for r. 
One disadvantage of this definition is that conditionals are defined starting from the joint. This does not help construct 
joint belief functions. Another disadvantage is that σ(s|r) may result in a BPA with negative masses. Such BPAs are called 
pseudo-BPAs.1

Almond [1] defines conditional belief functions as those obtained from a joint BPA by Dempster’s conditioning and 
marginalization. Suppose mX,Y is a BPA for {X, Y }. He defines the corresponding conditional BPA mY |x , where x ∈ �X is as 
follows. Suppose mX=x is a deterministic BPA for X such that mX=x({x}) = 1. Let mYx = (mX,Y ⊕mX=x)

↓Y denote the BPA for 
Y in the context X = x. Then, BPA mY |x for {X, Y } is obtained by Smets’ conditional embedding of mYx . He then discusses 
the problem of going from conditionals to joints. He argues that there is not a unique joint associated with a group of 
conditionals, e.g., {mY |x}x∈�X . Smets’ conditional embedding is discussed whereby a BPA mYx for Y in the context X = x is 
embedded into a BPA mY |x for {X, Y } (details of Smets’ conditional embedding are discussed in Section 3). Next, BPA mY |X

for {X, Y } is constructed from conditional embeddings mY |x for x ∈ �X as follows:

mY |X =
⊕

x∈�X

mY |x. (1)

Eq. (1) implicitly assumes that the conditionally embedded BPAs mY |x are distinct. Almond claims this assumption is unreal-
istic except where we start from conditional BPAs mY |x that are Bayesian. Almond [1] also defines what he calls “effectively 
conditional belief functions” with some caveat. The caveat is that mY |X ⊕ mX represents “our joint belief about X and Y ” 
([1, p. 96]. Our definition of conditionals is similar to this definition without such a caveat.

Xu and Smets [32] discuss conditionals mYa for Y when proposition a is observed, where ∅ �= a ⊆ �X . Let mY |a denote 
the BPA for {X, Y } after conditional embedding of mYa . [1] and [32] discuss Dempster’s combination of all such conditionals 
(∅ denotes the empty set):⊕

∅�=a⊆�X

mY |a. (2)

While it may be reasonable to assume that BPAs mY |x for x ∈ �X are distinct as in Eq. (1), assuming that all BPAs mY |a for 
∅ �= a ⊆ �X are distinct may be unreasonable. The focus of [32] is on computing marginals.

Ben-Yaghlane and Mellouli [2] encodes conditional knowledge as an if-then rule encoded as a conditional belief function. 
The focus of the paper is on making inferences from directed graphical models.

Boukhris et al. [6,7] analyze belief-function graphical models where the knowledge is Bayesian, i.e., they start with a 
Bayesian network. When a node has several parent nodes, instead of modeling the conditional for the node (given its par-
ents) as a single conditional, they model each arrow from a parent node to the child node as a separate conditional. This 
leads to a belief-function graphical model that is different from the Bayesian network model. In [26], each conditional distri-
bution for the child node given a state of its parents is modeled as a Bayesian BPA, which is then converted to a conditional 
BPA using Smets’ conditional embedding. If all such conditional BPAs are combined using Dempster’s combinational rule, 
we get a non-Bayesian BPA representing the conditional probability table for a variable. It is shown in [26, Theorems 1 and 
2] that the joint BPA for all variables is a Bayesian BPA representing the same joint probability distribution as in a Bayesian 
network.

When constructing a belief-function directed graphical model, we do not start with a joint BPA. Instead, we construct 
a joint BPA using priors and conditionals. In this context, the current definitions in the literature could be more helpful. 
What exactly is a conditional BPA? What are their properties? Where do conditionals come from? How do our conditionals 

1 This phenomenon has been observed, e.g., in [16,25,18].
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compare with the existing definitions? What are some examples of conditionals? Answering these questions is the primary 
goal of this article.

An outline of the remainder of the paper is as follows. Section 2 reviews the basics of D-S theory, including conditional 
independence relations. In Section 3, we define conditional belief functions and state some properties. Section 3.2 describes 
where some conditionals come from, including Smets’ conditional embedding. In Section 3.3, we compare our definition 
with the existing definitions in the belief-function literature. In Section 3.4, we describe an example called Organizing a 
Conference, a belief-function directed graphical model with several examples of conditionals. In Section 4, we conclude with 
a summary.

2. Basics of D-S theory of belief functions

This section sketches the basics of the D-S theory of belief functions [10,20].

2.1. Representations

Knowledge is represented by basic probability assignments, belief functions, plausibility functions, commonality func-
tions, credal sets, etc. Here we focus only on basic probability assignments and commonality functions.

Notation Let V denote a finite set of variables. Elements of V are denoted by upper-case Roman letters, X , Y , Z , etc. 
Subsets of V are denoted by lower-case Roman alphabets r, s, t , etc. Each variable X is associated with a finite state space 
�X that contains all possible values of X . For subset r ⊆ V , let �r = ×X∈r�X denote the state space of r. Let 2�r denote 
the set of all subsets of �r .

Projection of states means dropping some coordinates. If (x, y) ∈ �X,Y , then (x, y)↓X = x. The projection of a subset of 
states is achieved by projecting every state in the subset. Suppose a ⊆ �X,Y . Then, a↓X = {x ∈ �X : (x, y) ∈ a}. If a ⊆ �X , 
then a↑{X,Y } = a × �Y ⊆ �X,Y is a vacuous extension of a to {X, Y }.

Basic probability assignment A basic probability assignment (BPA) m for r is a function m : 2�r → [0, 1] such that

m(∅) = 0, and (3)∑
a⊆�r

m(a) = 1. (4)

m represents some knowledge about variables in r, and we say the domain of m is r. m(a) is the probability assigned exactly 
to the subset a of �r . Subsets a such that m(a) > 0 are called focal elements of m. If m has only one focal element (with 
probability 1), we say m is deterministic. If the focal element of a deterministic BPA is �r , we say m is vacuous. If all the 
focal elements of m are singleton subsets of �r , we say m is Bayesian. A Bayesian BPA is, in essence, a probability mass 
function (PMF) of r.

Commonality functions The knowledge encoded in a BPA m for r can be represented as a corresponding commonality 
function. The commonality function (CF) Q m corresponding to BPA m is such that for all a ⊆ �r ,

Q m(a) =
∑
b⊇a

m(b). (5)

Q m(a) represents the probability mass that could move to every state in the subset a. From Eqs. (4) and (5), it follows that 
0 ≤ Q m ≤ 1. From Eqs. (3) and (5), it follows that Q m(∅) = 1. If m is a vacuous BPA for r, then Q m(a) = 1 for all a ⊆ �r . CFs 
are non-increasing in the sense that if a ⊆ b, then Q m(a) ≥ Q m(b).

The CF Q m has the same information as the corresponding BPA m. Given a CF Q m , we can recover the corresponding 
BPA m as follows [20]:

m(a) =
∑

b⊆�r :b⊇a

(−1)|b\a| Q m(b). (6)

Thus,2 it follows that Q : 2�r → [0, 1] is a well-defined CF for r iff

Q (∅) = 1, (7)∑
b⊆�r :b⊇a

(−1)|b\a| Q (b) ≥ 0, for all a ⊆ �r , and (8)

∑
∅�=a⊆�r

(−1)|a|+1 Q (a) = 1. (9)

2 Q denotes the CF derived from BPA m. The question we are addressing is: when is Q a CF? (without reference to a BPA m).
m
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The left-hand side (LHS) of Eq. (8) is mQ (a), the BPA corresponding to CF Q , and the LHS of Eq. (9) is 
∑

∅�=a⊆�r
mQ (a). 

Eq. (9) can be regarded as a normalization condition for a CF. Thus, if we have a function Q : 2�r → [0, 1] that satisfies 
Eqs. (7) and (8), but not (9), then we can divide each of the values of the function for non-empty subsets in 2�r by 
K = ∑

∅�=a⊆�r
(−1)|a|+1 Q m(a), and the resulting function will then qualify as a CF. If we have a function Q : 2�r →R (R is 

the set of real numbers) that satisfies Eqs. (7) and (9), but not Eq. (8), then such a function is called a pseudo-CF. The BPA 
corresponding to Q (using Eq. (6)) will have some negative masses, and such a BPA is called a pseudo-BPA.3

2.2. Inference operators

There are two basic inference operators in the D-S theory, marginalization, and combination. There is also a removal 
operator for computing conditionals from a joint belief function, which is an inverse of the combination operator [25]. The 
removal operator will be defined in Section 3.

Marginalization Suppose m is a BPA for r and suppose s ⊆ r. The marginalization operator transforms a BPA m for r to a 
BPA m↓s for s by eliminating variables in r \ s.

m↓s(a) =
∑

b⊆�r :b↓s=a

m(b). (10)

The marginalization operator satisfies the following property. Suppose m is a BPA for r and suppose X1 and X2 are two 
distinct variables in r. Then

(m↓r\{X1})↓r\{X1,X2} = (m↓r\{X2})↓r\{X1,X2}. (11)

Thus, the order in which variables are eliminated does not matter.

Dempster’s combination rule Suppose m1 is a BPA for r1 and m2 is a BPA for r2. Also, we assume that m1 and m2 are based 
on distinct pieces of knowledge.4 We combine these two BPAs using Dempster’s product-intersection rule [10] as follows. 
Let m1 ⊕ m2 denote the BPA after the combination. Then m1 ⊕ m2 is a BPA for r1 ∪ r2 such that for all a ⊆ �r1∪r2

(m1 ⊕ m2)(a) = K −1
∑

a1⊆�r1

∑
a2⊆�r2

{m1(a1)m2(a2) | a↑r1∪r2
1 ∩ a↑r1∪r2

2 = a}, (12)

where K is a normalization constant given by

K = 1 −
∑

a1⊆�r1

∑
a2⊆�r2

{m1(a1)m2(a2) | a↑r1∪r2
1 ∩ a↑r1∪r2

2 = ∅}. (13)

We assume K > 0. If K = 0, then m1 and m2 are said to be in total conflict and cannot be combined. If K = 1, we say m1
and m2 are non-conflicting.

Dempster’s combination rule can also be described using commonality functions. Consider two distinct BPAs m1 for 
r1 and m2 for r2, and let Q 1 and Q 2 denote the corresponding commonality functions. Then, as showed in [20], for all 
∅ �= a ⊆ �r1∪r2 ,

(Q 1 ⊕ Q 2)(a) = K −1 Q 1(a
↓r1) Q 2(a

↓r2), (14)

where K is a normalization constant defined as follows:

K =
∑

∅�=a⊆�r1∪r2

(−1)|a|+1 Q 1(a
↓r1) Q 2(a

↓r2). (15)

Thus, in terms of CFs, Dempster’s rule is pointwise multiplication of CFs followed by normalization. As shown in [20], the 
normalization constant in Eq. (15) is the same as in Eq. (13).

It is easy to show that Dempster’s combination is commutative and associative: m1 ⊕ m2 = m2 ⊕ m1, and (m1 ⊕ m2) ⊕
m3 = m1 ⊕ (m2 ⊕ m3). Also, marginalization and Dempster’s combination rule satisfies a vital property, called the local 
computation property [28] as follows.

3 Pseudo-BPAs were first observed by [16] and also been noted in [18].
4 See [27] for a discussion on distinct belief functions. A summary is included in Section 2.4.
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Fig. 1. Dempster’s multi-valued semantics for BPAs.

Local computation property Suppose m1 is a BPA for r1 and m2 is a BPA for r2. Suppose X ∈ r1 and X /∈ r2. Then,

(m1 ⊕ m2)
↓(r1∪r2)\{X} = (m1)

↓r1\{X} ⊕ m2 (16)

This property is the basis of computing marginals of joint belief functions. [12] describes an implementation of a local 
computation algorithm in Matlab for computing marginals of joint belief function models.

2.3. Conditional independence

Shenoy [25] describes conditional independence relation in the framework of valuation-based systems using factorization 
semantics. Here, we describe it for the D-S theory of belief functions.

Definition 1 (Conditional Independence). Suppose V denotes the set of variables, and suppose r, s, and t are disjoint subsets 
of V . Suppose m is a joint BPA for V . We say r and s are conditionally independent (CI) given t with respect to BPA m if 
and only if m↓r∪s∪t = mr∪t ⊕ ms∪t , where mr∪t and ms∪t are distinct BPAs for r ∪ t and s ∪ t , respectively.

This definition generalizes the CI relation in probability theory [9]. There are other definitions of CI in the D-S literature, 
e.g., [17,31,3,4]. Definition 1 is closest to the definition in [17]. The definitions in [31,3,4] are based on the notion of non-
interactivity, which are not useful in describing CI in belief-function graphical models.

The definition of CI in Definition 1 satisfies the graphoid properties of probabilistic CI [19].

2.4. Distinct belief functions

This material in this subsection is taken from [27]. Distinct belief functions are also called independent belief functions 
in the D-S literature.5 Dempster’s combination rule is only applicable to combining distinct BPAs. So, what are distinct BPAs? 
Dempster [10] provides a definition. Consider the multi-valued semantics of BPAs as shown in Fig. 1.

Suppose we have a probability mass function (PMF) P (X1) for X1, a multivalued function �1 : �X1 → 2s1 \ ∅ that defines 
the BPA m1 for s1. Similarly, suppose we have a probability mass function (PMF) P (X2) for X2, a multivalued function �2 :
�X2 → 2s2 \∅ that defines the BPA m2 for s2. BPAs m1 and m2 are distinct if and only if X1 and X2 are independent random 
variables, i.e., P (X1, X2) = P (X1) ⊗ P (X2), where ⊗ is the probabilistic combination operator, point-wise multiplication 
followed by normalization.

Some comments about Dempster’s definition.

1. In practice, not every belief function in a belief function model is associated with a multi-valued mapping. Thus, Demp-
ster’s definition cannot be used directly in practice.

5 The terminology of ‘distinct’ belief functions is due to Smets [30]. As independence is usually associated with random variables, we prefer the termi-
nology of distinct belief functions.
5
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2. We say BPA m is idempotent if m ⊕m = m. Idempotent knowledge is knowledge encoded in a BPA m that is idempotent. 
For example, if m is deterministic, then m is idempotent. Thus, double-counting idempotent knowledge is not a problem; 
double-counting non-idempotent knowledge is.

3. If we assume independence of random variables X1 and X2 when they are not, and we combine m1 and m2, then 
we are double-counting common knowledge encoded in m1 and m2. If the common knowledge encoded in these two 
BPAs is non-idempotent, then we have a problem. Thus, the spirit of Dempster’s definition is that two belief functions 
are distinct if, when combining them using Dempster’s combination rule, we are not double-counting non-idempotent 
knowledge.

4. BPA mX for X and conditional BPA mY |X for Y given X are always distinct (regardless of the numeric values of these 
BPAs). Notice that (mX ⊕ mY |X )↓X = mX , and (mX ⊕ mY |X ) 	 mX = mY |X .

5. BPAs mX for X and mY for Y are distinct if and only if X⊥⊥mX ⊕mY Y .
6. BPA mX,Y for {X, Y } and conditional BPA mZ |Y for Z given Y are distinct if and only if X⊥⊥mX,Y ⊕mZ |Y Z | Y .
7. The discussion of distinct belief functions is valid more broadly to many uncertainty calculi, including probability theory.
8. Some references to the literature on distinct belief functions are as follows: [22],6 and [30].

2.5. Belief-function directed graphical models

We start with some notation. A directed graph G is a pair G = (V, E), where V = {X1, . . . , Xn} denotes the set of nodes, 
and E denotes the set of directed edges (Xi, X j) between two distinct variables in V . For any node Xi , let PaG(Xi) denote 
{X j ∈ V : (X j, Xi) ∈ E}. A directed graph is said to be acyclic if and only if there exists a sequence of the nodes of the graph, 
say (X1, . . . , Xn) such that if there is a directed edge (Xi, X j) ∈ E then Xi precedes X j in the sequence. Such a sequence is 
called a topological sequence.

Definition 2 (BF directed graphical model). Suppose G = (V, E) is a directed acyclic graph with n nodes in V . A belief-function 
directed graphical model (BFDGM) is a pair (G, {m1, . . . , mn}) such that BPA mi is a conditional BPA for Xi given PaG(Xi), for 
i = 1, . . . , n. A fundamental assumption of a BFDGM is that m1, . . . , mn are all distinct, and the joint BPA m for V associated 
with the model is given by

m =
n⊕

i=1

mi . (17)

The assumption in Definition 2 that all conditionals are distinct allows the combination in Eq. (17). Given m, the joint 
BPA for V , the definition of conditional independence in Definition 1 implies the following CI relations among the variables: 
For each variable Xi in a topological sequence (X1, . . . , Xn), given PaG(Xi), Xi is conditionally independent of the preceding 
variables in the sequence (excluding PaG (Xi)) with respect to the joint BPA m for V . Thus, m1, . . .mn are distinct if and only 
if the CI assumptions of the model are valid [27].

3. Conditional belief functions

This section defines a conditional belief function similar to a conditional probability table in probability theory without 
starting from a joint distribution. In belief-function directed graphical models, we construct a joint using such conditional 
belief functions. We begin with the probabilistic case.

Suppose P X denotes a PMF of X , and we wish to construct a joint PMF P X,Y of {X, Y } such that P X is the marginal of 
P X,Y for X (as is typically done in a probabilistic graphical model). One way to do this is to define a PMF of Y for each 
x ∈ �X such that7 P X (x) > 0. Let P Y |x : �Y → [0, 1] denote a PMF of Y when X is known to be x, i.e., for all y ∈ �Y , 
P Y |x(y) ≥ 0 and 

∑
y∈�Y

P Y |x(y) = 1. We can embed all PMFs P Y |x of Y for each x ∈ �X into a function P Y |X : �X,Y → [0, 1]
such that P Y |X (x, y) = P Y |x(y). In the Bayesian network literature, the function P Y |X is called a conditional probability table
(CPT). The joint PMF P X,Y of {X, Y } can now be defined as P X,Y (x, y) = P X (x) · P Y |X (x, y). Some observations:

1. Notice that if we marginalize the CPT P Y |X to X , we get a potential identically 1 for all values of x ∈ �X , which is a 
vacuous potential in probability theory. It is not a PMF but can be normalized to get an equally-likely PMF.

2. If we consider probabilistic combination operator ⊗ as pointwise multiplication followed by normalization, then we can 
write P X,Y = P X ⊗ P Y |X . The normalization constant is 1 for this combination.

3. It follows from the first observation that the marginal of P X,Y for X is P X . So, the CPT P Y |X is used to extend P X to 
P X,Y such that the marginal (P X,Y )↓X = P X .

6 This was published unchanged as [24].
7 If P X (x) = 0, then the conditional has no effect on the joint, and can be left undefined.
6
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Consider the belief-function directed graphical model: X → Y → Z . In this model, we have BPA mX for X , mY |X for 
{X, Y } that is a conditional for Y given X , and a BPA mZ |Y for {Y , Z} that is a conditional for Z given Y . In this model, 
in general, mY |Z is not distinct from mX,Y = mX ⊕ mY |X . Assuming that Z and X are conditionally independent given 
Y , then mZ |Y is distinct from mX,Y . We can combine the three conditionals using Dempster’s rule to obtain the joint: 
mX,Y ,Z = mX ⊕ mY |X ⊕ mZ |Y . This is the motivation behind the definition of conditionals, which follows.

Definition 3 (Conditional BPA). Suppose r and s are disjoint subsets of variables and suppose r′ ⊂ r. Suppose ms|r′ is a BPA 
for r′ ∪ s. We say ms|r′ is a conditional BPA for s given r′ if and only if

1. (ms|r′ )↓r′
is a vacuous BPA for r′ , and

2. If BPAs mr for r and ms|r′ for r′ ∪ s are distinct, then mr ⊕ ms|r′ is a BPA for r ∪ s.

For conditional ms|r′ , s is called the head of the conditional, and r′ , its tail. Some comments:

1. The first condition in Definition 3 says that ms|r′ tells us nothing about the tail r′ .
2. The notion of distinct belief functions is discussed in [27]. The requirement that mr and ms|r′ are distinct is equivalent 

to: s is conditionally independent of r \ r′ given r′ with respect to the joint BPA mr ⊕ ms|r′ for r ∪ s. This condition 
is essential. Without this condition, we cannot claim that mr ⊕ ms|r′ is a BPA for r ∪ s, as the two BPAs would not be 
distinct, and Dempster’s combination would not be justified.

3. If r = r′ = {X} and s = {Y }, then we have a belief function analog of P (Y |X) discussed in the second paragraph in 
this section. P (X) and P (Y |X) are always distinct. Similarly, BPA mX and conditional BPA mY |X for Y given X are 
always distinct. This is because no conditional independence assumptions exist in a complete directed graphical model. 
A complete directed graphical model is one where we have a unique topological sequence. In a complete directed 
graphical model, the preceding variables are its parents for each variable in the topological sequence (except the first). 
The model X → Y is an example of a complete model with the topological sequence (X, Y ).

4. If r′ = r, then mr and ms|r are always distinct, and for this special case, condition 2 in Definition 3 is trivially satisfied. 
This is similar to the case in Comment 3 above. In graphical models, it is rarely the case that the tail of all conditionals 
includes all variables that precede it in some topological sequence (except for toy problems involving a small number 
of variables).

5. Notice that the marginal (mr ⊕ ms|r′)↓r = mr . This follows from the local computation property of Dempster’s rule and 
condition 1 of Definition 3. Thus, a conditional ms|r′ allows us to extend a BPA mr for r to a BPA mr ⊕ ms|r′ for r ∪ s
(assuming mr and ms|r′ are distinct).

6. Notice that mr and ms|r′ are non-conflicting, i.e., the normalization constant K in mr ⊕ ms|r′ is 1 (Eq. (13)).
7. If s is a singleton subset, say {Y }, and r′ = PaG(Y ), where PaG(Y ) denotes the parents of Y in some directed acyclic 

graph, then the conditional mY |pa(Y ) is a belief-function analog of a CPT for Y in Bayesian networks.

In a belief-function directed graphical model, we have a conditional associated with each variable X . The head of the 
associated condition is X , and the tail consists of the parents of X . For variables with no parents, we have priors associated 
with such variables. For convenience, priors can be considered conditionals with empty tails. For such BPAs, both conditions 
in the definition are trivially true–the sum of the probability masses in a BPA is 1 (Eq. (4)), which can be regarded as a BPA 
for the ∅, and every BPA m is distinct from the BPA for the ∅.

3.1. Properties of conditionals

The following theorem was stated in [25] where conditionals were defined using an inverse of the combination operator 
called removal. Here we prove the same results using the definition of conditionals above that include only combination 
and marginalization operators.

Theorem 1 (Properties of conditionals [25]). Suppose r, s, and t are disjoint subsets of variables. Let mr denote a BPA for r, ms|r denote 
a conditional BPA with head s and tail r, etc. Then,

1. mr ⊕ ms|r ⊕ mt|r∪s = mr∪s∪t .
2. ms|r ⊕ mt|r∪s = ms∪t|r .

3. Suppose s′ ⊆ s. Then, (ms|r)↓r∪s′ = ms′|r .
4. (ms|r ⊕ mt|r∪s)

↓r∪t = mt|r .
5. Suppose r′ ⊆ r, s′ ⊆ s, and mr∪s is distinct from mt|r′∪s′ . Then, mr∪s ⊕ mt|r′∪s′ = mr∪s∪t .

Proof of Theorem 1.

1. mr ⊕ ms|r ⊕ mt|r∪s = (mr ⊕ ms|r) ⊕ mt|r∪s = mr∪s ⊕ mt|r∪s = mr∪s∪t . Condition 2 is always true, as we have a complete 
model.
7
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2. Let ιr denote the vacuous BPA for r. To show condition 1, notice that

(ms|r ⊕ mt|r∪s)
↓r = ((ms|r ⊕ mt|r∪s)

↓r∪s)↓r

= (ms|r ⊕ (mt|r∪s)
↓r∪s)↓r

= (ms|r ⊕ ιr∪s)
↓r

= (ms|r)↓r = ιr .

To show condition 2, suppose mr is a BPA for r. Then, it follows from Statement 1 that mr ⊕ (ms|r ⊕ mt|r∪s) = mr∪s∪t .
3. To show condition 1, notice that ((ms|r)↓r∪s′ )↓r = (ms|r)↓r = ιr . To show condition 2, suppose mr is a BPA for r. Then, 

mr ⊕ (ms|r)↓r∪s′ = mr∪s′ .
4. To show condition 1, notice that

((ms|r ⊕ mt|r∪s)
↓r∪t)↓r = ((ms|r ⊕ mt|r∪s)

↓r∪s)↓r

= (ms|r ⊕ (mt|r∪s)
↓r∪s)↓r

= ((ms|r ⊕ ιr∪s)
↓r

= (ms|r)↓r = ιr .

To show condition 2, suppose mr is a BPA for r. Then,

mr ⊕ (ms|r ⊕ mt|r∪s)
↓r∪t = (mr ⊕ ms|r ⊕ mt|r∪s)

↓r∪t

= (mr∪s∪t)
↓r∪t

= mr∪t .

5. It follows from Definition 3 that mr∪s ⊕ mt|r′∪s′ = mr∪s∪t . �
3.2. Where do conditionals come from?

A conditional BPA mr|s describes the relationship between the variables in r and s. One source of conditionals is Smets’ 
conditional embedding [29]. To describe conditional embedding, consider the case of two variables, X and Y . To describe 
the dependency between Y and X , suppose that in the context X = x, our belief in Y is described by a BPA mYx for Y . The 
BPA mYx for Y needs to be embedded into a BPA mY |x for {X, Y } such that

1. mY |x is a conditional BPA for Y given X = x, i.e., (mY |x)↓X is vacuous BPA for X , and
2. suppose mX=x is a deterministic BPA for X such that mX=x(x) = 1. Then (mY |x ⊕ mX=x)

↓Y = mYx .

One way to do this is to take each focal element b ⊆ �Y of mYx and convert it to the corresponding focal element

({x} × b) ∪ ((�X \ {x}) × �Y ) ⊆ �X,Y (18)

of BPA mY |x for {X, Y } with the same mass. It is easy to confirm that this embedding method satisfies both conditions 
mentioned above. Suppose we have several distinct conditionals, e.g., mY |x1 , mY |x2 , etc., where x1, and x2 are distinct values 
of X . We combine the conditional embeddings by Dempster’s combination rule to obtain mY |X . An example of conditional 
embedding follows.

Example 1 (Conditional embedding). Consider binary variables X and Y , with �X = {x, ̄x} and �Y = {y, ȳ}. Suppose we have 
a BPA mYx for Y in the context X = x as follows:

mYx(y) = 0.8, mYx(�Y ) = 0.2,

then its conditional embedding into the conditional BPA mY |x for {X, Y } is as follows:

mY |x({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8, mY |x(�X,Y ) = 0.2.

Similarly, if we have a BPA mYx̄ for Y in the context X = x̄ as follows:

mYx̄( ȳ) = 0.3, mYx̄(�Y ) = 0.7,

then its conditional embedding into the conditional BPA mY |x̄ for {X, Y } is as follows:

mY |x̄({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.3, mY |x̄(�X,Y ) = 0.7.
8
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Assuming we have these two BPAs and their corresponding embeddings, it is clear that the two BPA mY |x and mY |x̄ are 
distinct and can be combined with Dempster’s rule of combination, resulting in the conditional BPA mY |X = mY |x ⊕ mY |x̄ for 
{X, Y } as follows:

mY |X ({(x, y), (x̄, ȳ)}) = 0.24,

mY |X ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.56,

mY |X ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.06,and

mY |X (�X,Y ) = 0.14.

mY |X has the following properties.

1. (mY |X )↓X is the vacuous BPA for X .
2. First notice that any BPA for X is distinct from conditional BPA mY |X . If we combine mY |X with deterministic BPA 

mX=x({x}) = 1 for X , and marginalize the combination to Y , then we get mYx , i.e., (mY |X ⊕ mX=x)
↓Y = mYx .

3. Similarly, (mY |X ⊕ mX=x̄)
↓Y = mYx̄ .

4. mY |X is the belief function analog of CPT P Y |X in probability theory. �
Smets’ conditional embedding is one way to obtain conditionals. [31] argues that his conditional embedding method 

satisfies the principle of minimal commitment. Shenoy [26, Theorem 2, p. 15] shows that a Bayesian network (BN) can 
be modeled exactly by a corresponding belief function model if the conditional probability tables in a Bayesian network 
are modeled using Smets’ conditional embedding. By exactly, we mean the joint BPA in a corresponding belief-function 
graphical model is a Bayesian BPA corresponding to a BN’s joint probability mass function. Black and Laskey [5] propose 
other methods to get conditionals, but not much is known about these methods.

3.3. Comparison of our definition with existing definitions

As is discussed in the introduction, conditionals are defined in the belief function literature starting from a joint belief 
function. So, how does our definition in Definition 3 compare with the literature? First, we start with the definition of the 
removal operator, which is an inverse of Dempster’s combination operator [25].

Removal operator Suppose r and s are disjoint sets of variables, and suppose we have a joint BPA m for r ∪ s obtained 
by combining a BPA mr for r and a conditional BPA ms|r for s given r, i.e., m = mr ⊕ ms|r . Notice that m↓r = mr . Can we 
reconstruct the conditional from the joint? The answer is yes, using the removal operator defined as follows.

Definition 4 (Removal operator). Suppose r and s are disjoint sets of variables and suppose Q is a CF for r ∪ s. Then the 
removal of Q ↓r from Q , denoted by Q 	 Q ↓r , is a CF for r ∪ s defined as follows:

(Q 	 Q ↓r)(a) =
{

K −1
q Q (a)/Q ↓r(a↓r) if Q ↓r(a↓r) > 0,

undefined if Q ↓r(a↓r) = 0,
(19)

for all a ⊆ �r∪s , where Kq is a normalization constant given by

Kq =
∑

∅�=a⊆�r∪s

(−1)|a|+1 Q (a)/Q ↓r(a↓s). (20)

Some comments.

1. In probability theory, the conditional PMF P (Y |x) = P (X, Y )(x, y)/P (X)(x) is well-defined only for x ∈ �X such that 
P (X)(x) > 0. So, when we are defining the joint in terms of P (X) and P (Y |x), it doesn’t matter how we define P (Y |x)
when P (X)(x) = 0 because P (X, Y )(x, y) = P (X)(x) · P (Y |x)(y), and P (X, Y )(x, y) = 0 when P (X)(x) = 0. But, when we 
compute the conditional from the joint, we encounter 0/0 when P (Y |x)(y) = P (X, Y )(x, y)/P (X)(x) and P (X)(x) = 0. 
We have a similar situation in the D-S theory when we define removal in terms of CFs. If we encounter 0/0 in the 
definition of removal, what it really means is that the (Q 	 Q ↓r)(a) is undefined, which is what the definition of 
removal says in Eq. (19).

2. The removal operation Q 	 Q ↓r corresponds to removing knowledge encoded in Q ↓r from the knowledge encoded in 
Q .

3. If we start with an arbitrary joint CF Q X,Y for {X, Y }, and remove its marginal CF (Q X,Y )↓X for X , the removal operation 
may result in a pseudo-CF. This is demonstrated in Example 2, which follows these comments. [18] argue that pseudo-
CF are useful in making inferences from a belief-function model. This is because (Q 	 Q ↓r) ⊕ Q ↓r = Q , which is a 
well-defined CF.
9
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Table 1
The computation of mX,Y 	 mX in Example 2. Empty cell values are assumed to be 0. The last row, 
labeled K , denotes the sum in Eq. (4) for BPA values and the sum in Eq. (9) for CF values.

2�X,Y mX,Y m↑{X,Y }
X Q mX,Y Q

m↑{X,Y }
X

Q mX,Y 	 Q
m↑{X,Y }

X
mX,Y 	 mX

∅ 1 1 1

{(x, y)} 0.9 1 1 1 0.9
{(x, ȳ)} 0.1 1 0.1
{(x̄, y)} 0.1
{(x̄, ȳ)} 0.1 0.1 1

{(x, y), (x, ȳ)} 0.9 0.1 1 0.1 −0.9
{(x, y), (x̄, y)} 0.1
{(x, y), (x̄, ȳ)} 0.1 0.1 1
{(x, ȳ), (x̄, y)} 0.1
{(x, ȳ), (x̄, ȳ)} 0.1 0.1 1
{(x̄, y), (x̄, ȳ)} 0.1

{(x, y), (x, ȳ), (x̄, y)} 0.1
{(x, y), (x, ȳ), (x̄, ȳ)} 0.1 0.1 0.1 1 1
{(x, y), (x̄, y), (x̄, ȳ)} 0.1
{(x, ȳ), (x̄, y), (x̄, ȳ)} 0.1

�X,Y 0.1 0.1

K 1 1 1 1 1 1

4. If we start with a CF Q = Q r ⊕ Q s|r for r ∪ s, then Q ↓r = Q r . In this case, Q 	 Q ↓r = Q s|r is a well-defined CF. Also, 
the normalization constant Kq in Eq. (20) is 1. Notice that in this case, Q ↓r = Q r is explicitly included in Q . Theorem 2
(which follows Example 2) shows that Q 	 Q ↓r is a well-defined CF if and only if Q ↓r is explicitly included in Q .

5. To compute removal more efficiently, we could use inverses defined in [25, pp. 212–213]. In terms of inverses, mX,Y 	
mX = mX,Y ⊕ m−1

X , where the pseudo-CF Q m−1
X

corresponding to pseudo-BPA m−1
X is defined as follows:

Q m−1
X

(a) = 1/Q mX (a) (21)

for all a ⊆ �X assuming Q mX (a) > 0.

Example 2. Consider variables X and Y with �X = {x, ̄x}, and �Y = {y, ȳ}. Consider joint BPA mX,Y for {X, Y } as follows:

mX,Y ({(x, y)}) = 0.9, mX,Y ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.1.

The marginal BPA (mX,Y )↓X = mX for X is as follows:

mX ({x}) = 0.9, mX ({x, x̄}) = 0.1

The computation of Q mX,Y 	 Q mX is shown in Table 1. The last column in the table is the pseudo-BPA corresponding to 
Q mX,Y 	 Q mX computed using Eq. (6). This is because the mX is not explicitly included in mX,Y (see Theorem 2 which 
follows). �

A comment concerning the computation of the removal operator. In practical applications, we represent knowledge using 
BPAs as the number of focal elements is limited. However, when we convert a BPA to a corresponding CF, the CF is usually 
non-zero for all subsets of the state space. For example, in Table 1, even though m↑{X,Y }

X has only two focal elements, the 
corresponding CF in column five is non-zero for all subsets of �X,Y . This is true because mX (�X ) = 0.1 > 0. As mentioned 
in the comments about the removal operator, we can compute removal in terms of BPAs.

In probability theory, a joint distribution P X,Y can always be factored into marginal P X = (P X,Y )↓X and a conditional 
P Y |X such that P X,Y = P X ⊗ P Y |X . This is not always true for belief functions. The following theorem from [15] describes 
when a joint belief function can be factored into a marginal and a corresponding conditional.

Theorem 2 ([15]). Suppose mX,Y is a BPA for {X, Y } with corresponding CF Q mX,Y . Let mX denote the marginal of mX,Y for X, i.e., 
mX = (mX,Y )↓X . Then, Q mX,Y 	 Q mX is a CF if and only if there exists a conditional BPA m for Y given X such that mX,Y = mX ⊕ m.

Here, we give a different proof than in [15].

Proof of Theorem 2. (⇒) Suppose mX,Y = mX ⊕ m. Then, for each a ⊆ �{X,Y } ,

(Q mX,Y 	 Q mX )(a) = Q mX,Y (a)/Q mX (a↓X )
10
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= Q mX (a↓X ) Q m(a)/Q mX (a↓X )

= Q m(a)

Thus, Q mX,Y 	 Q mX is a well-defined CF.
(⇐) Suppose Q mX,Y 	 Q mX is a well-defined CF. Let Q m denote Q mX,Y 	 Q mX . Then, for each a ⊆ �{X,Y } ,

Q m(a) = Q mX,Y (a)/Q mX (a↓X )

So, Q mX,Y (a) = Q mX (a↓X ) Q m(a), i.e.,

Q mX,Y = Q mX ⊕ Q m.

Thus, Q mX is explicitly included in Q mX,Y . �
It follows from Theorem 2 that if we construct a joint BPA function m for r ∪ s from a marginal BPA mr for r and a 

conditional BPA ms|r for s given r, and we remove mr from m, then the result is a conditional BPA for s given r. Thus, our 
definition of a conditional belief function is consistent with the definitions in the literature.

If the conditions in Theorem 2 are not met, then a joint belief function cannot be factored into a marginal and a 
conditional. In Example 2, we have already demonstrated that the removal operation does not result in a conditional. 
Example 3 (which follows) constructs conditionals starting from a joint using Dempster’s conditioning (a definition of a 
conditional suggested in [1]). However, when the conditionals are combined with the marginal, it results in a joint BPA that 
differs from the one we started with.

Example 3 (Constructing conditionals by conditioning). Consider the BPA mX,Y for {X, Y } as described in Example 2:

mX,Y ({(x, y)}) = 0.9, mX,Y ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.1.

The marginal BPA mX for X is as follows:

mX ({x}) = 0.9, mX ({x, x̄}) = 0.1

The BPA mYx for Y in the context where X = x is (mX,Y ⊕ mX=x)
↓Y , where mX=x is a deterministic BPA for X such that 

mX=x({x}) = 1. It is easy to show that mYx ({y}) = 0.9, and mYx ({y, ȳ}) = 0.1. After conditional embedding, conditional BPA 
mY |x for {X, Y } is as follows:

mY |x({(x, y), (x̄, y), (x̄, ȳ)}) = 0.9, mY |x(�X,Y ) = 0.1.

The BPA mYx̄ for Y in the context where X = x̄ is (mX,Y ⊕ mX=x̄)
↓Y , where mX=x̄ is a deterministic BPA for X such 

that mX=x̄({x̄}) = 1. It is easy to show that mYx̄ ({ ȳ}) = 1. After conditional embedding, conditional BPA mY |x̄ for {X, Y } is as 
follows:

mY |x̄({(x, y), (x, ȳ), (x̄, ȳ)}) = 1.

If we combine the two conditionals, we get mY |X = mY |x ⊕ mY |x̄ as follows;

mY |X ({(x, y), (x̄, ȳ)}) = 0.9

mY |X ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.1

If we combine mX for X and mY |X for {X, Y } by Dempster’s rule, we get

(mX ⊕ mY |X )({(x, y)}) = 0.81,

(mX ⊕ mY |X )({(x, y), (x, ȳ)}) = 0.09,

(mX ⊕ mY |X )({(x, y), (x̄, ȳ)}) = 0.09,

(mX ⊕ mY |X )({(x, y), (x̄, ȳ), (x̄, ȳ)}) = 0.01.

Notice that mX ⊕ mY |X �= mX,Y . �

11
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Fig. 2. The directed acyclic graph for the Organizing a Conference example.

3.4. Examples of conditionals

There are other ways of getting conditionals. We have discussed obtaining conditionals using Smets’ conditional embed-
ding of conditional knowledge in Section 3.2.

Another source of conditionals is deterministic knowledge. In Example 4 (which follows), we have Income (I) = Number 
of attendees (A) * Conference fee (F ). This results in a deterministic conditional for Income given A and F as follows:

mF ,A,I ({(200,50,10), (400,50,20), (200,100,20),

(400,100,40), (200,150,30), (400,150,60)) = 1.

Notice that we could use Smets’ conditional embedding of each piece of knowledge (e.g., if F = 200, A = 50, then I = 10, 
etc.) and then combine all conditionals by Dempster’s rule of combination. We get the same deterministic conditional. Of 
course, conditional embedding is unnecessary. We have to ensure we have all states of parent variables in the deterministic 
conditional.

Another source of conditionals is the reliability of two nodes, say X1 with state space �X1 = {t1, f1} and X2 with state 
space �X2 = {t2, f2}. Suppose these two nodes are linked via a communication link with reliability, say 90%. This can be 
modeled as a BPA m12 for {X1, X2} as follows:

m12({(t1, t2), ( f1, f2)}) = 0.90

m12(�{X1,X2}) = 0.10

Notice that m12 can be considered as a conditional for X1 given X2, or as a conditional for X2 given X1 as m↓X1
12 is vacuous 

for X1 and m↓X2
12 is vacuous for X2.

The list above is incomplete. We may get other examples of conditionals depending on the domain of interest.
The following example, the Organizing a Conference, has several examples of conditionals.

Example 4 (Organizing a Conference). Members of a local organizing committee for a conference would like to know whether 
the registration fees paid by the participants will cover the necessary expenses or whether they must find a sponsor to fund 
the shortfall between income and expenses. The answer depends on the selected venue, the amount of the conference fee, 
and other factors. Table 2 lists all variables in a simplified model.

The only disadvantage of choosing a luxury hotel is its price; it charges 40 thousand euros regardless of the number of 
participants, while the mountain hut charges only 10 thousand euros. However, the mountain hut venue limits the number 
of participants to one hundred at maximum. The organizers consider this a minor drawback because they believe some 
potential participants will be discouraged from participating if the location is in the mountains. The organizers will fix a 
higher conference fee if the venue is a luxury hotel than if it is a mountain hut. The model assumes that the venue and 
the conference fee will influence the number of participants. If the number of attendees is at least one hundred, they will 
consider including a printed version of the conference proceedings, which would cost 20 thousand euros.

Fig. 2 shows the directed acyclic graph associated with this problem. The details of the conditional BPAs are as follows.

Venue. The organizers voted for the location. Two voted for the hotel, four for the mountain hut, and four abstained. Thus, 
BPA mV for V is as follows:
12
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Table 2
The variables, names, state spaces, and meaning of the states.

Variable Name State space � Meaning Conditionals
V Venue {h,m} luxury hotel, mountain hut mV

F Fee {200,400} in euros mF |V
A Attendees {50,100,150} # attendees mA|V ,F

I Income {10,20,30,40,60} in 1000 euros mF ,A,I

E Expenses {10,30,40,60} in 1000 euros mV ,P ,E

P Proceedings {p, e} paper, electronic mP |A

S Sponsor {y,n} yes, no mE,I,S

mV ({h}) = 0.2, mV ({m}) = 0.4, mV ({h,m}) = 0.4.

Fee. The organizers agreed that if the event is organized in the mountain hut, the registration fee is described by BPA 
mFm for F as follows:

mFm ({200}) = 0.5,mFm ({200,400}) = 0.5

And if it is organized in a luxury hotel, then BPA mFh for F as follows:

mFh ({400}) = 0.6,mFh ({200,400}) = 0.4.

Using Smets’ conditional embedding, we get conditionals mF |m and mF |h as follows:

mF |m({(m,200), (h,200), (h,400)}) = 0.5,mF |m(�V ,F ) = 0.5,

mF |h({(h,400), (m,200), (m,400)}) = 0.6, mF |h(�V ,F ) = 0.4.

Therefore, conditional BPA mF |V = mF |m ⊕ mF |h is as follows:

mF |V ({(m,200), (h,400)}) = 0.30,

mF |V ({(m,200), (h,200), (h,400)}) = 0.20,

mF |V ({(h,400), (m,200), (m,400)}) = 0.30,

mF |V (�V ,F ) = 0.20.

Attendees. To specify the conditional mA|V ,F using Smets’ embedding, the organizers had to estimate one-dimensional BPAs 
for variable A in all four situations described by the combinations of values of variables V and F . Let they be

mA(h,200)
({150}) = 1,

mA(m,200)
({50}) = 0.2, mA(m,200)

({100}) = 0.8,

mA(h,400)
({100,150}) = 0.9, mA(h,400)

(�A) = 0.1,

mA(m,400)
({50,100}) = 1.

After conditional embedding and Dempster’s combination, we get the conditional BPA mA|F ,V . Details are omitted.
Income. Income is the product of the number of attendees and the conference fee. This is modeled by a deterministic 

conditional BPA mF ,A,I as follows;

mF ,A,I ({(200,50,10), (400,50,20), (200,100,20),

(400,100,40), (200,150,30), (400,150,60)) = 1.

As the marginal BPA m{F ,A}
F ,A,I is the vacuous BPA for {F , A}, it is a conditional BPA for I given {F , A}.

Proceedings. To set up conditional mP |A using Smets’ conditional embedding, we start with the condition that the proceed-
ings are printed only if the number of participants is at least one hundred. Therefore mP50 ({e}) = 1. For one hun-
dred participants, the organizers could not achieve an agreement, and therefore they assigned mP100 ({e, p}) = 1. 
Finally, for 150 participants, they assigned mP150 ({p}) = 0.8 and mP150 ({e, p}) = 0.2. From this, we get

mP |50({(50, e), (100, e), (150, e), (100, p), (150, p)}) = 1,

mP |100(�A,P ) = 1,

mP |150({(150, p), (50, e), (100, e), (50, p), (100, p)}) = 0.8,

mP |150(�A,P ) = 0.2,
13
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which, using Dempster’s combination mP |A = mP |50 ⊕ mP |100 ⊕ mP |150, yields

mP |A({(50, e), (100, e), (100, p), (150, p)}) = 0.8,

mP |A({(50, e), (100, e), (150, e), (100, p), (150, p)}) = 0.2.

Expenses. Variable E indicates how much the organizers need to cover invoices issued by the hotel (or hut) and the 
publishing house if the proceedings are printed. Thus, BPA mV ,P ,E for {V , P , E} is a deterministic BPA as follows:

mV ,P ,E({(h, p,60), (m, p,30), (h, e,40), (m, e,10)}) = 1.

Sponsor. S = y if expenses exceed income. This situation is specified by subset c of �E,I

c = {(30,10), (30,20), (40,10), (40,20),

(40,30), (60,10), (60,20), (60,30), (60,40)}
The deterministic BPA mE,I,S for {E, I, S} models the logical relation E > I ⇒ S = y.

mE,I,S((c × {y}) ∪ ((�E,I \ c) × {n})) = 1.

This belief-function graphical model, as described above, has seven variables with a joint state space of 960 states. The 
joint belief function m represented by the graphical model is Dempster’s combination of all conditionals. If we compute the 
marginal of the joint for S , m↓S using local computation [28], we get the following BPA for S:

m↓S({n}) = 0.08,m↓S({y,n}) = 0.92.

Thus, if we interpret belief and plausibility (corresponding to m↓S ) of S as lower and upper bounds of probabilities of S, we 
have 0 ≤ P (S = y) ≤ 0.92, and 0.08 ≤ P (S = n) ≤ 1.

Why do we get such wide bounds on P (S)? We have a non-Bayesian prior for V and non-Bayesian conditional knowledge 
for F , A, and P . If we had a Bayesian prior for V , and Bayesian conditional knowledge for F , A, and P , we would get a 
Bayesian marginal for S with point estimates for P (S = y) and for P (S = n) [26]. �
4. Summary & conclusions

We have explicitly defined conditionals in the D-S theory using only the marginalization and Dempster’s combination 
operators. The main goal of the definition is to enable the construction of directed graphical belief function models.

Conditional belief functions are also defined in [25] using an inverse of Dempster’s combination operator called removal. 
Since Dempster’s combination is pointwise multiplication of commonality functions followed by normalization, removal 
consists of the division of commonality functions followed by normalization. Thus, mY |X = mX,Y 	 mX . One issue with this 
definition is that a conditional BPA is defined starting from a joint BPA, which is not useful in constructing a joint BPA from 
conditionals as in a belief-function directed graphical model. Another issue is that if mX is not already included in mX,Y , 
the division operation will result in a BPA with negative masses.

We have stated some properties of conditionals in [25], and these properties remain valid using our definition. Smets’ 
conditional embedding [29] is one way to obtain conditionals. There are other ways to obtain conditionals; some are de-
scribed and illustrated in Example 4.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests: Radim Jirousek and Vaclav Kratochvil report financial support was provided by Czech Science Foundation 
Grant No. 21-07494S. Prakash Pundalik Shenoy reports financial support was provided by Ronald G. Harper Professorship, 
Univ. of Kansas School of Business.

Data availability

No data was used for the research described in the article.

Acknowledgements

This study was supported by the Czech Science Foundation Grant No. 21-07494S to the first two authors, and by the 
Ronald G. Harper Professorship at the University of Kansas to the third author. A 12-pp. version of this paper appeared as 
[14]. This paper has benefitted from constructive comments from two anonymous reviewers of the International Journal of 
Approximate Reasoning.
14



R. Jiroušek, V. Kratochvíl and P.P. Shenoy International Journal of Approximate Reasoning 160 (2023) 108976
References

[1] R.G. Almond, Graphical Belief Modeling, Chapman & Hall, London, UK, 1995.
[2] B. Ben-Yaghlane, K. Mellouli, Inference in directed evidential networks based on the transferable belief model, Int. J. Approx. Reason. 48 (2008) 399–418.
[3] B. Ben-Yaghlane, P. Smets, K. Mellouli, Belief function independence: I. The marginal case, Int. J. Approx. Reason. 29 (2002) 47–70.
[4] B. Ben-Yaghlane, P. Smets, K. Mellouli, Belief function independence: II. The conditional case, Int. J. Approx. Reason. 31 (2002) 31–75.
[5] P.K. Black, K.B. Laskey, Hierarchical evidence and belief functions, in: R.D. Shachter, T.S. Levitt, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial 

Intelligence 4, in: Machine Intelligence and Pattern Recognition, vol. 9, North-Holland, Amsterdam, Netherlands, 1990, pp. 207–215.
[6] I. Boukhris, S. Benferhat, Z. Elouedi, Representing belief function knowledge with graphical models, in: H. Xiong, W. Lee (Eds.), Proceedings of the 

International Conference on Knowledge Science, Engineering and Management (KSEM 2011), Springer-Verlag, Berlin, Heidelberg, 2011, pp. 233–245.
[7] I. Boukhris, Z. Eloudi, S. Benferhat, Analyzing belief function networks with conditional beliefs, in: Proceedings of the 11th International Conference on 

Intelligent Systems Design and Applications, IEEE Explore, 2011, pp. 959–964.
[8] J. Cano, M. Delgado, S. Moral, An axiomatic framework for propagating uncertainty in directed acyclic networks, Int. J. Approx. Reason. 8 (1993) 

253–280.
[9] P. Dawid, Conditional independence in statistical theory, J. R. Stat. Soc., Ser. B 41 (1979) 1–15.

[10] A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat. 38 (1967) 325–339.
[11] R. Fagin, J.Y. Halpern, A new approach to updating beliefs, in: P. Bonissone, M. Henrion, L. Kanal, J. Lemmer (Eds.), Uncertainty in Artificial Intelligence, 

vol. 6, North-Holland, 1991, pp. 347–374.
[12] P. Giang, S. Shenoy, The belief function machine: an environment for reasoning with belief functions in Matlab, Working Paper, University of Kansas 

School of Business, Lawrence, KS, 2003, https://pshenoy.ku .edu /Papers /BFM072503 .zip.
[13] J.Y. Halpern, R. Fagin, Two views of belief: belief as generalized probability and belief as evidence, Artif. Intell. 54 (1992) 275–317.
[14] R. Jiroušek, V. Kratochvíl, P.P. Shenoy, Conditional belief functions in the Dempster-Shafer theory, in: S.L. Hégarat-Mascle, I. Bloch, E. Aldea (Eds.), Belief 

Functions: Theory and Applications, 7th International Conference, BELIEF 2022, in: Lecture Notes in Artificial Intelligence, vol. 13506, Springer Nature, 
Switzerland, 2022, pp. 207–218.

[15] R. Jiroušek, V. Kratochvíl, P.P. Shenoy, Entropy for evaluation of Dempster-Shafer belief function models, Int. J. Approx. Reason. 151 (2022) 164–181.
[16] C.T.A. Kong, Multivariate belief functions and graphical models, Ph.D. thesis, Department of Statistics, Harvard University, Cambridge, Massachusetts, 

1986.
[17] C.T.A. Kong, A belief function generalization of Gibbs ensembles, Technical Report 239, University of Chicago, Department of Statistics, Chicago, IL, 

1988.
[18] S.L. Lauritzen, F.V. Jensen, Local computation with valuations from a commutative semigroup, Ann. Math. Artif. Intell. 21 (1997) 51–69.
[19] J. Pearl, A. Paz, Graphoids: graph-based logic for reasoning about relevance relations, in: B.D. Boulay, D. Hogg, L. Steele (Eds.), Advances in Artificial 

Intelligence II, North-Holland, Amsterdam, 1987, pp. 357–363.
[20] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, 1976.
[21] G. Shafer, Belief functions and parametric models, J. R. Stat. Soc., Ser. B 44 (1982) 322–352.
[22] G. Shafer, The problem of dependent evidence, Working Paper 164, University of Kansas School of Business, Lawrence, KS, 1984.
[23] G. Shafer, An axiomatic study of computation in hypertrees, Working Paper 232, University of Kansas School of Business, Lawrence, KS, 1991, http://

glennshafer.com /assets /downloads /hypertrees _91WP232 .pdf.
[24] G. Shafer, The problem of dependent evidence, Int. J. Approx. Reason. 79 (2016) 41–44.
[25] P.P. Shenoy, Conditional independence in valuation-based systems, Int. J. Approx. Reason. 10 (1994) 203–234.
[26] P.P. Shenoy, Making inferences in incomplete Bayesian networks: A Dempster-Shafer belief-function approach, Int. J. Approx. Reason. 160 (2023), in 

press, https://pshenoy.ku .edu /Papers /IJAR23a .pdf.
[27] P.P. Shenoy, On distinct belief functions in the Dempster-Shafer theory, in: E. Miranda, I. Montes, E. Quaeghebeur, B. Vantaggi (Eds.), Proceedings of 

ISIPTA-23, Proc. Mach. Learn. Res. 215 (2023), in press, https://pshenoy.ku .edu /Papers /ISIPTA23a .pdf.
[28] P.P. Shenoy, G. Shafer, Axioms for probability and belief-function propagation, in: R.D. Shachter, T. Levitt, J.F. Lemmer, L.N. Kanal (Eds.), Uncertainty in 

Artificial Intelligence 4, in: Machine Intelligence and Pattern Recognition Series, vol. 9, North-Holland, Amsterdam, Netherlands, 1990, pp. 169–198.
[29] P. Smets, Un modele mathematico-statistique simulant le processus du diagnostic medical, Ph.D. thesis, Free University of Brussels, 1978.
[30] P. Smets, The concept of distinct evidence, in: B. Bouchon-Meunier (Ed.), Proceedings of the 4th International Conference on Information Processing 

and Management of Uncertainty in Knowledge-Based Systems (IPMU’92), 1992, pp. 789–794.
[31] P. Smets, Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem, Int. J. Approx. Reason. 9 (1993) 1–35.
[32] H. Xu, P. Smets, Reasoning in evidential networks with conditional belief functions, Int. J. Approx. Reason. 14 (1996) 155–185.
15

http://refhub.elsevier.com/S0888-613X(23)00107-X/bibA0FD5B9685FF297848669B246247C5C3s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibCF83CFAE97146B81C34A71020A316F04s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibD1C488C886D5229E82645F6B9BE3ABEAs1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibD9BB575FB1E968360673F2DF1F03B575s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib851395DE9A010327C3DD13F1BEDAEED8s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib851395DE9A010327C3DD13F1BEDAEED8s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib7F77B5D44967157D786DFFC04C2CE94Es1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib7F77B5D44967157D786DFFC04C2CE94Es1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib9424C9B12F09C126A52C60EDB7DA7B92s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib9424C9B12F09C126A52C60EDB7DA7B92s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib51F592CC2828F0C2670DCAE4AE06E288s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib51F592CC2828F0C2670DCAE4AE06E288s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib48FDFFE945A8CC6CA77B78978F738FC6s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib6D997D18A11CFEF9A3CA7A36DAD33D5Fs1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibC6DD25305ECFFD0004C3FEEB2985BCD4s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibC6DD25305ECFFD0004C3FEEB2985BCD4s1
https://pshenoy.ku.edu/Papers/BFM072503.zip
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib6D45D7BFE908C73294E7475CD515CAB7s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib9A44F642C19A5F94E9D2313EE104CB18s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib9A44F642C19A5F94E9D2313EE104CB18s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib9A44F642C19A5F94E9D2313EE104CB18s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib7695F10E9FA43BF254B4A0DA25A016EDs1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibAAA801E88F91417206A0786D33DAAB92s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibAAA801E88F91417206A0786D33DAAB92s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibE3116AF23D2EAA0ABFEF0C76D62F7E2Ds1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibE3116AF23D2EAA0ABFEF0C76D62F7E2Ds1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib0C93ECBA79D5421A837606C3A5066DB4s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib11A72C4E6690477ED6A2353588FC607Cs1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib11A72C4E6690477ED6A2353588FC607Cs1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibBD45F080313864FBEA36214B091D71A6s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib21F9DBDBE2329F82CE962DECBCF90857s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibE1224B58BFD7A9EDDD89BCC34D3B0AC8s1
http://glennshafer.com/assets/downloads/hypertrees_91WP232.pdf
http://glennshafer.com/assets/downloads/hypertrees_91WP232.pdf
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib9F939F8DE4BE771BA08EE0C7AACDCC8Bs1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib5C5882751CC5722870EF68899105CE52s1
https://pshenoy.ku.edu/Papers/IJAR23a.pdf
https://pshenoy.ku.edu/Papers/ISIPTA23a.pdf
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib17FA3694723625A4C7F74D2EDFF5EFC7s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib17FA3694723625A4C7F74D2EDFF5EFC7s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bibB5FBB8965363231444DCC9A77B49BF83s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib55667908B765A1D594115B8FD46B8DB8s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib55667908B765A1D594115B8FD46B8DB8s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib0E970336523BAF9DAC82181800A1C771s1
http://refhub.elsevier.com/S0888-613X(23)00107-X/bib89BC08DDBE745E0D37B519E5B2A7217Es1

	On conditional belief functions in directed graphical models in the Dempster-Shafer theory
	1 Introduction
	2 Basics of D-S theory of belief functions
	2.1 Representations
	2.2 Inference operators
	2.3 Conditional independence
	2.4 Distinct belief functions
	2.5 Belief-function directed graphical models

	3 Conditional belief functions
	3.1 Properties of conditionals
	3.2 Where do conditionals come from?
	3.3 Comparison of our definition with existing definitions
	3.4 Examples of conditionals

	4 Summary & conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


