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Abstract
This paper studies the relationship between graphical
and compositional models representing joint belief
functions. In probability theory, the class of Bayesian
networks (directed graphical models) is equivalent to
compositional models. Such an equivalence does not
hold for the Dempster-Shafer belief function theory.
We show that each directed graphical belief function
model can be represented as a compositional model,
but the converse does not hold. As there are two com-
position operators for belief functions, there are two
types of compositional models. In studying their rela-
tion to graphical models, they are closely connected.
Namely, one is more specific than the other. A precise
relationship between these two composition operators
is described.
Keywords: joint belief functions, conditional indepen-
dence, Markov models, composition operators, Demp-
ster’s combination rule, conditionals

1. Introduction
Bayesian networks are a popular way of representing joint
probability distributions. Bayesian networks are equivalent
to compositional models. Any joint probability distribution
defined in a Bayesian network can also be expressed as a
compositional model (with approximately the same number
of parameters), and vice versa [3]. In this paper, we show that
in the framework of Dempster-Shafer (D-S) belief function
theory, such an equivalence does not hold. We show that a
compositional model can represent any directed graphical
belief function model (a belief function counterpart of a
Bayesian network). The converse does not hold, i.e., not
all compositional models can be represented as a directed
graphical model.
There is extensive literature on graphical belief function

models (see Almond [1]). Our first attempt [4] on this topic
appeared to be a dead end; the proposal indiscriminately
copied the ideas of undirected graphical models from prob-
ability theory. In this paper, we define both directed and

undirected models. The former are belief function counter-
parts of Bayesian networks [2], and the latter corresponds to
graphical models on undirected graphs (Markov networks
[13]).
In the D-S belief function theory, compositional models

were first introduced in [6], where the composition operator
was defined. However, there is another way to define the
composition operator, which better complies with the phi-
losophy of the D-S theory [9]. The latter definition is based
on Dempster’s combination rule. Therefore, to distinguish it
from the older version (called f-composition in this paper),
we call it the d-composition operator.
Although two papers have been published on the rela-

tionship between these two composition operators (the first
one presented at ISIPTA 2015 [5], the second one in [8]),
the current study casts a new light also on this relation. This
paper shows that one is more specific than the other and that
the two composition operators often coincide for directed
graphical models.
Section 2 introduces the notation and recalls the necessary

basic notions of the D-S belief function theory. Section 3
describes conditional independence, which is crucial for
graphical models. Section 4 describes the two composition
operators and their main properties. The following two
sections are devoted to the study of the relationship be-
tween compositional models and directed graphical models
(Section 5) and undirected graphical models (Section 6).

2. Basics of D-S Belief Function Theory

Let 𝑋 , 𝑌 , 𝑍 , . . . denote discrete (finite-valued) variables.
Lower-case characters 𝑟 , 𝑠, 𝑡, . . . denote the sets of variables.
𝛺𝑋 , 𝛺𝑌 , . . . denote the state spaces of the corresponding
variables. For a set of variables 𝑟, the corresponding state
space is a Cartesian product 𝛺𝑟 =×𝑋 ∈𝑟𝛺𝑋 .
A basic probability assignment (BPA) for 𝑟 is a mapping

𝑚 : 2𝛺𝑟 → [0, 1], such that∑a⊆𝛺𝑟
𝑚(a) = 1 and𝑚(∅) = 0.

We will often call it a joint BPA to highlight that it is defined
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for a group of variables. We say that a ⊆ 𝛺𝑟 is a focal
element of 𝑚 if 𝑚(a) > 0. A BPA with only one focal
element is called deterministic. ]𝑟 denotes the deterministic
BPA for 𝑟, the focal element of which is the whole state
space: ]𝑟 (𝛺𝑟 ) = 1. Since ]𝑟 represents total ignorance,
the corresponding BPA is said to be vacuous. BPA 𝑚 is
said to be Bayesian if all its focal elements are singletons
(𝑚(a) > 0 ⇒ |a| = 1).
A BPA 𝑚 for 𝑟 can also be specified by a corresponding

belief function (BEL) or by commonality function (CF) [14].
Both these functions are also mappings 2𝛺𝑟 → [0, 1]. They
can be derived from BPA 𝑚 as follows:

𝐵𝑒𝑙𝑚 (a) =
∑︁

b⊆𝛺𝑟 : b⊆a
𝑚(b), 𝑄𝑚 (a) =

∑︁
b⊆𝛺𝑟 : b⊇a

𝑚(b).

All these representations are mutually equivalent; we can
uniquely compute the others when one of these functions is
given:

𝑚(a) =
∑︁
b⊆a

(−1) |a\b |𝐵𝑒𝑙𝑚 (b),

𝑚(a) =
∑︁

b⊆𝛺𝑟 : b⊇a
(−1) |b\a |𝑄𝑚 (b). (1)

Consider a BPA 𝑚 for 𝑟 , and suppose 𝑠 ⊂ 𝑟 . A marginal
of 𝑚 for 𝑠 is denoted 𝑚↓𝑠. A similar notation is used for
projections. For 𝑎 ∈ 𝛺𝑟 , 𝑎↓𝑠 denote the element of 𝛺𝑠 that
is obtained from 𝑎 by omitting the values of variables from
𝑟 \ 𝑠. This notation is also used for the projections of subsets
b ⊆ 𝛺𝑟 : b↓𝑠 = {𝑎↓𝑠 : 𝑎 ∈ b}. The projection of sets enables
us to define a join of two sets. Consider two arbitrary sets
𝑟 and 𝑠 of variables (they may be disjoint or overlapping,
or one may be a subset of the other), and a ⊆ 𝛺𝑟 , b ⊆ 𝛺𝑠.
Their join is defined as:

a ⊲⊳ b = {𝑐 ∈ 𝛺𝑟∪𝑠 : 𝑐↓𝑟 ∈ a & 𝑐↓𝑠 ∈ b}.

Notice that if 𝑟 and 𝑠 are disjoint, then a ⊲⊳ b = a × b, if
𝑟 = 𝑠, then a ⊲⊳ b = a ∩ b, and, in general, for c ⊆ 𝛺𝑟∪𝑠, c
is a subset of c↓𝑟 ⊲⊳ c↓𝑠 , which may be a proper one.
For BPA 𝑚 for 𝑟 and 𝑠 ⊆ 𝑟, the marginal 𝑚↓𝑠 is defined

as follows:
𝑚↓𝑠 (b) =

∑︁
a⊆𝛺𝑟 : a↓𝑠=b

𝑚(a),

for all b ⊆ 𝛺𝑠 .
An important operator of the D-S theory is Dempster’s

combination rule, which combines distinct belief functions.
Consider two distinct BPAs 𝑚1 and 𝑚2, defined for 𝑟 and
𝑠, respectively. Dempster’s combination rule is defined for
each c ⊆ 𝛺𝑟∪𝑠 as follows:

(𝑚1 ⊕ 𝑚2) (c) =
1
𝐾

∑︁
a⊆𝛺𝑟 , b⊆𝛺𝑠 : a⊲⊳b=c

𝑚1 (a) · 𝑚2 (b), (2)

where the normalization constant

𝐾 =
∑︁

a⊆𝛺𝑟 , b⊆𝛺𝑠 : a⊲⊳b≠∅
𝑚1 (a) · 𝑚2 (b). (3)

(1−𝐾) can be interpreted as the amount of conflict between
𝑚1 and 𝑚2. If (1 − 𝐾) = 1, we say that BPAs 𝑚1 and 𝑚2
are in total conflict, and their Dempster’s combination is
undefined.
The assumption of distinct BPAs is essential. In general

𝑚 ⊕ 𝑚 ≠ 𝑚. Duble-counting of evidence by combining
non-distinct BPAs may be misleading. In the following
sections, we will study directed graphical belief function
models consisting of priors and conditionals. Such BPAs are
distinct if the respective conditional independencies hold
in the models, so we can combine them using Dempster’s
combination rule.
It is known that Dempster’s combination is commutative

and associative [14]. Another important property of Demp-
ster’s combination rule relates to the marginalization of
joint BPAs. This property is called local computation [18].
Suppose 𝑚1 and 𝑚2 be defined for 𝑟 and 𝑠, respectively. If
𝑠 ⊆ 𝑡 ⊆ 𝑟 ∪ 𝑠, then

(𝑚1 ⊕ 𝑚2)↓𝑡 = 𝑚↓𝑡
1 ⊕ 𝑚2.

Thus, when we compute the marginal of 𝑚1 ⊕ 𝑚2 for 𝑡 by
removing variables in 𝑟 \ 𝑡 among which there is no variable
from 𝑠, we can avoid combination on the state space of 𝑟 ∪ 𝑠
and do it instead on the smaller space of 𝑟 .
Dempster’s combination rule can also be described using

the corresponding commonality functions. Consider two
distinct BPAs 𝑚1, 𝑚2 defined for 𝑟 , 𝑠, respectively, and the
corresponding commonality functions 𝑄𝑚1 and 𝑄𝑚2 . Then,
as showed in [14],

𝑄𝑚1⊕𝑚2 (c) =
1
𝐾
𝑄𝑚1 (c↓𝑟 )𝑄𝑚2 (c↓𝑠), (4)

where 𝐾 is the same normalization constant as that defined
in Equation (3).
Equation (4) enables us to define the inverse of Demp-

ster’s combination rule called removal [16]. Since the com-
bination is defined as the pointwise multiplication of CFs
followed by normalization, the removal is defined as the
pointwise division of CFs followed by normalization. Con-
sider BPA 𝑚 defined for variables 𝑟 ⊃ 𝑠. Then, 𝑄𝑚 	𝑄𝑚↓𝑠 ,
is defined as follows:

(𝑄𝑚 	 𝑄𝑚↓𝑠 ) (a) = 𝐿−1𝑄𝑚 (a)/𝑄𝑚↓𝑠 (a↓𝑠), (5)

for all nonempty a ⊆ 𝛺𝑟 , where the normalization constant
𝐿 equals

𝐿 =
∑︁

∅≠a⊆𝛺V

(−1) |a |+1𝑄𝑚 (a)/𝑄𝑚↓𝑠 (a↓𝑠). (6)
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In [20], the removal operator is called the decombination
operator. Notice that we define the removal only when we
remove a marginal of𝑄𝑚 from𝑄𝑚. Thus, if𝑄𝑚↓𝑠 (a↓𝑠) = 0,
then also 𝑄𝑚 (a) = 0. In this case, we define 0/0 = 0.
Though we define the removal operator for CFs, in what
follows, we will also use it for BPAs. Thus,𝑚	𝑚↓𝑠 denotes
the BPA corresponding to𝑄𝑚	𝑄𝑚↓𝑠 . It means that𝑚	𝑚↓𝑠

can be computed from 𝑄𝑚 	 𝑄𝑚↓𝑠 using Equation (1). In
this context, it may happen that𝑚	𝑚↓𝑠 has negative masses
– it is not a BPA (see Example 1 in the next section). For
more details about the properties of the removal operator
	, see the following section and [16].

3. Conditional Independence
To cope with models with many variables, one must con-
sider joint BPAs that can be represented with a limited
number of parameters. Following the ideas employed in
probability theory, it is achieved by constructing joint BPAs
from smaller BPAs defined for a few variables. Such process
introduces conditional independence relations among the
variables. We will discuss two types of models represent-
ing joint BPAs using a collection of BPAs defined for a
small number of variables. We will study graphical and
compositional models. For both, the notion of conditional
independence of variables is essential.

Definition 1 Consider three disjoint sets of variables 𝑟, 𝑠, 𝑡,
and a BPA𝑚 for 𝑢 ⊇ 𝑟∪ 𝑠∪ 𝑡. Assume 𝑟 and 𝑠 are nonempty.
We say 𝑟 and 𝑠 are conditionally independent given 𝑡, with
respect to 𝑚, written as 𝑟⊥⊥𝑚𝑠 |𝑡, if there exist BPAs 𝑚1 for
𝑟 ∪ 𝑡 and 𝑚2 for 𝑠 ∪ 𝑡 such that 𝑚↓𝑟∪𝑠∪𝑡 = 𝑚1 ⊕ 𝑚2.

In the above definition, if 𝑡 is empty, 𝑟 and 𝑠 are said to
be unconditionally independent, and the joint BPA 𝑚↓𝑟∪𝑠 is
equal to the combination of its marginals. Therefore, some
authors call this independence marginal independence. The
joint BPA can be reconstructed from its marginals even if
𝑡 ≠ ∅. For this, one has to use the d-composition operator
derived from Dempster’s combination rule in [9] defined
as follows.

Definition 2 Consider BPAs 𝑚1 for 𝑟 and 𝑚2 for 𝑠. If
𝑚2 	 𝑚↓𝑟∩𝑠

2 is a BPA, the d-composition 𝑚1 ⊲𝑑 𝑚2 is a BPA

𝑚1 ⊲𝑑 𝑚2 = 𝑚1 ⊕ (𝑚2 	 𝑚↓𝑟∩𝑠
2 ).

If 𝑚2 	 𝑚↓𝑟∩𝑠
2 is not a BPA, then 𝑚1 ⊲𝑑 𝑚2 is undefined.

Remark. In this paper, we exclude the possibility of
composing BPAs for which𝑚2	𝑚↓𝑟∩𝑠

2 have negative values.
We do not extend our consideration to the so-called pseudo-
BPAs, even though, as shown in the following example,
combining a BPA with a pseudo-BPA can sometimes yield

a non-negative BPA. We keep this restriction in this paper
because it is employed for proofs of some of the following
assertions (Corollary 4, and Propositions 7, 8, 12).

Example 1 Consider two simple BPAs 𝑚1 and 𝑚2. The
former one defined for variables 𝑋,𝑌 is deterministic
with the focal element 𝑚1 ({(𝑥�̄�}) = 1. The latter one,
which is defined for variables 𝑌, 𝑍 , has two focal elements
𝑚2 ({( �̄�𝑧), ( �̄�𝑧)}) = 0.6, and 𝑚2 ({( �̄�𝑧), (𝑦𝑧), (𝑦𝑧)}) = 0.4.

Table 1: Computation of the conditional 𝑚2 	 𝑚↓𝑌
2 via the

corresponding CFs

𝑎 𝑄2 (𝑎) 𝑄
↓𝑌
2 (𝑎↓𝑌 ) (𝑄2/𝑄↓𝑌

2 ) (𝑎)
{( �̄�𝑧)} 0.60 1.00 0.60
{( �̄�𝑧)} 1.00 1.00 1.00
{(𝑦𝑧)} 0.40 0.40 1.00
{(𝑦𝑧)} 0.40 0.40 1.00
{( �̄�𝑧), ( �̄�𝑧)} 0.60 1.00 0.60
{( �̄�𝑧), (𝑦𝑧)} 0.40 0.40 1.00
{( �̄�𝑧), (𝑦𝑧)} 0.40 0.40 1.00
{(𝑦𝑧), (𝑦𝑧)} 0.40 0.40 1.00
{( �̄�𝑧), (𝑦𝑧), (𝑦𝑧)} 0.40 0.40 1.00

To compute the d-composition 𝑚1 ⊲𝑑 𝑚2, we have to find
the conditional 𝑚2 	 𝑚↓𝑌

2 . To this end, we know no other
way than to transform BPA𝑚2 and its marginal𝑚↓𝑌

2 into the
corresponding CFs 𝑄2 and 𝑄↓𝑌

2 . Their ratio 𝑄2/𝑄↓𝑌
2 (see

Table 1) is a CF, which means that we apply Equation (5)
with 𝐿 = 1. Applying Eq, 1 to the last column of Table 1,
we get the desired conditional (𝑚2 	 𝑚↓𝑌

2 )

(𝑚2 	 𝑚↓𝑌
2 ) ({( �̄�𝑧)}) = −0.6,

(𝑚2 	 𝑚↓𝑌
2 ) ({( �̄�𝑧), ( �̄�𝑧)}) = 0.6,

(𝑚2 	 𝑚↓𝑌
2 ) ({( �̄�𝑧), (𝑦𝑧), (𝑦𝑧)}) = 1.

(7)

Thus, we see that (𝑚2 	 𝑚↓𝑌
2 ) is not a BPA; it achieves

a negative value. Therefore, accepting Definition 2, the
composition 𝑚1 ⊲𝑑 𝑚2 is not defined, yet computing 𝑚1 ⊕
(𝑚2 	 𝑚

↓𝑌
2 ) yields a non-negative BPA with two focal

elements:

(𝑚1 ⊕ (𝑚2 	 𝑚↓𝑌
2 )) ({(𝑥�̄�𝑧)}) = 0.4,

(𝑚1 ⊕ (𝑚2 	 𝑚↓𝑌
2 )) ({(𝑥�̄�𝑧), (𝑥�̄�𝑧)}) = 0.6.

From this example, we can also see that, even though(
𝑚2 	 𝑚↓𝑌

2

)↓𝑌
is vacuous, (𝑚2 	 𝑚↓𝑌

2 ) has focal elements,
the projection of which to 𝑌 is not the full space which
cannot happen when (𝑚2 	 𝑚↓𝑌

2 ) is non-negative.

Even though d-composition is sometimes undefined, it is a
valuable tool for constructing compositional models of joint
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BPAs, for which a sufficiently rich system of conditional
independence relations holds. The following assertion and
its corollary theoretically support this fact.

Proposition 3 Consider a BPA 𝑚 for 𝑢, and three disjoint
subsets 𝑟, 𝑠, 𝑡 of 𝑢 (𝑟 ≠ ∅ ≠ 𝑠). Assume 𝑚↓𝑠∪𝑡 	 𝑚↓𝑡 is a
BPA. Then, 𝑟⊥⊥𝑚𝑠 |𝑡 if and only if 𝑚↓𝑟∪𝑠∪𝑡 = 𝑚↓𝑟∪𝑡 ⊲𝑑 𝑚↓𝑠∪𝑡 .

Proof Assume that for BPA 𝑚, 𝑟 and 𝑠 are conditionally
independent given 𝑡, i.e., there exist valuations 𝑚1 for 𝑟 ∪ 𝑡
and 𝑚2 for 𝑠 ∪ 𝑡 such that 𝑚↓𝑟∪𝑠∪𝑡 = 𝑚1 ⊕ 𝑚2. Using
the local computation property, 𝑚↓𝑟∪𝑡 = (𝑚1 ⊕ 𝑚2)↓𝑟∪𝑡 =
𝑚1⊕𝑚↓𝑡

2 . Similarly,𝑚
↓𝑠∪𝑡 = 𝑚↓𝑡

1 ⊕𝑚2, and𝑚
↓𝑡 = 𝑚↓𝑡

1 ⊕𝑚
↓𝑡
2 .

Therefore,

𝑚↓𝑟∪𝑡 ⊲𝑑 𝑚
↓𝑠∪𝑡 = 𝑚↓𝑟∪𝑡 ⊕ 𝑚↓𝑠∪𝑡 	 𝑚↓𝑡

= 𝑚1 ⊕ 𝑚↓𝑡
2 ⊕ 𝑚↓𝑡

1 ⊕ 𝑚2 	 (𝑚↓𝑡
1 ⊕ 𝑚↓𝑡

2 )
= 𝑚1 ⊕ 𝑚2 = 𝑚↓𝑟∪𝑠∪𝑡 .

The converse follows directly from Definition 2.

Corollary 4 Consider two sets of variables 𝑟, 𝑠. Let 𝑚1
and 𝑚2 be defined for 𝑟 and 𝑠, respectively. Then

𝑚1 ⊕ 𝑚2 = (𝑚1 ⊕ 𝑚2)↓𝑟 ⊲𝑑 (𝑚1 ⊕ 𝑚2)↓𝑠

if the composition is defined.

4. Composition Operators
As said already, the d-composition defined in Definition 2
is derived from Dempster’s combination rule, and therefore,
it is fully compatible with the D-S belief function theory.
Nevertheless, [6] defines another composition operator as
follows.

Definition 5 Consider BPAs 𝑚1 for 𝑟 and 𝑚2 for 𝑠. Their
f-composition is a BPA 𝑚1 ⊲𝑓 𝑚2 defined for each nonempty
c ⊆ 𝛺𝑟∪𝑠 by one of the following expressions:

(i) if 𝑚↓𝑟∩𝑠
2 (c↓𝑟∩𝑠) > 0 and c = c↓𝑟 ⊲⊳ c↓𝑠 , then

(𝑚1 ⊲𝑓 𝑚2) (c) =
𝑚1 (c↓𝑟 ) · 𝑚2 (c↓𝑠)
𝑚

↓𝑟∩𝑠
2 (c↓𝑟∩𝑠)

;

(ii) if 𝑚↓𝑟∩𝑠
2 (c↓𝑟∩𝑠) = 0 and c = c↓𝑟 × 𝛺𝑠\𝑟 , then (𝑚1 ⊲𝑓

𝑚2) (c) = 𝑚1 (c↓𝑟 );

(iii) in all other cases, (𝑚1 ⊲𝑓 𝑚2) (c) = 0.

Both composition operators introduced in Definitions 2
and 5 satisfy the properties expressed in the following
statements (for proofs, see [6] and [9]).

Proposition 6 For both composition operators (d-
composition and f-composition) the following statements
hold. Assume that BPAs 𝑚𝑟 , 𝑚𝑠, and 𝑚𝑡 are for 𝑟, 𝑠, and
𝑡, respectively, and that all the d-compositions are defined.
Then,

1. (Domain): 𝑚𝑟 ⊲ 𝑚𝑠 is a BPA for variables 𝑟 ∪ 𝑠.

2. (Composition preserves first marginal): (𝑚𝑟 ⊲ 𝑚𝑠)↓𝑟 =

𝑚𝑟 .

3. (Reduction:) If 𝑠 ⊆ 𝑟, then 𝑚𝑟 ⊲ 𝑚𝑠 = 𝑚𝑟 .

4. (Commutativity under consistency): If 𝑚𝑟 and 𝑚𝑠 are
consistent, i.e.,𝑚↓𝑟∩𝑠

𝑟 = 𝑚
↓𝑟∩𝑠
𝑠 , then𝑚𝑟 ⊲𝑚𝑠 = 𝑚𝑠⊲𝑚𝑟 .

5. (Associativity under special condition): If 𝑟 ⊇ (𝑠 ∩ 𝑡),
or, 𝑠 ⊇ (𝑟 ∩ 𝑡) then, (𝑚𝑟 ⊲ 𝑚𝑠) ⊲ 𝑚𝑡 = 𝑚𝑟 ⊲ (𝑚𝑠 ⊲ 𝑚𝑡 ).

6. (Stepwise composition): If (𝑟 ∩ 𝑠) ⊆ 𝑡 ⊆ 𝑠, then
(𝑚𝑟 ⊲ 𝑚

↓𝑡
𝑠 ) ⊲ 𝑚𝑠 = 𝑚𝑟 ⊲ 𝑚𝑠 .

7. (Exchangeability): If 𝑟 ⊇ (𝑠∩ 𝑡), then (𝑚𝑟 ⊲𝑚𝑠) ⊲𝑚𝑡 =

(𝑚𝑟 ⊲ 𝑚𝑡 ) ⊲ 𝑚𝑠 .

8. (Local computation): If (𝑟 ∩ 𝑠) ⊆ 𝑡 ⊆ (𝑟 ∪ 𝑠), then
(𝑚𝑟 ⊲ 𝑚𝑠)↓𝑡 = 𝑚↓𝑟∩𝑡

𝑟 ⊲ 𝑚
↓𝑠∩𝑡
𝑠 .

Before we study the role of the composition operators
in representing joint BPAs in more detail, let us highlight
the main differences between composition operators and
Dempster’s rule. The latter should be only applied to dis-
tinct belief functions representing independent pieces of
evidence. On the other hand, the composition operator is
typically used to compose two non-distinct marginals with a
non-empty intersection, to assemble two pieces of evidence
with some common knowledge. The composition operator
is defined to avoid double counting of evidence from the
two composed pieces of evidence. Thus, composition and
Dempster’s combination are designed for different purposes
and possess different properties. While Dempster’s rule
is always commutative and associative, the composition
operator meets these properties only in particular situations.
On the other hand, Dempster’s rule does not preserve the
first marginal; it is not idempotent.

Consider BPAs𝑚1 for 𝑟 and𝑚2 for 𝑠 such that𝑚2	𝑚↓𝑟∩𝑠
2

is a BPA. In connection with Definition 2, we will identify
situations when conditional BPA 𝑚2 	 𝑚↓𝑟∩𝑠

2 is, in a way,
“adapted” to BPA 𝑚1. We say that 𝑚2 	 𝑚↓𝑟∩𝑠

2 is tight with
respect to 𝑚1 if for all couples of focal elements a and b
(a is a focal element of 𝑚1, and b is a focal element of
𝑚2 	 𝑚↓𝑟∩𝑠

2 ) the following condition holds:

for ∀ 𝑏 ∈ b, ∃ 𝑎 ∈ a, such that {𝑎} ⊲⊳ {𝑏} ≠ ∅. (8)

In [7], we proved the following assertion.
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Proposition 7 Suppose BPAs 𝑚1 for 𝑟, and 𝑚2 for 𝑠 are
such that 𝑚2 	 𝑚↓𝑟∩𝑠

2 is a BPA. Then, BPA 𝑚2 	 𝑚↓𝑟∩𝑠
2 is

tight with respect to 𝑚1 if and only if

𝑚1 ⊲𝑓 𝑚2 = 𝑚1 ⊲𝑑 𝑚2.

Example 2 In this example, we present a couple of BPAs
that do not meet the assumptions of the previous assertion.
Notice that 𝑚𝑌 ,𝑍 from Table 2 is a conditional, because
𝑚

↓𝑌
𝑌 ,𝑍

is vacuous, and thus 𝑚𝑌 ,𝑍 	 (𝑚𝑌 ,𝑍 )↓𝑌 = 𝑚𝑌 ,𝑍 .
Expression (ii) in Definition 5 applies to states for which

the composed BPAs are, in a way, incompatible; the second
argument does not bear the information on how to divide
the mass assigned to a focal element of the first argument.
Therefore, Expression (ii) assigns the respective value of
a mass function to the least specific focal element. The
acceptance of this idea makes the f-composition of any
couple of BPAs possible. Notice that if the conditional of
𝑚𝑌 ,𝑍 is tight with respect to 𝑚𝑋,𝑌 , then Expression (ii)
does not find its use.

Verify that the compositions 𝑚𝑋,𝑌 ⊲𝑑 𝑚𝑌 ,𝑍 and 𝑚𝑋,𝑌 ⊲𝑓
𝑚𝑌 ,𝑍 (see Table 2) differ only in the fact that the d-
composition assigns mass 0.70 to {(𝑥�̄�𝑧), (𝑥�̄�𝑧)} and,
in contrast, the f-composition assigns this mass to
{(𝑥�̄�𝑧), (𝑥�̄�𝑧), (𝑥�̄�𝑧), (𝑥�̄�𝑧)} by Expression (ii). Thus, the
result of the f-composition is less specific than that of the
d-composition. It is a general property, precisely formulated
in Proposition 8 below. By the loss of specificity, we have
to pay for the ability to combine any couple of BPAs. In
other words, when we want to compose two BPAs whose d-
composition is undefined, we can do it using f-composition,
but we have to reconcile to a partial loss of information.

Table 2: Example illustrating Proposition 8

𝑎 𝑚𝑋,𝑌 (𝑎)
{(𝑥�̄�), (𝑥�̄�)} 0.70
{(𝑥�̄�), (𝑥𝑦), (𝑥�̄�)} 0.30

𝑎 𝑚𝑌 ,𝑍 (𝑎)
{( �̄�𝑧), (𝑦𝑧)} 0.51
{( �̄�𝑧), (𝑦𝑧)} 0.49

(𝑚𝑋,𝑌 ⊲ 𝑚𝑌 ,𝑍 ) (𝑎)
𝑎 ⊲𝑑 ⊲𝑓

{(𝑥�̄�𝑧), (𝑥�̄�𝑧)} 0.70
{(𝑥�̄�𝑧), (𝑥�̄�𝑧), (𝑥�̄�𝑧), (𝑥�̄�𝑧)} 0.70
{(𝑥�̄�𝑧), (𝑥𝑦𝑧), (𝑥�̄�𝑧)} 0.15 0.15
{(𝑥�̄�𝑧), (𝑥𝑦𝑧), (𝑥�̄�𝑧)} 0.15 0.15

Proposition 8 Suppose basic assignments 𝑚1 for 𝑟 and
𝑚2 for 𝑠 are such that 𝑚1 ⊲𝑑 𝑚2 is defined. Then,

𝐵𝑒𝑙𝑚1⊲𝑓 𝑚2 ≤ 𝐵𝑒𝑙𝑚1⊲𝑑𝑚2 .

Proof The assumption that 𝑚1 ⊲𝑑 𝑚2 is defined guarantees
that 𝑚2 	 𝑚

↓𝑟∩𝑠
2 is a conditional, i.e., it is a BPA for

which
(
𝑚2 	 𝑚↓𝑟∩𝑠

2

)↓𝑟∩𝑠
is vacuous. Therefore, for all its

focal elements b, b↓𝑟∩𝑠 = 𝛺𝑟∩𝑠. This implies that for any
couple of focal elements a and b of 𝑚1 and 𝑚2 	 𝑚↓𝑟∩𝑠

2 ,
respectively, a ⊲⊳ b ≠ ∅. It implies that when computing
(for any c ⊆ 𝛺 {𝑋 }∪𝑠)

(𝑚1 ⊲𝑑 𝑚2) (c) = (𝑚1 ⊕ (𝑚2 	 𝑚↓𝑟∩𝑠
2 )) (c)

=
1
𝐾

∑︁
a⊆𝛺𝑟 ,b⊆𝛺𝑠 : a⊲⊳b=c

𝑚1 (a) · (𝑚2 	 𝑚↓𝑟∩𝑠
2 ) (b), (9)

one gets

𝐾 =
∑︁

a⊆𝛺𝑟 ,b⊆𝛺𝑠 : a⊲⊳b≠∅
𝑚1 (a) · (𝑚2 	 𝑚↓𝑟∩𝑠

2 ) (b) = 1.

Now, consider a focal element a of𝑚1 and a focal element
b of 𝑚2 	 𝑚↓𝑟∩𝑠

2 . The product 𝑚1 (a) · (𝑚2 	 𝑚↓𝑟∩𝑠
2 ) (b)

plays its role in computations of both compositions. Con-
sidering d-composition first, this product contributes to the
value assigned to focal element a ⊲⊳ b. It means that either
(𝑚1 ⊲𝑑𝑚2) (a ⊲⊳ b) = 𝑚1 (a) · (𝑚2	𝑚↓𝑟∩𝑠

2 ) (b), or, if there is
yet another couple of focal elements a′ and b′ for which a′ ⊲⊳

b′ = a ⊲⊳ b, (𝑚1 ⊲𝑑 𝑚2) (a ⊲⊳ b) > 𝑚1 (a) · (𝑚2 	𝑚↓𝑟∩𝑠
2 ) (b).

Considering the f-composition, notice that in Expression (i),
the denominator equals 1, because the corresponding
marginal is vacuous. Therefore. Expression (i) assigns value
(𝑚1 ⊲𝑓 𝑚2) (c) = 𝑚1 (a) · (𝑚2 	 𝑚↓𝑟∩𝑠

2 ) (b) for c ∈ 𝛺𝑟∪𝑠,
for which c↓𝑟 = a and c↓𝑠 = b. Since we know that
c ⊆ c↓𝑟 ⊲⊳ c↓𝑠, we see that the considered product con-
tributes either to the same focal elements for both composi-
tions, or to a larger focal element for f-composition than for
d-composition. Trivially, the same property holds also when
Expression (ii) applies in Definition 5. In this case, namely,
(𝑚1 ⊲𝑓 𝑚2) (a×𝛺𝑠\𝑟 ) =

∑
d 𝑚1 (a) · (𝑚2	𝑚

↓𝑟∩𝑠
2 ) (d), where

the summarization is realized for all focal elements d of
𝑚2 	 𝑚↓𝑟∩𝑠

2 .
Thus, we showed that focal elements of d-composition

are smaller or equal to focal elements of f-composition.
Precisely speaking we showed that for any c ⊆ 𝛺𝑟∪𝑠∑︁

d⊆c
(𝑚1 ⊲𝑑 𝑚2) (d) ≥

∑︁
d⊆c

(𝑚1 ⊲𝑓 𝑚2) (d),
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5. Directed Graphical Models
Directed graphical models are a belief-function counterpart
of Bayesian networks in probability theory.

Definition 9 A belief function directed graphical model is a
couple

(
𝐺 = ({𝑋1, . . . , 𝑋𝑛}, ®𝐸), {𝑚𝑖}𝑖=1,...,𝑛

)
, where 𝐺 is

an acyclic directed graph1, and {𝑚𝑖}𝑖=1,...,𝑛 is a collection
of conditional BPAs such that

• the nodes of 𝐺, {𝑋1, . . . , 𝑋𝑛} are discrete variables;

• for each node (variable) 𝑋𝑖 , the corresponding condi-
tional BPA𝑚𝑖 is defined for variable 𝑋𝑖 and its parents;
it is a conditional BPA for 𝑋𝑖 given its parents 𝑃𝑎(𝑋𝑖),
i.e., 𝑚𝑖 is defined {𝑋𝑖} ∪ 𝑃𝑎(𝑋𝑖), and 𝑚↓𝑃𝑎 (𝑋𝑖)

𝑖
is

vacuous.

Such a directed graphical model represents a joint BPA 𝑚
for all variables: 𝑚 = ⊕𝑛

𝑖=1𝑚𝑖 .

Notice, that if 𝑃𝑎(𝑋𝑘 ) = ∅, then the conditional for 𝑋𝑘

is the prior belief function for 𝑋𝑘 . If 𝑃𝑎(𝑋𝑘 ) ≠ ∅, then 𝑚𝑖

is a conditional BPA for variable 𝑋𝑖 given its parents. This
requirement is fundamental. It guarantees that all BPAs 𝑚𝑖

are mutually distinct and the expression ⊕𝑛
𝑖=1𝑚𝑖 is correctly

used; there is no double counting of evidence.
There is extensive literature on conditional belief func-

tions [15, 1, 21, 10]. In the following example, we employ
the process of conditional embedding introduced in 1978
by Smets in [19], which is often useful for constructing
directed graphical models.
Consider a variable 𝑋 and its parents 𝑃𝑎(𝑋). Assume

that if the parent variables are in a state 𝑎 ∈ 𝛺𝑃𝑎 (𝑋 ) , the
behavior of variable 𝑋 is described by BPA 𝑚𝑋 |𝑎 for 𝑋 . We
want to embed this BPA for 𝑋 into a conditional BPA for
({𝑋} ∪ 𝑃𝑎(𝑋)) denoted by 𝑚𝑎,𝑃𝑎 (𝑋 ) , so that the following
two conditions hold:

1. 𝑚𝑎,𝑃𝑎 (𝑋 ) tells us nothing about 𝑃𝑎(𝑋), i.e.,𝑚↓𝑃𝑎 (𝑋 )
𝑎,𝑃𝑎 (𝑋 )

is vacuous.

2. Consider the deterministic BPA 𝑚𝑃𝑎 (𝑋 )=𝑎 (which is
a BPA for variables 𝑃𝑎(𝑋) such that 𝑚𝑃𝑎 (𝑋 )=𝑎 (𝑎) =
1). If we combine 𝑚𝑎,𝑃𝑎 (𝑋 ) with 𝑚𝑃𝑎 (𝑋 )=𝑎 using
Dempster’s rule, and marginalize the result to 𝑋 , we
obtain 𝑚𝑋 |𝑎, i.e., (𝑚𝑎,𝑃𝑎 (𝑋 ) ⊕ 𝑚𝑃𝑎 (𝑋 )=𝑎)↓𝑋 = 𝑚𝑋 |𝑎.

The process called Smets’ conditional embedding [19]
(see also, [15], [21], and [1]) consists of taking each focal

1For a directed graph 𝐺 = (V , ®𝐸) , and its node 𝑋 we denote the set
of parents of 𝑋 , 𝑃𝑎 (𝑋 ) = {𝑌 ∈ V : (𝑌 → 𝑋 ) ∈ ®𝐸) }. Such a graph is
acyclic if its nodes can be ordered so that parents are always before their
children. Such an ordering is called topological (for the directed graph𝐺).

element b ⊆ 𝛺𝑋 of 𝑚𝑋 |𝑎 and converting it to the cor-
responding focal element c ⊆ 𝛺 {𝑋 }∪𝑃𝑎 (𝑋 ) of 𝑚𝑎,𝑃𝑎 (𝑋 ) ,
where

c = ({𝑎} × b) ∪ ((𝛺𝑃𝑎 (𝑋 ) \ {𝑎}) × 𝛺𝑋 ) ⊆ 𝛺 {𝑋 }∪𝑃𝑎 (𝑋 ) ,
(10)

and 𝑚𝑎,𝑃𝑎 (𝑋 ) (c) = 𝑚𝑋 |𝑎 (b). From this, one can immedi-
ately see that 𝑚𝑎,𝑃𝑎 (𝑋 ) has exactly the same number of
focal elements as 𝑚𝑋 |𝑎, and that for each focal element c
of 𝑚𝑎,𝑃𝑎 (𝑋 ) , its projection c↓𝑃𝑎 (𝑋 ) = 𝛺𝑃𝑎 (𝑋 ) .
This process is repeated for all 𝑎 ∈ 𝛺𝑃𝑎 (𝑋 ) for which

we know 𝑚𝑋 |𝑎, and eventually 𝑚𝑋 |𝑃𝑎 (𝑋 ) is obtained as a
Dempster’s combination of all the constructed 𝑚𝑎,𝑃𝑎 (𝑋 ) .
In a more general form, the process can be realized not
only for elements 𝑎 ∈ 𝛺𝑃𝑎 (𝑋 ) but for a system of disjoint
subsets of a ⊆ 𝛺𝑃𝑎 (𝑋 ) ).

Example 3 (Changing tires) Consider a graphical model
with six variables 𝐵,𝑂, 𝐴, 𝑆, 𝑇, 𝑀, the graph from Fig. 1,
and six conditional BPAs 𝑚𝐵, 𝑚𝑂 |𝐵, 𝑚𝐴 |𝑂, 𝑚𝑆 , 𝑚𝑇 |𝐴,𝑆 ,
and 𝑚𝑀 |𝐵,𝑇 specified below. The model should answer
how long it takes to change seasonal tires in a car repair
shop. The total time is the sum of waiting time and time a
car mechanic spends to perform the required work (time
of service). The waiting time depends on whether the cus-
tomer has made their online booking in advance or not.
The booked customers are served with higher priority; their
waiting time is zero. The working time depends on what is
to be done. Partly it depends on whether the customer needs
to change tires or the entire wheels. If the customer already
has two sets of wheels on the discs, the mechanic need
not remove and install tires; they disassemble the old and
assemble new wheels (including balancing), which requires
much less time. The mechanic needs another half an hour if
the customer accepts a seasonal offer to carry out a winter
test (a package covering checks of windscreen wipers and
washers, tests of the brake system, battery, etc.) at a reduced
price. The customer can accept this offer during the online
booking. The unbooked customers are offered this service
only if the capacity allows.

The variables and state spaces are listed in Table 3.
Since we do not know the priors, both 𝑚𝐵 and 𝑚𝑆 are

vacuous.
We assume that all booked customers and about one-

half of the non-booked customers are offered the winter
test. The conditional 𝑚𝑂 |𝐵 is defined using Smets’ condi-
tional embedding to include this information in the model.
First, consider 𝑚𝑂 |𝐵=𝑦 as a deterministic Bayesian BPA
with the focal elements 𝑚𝑂 |𝐵=𝑦 ({𝑂 = 𝑦}) = 1. Applying
Equation (10), the embedded conditional 𝑚𝐵=𝑦,𝑂 is also
deterministic BPA with one focal element 𝑚𝐵=𝑦,𝑂 ({(𝐵 =

𝑦, 𝑂 = 𝑦), (𝐵 = 𝑛, 𝑂 = 𝑛), (𝐵 = 𝑛, 𝑂 = 𝑦)}) = 1.
The fact that half of the non-booked customers are also

offered the winter test means that the conditional𝑚𝑂 |𝐵=𝑛 is a
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Table 3: The variables, their state spaces, and the meaning of the states.

Variable Name State space 𝛺 Meaning
𝐵 Booking {𝑦, 𝑛} yes; no
𝑂 winter test - Offer {𝑦, 𝑛} yes; no
𝐴 winter test - Accept {𝑦, 𝑛} yes; no
𝑆 type of Service {𝑡, 𝑤} changing tires; changing entire wheels
𝑇 Time of service {𝑡1, 𝑡2, 𝑡3} 30 min.; 60 min.; 90 min.
𝑀 total tiMe {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5} 30 min.; 60 min.; 90 min.; two hours; three hours

Figure 1: Graph for the Changing tires example

Bayesian BPA with two focal elements 𝑚𝑂 |𝐵=𝑛 ({𝑂 = 𝑛}) =
𝑚𝑂 |𝐵=𝑛 ({𝑂 = 𝑦}) = 0.5. Applying Equation (10), the
embedded conditional 𝑚𝐵=𝑛,𝑂 has also two focal elements
𝑚𝐵=𝑛,𝑂 ({(𝐵 = 𝑛, 𝑂 = 𝑛), (𝐵 = 𝑦, 𝑂 = 𝑛), (𝐵 = 𝑦, 𝑂 =

𝑦)}) = 𝑚𝐵=𝑛,𝑂 ({(𝐵 = 𝑛, 𝑂 = 𝑦), (𝐵 = 𝑦, 𝑂 = 𝑛), (𝐵 =

𝑦, 𝑂 = 𝑦)}) = 0.5. Thus, the conditional𝑚𝑂 |𝐵 = 𝑚𝐵=𝑦,𝑂 ⊕
𝑚𝐵=𝑛,𝑂 has also two focal elements 𝑚𝑂 |𝐵 ({(𝐵 = 𝑛, 𝑂 =

𝑛), (𝐵 = 𝑦, 𝑂 = 𝑦)}) = 𝑚𝑂 |𝐵 ({(𝐵 = 𝑛, 𝑂 = 𝑦), (𝐵 =

𝑦, 𝑂 = 𝑦)}) = 0.5.
Similarly, we get the conditional 𝑚𝐴 |𝑂 describing that

only the customers offered the winter test can accept it and
that 80% 𝑚𝐴 |𝑂 ({(𝑂 = 𝑦, 𝐴 = 𝑦), (𝑂 = 𝑛, 𝐴 = 𝑛)}) = 0.8
and 𝑚𝐴 |𝑂 ({(𝑂 = 𝑦, 𝐴 = 𝑛), (𝑂 = 𝑛, 𝐴 = 𝑛)}) = 0.2.

BPA 𝑚𝑇 |𝐴,𝑆 models the functional dependence of vari-
able 𝑇 on its parents. It encodes that the time of service is a
sum of the time necessary to change tires and that necessary
to realize winter test if required. Thus, 𝑚𝑇 |𝐴,𝑆 encodes the
following implications:

• (𝐴 = 𝑛 & 𝑆 = 𝑤) =⇒ 𝑇 = 𝑡1;

• (𝐴 = 𝑛 & 𝑆 = 𝑡) =⇒ 𝑇 = 𝑡2;

• (𝐴 = 𝑦 & 𝑆 = 𝑤) =⇒ 𝑇 = 𝑡2;

• (𝐴 = 𝑦 & 𝑆 = 𝑡) =⇒ 𝑇 = 𝑡3.

So, 𝑚𝑇 |𝐴,𝑆 is a deterministic BPA with the focal element

a =

{
(𝐴 = 𝑛, 𝑆 = 𝑤,𝑇 = 𝑡1), (𝐴 = 𝑛, 𝑆 = 𝑡, 𝑇 = 𝑡2),
(𝐴 = 𝑦, 𝑆 = 𝑤,𝑇 = 𝑡2), (𝐴 = 𝑦, 𝑆 = 𝑡, 𝑇 = 𝑡3)

}
,

which is a conditional BPA because a↓{𝐴,𝑆 } = 𝛺 {𝐴,𝑆 }
Not expecting that the waiting time for the unbooked

customers depends on the considered variables, we define
the last conditional BPA 𝑚𝑀 |𝐵,𝑇 to express the following
implications:

• (𝐵 = 𝑦 & 𝑇 = 𝑡𝑖) =⇒ 𝑀 = 𝑝𝑖;

• (𝐵 = 𝑛 & 𝑇 = 𝑡𝑖) =⇒ 𝑀 = 𝑡 𝑗 for some 𝑗 ≥ 𝑖.

It is modeled by a deterministic BPA 𝑚𝑀 |𝐵,𝑇 , the focal
element a of which consists of the 15 states:

a =



(𝐵 = 𝑦, 𝑇 = 𝑡1, 𝑀 = 𝑝1), (𝐵 = 𝑦, 𝑇 = 𝑡2, 𝑀 = 𝑝2),
(𝐵 = 𝑦, 𝑇 = 𝑡3, 𝑀 = 𝑝3), (𝐵 = 𝑛, 𝑇 = 𝑡1, 𝑀 = 𝑝1),
(𝐵 = 𝑛, 𝑇 = 𝑡1, 𝑀 = 𝑝2), (𝐵 = 𝑛, 𝑇 = 𝑡1, 𝑀 = 𝑝3),
(𝐵 = 𝑛, 𝑇 = 𝑡1, 𝑀 = 𝑝4), (𝐵 = 𝑛, 𝑇 = 𝑡1, 𝑀 = 𝑝5),
(𝐵 = 𝑛, 𝑇 = 𝑡2, 𝑀 = 𝑝2), (𝐵 = 𝑛, 𝑇 = 𝑡2, 𝑀 = 𝑝3),
(𝐵 = 𝑛, 𝑇 = 𝑡2, 𝑀 = 𝑝4), (𝐵 = 𝑛, 𝑇 = 𝑡2, 𝑀 = 𝑝5),
(𝐵 = 𝑛, 𝑇 = 𝑡3, 𝑀 = 𝑝3), (𝐵 = 𝑛, 𝑇 = 𝑡3, 𝑀 = 𝑝4),
(𝐵 = 𝑛, 𝑇 = 𝑡3, 𝑀 = 𝑝5)


.

It is an easy task to check that a↓{𝐵,𝑇 } = 𝛺 {𝐵,𝑇 }, which
means that 𝑚𝑀 |𝐵,𝑇 is a required conditional.

The directed graphical model represents the joint BPA 𝑚
as follows:2

𝑚 = 𝑚𝐵 ⊕ 𝑚𝑆 ⊕ 𝑚𝑂 |𝐵 ⊕ 𝑚𝐴 |𝑂 ⊕ 𝑚𝑇 |𝐴,𝑆 ⊕ 𝑚𝑀 |𝐵,𝑇

= 𝑚𝐵 ⊲𝑑 𝑚𝑆 ⊲𝑑 𝑚𝑂 |𝐵 ⊲𝑑 𝑚𝐴 |𝑂 ⊲𝑑 𝑚𝑇 |𝐴,𝑆 ⊲𝑑 𝑚𝑀 |𝐵,𝑇 .

2To keep the formulas uncluttered, we omit the parentheses when the
operators of composition are performed successively from left to right.
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In probability theory, the class of Bayesian networks
is equivalent to the class of compositional models [3].
In the theory of belief functions, the relation of directed
graphical models with compositional models is expressed
in Proposition 10. It takes advantage of the fact that there
exists a topological ordering of nodes of an acyclic directed
graph.

Proposition 10 Let
(
𝐺 = ({𝑋1, . . . , 𝑋𝑛}, ®𝐸), {𝑚𝑖}𝑖=1,...,𝑛

)
be a directed graphical belief function model represent-
ing BPA 𝑚 = ⊕𝑛

𝑖=1𝑚𝑖 . If the ordering of variables
(𝑋1, 𝑋2, . . . , 𝑋𝑛) is topological with respect to 𝐺, then

𝑚 = 𝑚1 ⊲𝑑 𝑚2 ⊲𝑑 . . . ⊲𝑑 𝑚𝑛

= 𝑚↓𝑋1 ⊲𝑑 𝑚
↓{𝑋2 }∪𝑃𝑎 (𝑋2) ⊲𝑑 . . . ⊲𝑑 𝑚

↓{𝑋𝑛 }∪𝑃𝑎 (𝑋𝑛) .
(11)

Proof The first equality in Equation (11) follows directly
from the definition because for all 𝑖 = 2, . . . , 𝑛

(𝑚1 ⊲𝑑 . . . ⊲𝑑 𝑚𝑖−1) ⊲𝑑 𝑚𝑖

= (𝑚1 ⊲𝑑 . . . ⊲𝑑 𝑚𝑖−1) ⊕ 𝑚𝑖 	 𝑚↓𝑃𝑎 (𝑋𝑖)
𝑖

= (𝑚1 ⊲𝑑 . . . ⊲𝑑 𝑚𝑖−1) ⊕ 𝑚𝑖

(notice that the last equality holds because the marginal
𝑚

↓𝑃𝑎 (𝑋𝑖)
𝑖

is vacuous).
To prove that the second equality holds in Equation (11),

realize that

(𝑚↓𝑋1 ⊲𝑑 . . . ⊲𝑑 𝑚
↓{𝑋𝑖−1 }∪𝑃𝑎 (𝑋𝑖−1) ) ⊕ 𝑚𝑖

= (𝑚↓𝑋1 ⊲𝑑 . . . ⊲𝑑 𝑚
↓{𝑋𝑖−1 }∪𝑃𝑎 (𝑋𝑖−1) ) ⊲𝑑 𝑚↓{𝑋𝑖 }∪𝑃𝑎 (𝑋𝑖)

follows fromCorollary 4 (notice that the d-composition is de-
fined because the conditional computed from𝑚↓{𝑋𝑖 }∪𝑃𝑎 (𝑋𝑖)

equals 𝑚𝑖).

The assertion says that each directed graphical model
can be represented equally efficiently by a compositional
model. However, the converse does not hold for belief
functions. It is because not all joint BPAs 𝑚 defined for
variables 𝑟 can be expressed as Dempster’s combination of
its marginal 𝑚↓𝑠 (for 𝑠 ( 𝑟) with the respective conditional
BPA (𝑚 	 𝑚↓𝑠). An example of such 𝑚𝑌 ,𝑍 that cannot be
expressed as Dempster’s combination of its marginal 𝑚↓𝑌

𝑌 ,𝑍

with the respective conditional BPA 𝑚𝑍 |𝑌 is BPA 𝑚2 in
Example 1.

6. Undirected Graphical Models
Definition 11 A belief function undirected graphical model
is a couple

(
𝐺 = ({𝑋1, . . . , 𝑋𝑛}, 𝐸), {𝑚𝑖}𝑖=1,...,𝑘

)
, where

(a) Graph 𝐺 (b) Triangulated graph �̂�

Figure 2: Undirected graphs for model from Example 4

𝐺 is an undirected graph with cliques3 𝑞1, . . . , 𝑞𝑘 , and
{𝑚𝑖}𝑖=1,...,𝑘 is a collection of BPAs such that 𝑚𝑖 is defined
for variables 𝑞𝑖 . Such an undirected graphical model repre-
sents a joint BPA𝑚 for {𝑋1, . . . , 𝑋𝑛} such that𝑚 = ⊕𝑘

𝑖=1𝑚𝑖 .

Notice that implicit in the definition, the BPAs
{𝑚𝑖}𝑖=1,...,𝑘 are all distinct.

Example 4 Consider a simple graph 𝐺 with six nodes
(binary variables) and eight edges from Figure 2(a). All
cliques of this graph consist of two nodes; thus, the set
of cliques equals the set of edges. A system of eight two-
dimensional BPAs specifies an undirected graphical model
with graph 𝐺, and the model represents a six-dimensional
joint BPA

𝑚 = 𝑚1 (𝑈,𝑉) ⊕ 𝑚2 (𝑈,𝑊) ⊕ 𝑚3 (𝑉, 𝑋) ⊕ 𝑚4 (𝑉,𝑌 )
⊕ 𝑚5 (𝑊, 𝑋) ⊕ 𝑚6 (𝑊,𝑌 ) ⊕ 𝑚7 (𝑋, 𝑍) ⊕ 𝑚8 (𝑌, 𝑍).

From this expression, one can see that only a few parameters
define such a graphical model. Their number is negligible in
comparison with the potential number of focal elements of
a general six-dimensional BPA (2(26) −1). Nevertheless, the
only commonly known way to employ such an economically
expressed joint BPA is described by Proposition 12.

In probability theory, Markov networks (the term used
by Pearl [13] for undirected graphical models) are much
less popular than Bayesian networks. Nevertheless, their
subclass, called decomposable models, are used in the
Lauritzen-Spiegelhalter procedure for local computations.
It employs the property that a probability distribution rep-
resented by a Bayesian network is a Markov model with

3A clique of a graph 𝐺 is a maximal complete subset of nodes of 𝐺,
i.e., a subset of mutually adjacent nodes of 𝐺 that cannot be extended
without violating the condition of mutual adjacency.
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any graph, which is a supergraph of the moral graph4 of
the original acyclic directed graph. The following assertion
shows that a similar result also holds for belief function
models. The process of “moralization” and “triangulation”
of an acyclic-directed graph can also be realized in the
framework of belief functions to get a decomposable model
equivalent to a directed graphical model. However, in con-
trast to probability theory, exploiting such a decomposable
model for inference may fail because of the nonexistence
of a necessary conditional BPA. This fact also manifests in
the following assertion.

Proposition 12 Suppose(
𝐺 = ({𝑋1, . . . , 𝑋𝑛}, 𝐸), {𝑚𝑖}𝑖=1,...,𝑘

)
is an undirected

graphical model representing BPA 𝑚 = ⊕𝑘
𝑖=1𝑚𝑖 . Consider

an arbitrary decomposable supergraph �̂� of 𝐺, i.e.,

• nodes of �̂� are {𝑋1, . . . , 𝑋𝑛};

• all edges of 𝐺 are also in �̂�, and

• cliques of �̂� can be ordered to meet the running inter-
section property5 (let it be the ordering 𝑞1, . . . , 𝑞ℓ).

Then
𝑚 = 𝑚↓�̄�1 ⊲𝑑 𝑚

↓�̄�2 ⊲𝑑 . . . ⊲𝑑 𝑚
↓�̄�ℓ (12)

if all the compositions are defined.

Proof To show that an undirected graphical model with
graph 𝐺 is also an undirected graphical model with any
supergraph of 𝐺 is trivial. Consider an undirected graph-
ical model

(
𝐺 = ({𝑋1, . . . , 𝑋𝑛}, 𝐸), {𝑚𝑖}𝑖=1,...,𝑘

)
. Let �̄�

with cliques 𝑞1, . . . , 𝑞ℓ be a supergraph of 𝐺. Choose any
mapping ℎ : {1, ..., 𝑘} → {1, ..., ℓ}, such that 𝑞𝑖 ⊆ 𝑞ℎ (𝑖) .
Such a mapping exists because each clique 𝑞 of 𝐺 is a sub-
set of (at least one) clique 𝑞 of �̄�. For all 𝑗 = 1, . . . , ℓ,
define �̄� 𝑗 =

(
⊕𝑖:ℎ (𝑖)= 𝑗𝑚𝑖

)
⊕ ]𝑞 𝑗

. Then, it is evident
that

(
�̄� = ({𝑋1, . . . , 𝑋𝑛}, �̄�), {�̄�𝑖}𝑖=1,...,ℓ

)
represents the

same joint BPA as
(
𝐺 = ({𝑋1, . . . , 𝑋𝑛}, 𝐸), {𝑚𝑖}𝑖=1,...,𝑘

)
because 𝑚 = ⊕𝑘

𝑖=1𝑚𝑖 = ⊕ℓ
𝑖=1�̄�𝑖 .

Now assume �̄� is decomposable and 𝑞1, . . . , 𝑞ℓ are
ordered to meet RIP. Consider an arbitrary 𝑗 ∈ {2, . . . , ℓ}.
Since the ordering 𝑞1, . . . , 𝑞ℓ meets RIP, set 𝑠 = 𝑞 𝑗 ∩ (𝑞1 ∪
. . . ∪ 𝑞 𝑗−1) is an articulation set in �̄�, and therefore the set
of all cliques can be split into two disjoint parts {𝑞𝑖}𝑖∈𝐼 and
{𝑞𝑖}𝑖∈𝐽 , such that (∪𝑖∈𝐼 𝑞𝑖) ∩ (∪𝑖∈𝐽 𝑞𝑖) = 𝑠.
Thus, 𝑚 = (⊕𝑖∈𝐼 �̄�𝑖) ⊕ (⊕𝑖∈𝐽 �̄�𝑖), which corresponds

with the definition of the conditional independence

4An undirected graph 𝐺 = (𝑉 , 𝐸) is said to be a moral graph
of an acyclic directed graph ®𝐺 = (𝑉 , ®𝐸) if 𝐸 =

⋃
𝑍∈𝑉

{
(𝑋,𝑌 ) ∈

𝑃𝑎 (𝑍 ) ∪ {𝑍 }
}
.

5Ordered system of sets �̄�1, �̄�2, . . . , �̄�ℓ meets the running intersection
property (RIP) if for all 𝑖 = 2, . . . , ℓ there exists 𝑗 (1 ≤ 𝑗 < 𝑖) such that
�̄�𝑖 ∩ (�̄�1 ∪ . . . ∪ �̄�𝑖−1) ⊆ �̄� 𝑗 .

𝑞 𝑗 \ 𝑠⊥⊥𝑚 (𝑞1 ∪ . . . ∪ 𝑞 𝑗−1) \ 𝑠. Applying Proposition 3
we get that

𝑚↓(�̄�1∪...∪�̄� 𝑗 ) = 𝑚↓(�̄�1∪...∪�̄� 𝑗−1) ⊲𝑑 𝑚
↓�̄� 𝑗 (13)

if this composition exists. Thus Equation (12) is proved
because Equation (13) holds for all 𝑗 ∈ {2, . . . , ℓ}, which
finishes the proof.

Example 4 (continued) Graph 𝐺 from Figure 2(a) can
be triangulated by adding two edges. The resulting graph �̂�
(see Figure 2(b)) has three cliques: {𝑈,𝑉,𝑊}, {𝑉,𝑊, 𝑋,𝑌 },
and {𝑋,𝑌, 𝑍}. To get the corresponding decomposable
compositional model specified in Proposition 12, one has to
compute the respective two three-dimensional and one four-
dimensional marginal BPAs. They can be computed using
Shenoy-Shafer elimination algorithm ([18, 17]) getting:

• �̄�1 (𝑈.𝑉,𝑊) = 𝑚1 (𝑈,𝑉) ⊕ 𝑚2 (𝑈,𝑊)
⊕
(
𝑚3 (𝑉, 𝑋) ⊕ 𝑚4 (𝑉,𝑌 ) ⊕𝑚5 (𝑊, 𝑋) ⊕𝑚6 (𝑊,𝑌 )

⊕
(
𝑚7 (𝑋, 𝑍) ⊕ 𝑚8 (𝑌, 𝑍)

)↓{𝑋,𝑌 }
)↓{𝑉 ,𝑊 }

.

• �̄�2 (𝑉,𝑊, 𝑋,𝑌 ) =
(
𝑚1 (𝑈,𝑉) ⊕ 𝑚2 (𝑈,𝑊)

)↓{𝑉 ,𝑊 }

⊕ 𝑚3 (𝑉, 𝑋) ⊕ 𝑚4 (𝑉,𝑌 ) ⊕ 𝑚5 (𝑊, 𝑋) ⊕ 𝑚6 (𝑊,𝑌 )
⊕
(
𝑚7 (𝑋, 𝑍) ⊕ 𝑚8 (𝑌, 𝑍)

)↓{𝑋,𝑌 }.

• �̄�3 (𝑋,𝑌, 𝑍) =
( (
𝑚1 (𝑈,𝑉) ⊕ 𝑚2 (𝑈,𝑊)

)↓{𝑉 ,𝑊 }

⊕ 𝑚3 (𝑉, 𝑋) ⊕ 𝑚4 (𝑉,𝑌 ) ⊕ 𝑚5 (𝑊, 𝑋)
⊕ 𝑚6 (𝑊,𝑌 )

)↓{𝑋,𝑌 }
⊕ 𝑚7 (𝑋, 𝑍) ⊕ 𝑚8 (𝑌, 𝑍).

Due to Proposition 12, we get the original six-dimensional
BPA 𝑚 composing these marginals in any ordering meeting
RIP. So, if the following compositions are defined, then

𝑚 = �̄�1 ⊲𝑑 �̄�2 ⊲𝑑 �̄�3 = �̄�3 ⊲𝑑 �̄�2 ⊲𝑑 �̄�1 = �̄�3 ⊲𝑑 �̄�2 ⊲𝑑 �̄�1.

7. Summary, Conclusions, and Open
Problems

The paper shows that the relationship between composi-
tional and graphical models for belief functions is almost
the same as in probability theory. As shown in Example 1,
the difference results from that: not all joint BPAs can
be decomposed as a combination of its marginal and the
corresponding conditional. Avoiding this deficiency for
compositional models is easier than for directed graphical
models. It becomes evident also from studying the relation-
ship between these two classes of models. As expressed
in Proposition 10 and the ensuing comment, each directed
graphical model can be represented as a compositional
model, but the converse relation does not hold.
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Another interesting result concerns the two composition
operators defined for belief functions. Recall that while
f-composition (⊲𝑓 ) is always defined, the d-composition
(⊲𝑑) remains undefined when the necessary conditional BPA
does not exist. As expressed in Proposition 7, these two
composition operators may but need not yield the same joint
BPA. For example, if the Captain’s problem described in
the book by Almond [1] is described with a compositional
model, both operators yield the same result. Therefore,
for this example, one can use a (computationally) simpler
f-composition instead of a d-composition. Notice that we
designed the Changing tires problem in Example 3 so that
the corresponding d-compositional and f-compositional
models differ.
The relationship between the results of composition,

when both the operators are defined, is expressed in Propo-
sition 8. It says that the d-composition is more specific
than the f-composition. This suggests using f-composition
to approximate composition when the d-composition is
undefined.
In practice, we never start with a large joint BPA for

many variables. We usually construct one using a graphical
or compositional model. It is typically intractable to ex-
plicitly compute the joint. Therefore, as in the probabilistic
framework, the composition models are designed to enable
inference with multidimensional BPAs. The application
of the Shenoy-Shafer architecture for graphical models is
straightforward, as no removals are involved.
The results presented in Sections 5 and 6 show that also

Lauritzen-Spiegelhalter [12] and Hugin [11] architectures
apply to the studied apparatus. A directed graphical model
with graph 𝐺 may easily be modified to get an undirected
graphical model with a moral graph of 𝐺. Then, applying
Proposition 12 to this undirected model, we obtain a de-
composable model representing the same joint BPA as the
original directed model. However, as already said several
times, not all BPAs can be expressed as a combination of
their marginal and the corresponding conditionals. This
fact may cause problems with employing decomposable
d-compositional models for inference.
Some of the problems may be avoided by extending the

definition of a d-composition in Definition 2 to accept the
situations when the conditional 𝑚2 	 𝑚↓𝑟∩𝑠

2 is a pseudo-
BPA (instead of 𝑚1 ⊲𝑑 𝑚2 is undefined when 𝑚2 	 𝑚↓𝑟∩𝑠

2
is not a BPA). It would be consistent with Lauritzen and
Jensen [11], who show that theHugin architecture (involving
removals) also works for making inferences from belief-
function directed graphical models. They show that the
intermediate computations may result in pseudo-BPAs,
but the marginals are always BPAs. However, a question
remains — which assertions in this paper remain valid for
the extended definition of d-composition?

The possibility of applying the graphical and composi-
tional belief function models to practical problems would be
enhanced by answering more open problems. We mention
just two of them:

• We know that for some problems, the compositional
models coincide whether we consider d-compositional
or f-compositional models. Is it possible to character-
ize situations for which these compositional models
coincide?

• As illustrated with the Changing Tires example, Smets’
conditional embedding can be used to define con-
ditionals required in directed graphical models. As
mentioned prior to Example 3, Smets’ approach can
be used in more general situations than those illus-
trated in the example. Nevertheless, there are practical
situations to which this approach is not applicable. It
happens when one wants to embed several condition-
als, and the respective conditions are not disjoint. Thus,
one cannot use Smets’ conditional embedding when,
given three BPAs 𝑚1, 𝑚2, and 𝑚3 for 𝑋 , they want to
find a conditional BPA 𝑚𝑋 |𝑌 meeting the following
three constraints(

𝑚𝑌=0 ⊕ 𝑚𝑋 |𝑌
)↓𝑋

= 𝑚1,(
𝑚𝑌=1 ⊕ 𝑚𝑋 |𝑌

)↓𝑋
= 𝑚2,(

𝑚𝑌 ∈{0,1} ⊕ 𝑚𝑋 |𝑌
)↓𝑋

= 𝑚3.

Thus, there is a question about how to proceed in such
situations.
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