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In 2018, Jiroušek and Shenoy proposed a definition of entropy for Dempster-Shafer (D-S) 
belief functions called decomposable entropy (d-entropy). This paper provides an algorithm 
for computing the d-entropy of directed graphical D-S belief function models. We illustrate 
the algorithm using Almond’s Captain’s Problem example. For belief function undirected 
graphical models, assuming that the set of belief functions in the model is non-informative, 
the belief functions are distinct. We illustrate this using Haenni-Lehmann’s Communication 
Network problem. As the joint belief function for this model is quasi-consonant, it follows 
from a property of d-entropy that the d-entropy of this model is zero, and no algorithm 
is required. For a class of undirected graphical models, we provide an algorithm for 
computing the d-entropy of such models. Finally, the d-entropy coincides with Shannon’s 
entropy for the probability mass function of a single random variable and for a large multi-
dimensional probability distribution expressed as a directed acyclic graph model called a 
Bayesian network. We illustrate this using Lauritzen-Spiegelhalter’s Chest Clinic example 
represented as a belief-function directed graphical model.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Jiroušek and Shenoy [14] proposes a definition of entropy for Dempster-Shafer (D-S) belief functions called decomposable 
entropy (d-entropy). Jiroušek and Shenoy [16] describes some basic properties of d-entropy. One of the basic properties of 
this entropy is as follows. Suppose we construct a joint basic probability assignment (BPA) mX,Y for {X, Y } from a BPA mX

for X , a conditional mY |X for Y given X , and mX,Y = mX ⊕ mY |X , where ⊕ is Dempster’s combination rule. Then, the joint 
d-entropy of mX,Y , denoted by H(mX,Y ), is equal to H(mX ) + H(mY |X ), where H(mY |X ) denotes the conditional d-entropy 
of mY |X . This decomposable property is analogous to the decomposable property of Shannon’s entropy for joint probability 
mass functions that is the basis of its definition [31]. There are numerous other definitions of entropy for the D-S theory 
(see [15] for a review). Still, none satisfy the decomposable property, and therefore, the computation of these entropies for 
large graphical models may be intractable.

The decomposable property lets us compute the d-entropy of graphical belief function models. Graphical belief function 
models can be either directed or undirected. This article provides an algorithm for computing the d-entropy of belief-
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function directed graphical models, and we illustrate it using an example called the Captain’s decision problem [1]. This 
problem has eight variables, and the joint state space of the eight variables has 3,584 states.

Two belief functions are said to be mutually non-informative if the marginals of these two belief functions to the inter-
section of their domains are vacuous. A set of belief functions is said to be non-informative if every pair of belief functions 
from the set is mutually non-informative. This is illustrated using the Communication Network example [10]. This problem 
has thirty-one binary variables, a joint state space of 231 states, and forty-eight mutually non-informative belief functions. 
Assuming the conditional independence conditions implied by the factorization of the joint BPA are valid, and the set of 
BPAs is non-informative, the BPAs in the model are distinct [34]. As the joint BPA of this model is quasi-consonant, its 
d-entropy is 0. For general undirected graph models, we provide an algorithm for converting a class of such models to a 
directed graph model. We can use the algorithm for directed graph models to compute its d-entropy. A small example with 
six variables illustrates the algorithm.

Finally, the d-entropy generalizes Shannon’s entropy for the probability of a single random variable and for large distribu-
tions expressed as directed acyclic graph models called Bayesian networks. We illustrate this using the Chest Clinic Bayesian 
network example [22]. First, we convert all probability potentials in the example to belief functions. In particular, we use 
Smets’ conditional embedding to convert the conditional probability tables (CPTs) to conditional belief functions. These con-
ditional belief functions are not Bayesian. Next, we compute the d-entropy of the directed graphical belief function model 
and show that it is the same as Shannon’s entropy of this probability model. This example has eight binary variables with 
a joint state space of 28 = 256 states.

An outline of the remainder of the article is as follows. Section 2 sketches the basic definitions in the D-S theory and 
reviews conditional belief functions, conditional independence, and distinct belief functions. Section 3 reviews d-entropy’s 
basic definitions and properties. This section also contains a new property of d-entropy for two non-informative belief 
functions. Section 4 describes directed graphical belief function models and an algorithm for computing the d-entropy 
of large directed graphical belief function models using local computation. Section 5 defines undirected graphical belief 
function models. For a class of decomposable undirected graphical models, we describe an algorithm for converting such 
models to a directed graphical model and then computing its entropy using the algorithm described in Section 4. Section 6
describes three graphical belief function models discussed earlier. Section 7 describes some implementation details and 
tools used to implement the algorithm. Finally, Section 8 provides a summary and states some unresolved issues for future 
research.

2. Dempster-Shafer’s belief function theory

In this section, we sketch the basics of Dempster-Shafer’s theory of belief functions [7,26].

2.1. Representations

There are several representations in the D-S theory of belief functions. Here we focus on basic probability assignments 
and commonality functions.

Notation Let V denote the set of all variables. For each X ∈ V , let �X denote its finite state space. Subsets of V will be 
denoted by r, s, t , etc. For r ⊆ V , let �r = ×X∈r�X denote the state space of r. Let 2�r denote the set of all subsets of �r . 
Thus, 2�r is the space for defining belief functions.

Basic probability assignment A basic probability assignment (BPA) m for r is a function m : 2�r → [0, 1] such that:

m(∅) = 0,and (1)∑
∅�=a∈2�r

m(a) = 1. (2)

∅ denotes the empty set. For a ∈ 2�r , m(a) represents the probability that is assigned exactly to subset a. Thus, no proba-
bility is assigned to the empty subset (Eq. (1)), and the total probability assigned to all non-empty subsets is 1 (Eq. (2)).

We say r is the domain of m The non-empty subsets a ∈ 2�r such that m(a) > 0 are called focal elements of m. A BPA 
m with only one focal element (with mass 1) is called deterministic. A deterministic BPA with focal element �r is called 
vacuous. The vacuous BPA for r is sometimes denoted by ιr . We say m is Bayesian if its focal elements are singleton subsets. 
We say m is consonant if the focal elements of m are nested, i.e., if they can be ordered such that a1 ⊂ a2 ⊂ ... ⊂ am , where 
{a1, . . . , am} denotes the set of all focal elements of m. Deterministic BPAs are consonant. We say m is quasi-consonant if the 
intersection of all focal elements of m is non-empty. A consonant BPA is also quasi-consonant, but not vice-versa.

Commonality function The information in a BPA m for X can also be represented by a corresponding commonality function 
(CF) Q m for r that is defined as follows:
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Q m(a) =
∑

b∈2�r :b⊇a

m(b), (3)

for all a ∈ 2�r . Q m(a) represents the probability mass that could move to every state in a.
From Eqs. (1)–(3), it follows that 0 ≤ Q m ≤ 1. From Eqs. (1)–(3), it follows that Q m(∅) = 1. If m is a vacuous BPA for r, 

then Q m(a) = 1 for all a ∈ 2�r . CFs are non-increasing in the sense that if a ⊆ b, then Q m(a) ≥ Q m(b). The CF Q m has the 
same information as the corresponding BPA m. Given a CF Q m , we can recover the corresponding BPA m as follows [26]:

m(a) =
∑

b∈2�r :b⊇a

(−1)|b\a| Q m(b). (4)

Thus, it follows that Q : 2�r → [0, 1] is a well-defined CF for r iff

Q (∅) = 1, (5)∑
b∈2�r :b⊇a

(−1)|b\a| Q (b) ≥ 0, for all a ∈ 2�r , and (6)

∑
∅�=a∈2�r

(−1)|a|+1 Q (a) = 1. (7)

The left-hand side (LHS) of Eq. (6) is mQ (a), the BPA corresponding to CF Q , and the LHS of Eq. (7) can be shown to be ∑
∅�=a∈2�X mQ (a). Eq. (7) can be regarded as a normalization condition for a CF. Thus, if we have a function Q : 2�r → [0, 1]

that satisfies Eqs. (5) and (6), but not (7), then we can divide each of the values of the function for non-empty subsets in 
2�r by K = ∑

∅�=a∈2�r (−1)|a|+1 Q m(a), and the resulting function will then qualify as a CF.
In some cases, we could have a CF that doesn’t satisfy Eq. (6) but does satisfy Eqs. (5) and (7). We will call such CFs 

quasi-CFs. If we convert a quasi-CF to a BPA using Eq. (4), then such a BPA will have negative masses that add to 1. We will 
call such BPAs quasi-BPAs. Quasi-CFs have been studied in [18,21].

2.2. Marginalization and combination

In the D-S theory, we reduce the domain of a joint belief function using the marginalization operation. We combine 
distinct (or independent) belief functions using Dempster’s combination rule [7].

Marginalization Marginalization in D-S theory is the summation of values of BPAs over the states of the variables being 
marginalized to determine their contribution to the marginal.

Projection of states means dropping extra coordinates; for example, if (x, y) is a state of {X, Y }, then the projection of 
(x, y) to X , denoted by (x, y)↓X , is simply x, which is a state of X .

The projection of subsets of states is achieved by projecting every state in the subset. Suppose b ∈ 2�X,Y . Then b↓X =
{x ∈ �X : (x, y) ∈ b}. Notice that b↓X ∈ 2�X .

Suppose m is a BPA for s and r ⊆ s. Then, the marginal of m for r, denoted by m↓r , is a BPA for r such that for each 
a ∈ 2�r ,

m↓r(a) =
∑

b∈2�s :b↓r=a

m(b). (8)

It follows from Eq. (8), that if m(b) > 0, then m↓r(b↓r) > 0, for all b ∈ 2�s .
Marginalization can also be defined in terms of CFs. Suppose Q is a CF for s and r ⊆ s. Then, for all a ∈ 2�r ,

Q ↓r(a) =
∑

b∈2�s :b↓r=a

(−1)(|b|−|a|) Q (b). (9)

As in the case of a BPA, it can be shown that if Q (b) > 0, then Q ↓r(b↓r) > 0.

Dempster’s combination rule We will define Dempster’s combination rule in terms of CFs. Suppose r1 and r2 are arbitrary 
sets of variables, and Q 1 and Q 2 are distinct CFs for r1 and r2, respectively. Then Q 1 ⊕ Q 2 is a CF for r = r1 ∪ r2 given by:

(Q 1 ⊕ Q 2)(a) =
{

1 if a = ∅,

K −1 Q 1(a↓r1) Q 2(a↓r2) otherwise,
(10)

for all a ∈ 2�r , where K is a normalization constant given by:
3
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K =
∑

∅�=a∈2�r

(−1)|a|+1 Q 1(a
↓r1) Q 2(a

↓r2). (11)

The definition of Dempster’s rule assumes that the normalization constant K in Eq. (11) is non-zero. (1 − K ) can be inter-
preted as a measure of conflict in the two CFs. Thus, if 1 − K = 1, i.e., K = 0, it represents total conflict, and the two CFs 
cannot be combined. If K = 1, i.e., 1 − K = 0, we say Q 1 and Q 2 are non-conflicting.

In general, Q ⊕ Q �= Q . Thus, it should be emphasized that Q 1 ⊕ Q 2 in Eq. (10) only makes sense if Q 1 and Q 2 are 
distinct (or independent). Essentially, Q 1 and Q 2 are distinct if and only if Q 1 ⊕ Q 2 doesn’t involve double counting of 
non-idempotent knowledge. See Section 2.5 for a discussion on what constitutes distinct belief functions.

Vacuous extension Suppose m is a BPA for r and s ⊇ r. The vacuous extension of m to s, denoted by m↑s , is a BPA for s such 
that m↑s = m ⊕ ιs\r , where ιs\r is the vacuous BPA for s \ r. The vacuous extension doesn’t add knowledge; it only changes 
the domain. m↑s has the same number of focal elements as m with the same probabilities. The focal elements of m↑s are 
vacuous extensions of the focal elements of m, i.e., a × �s\r , where a is a focal element of m. Notice that (m↑s)↓r = m.

Local computation Suppose m1 is a BPA for r1, m2 is a BPA for r2, and let r denote r1 ∪ r2. Suppose X ∈ r1 and X /∈ r2. Then,

(m1 ⊕ m2)
↓r\{X} = m↓r1\{X}

1 ⊕ m2 (12)

This property is called local computation [35] and is the basis of computing marginals of joint belief functions expressed 
as graphical belief function models. Giang and Shenoy [9] describes an implementation of a local computation algorithm, 
called Belief Function Machine (BFM), in Matlab for computing marginals of graphical belief function models.

Mutually non-informative belief functions Suppose m1 and m2 are two distinct BPAs for r1 and r2, respectively. We say m1 and 
m2 are mutually non-informative if m↓r1∩r2

1 and m↓r1∩r2
2 are vacuous BPAs for r1 ∩ r2. Notice that if m1 and m2 are mutually 

non-informative, then (m1 ⊕ m2)
↓r1 = m1 and (m1 ⊕ m2)

↓r2 = m2. This follows from the definition of non-informative belief 
functions and the local computation property in Eq. (12).

Intuitively, m1 does not tell us anything about m2 and vice-versa. If r1 and r2 are disjoint, then they are trivially mutually 
non-informative. The definition of mutually non-informative belief functions can be generalized to sets of BPAs. A set of BPAs 
is said to be non-informative if every pair of BPAs from the set is mutually non-informative. Of course, checking only those 
pairs with a non-empty intersection of their domains is sufficient.

2.3. Conditional independence

Shenoy [32] describes conditional independence relation in the framework of valuation-based systems using factorization 
semantics. Here, we describe it for the D-S theory of belief functions.

Definition 1 (Conditional independence). Suppose V denotes the set of all variables, and suppose r, s, and t are disjoint 
subsets of V . Suppose m is a joint BPA for V . We say r and s are conditionally independent given t with respect to BPA m, 
written as r⊥⊥m s | t , if and only if m↓r∪s∪t = mr∪t ⊕ ms∪t , where mr∪t is a BPA for r ∪ t , ms∪t is a BPA for s ∪ t , and mr∪t and 
ms∪t are distinct.

This definition generalizes the CI relation in probability theory [5]. There are other definitions of conditional indepen-
dence in the D-S theory (e.g., [19,38,2,3]). Definition 1 is closest to the definition in [19]. The definitions in [38,2,3] are 
based on the notion of non-interactivity, which are not useful in describing CI in belief-function graphical models.

The definition of CI in Definition 1 satisfies the graphoid properties of probabilistic conditional independence [25].

2.4. Conditional belief functions

This subsection defines a conditional belief function similar to a conditional probability table in probability theory. Con-
ditional belief functions were initially studied by Smets [36], who introduced the notion of conditional embedding.1 They 
have been further explored in [27,1,42]. The content of this subsection is taken from [13].

Definition 2 (Conditionals). Suppose r and s are disjoint subsets of variables and suppose r′ ⊆ r. Suppose ms|r′ is a BPA for 
r′ ∪ s. We say ms|r′ is a conditional BPA for s given r′ if and only if

1. (ms|r′ )↓r′
is a vacuous BPA for r′ , and

2. If BPA mr for r and ms|r′ are distinct, then mr ⊕ ms|r′ is a BPA for r ∪ s.

1 The ‘conditional embedding’ terminology is due to [27].
4
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We call s the head of the conditional, and r the tail.

Some comments regarding this definition.

1. In graphical models, the joint is constructed from the conditionals. We don’t start with a joint. The definition of a 
conditional belief function in Definition 2 reflects this fact. Other definitions of conditional belief functions start from 
a joint and then factor the joint into a marginal and a conditional (see, e.g., [1]). These other definitions do not help 
in constructing graphical models. Our definition, however, is consistent with these other definitions for the joint that a 
graphical belief function model implicitly defines [13].

2. In the second condition of Definition 2, mr and ms|r′ are distinct if and only if s⊥⊥(mr⊕ms|r′ )(r \ r′) | r′ . This is explained 
further in Section 2.5.

3. In a directed graphical belief function model, we have a conditional associated with each variable X . The head of the 
conditional is X , and the tail consists of the parents of X . For variables with no parents, we have priors associated 
with such variables. For convenience, priors can be regarded as conditionals with empty tails. For such BPAs, the first 
condition in the definition is trivially true as the marginal for the empty set is a vacuous BPA ι∅ .

Consider a BPA m for X and x ∈ �X . Suppose that there is a BPA for Y that expresses our belief about Y if we know that 
variable X = x, and denote it by mYx . mYx does not include the context (X = x) in which mYx is valid. So, we embed mYx

for Y into a conditional BPA for Y given X (whose domain is {X, Y }), denoted by mY |x , so that the following two conditions 
hold:

1. mY |x tells us nothing about X , i.e., (mY |x)↓X (�X ) = 1.
2. If we combine mY |x with the deterministic BPA mX=x for X such that mX=x({x}) = 1 using Dempster’s rule, and 

marginalize the result to Y we obtain mYx , i.e., (mY |x ⊕ mX=x)
↓Y = mYx .

One way to obtain such an embedding is suggested by Smets [36] (see also, [27,42,1]), called conditional embedding. It 
consists of taking each focal element b ∈ 2�Y of mYx and converting it to the corresponding focal element

({x} × b) ∪ ((�X \ {x}) × �Y ) ∈ 2�X,Y (13)

of mY |x with the same mass. It is easy to confirm that this embedding method satisfies both conditions mentioned above. 
We will illustrate conditional embedding using a small 2-variable Bayesian network.

Example 1 (Representing a CPT by a conditional BPA). Consider a two-variable Bayesian network consisting of variables A
and T with state spaces �A = {a, ̄a} and �T = {t, ̄t}. The directed acyclic graph is A → T . The prior for A is PMF P A
such that P A(a) = 0.01, P A(ā) = 0.99, and the conditional probability table (CPT) for T , denoted by P T |A , is as follows: 
P T |A(a, t) = 0.05, P T |A(a, ̄t) = 0.95, P T |A(ā, t) = 0.01, and P T |A(ā, ̄t) = 0.99.

P (A) can be represented by the Bayesian BPA mA as follows: mA({a}) = 0.01, mA({ā}) = 0.99.
Consider the conditional probability distribution for T when A = a. We can represent this conditional probability dis-

tribution by a Bayesian BPA mTa for T as follows: mTa ({t}) = 0.05, and mTa ({t̄}) = 0.95. mTa is not a conditional. That this 
probability distribution is valid only when A = a is not included in the BPA mTa . So, we embed this BPA in a conditional 
BPA mT |a for {A, T } using Eq. (13) as follows:

mT |a({(a, t), (ā, t), (ā, t̄)}) = 0.05,

mT |a({(a, t̄), (ā, t), (ā, t̄)}) = 0.95.

mT |a is a conditional BPA for T given A as (mT |a)↓A is the vacuous BPA for A. Notice that mT |a is not a Bayesian BPA for 
{A, T }.

Similarly, the conditional probability distribution for T when A = ā is modeled by the conditional BPA mT |ā for T given 
A as follows:

mT |ā({(a, t), (a, t̄), (ā, t)}) = 0.01,

mT |ā({(a, t), (a, t̄), (ā, t̄)}) = 0.99.

BPAs mT |a and mT |ā are distinct (as the contexts are disjoint). If we combine mT |a and mT |ā using Dempster’s combination 
rule, we obtain mT |A as follows:

mT |A({(a, t), (ā, t)}) = 0.05 · 0.01 = 0.0005,

mT |A({(a, t), (ā, t̄)}) = 0.05 · 0.99 = 0.0495,

mT |A({(a, t̄), (ā, t)}) = 0.95 · 0.01 = 0.0095,
5
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mT |A({(a, t̄), (ā, t̄)}) = 0.95 · 0.99 = 0.9405.

mT |A is a conditional BPA for T given A as (mT |A)↓A is a vacuous BPA for A. It is the belief-function representation of CPT 
P T |A . Notice that mT |A is not a Bayesian BPA for {A, T }.

Finally, if we combine distinct BPAs mA for A and mT |A for {A, T } using Dempster’s combination rule, we obtain a 
Bayesian joint BPA for {A, T } representing the Bayesian joint distribution P A ⊗ P T |A . �

Conditionals can also be described using CFs. Suppose we start with a CF Q X for X and want a conditional CF Q Y |X for 
{X, Y }. The conditional CF Q Y |x may include only those (non-vacuous) conditional CF Q Y |x for {X, Y } such that2 Q X ({x}) > 0. 
If only one such conditional exists, then Q Y |X = Q Y |x . If we have more than one, and these are distinct, then Q Y |X is 
obtained by Dempster’s combination of all such conditionals:

Q Y |X =
⊕

x∈�X :Q X ({x})>0

Q Y |x. (14)

Next, we combine CFs Q X for X and Q Y |X for {X, Y } using Dempster’s rule to obtain the joint CF Q X,Y for {X, Y }, i.e., 
Q X,Y = Q X ⊕ Q Y |X . First, from constructing Q X,Y , the normalization constant K in Dempster’s combination of Q X and Q Y |X

equals one. It follows from the definition of Dempster’s rule in Eq. (10) that for all b ∈ 2�X,Y ,

Q X,Y (b) = Q X (b↓X ) · Q Y |X (b). (15)

If b ∈ 2�X,Y is such that Q X (b↓X ) > 0, then it follows from Eq. (15) that for all b ∈ 2�X,Y \ ∅,

Q Y |X (b) =
⎧⎨
⎩

Q X,Y (b)

Q X (b↓X )
if Q X (b↓X ) > 0,

undefined if Q X (b↓X ) = 0.
(16)

Notice that Eq. (16) is only valid for those joint CFs Q X,Y for {X, Y } that are constructed using Eq. (15). If we start with 
an arbitrary CF Q for {X, Y }, compute the marginal CF Q ↓X for X (using Eq. (9)), and then construct a function Q Y |X using 
Eq. (16) for those a ∈ 2�X,Y such that Q ↓X (a↓X ) > 0, then Q Y |X may fail to be a CF because the condition in Eq. (6) is 
violated. Intuitively, the division operation in Eq. (16) can be regarded as a removal operation, an inverse of the combination 
operator [32]. Eq. (16) can be written as:

Q Y |X = Q X,Y � Q X , (17)

where � denotes the removal operator. Thus, the right-hand side (RHS) of Eqs. (16) and (17) can be interpreted as re-
moving the knowledge of the marginal Q X from the joint knowledge Q X,Y . Unlike probability theory, we can only remove 
knowledge from a joint that is explicitly included in it (in the sense that Q X,Y = Q X ⊕ Q , where Q is some BPA for {X, Y }
[11].

Suppose Q 1 is a CF for r1 and Q 2 is a CF for r2 such that Q 1 and Q 2 are mutually non-informative.3 Then, Q 2 can 
be considered a conditional for r2 \ (r1 ∩ r2) given r1 ∩ r2 (because Q r1∩r2

2 is vacuous). Similarly, we can consider Q 1 as a 
conditional for r1 \ (r1 ∩ r2) given r1 ∩ r2.

2.5. Distinct belief functions

This material in this subsection is taken from Shenoy [34]. Distinct belief functions are also called independent belief 
functions in the D-S literature.4 Dempster’s combination rule is only applicable to combining distinct BPAs. So, what are 
distinct BPAs? Dempster [6] provides a definition. Consider the multi-valued semantics of BPAs as shown in Fig. 1.

Suppose we have a probability mass function (PMF) P (X1) for X1, a multivalued function �1 : �X1 → 2s1 \ ∅ that defines 
the BPA m1 for s1. Similarly, suppose we have a probability mass function (PMF) P (X2) for X2, a multivalued function �2 :
�X2 → 2s2 \∅ that defines the BPA m2 for s2. BPAs m1 and m2 are distinct if and only if X1 and X2 are independent random 
variables, i.e., P (X1, X2) = P (X1) ⊗ P (X2), where ⊗ is the probabilistic combination operator, point-wise multiplication 
followed by normalization.

Some comments about Dempster’s definition.

1. In practice, not every belief function in a belief function model is associated with a multi-valued mapping. Thus, Demp-
ster’s definition cannot be used directly in practice.

2 We can define conditionals Q X,Y for {X, Y } such that Q X ({x}) = 0, but as we will see shortly, such conditionals will have no impact on the joint CF 
Q X,Y .

3 It is argued in [34] that Q 1 and Q 2 are distinct because they are mutually non-informative.
4 The terminology of ‘distinct’ belief functions is due to Smets [37]. As independence is usually associated with random variables, we prefer the termi-

nology of distinct belief functions.
6
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Fig. 1. Dempster’s multi-valued semantics for BPAs.

2. We say BPA m is idempotent if m ⊕m = m. Idempotent knowledge is knowledge encoded in a BPA m that is idempotent. 
For example, if m is deterministic, then m is idempotent. Thus, double-counting idempotent knowledge is not a problem; 
double-counting non-idempotent knowledge is.

3. If we assume independence of random variables X1 and X2 when they are not, and we combine m1 and m2, then 
we are double-counting common knowledge encoded in m1 and m2. If the common knowledge encoded in these two 
BPAs is non-idempotent, then we have a problem. Thus, the spirit of Dempster’s definition is that two belief functions 
are distinct if, when combining them using Dempster’s combination rule, we are not double-counting non-idempotent 
knowledge.

4. BPA mX for X and conditional BPA mY |X for Y given X are always distinct (regardless of the numeric values of these 
BPAs). Notice that (mX ⊕ mY |X )↓X = mX , and (mX ⊕ mY |X ) � mX = mY |X .

5. BPAs mX for X and mY for Y are distinct if and only if X⊥⊥mX ⊕mY Y .
6. BPA mX,Y for {X, Y } and conditional BPA mZ |Y for Z given Y are distinct if and only if X⊥⊥mX,Y ⊕mZ |Y Z | Y .
7. The discussion of distinct belief functions is valid more broadly to many uncertainty calculi, including probability theory 

[28].
8. Some references to the literature on distinct belief functions are as follows: [28],5 and [37].

3. Decomposable entropy of D-S belief functions

This section reviews the definitions of d-entropy and conditional d-entropy of belief functions in the D-S theory [14] and 
describes its properties [16]. We also describe a new property of d-entropy.

3.1. Decomposable entropy

Definition 3 (d-entropy of a CF Q ). Suppose Q is a CF for r. Then, the d-entropy of Q , denoted by H(Q ), is defined as 
follows:

H(Q ) =
∑

a∈2�r :Q (a)>0

(−1)|a| Q (a) log(Q (a)). (18)

The definition of entropy of Q in Definition (3) is well-defined as the summation in the RHS of Eq. (18) is only for 
Q (a) > 0.

In Subsection 2.4, we showed that the conditional commonality function, if it exists, can be expressed as Q Y |X (a) =
Q X,Y (a)/Q X (a↓X ) (see Eq. (16)). This subsection will define the conditional entropy of a conditional CF. It would be incorrect 
to use Eq. (18) to compute the entropy of Q Y |X as our belief of X is not included in conditional CF Q Y |X . The definition of 
conditional d-entropy of Q Y |X is analogous to the definition of Shannon’s conditional entropy of a conditional probability 
distribution [31]. Here, we define the conditional d-entropy of a conditional CF Q s|r where r and s are disjoint subsets of 
variables.

Definition 4 (Conditional d-entropy of Q s|r ). Suppose r and s are disjoint subsets. Suppose Q r is a CF for r, and suppose Q s|r
is a conditional CF for s given r. Then, the conditional d-entropy of Q s|r , denoted by H(Q s|r), is defined as follows:

5 This was published unchanged as [29].
7
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H(Q s|r) =
∑

a∈2�r∪s :Q s|r(a)>0

(−1)|a| Q r(a
↓r) Q s|r(a) log(Q s|r(a)). (19)

Notice that as Q r(a↓r) Q s|r(a) = Q r∪s(a) for all a ∈ 2�r∪s , we can rewrite Eq. (19) as follows:

H(Q s|r) =
∑

a∈2�r∪s :Q s|r(a)>0

(−1)|a| Q r∪s(a) log(Q s|r(a)) (20)

Some comments on Definitions 3 and 4 are as follows:

1. There is a slight disconnect between the notation used for conditional d-entropy and the definition of conditional d-
entropy. We use the notation H(Q s|r) for the d-entropy of the conditional CF Q s|r . But the definition of H(Q s|r) also 
includes CF Q r for r. So, when we write H(Q s|r), we mean in the context of some joint CF Q r∪s for r ∪ s whose marginal for 
r (the tail of the conditional) is Q r . We can have any marginal CF Q r for r, including the vacuous CF, and this does impact 
the value of H(Q s|r). At the risk of causing slight confusion, we have decided to keep the notation simple (instead of 
including Q r or Q r∪s in the notation).

2. If the tail of a conditional is ∅, then the definition of H(Q r|∅) reduces to the (unconditional) d-entropy of Q r , H(Q r)

defined in Eq. (18). We are assuming the ∅ has state space �∅ = {�}, and a BPA m∅ for ∅ is such that m({�}) = 1. The 
BPA for the ∅ represents the constant 1. To be consistent with our notation, we assume that �∅ × �r = �r .

3. The intuition behind the definition of d-entropy is as follows. Shannon [31] showed that the definition of entropy of 
PMFs is motivated by the compound distribution axiom—if P (X, Y ) = P (X) ⊗ P (Y |X), then the entropy of joint PMF 
P (X, Y ) is the same as the entropy of P (X) plus the conditional entropy of P (Y |X) (⊗ is the Bayesian combination rule 
consisting of point-wise multiplication of probability potentials). A commonality function is a generalization of a PMF 
where we also have values of non-singleton subsets. For commonality functions, Dempster’s rule is point-wise multi-
plication of commonality functions (followed by normalization), which is a generalization of the Bayesian combination 
rule. As we will see in the next subsection, our definition of d-entropy in terms of commonality functions shares the 
compound distribution property of Shannon’s entropy.

3.2. Properties of decomposable entropy

A list of relevant properties of the d-entropy is as follows. For formal proofs, see [16].

Property 1 (Compound distributions). Suppose mr is a BPA for r, and suppose ms|r is a conditional BPA for s given r. Let mr∪s =
mr ⊕ ms|r . Then,

H(mr∪s) = H(mr) + H(ms|r). (21)

This is the most important property that characterizes this entropy. It is why the entropy is called decomposable. The 
assumption that ms|r is a conditional is essential. It guarantees that (1) ms|r does not have any information about r, i.e., 
(ms|r)↓r∩s is vacuous, and (2) that mr and ms|r are distinct BPAs.

Property 2 (Quasi-consonant BPAs). Suppose m is a quasi-consonant BPA. Then H(m) = 0. As vacuous, deterministic, and consonant 
BPAs are quasi-consonant, their decomposable entropies are 0.

Property 3 (Vacuous extension). Suppose m is a BPA for r, and suppose m↑(r∪s) denotes the vacuous extension of m to r ∪ s. Then,

H(m↑(r∪s)) = H(m).

Suppose P X is a probability mass function (PMF) for X such that P X (x) > 0 for all x ∈ �X , and P Y |X is a conditional 
probability table (CPT) for Y given X , i.e., P Y |X (x, y) = P Y |x(y), where P Y |x is the conditional PMF for Y given X = x for 
all (x, y) ∈ �X,Y . Let P X,Y = P X ⊗ P Y |X (⊗ denotes probabilistic combination, which is pointwise multiplication followed 
by normalization). Let mX denote the Bayesian BPA corresponding to P X , and let mYx denote the Bayesian BPA for Y
corresponding to the conditional PMF P Y |x for Y given X = x. Let mY |x denote the conditional BPA for {X, Y } obtained by 
Smets’ conditional embedding of mYx . Let mY |X denote 

⊕
x∈�X

mY |x . Let mX,Y denote mX ⊕ mY |X . Notice that although mYx

is a Bayesian BPA, mY |x and mY |X are not Bayesian BPAs (see Example 1 in Section 2.4).

Property 4 (Strong probability consistency). Consider the situation described in the preceding paragraph. Let Hs(P X,Y ) and Hs(P X )

denote Shannon’s entropy of PMFs P X,Y and P X , respectively, and let Hs(P Y |X ) denote Shannon’s conditional entropy of the CPT P Y |X . 
Then, mX,Y is a Bayesian BPA for {X, Y } corresponding to PMF P X,Y such that
8
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Table 1
m1 and m2 and their entropies.

a ∈ 2�(X,Y ) m1(a) (−1)|a|+1 Q 1(a) h(Q 1(a))

{(x, y)} 0.7 0.3602
{(x, ȳ)} 0.7 0.3602
{(x̄, y)} 0.3 0.5211
{(x̄, ȳ)} 0.3 0.5211
{(x, y), (x, ȳ)} 0.7 −0.7 −0.3602
{(x̄, y), (x̄, ȳ)} 0.3 −0.3 −0.5211∑

1 1 0.8813

a ∈ 2�(Y ,Z) m2(a) (−1)|a|+1 Q 2(a) h(Q 2(a))

{(y, z)} 0.6 0.4422
{(y, z̄), } 0.4 0.5288
{( ȳ, z)} 0.6 0.4422
{( ȳ, z̄)} 0.4 0.5288
{(y, z), ( ȳ, z)} 0.6 −0.6 −0.4422
{(y, z̄), ( ȳ, z̄)} 0.4 −0.4 −0.5288∑

1 1 0.9710

H(mX,Y ) = Hs(P X,Y ), (22)

H(mX ) = Hs(P X ), (23)

H(mY |X ) = Hs(P Y |X ). (24)

The following theorem generalizes Property 1. It is a new property not discussed in [16].

Theorem 1 (Mutually non-informative). Suppose Q 1 and Q 2 are mutually non-informative CFs. Then,

H(Q 1 ⊕ Q 2) = H(Q 1) + H(Q 2) (25)

Proof of Theorem 1. As Q ↓r1∩r2
2 is a vacuous CF for r1 ∩ r2, it follows that (Q 1 ⊕ Q 2)

↓r1 = Q 1. Similarly, as Q ↓r1∩r2
1 is a 

vacuous CF for r1 ∩ r2, it follows that (Q 1 ⊕ Q 2)
↓r2 = Q 2. Thus, Q 1 and Q 2 are non-conflicting. Let r denote r1 ∪ r2.

H(Q 1 ⊕ Q 2)

=
∑

∅�=a∈2�r

(−1)|a|(Q 1 ⊕ Q 2)(a) log((Q 1 ⊕ Q 2)(a))

=
∑

∅�=a∈2�r

(−1)|a| Q 1(a
↓r1) Q 2(a

↓r2) log(Q 1(a
↓r1) Q 2(a

↓r2))

=
∑

∅�=a∈2�r

(−1)|a| Q 1(a
↓r1) Q 2(a

↓r2)(log(Q 1(a
↓r1) + log(Q 2(a

↓r2))

=
∑

∅�=a∈2�r

(−1)|a| Q 1(a
↓r1) Q 2(a

↓r2) log(Q 1(a
↓r1)) +

∑
∅�=a∈2�r

(−1)|a| Q 1(a
↓r1) Q 2(a

↓r2) log(Q 2(a
↓r2)) (26)

The first term in the RHS of Eq. (26) can be simplified as follows:

=
∑

∅�=b∈2�r1

(−1)|b| Q 1(b) log(Q 1(b))
∑

∅�=c∈2�r2 : c↓r1∩r2 =b↓r1∩r2

(−1)|a|−|b| Q 2(c)

=
∑

∅�=b∈2�r1

(−1)|b| Q 1(b) log(Q 1(b)) Q ↓r1∩r2
2 (b↓r1∩r2)

= H(Q 1) (because Q ↓r1∩r2
2 is vacuous)

Similarly, it can be shown that the second term in the RHS of Eq. (26) simplifies to H(Q 2).

Example 2. To illustrate Theorem 1, consider three binary variables X, Y , Z with state spaces �X = {x, ̄x}, �Y = {y, ȳ}, and 
�Z = {z, ̄z}, respectively. Suppose m1 and m2 are BPAs for (X, Y ) and (Y , Z), respectively, as shown in Table 1. Notice that 
m↓Y

1 and m↓Y
2 are vacuous BPAs for Y . In Tables 1 and 2, let h(Q (a)) denote (−1)|a| Q (a) log Q (a). Only non-empty subsets 

with non-zero commonality values are shown. Notice that

H(m1 ⊕ m2) = 1.8522 = 0.8813 + 0.9710 = H(m1) + H(m2).
9
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Table 2
m = m1 ⊕ m2 and its entropy.

a ∈ 2�(X,Y ,Z) m(a) Q (a) h(Q (a))

{(x, y, z)} 0.42 0.5256
{(x, y, z̄)} 0.28 0.5142
{(x, ȳ, z)} 0.42 0.5256
{(x, ȳ, z̄)} 0.28 0.5142
{(x̄, y, z)} 0.18 0.4453
{(x̄, y, z̄)} 0.12 0.3671
{(x̄, ȳ, z)} 0.18 0.4453
{(x̄, ȳ, z̄)} 0.12 0.3671
{(x, y, z), (x, ȳ, z)} 0.42 0.42 −0.5256
{(x, y, z̄), (x, ȳ, z̄)} 0.28 0.24 −0.5142
{(x̄, y, z), (x̄, ȳ, z)} 0.18 0.18 −0.4453
{(x̄, y, z̄), (x̄, ȳ, z̄)} 0.12 0.12 −0.3671∑

1 1 1.8522

4. Belief-function directed graphical models

This section describes a belief-function directed graphical model and an algorithm for computing its d-entropy.

4.1. Definition

Graphical models allow us to construct large models by specifying the joint using small factors. Pearl [24] and Lauritzen 
and Spiegelhalter [22] use directed graphical models to represent probabilistic graphical models. The factorization of the 
joint probability distribution implies conditional independence (CI) assumptions of the model. As the definition of CI in 
D-S theory is similar to the definition of CI in probability theory, the CI assumptions of a belief-function directed graphical 
model are similar to the CI assumptions of a probabilistic graphical model. Belief-function graphical models are described 
in, e.g., [30,35,1,10].

First, we introduce some notation. A directed graph G is a pair (V, E), where V = {X1, . . . , Xn} denotes the set of nodes
and E denotes the set of directed edges (Xi, X j) between two distinct variables in V . For any node Xi , let PaG(Xi) = {X j ∈
V : (X j, Xi) ∈ E}. A directed graph is said to be acyclic if and only if there exists a sequence of the nodes of the graph, say 
(X1, . . . , Xn) such that if there is a directed edge (Xi, X j) ∈ E then Xi must precede X j in the sequence. Such a sequence is 
called a topological sequence.

Definition 5 (BF directed graphical model). Suppose we have a directed acyclic graph G = (V, E) with n nodes. A belief-
function directed graphical model (BFDGM) is a pair (G, {m1, . . . , mn}) such that BPA mi associated with node Xi is a 
conditional BPA for Xi given PaG(Xi) for i = 1, . . . , n. A fundamental assumption of a BFDGM is that m1, . . . , mn are all 
distinct, and the joint BPA m for V associated with the model is given by

m =
n⊕

i=1

mi . (27)

Some comments about this definition:

1. The definition of a belief-function directed graphical model closely follows the definition of a Bayesian network. The 
main differences are that we can have missing priors and conditionals (or partial information about these), and belief 
function analogs of conditional probability tables describe the conditionals. Bayesian inference cannot handle missing 
(or partial information about) priors/conditionals [24, Ch. 9, p. 415], whereas, in the belief-function case, we can omit 
the missing information or model partial information as a BPA [33].

2. Although we have defined a BFDGM where each node is a single variable, the definition can be generalized to cases 
where each node is a subset of variables and the nodes (subsets) are disjoint. What is important is that we have a 
conditional belief function at each node. We will encounter such models when we convert decomposable undirected 
graphical models to directed graphical models as discussed in Section 5.

3. The assumption that m1, . . . , mn are all distinct allows the Dempster’s combination in Eq. (27).
4. Eq. (27) implies conditional independence relations in the model. It follows from Definition 2.3, starting with a topo-

logical sequence (X1, . . . , Xn), Xi⊥⊥m{X1, . . . , Xi−1} \ PaG(Xi) | PaG(Xi) for i = 2, . . . , n.
5. The assumption that m1, . . . , mn are all distinct means that the conditional independence relations implied by the model 

are all valid [34].
10
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If n is large, it may be intractable to explicitly compute the joint BPA m (m is a BPA for V). However, depending on 
the graphical structure G , it may be tractable to compute the d-entropy of m using the properties of d-entropy sketched in 
Section 3, especially the compound distributions property.

Notice that we must disregard observations/likelihoods if we have these for a variable that is different from priors or con-
ditionals in a directed graphical belief function model. For example, suppose we have a directed acyclic graph X → Y with 
a BPA m1 for X , a BPA m2 for {X, Y } that constitutes a conditional for Y given X , and a BPA m3 for Y that represents some 
observation or likelihood for Y . It follows from the compound distributions property that H(m1 ⊕ m2) = H(m1) + H(m2). 
But, in general, H(m1 ⊕ m2 ⊕ m3) �= H(m1) + H(m2) + H(m3). For this reason, we need to disregard observations/likelihoods 
in computing the d-entropy of a directed graphical belief function model.

4.2. An algorithm to compute d-entropy of BFDGMs

We start with a topological sequence (X1, . . . , Xn). As G is acyclic, such a sequence always exists, but it may not be 
unique.

Do i = 1, . . . , n:

• If PaG(Xi) = ∅, then H(mi) is computed using Definition 3.
• If PaG (Xi) �= ∅, then first we find the marginal (

⊕i
j=1 m j)

↓{Xi}∪PaG (Xi) using local computation [35]. Thus, the condi-
tional mi and the corresponding marginal m̄i are defined for the same variables r = {Xi} ∪ PaG(Xi). Next, we find the 
conditional d-entropy of mi , H(mi), using Eq. (20) as follows. Let m̄i denote the computed marginal for {Xi} ∪ PaG(Xi)

and let r = {Xi} ∪ PaG (Xi) denote the domain of this marginal. Using Eq. (20),

H(mi) =
∑

a∈2�r :Q mi (a)>0

(−1)|a| Q m̄i (a) log(Q mi (a)) (28)

End Do;

The d-entropy of the joint belief function H(
⊕n

i=1 mi) = ∑n
i=1 H(mi). This follows from the compound distribution prop-

erty of d-entropy.
Although the algorithm is described for directed models with variables as nodes, it can be easily generalized to directed 

graphical models where the nodes are disjoint subsets of variables.

5. Belief-function undirected graphical models

This section describes a belief-function undirected graphical model and an algorithm for computing its d-entropy that 
only works for a certain class of such models.

5.1. Definition

In the probabilistic graphical model literature, Darroch et al. [4], Whittaker [40], and Lauritzen [20] describe undirected 
graphical models. As the definition of CI for belief functions in Definition 2.3 is similar to probabilistic CI based on factor-
ization semantics, a belief-function undirected graph model is similar to a probabilistic graphical model where we replace 
probability potentials by BPAs on the same domains. As in the directed case, belief-function graphical models can accom-
modate missing or partial information. Belief function undirected graphical models are described, e.g., in [1,10].

First, we introduce some notation. Consider an undirected graph G = (V, E), where V = {X1, . . . , Xn} denotes the set of 
nodes and E denotes the set of (undirected) edges {Xi, X j} between two distinct variables in V . Consider node Xi in G . The 
Markov boundary of Xi , denoted by MaG (Xi), is as follows MaG (Xi) = {X j ∈ V : {Xi, X j} ∈ E}. The Markov boundary of Xi
consists of other nodes directly connected to Xi . A clique in G is a maximal completely connected subset of nodes of G . 
Fig. 2 shows the cliques of two undirected graphs. Suppose we have k cliques in the graph.

Definition 6 (BF undirected graphical model). A belief-function undirected graphical model (BFUGM) is 
(
G = (V, E), {m1, . . . , mk}

)
, 

where G is an undirected graph with cliques r1, . . . , rk , and for each i = 1, . . . , k, mi is a BPA for ri . A fundamental assump-
tion of the BFUGM is that the BPAs are all distinct. Thus, a belief-function undirected graphical model corresponds to the 
joint BPA m for V defined as follows:

m =
k⊕

i=1

mi, (29)

assuming that m as defined in Eq. (29) is a well-defined BPA, i.e., the normalization constant K in Dempster’s combination 
(Eq. (11)) is non-zero.
11
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Fig. 2. The undirected graph on the left has four cliques {X1, X2}, {X2, X3}, {X3, X4}, and {X1, X4}, and the one on the right has two cliques {X1, X2, X3}, 
and {X1, X3, X4}.

Some comments regarding this definition.

1. The definition of a BFUGM closely follows the definition of a probabilistic undirected graphical model [20]. The main 
differences are that we can have missing/partial information about clique potentials modeled using BPAs.

2. The assumption that the BPAs are all distinct allows Dempster’s combination in Eq. (29).
3. It follows from the definition of CI in Definition 1 and Eq. (29) that the following set of CI assumptions holds:

Xi⊥⊥m (V \ (MaG(Xi) ∪ {Xi})) | MaG(Xi). (30)

In words, given the Markov boundary of Xi , Xi is conditionally independent of all other variables in the model [20].
4. The assumption that the BPAs in the model are all distinct includes the assumption that the conditional independence 

conditions encoded by the undirected graph G implied by Definition 1 are all valid. But, unlike directed graphical 
models with a conditional BPA associated with each node, more may be needed for BFUGMs. We have to ensure that 
there is no double-counting of non-idempotent knowledge when we use Dempster’s combination in Eq. (29), which 
may depend on the details of the BPAs in the model. It is argued in [34] that if the set of BPAs is non-informative, 
and the CI assumptions of the model are all valid, then the BPAs are all distinct. In specific BFUGMs, we may have 
information that leads us to believe that the BPAs in a model are distinct.

5.2. Computing the d-entropy of decomposable BFUGMs

In section 4.2, we described an algorithm for computing the d-entropy of a large BFDGM. In this section, we describe a 
similar algorithm for decomposable BFUGMs. We start by defining decomposable undirected graphs.

Suppose G is an undirected graph with k cliques. We say G is decomposable if and only if there is an ordering of the 
cliques (r1, . . . , rk) of G that satisfies the running intersection property (RIP) [22] as follows:

∀i = 2, . . . ,k ∃ j (1 ≤ j ≤ i) such that ri ∩ (r1 ∪ . . . ∪ ri−1) ⊆ r j . (31)

If, for each i, there are several j’s that satisfy the RIP property, we pick the smallest one and call r j the parent clique of 
ri . Notice that r j always precedes ri in the ordering (r1, . . . , rk). Also, we refer to the ordering satisfying the RIP as an RIP
ordering. A BFUGM is said to be decomposable if its graph G is decomposable. A decomposable graph may have more than 
one RIP ordering. RIP ordering also applies to graphs with several connected components.

If the undirected graph is not decomposable, we make it decomposable by triangulating it using the maximum cardinality 
search algorithm [39]. Triangulating the graph involves adding edges. Thus, if 

(
G = (V, E), {m1, . . . , mk}

)
denotes the original 

non-decomposable BFUGM, then let 
(
Ḡ = (V, Ē), {m̄1, . . . ,m̄�}

)
denote the decomposable BFUGM such that

1. Ḡ is decomposable;
2. E ⊆ Ē ;
3.

⊕�
i=1 m̄i = ⊕k

i=1 mi , where � ≤ k.

Notice that item three says that the joint BPA associated with the decomposable model is the same as that associated with 
the non-decomposable model.

Example 3 (Non-decomposable/decomposable BFUGMs). Consider a BFUGM consisting of the undirected graph on the left in 
Fig. 2 and BPAs m12, m23, m34, m14 for cliques {X1, X2}, {X2, X3}, {X3, X4}, {X1, X4}, respectively. This BFUGM is not de-
composable as there is no RIP ordering of the four cliques. However, it can be made decomposable by adding an edge 
{X1, X3}. This decomposable graph is shown on the right in Fig. 2. A RIP ordering of the two cliques in this model is (r1, r2), 
where r1 = {X1, X2, X3}, and r2 = {X1, X3, X4}. The BFUGM model associated with this graph includes BPAs m12 ⊕ m23 and 
m34 ⊕ m14 for cliques r1 and r2, respectively. Notice that the joint BPA is the same for the two BFUGM models. �

Let (r1, . . . , r�) denote an RIP ordering of the cliques of Ḡ . In the next step, we convert the sequence of BPAs (m̄1, . . . , m̄�)

into ( ¯̄m1, . . . , ¯̄m�), so that for all j = 1, . . . , �
12
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Fig. 3. Top: The original non-decomposable BFUGM. Middle: A decomposable BFUGM. Bottom: The BFDGM derived from the decomposable BFUGM.

(
�⊕

i=1

m̄i

)↓r1∪...∪r j

=
j⊕

i=1

¯̄mi . (32)

The conversion is realized in a cycle for i = �, � − 1, . . . , 1, do:

1. We compute BPA m̄i � (m̄i)
↓ri∩r j , where r j is the parent clique of ri . Notice that if this BPA is well-defined (has non-

negative values), then it is a conditional BPA for ri \ (ri ∩ r j) given ri ∩ r j because (m̄i � (m̄i)
↓ri∩r j )↓ri∩r j is a vacuous BPA 

for ri ∩ r j .
2. Let ¯̄mi = m̄i � (m̄i)

↓ri∩r j .
3. The BPA m̄ j associated with parent clique r j is replaced by m̄ j ⊕ (m̄i)

↓ri∩r j .

Notice that at the end of step 3, for each i in the do-loop, assuming the conditional BPA m̄i| j is well-defined, the joint 
BPA associated with the undirected graph is unchanged. At any step in the do-loop, if ri ∩ r j = ∅, then the BPAs associated 
with ri and its parent clique r j remain unchanged. At the end of the do-loop, we have a conditional associated with each 
clique of the decomposable graph. Thus, we have a BFDGM whose nodes are cliques of the original decomposable model 
and for which all the BPAs are conditionals. Moreover, notice that due to Eq. (32), ¯̄m1 is marginal of the joint model. We 
can use the Algorithm 4.2 to compute the d-entropy of the directed graphical model.

The class of BF undirected graphical models for which the algorithm described above works is where all the conditional 
BPAs computed in the first step of the do-loop are well-defined (not quasi-BPAs). Do we have a characterization of this 
class? Assuming all the conditionals computed in the algorithm are well-defined BPAs, at the end of the do-loop, we have 
a BFDGM where all the BPAs are well-defined conditionals. If we moralize this directed graphical model [22], we have a 
BFUGM. So this class of BFUGMs is non-empty. In [11], we have a characterization of when the removal of marginal results 
in a well-defined BPA. If the marginal being removed is explicitly included in the BPA from which the marginal is removed,6

then removal will result in a well-defined BPA. Based on this characterization, we conjecture that the class of BF undirected 
graphical models for which the algorithm described here works are those whose joint BPAs are the same as the joints of 
the BFUGMs obtained from moralizing a BFDGM. The following example illustrates the algorithm described above.

Example 4 (Converting a BFUGM to a BFDGM). Consider six characteristics of a complex ecosystem: A, B, C, D, E , and H . 
Assume that biology describes the relationship among the characteristics A, B , and H , and it is encoded by the BPA mAB H

for {A, B, H}. Assume that chemistry explains the relationship among the remaining characteristics encoded by the BPA 
mC D E for {C, D, E}. The thermodynamic laws describe the relationship between B and C encoded in the BPA mBC for {B, C}, 
and economics explains the relationship between E and H , encoded as BPA mE H for {E, H}. The diversity of the sources of 
knowledge justifies that the four BPAs are distinct. Thus, we have a BFUGM described by the undirected graph G in the top 
part of Fig. 3 with four cliques and the four associated BPAs. The joint BPA of the model is:

m = mAB H ⊕ mC D E ⊕ mBC ⊕ mE H (33)

6 Consider a joint BPA m for {X, Y }. We say that m↓X is explicitly included in m if and only if m = m↓X ⊕ m′ , where m′ is some BPA for {X, Y }.
13



R. Jiroušek, V. Kratochvíl and P.P. Shenoy International Journal of Approximate Reasoning 161 (2023) 108984
Fig. 4. The directed acyclic graph for the Captain’s Problem. The Greek alphabets adjacent to a variable denote the prior or conditional evidence associated 
with the variable.

Notice that G is not decomposable.
Triangulating G means adding an edge {B, E} or {C, H}. Suppose we choose the latter option. So, we now have four 

cliques: r1 = {A, B, H}, r2 = {B, C, H}, r3 = {C, E, H}, and r4 = {C, D, E} as shown in the middle part of Fig. 3, with associated 
BPAs m1 = mAB H , m2 = mBC , m3 = mE H , and m4 = mC D E . This is a decomposable model as (r1, r2, r3, r4) is a RIP ordering, 
whose joint is the same as the original non-decomposable model.

Next, we compute the conditionals for each clique as follows. Using the cycle i = 4, 3, 2, 1 we get:

for i = 4: m′
4 = m4 � m↓{C,E}

4 = mC |D E , and we replace m3 by m′
3 = m3 ⊕ m↓{C,E}

4 .

for i = 3: m′′
3 = m′

3 � m′↓{C,H}
3 = mE|C H , and we replace m2 by m′

2 = m2 ⊕ m′↓{C,H}
3 .

for i = 2 m′′
2 = m′

2 � m′↓{B,H}
2 = mC |B H , and we must replace m1 by m′

1 = m1 ⊕ m′↓{B,H}
2 ;

for i = 1 m′
1 = mAB H |∅ is the prior associated with clique r1.

Assuming the removal operation results in a well-defined BPA at each step, the joint BPA remains unchanged as we remove 
and combine the same BPA. Also, the final BPA associated with each clique is a conditional. In the end, we have conditionals 
for each clique in the BFDGM.

6. Three examples

In this section, we compute the d-entropy of three graphical belief function models.

6.1. Captain’s problem

The Captain’s Problem is from [1]. A ship’s captain is concerned about how many days his ship may be delayed before 
arrival at a destination. The arrival delay is the sum of the departure delay and sailing delay. Departure delay may be a 
result of maintenance (at most one day), loading delay (at most one day), or a forecast of bad weather (at most one day). 
Sailing delays may result from bad weather (at most one day) and whether repairs are needed at sea (at most one day). If 
maintenance is done before sailing, chances of repairs at sea are less likely. The weather forecast says a slight chance of bad 
weather (0.2) and a good chance of good weather (0.6). The forecast is 80% reliable. The captain knows the loading delay 
and whether maintenance is done before departure. Fig. 4 shows the directed acyclic graph associated with this problem. 
What is the d-entropy of this belief function model?

Table 3 shows the variables and their states. The BPAs are as follows.

1. Weather forecast is 80% accurate. Notice that φ1 is a conditional for F given W .

φ1({(gw , g f ), (bw ,b f )}) = 0.8,

φ1(�W × �F ) = 0.2.
14



R. Jiroušek, V. Kratochvíl and P.P. Shenoy International Journal of Approximate Reasoning 161 (2023) 108984
Table 3
The variables, their state spaces, and associated conditionals in the Captain’s Problem.

Variable Name State Space, � Assoc. Conditional

W Actual weather {gw ,bw } vacuous for W
F Forecasted weather {g f ,b f } φ1 for F |W
L Loading delay? {tl, fl} λ for L
M Maintenance done? {tm, fm} μ for M
R Repair at sea needed? {tr , fr} ρ ′

1 ⊕ ρ ′
2 for R|M

D Dep. delay (in days) {0, . . . ,3} δ for D|{F , L, M}
S Sailing delay (in days) {0, . . . ,3} σ for S|{W , R}
A Arrival delay (in days) {0, . . . ,6} α for A|{D, S}

2. Forecast predicts bad weather with a chance of 0.2 and good weather with a chance of 0.6. Notice that φ2 is an 
observation/likelihood for F , and it is not a conditional; therefore, it is not included in the computation of the d-entropy 
of the graphical model.

φ2({b f }) = 0.2,

φ2({g f }) = 0.6,

φ2(�F ) = 0.2.

3. Loading is delayed with a chance of 0.3 and on schedule with a chance of 0.5. λ is a prior for L, which can be considered 
as a conditional for L given ∅.

λ({tl)}) = 0.3,

λ({ fl)}) = 0.5,

λ(�L) = 0.2.

4. Maintenance is not done. μ is a prior for M , which can be considered as a conditional for M given ∅.

μ({ fm}) = 1.

5. If maintenance is done before sailing, the chances of repair at sea are between 10 and 30%. ρ1 is a BPA for R (in the 
context M = tm):

ρ1({tr}) = 0.1,

ρ1({ fr}) = 0.7,

ρ1(�R) = 0.2.

ρ1 must be conditionally embedded to obtain a conditional for R given M . Let ρ ′
1 denote such a conditional.

ρ ′
1({(tm, tr), ( fm, tr), ( fm, fr)}) = 0.1,

ρ ′
1((tm, fr), ( fm, tr), ( fm, fr)) = 0.7,

ρ ′
1(�M,R) = 0.2.

6. If maintenance is not done before sailing, the chances of repair at sea are between 20 and 80%. ρ2 is a BPA for R (in 
the context M = fm):

ρ2({tr}) = 0.2,

ρ2({ fr}) = 0.2,

ρ2(�R) = 0.6.

ρ2 must be conditionally embedded to obtain a conditional for R given M . Let ρ ′
2 denote such a conditional:

ρ ′
2({(tm, tr), (tm, fr), ( fm, tr)}) = 0.2,

ρ ′
2((tm, tr), (tm, fr), ( fm, fr)) = 0.2,

ρ ′ (�M,R) = 0.6.
2
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Fig. 5. An undirected graph for the Communication Network example.

7. Bad weather and repair at sea each add a day to sailing delay. This proposition is true 90% of the time. σ is a conditional 
for S given (W , R).

σ({(gw , fr,0), (bw , fr,1), (gw , tr,1), (bw , tr,2)}) = 0.9,

σ (�W × �R × �S) = 0.1.

8. Departure delay may be a result of maintenance (at most one day), loading delay (at most one day), or a forecast of 
bad weather (at most one day). δ is a deterministic conditional for D given {F , L, M}.

δ({(g f , fl, fm,0), (b f , fl, fm,1), (g f , tl, fm,1), (g f , fl, tm,1),

(b f , tl, fm,2), (b f , fl, tm,2), (g f , tl, tm,2), (b f , tl, tm,3)}) = 1.

9. The arrival delay is the sum of departure and sailing delays. α is a deterministic conditional for A given {D, S}.

α({(0,0,0), (0,1,1), (0,2,2), (0,3,3),

(1,0,1), (1,1,2), (1,2,3), (1,3,4),

(2,0,2), (2,1,3), (2,2,4), (2,3,5),

(3,0,3), (3,1,4), (3,2,5), (3,3,6)}) = 1.

As φ2 is observation/likelihood for F and not a conditional defining the joint BPA m, we ignore this belief function. 
A topological sequence for this directed graph is (W , F , L, M, D, R, S, A). First, notice that φ1 and σ are consonant, and μ, 
δ, and α are deterministic. So the decomposable entropies of these five BPAs are zeroes. The decomposable entropies of the 
remaining BPAs are as follows (using the Algorithm 4.2):

H(λ) ≈ 0.3958, (34)

H(ρ ′
1 ⊕ ρ ′

2) ≈ 0.0729. (35)

The d-entropy in Eq. (34) is computed using the prior BPA λ for L using Eq. (18). The conditional d-entropy in Eq. (35) is 
computed using ρ ′

1 ⊕ ρ ′
2 for {M, R} and the marginal of {M, R} of the joint (shown below), and Eq. (19). Let m denote the 

joint BPA for all eight variables. Then

m↓{M,R}(a) =

⎧⎪⎨
⎪⎩

0.6 if a = {( fm, tr), ( fm, fr)},
0.2 if a = {( fm, tr)},
0.2 if a = {( fm, fr)}.

(36)

The marginal m↓{M,R} was computed using Belief Function Machine Matlab software. Thus, the d-entropy of the Captain’s 
Problem (ignoring the observation/likelihood φ2) is ≈ 0.3958 + 0.0729 = 0.4687.

6.2. Communication network

This example is from [10]. Fig. 5 shows an undirected graph associated with this example. We have a grid of 29 =
5 + 6 + 7 + 6 + 5 communication nodes arranged in 13 columns and 5 rows. There are 46 links, as shown in Fig. 5, each 
has 90% reliability. Nodes A and B are connected to the grid with links having 80% reliability. What is the d-entropy of this 
graphical model?

We will not use the Algorithm from Sec. 5.2 as we can use a property of d-entropy to compute its d-entropy.
Consider the variables in the grid with 5 rows and 13 columns. Let X13 denote the first variable in row 3, and let X22

denote the first variable in row 2, etc. – see Fig. 5. Let �X13 = {t13, f13}, and let �X22 = {t22, f22}. The BPA m13−22 associated 
with the edge {X13, X22} is as follows:
16
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m13−22({(t13, t22), ( f13, f22)}) = 0.9,

m13−22(�{X13,X22}) = 0.1.

The BPAs associated with the remaining 67 links are similar. The edges between A and X33 and between B and X113 are 
also similar, except that the reliability is 0.8 instead of 0.9.

Each edge in this network is a communication link between two nodes. The BPA associated with a link is a measure of 
the reliability of the link. Notice that the set of 48 BPAs in this model is non-informative, i.e., each pair of BPAs in the set 
are mutually non-informative. Thus, the BPAs in this model are distinct.

We will argue that the joint BPA of this model is quasi-consonant. Therefore, the d-entropy is 0.

Why is the joint BPA quasi-consonant? We will change the notation slightly to keep the exposition simple. Let X1 denote X13, 
let X2 denote X22, let X3 denote X33 and let X4 denote X24 (see Fig. 5). Let m12 denote the BPA m13−22, let m23 denote 
m22−33, let m34 denote m33−24, and m14 denote m13−24. Thus, m12 is a BPA for {X1, X2}, ..., m14 is a BPA for {X1, X4}. These 
four BPAs {m12, m23, m34, m14} and four nodes {X1, . . . , X4} form a BF undecomposable undirected network model. Suppose 
�Xi = {ti, f i} for i = 1, . . . , 4. Then, BPA m12 has two focal sets: {(t1, t2), ( f1, f2)} and �{X1,X2} , . . ., BPA m14 has focal sets 
{(t1, t4), ( f1, f4)}, and �{X1,X4} . Thus, all four BPAs are consonant.

First, consider m12 ⊕ m23. The domain of this BPA is {X1, X2, X3}, one more than the domain of m12. This BPA has four 
focal elements as follows:

1. e1 = {(t1, t2, t3), ( f1, f2, f3)},
2. e2 = {(t1, t2, t3), ( f1, f2, f3), (t1, t2, f3), ( f1, f2, t3)},
3. e3 = {(t1, t2, t3), ( f1, f2, f3), ( f1, t2, t3), (t1, f2, f3)}, and
4. e4 = �{X1,X2,X3}

e1 = ({(t1, t2), ( f1, f2)} × �X3 ) ∩ (�1 × {(t2, t3), ( f2, f3)}). e2 = ({(t1, t2), ( f1, f2)} × �X3 ) ∩ (�{X1,X2,X3}). e3 = (�{X1,X2,X3}) ∩
(�1 × {(t2, t3), ( f2, f3)}). e4 = �{X1,X2,X3} ∩ �{X1,X2,X3} . Notice that m12 ⊕ m23 is not consonant, but it is quasi-consonant 
as the intersection of all four focal elements is the first focal element e1. Also, the normalization constant K in Dempster’s 
combination of these two BPAs is 1.

Next, consider (m12 ⊕ m23) ⊕ m34. As in the previous case, the domain of this BPA is one more variable than the domain 
of (m12 ⊕ m23). This BPA has 4 · 2 = 8 focal elements as follows:

1. e1 = {(t1, t2, t3, t4), ( f1, f2, f3, f4)},
2. {e2, e3} = {(t1, t2, t3), ( f1, f2, f3), (t1, t2, f3), ( f1, f2, t3)} × {t4, f4}
3. {e4, e5} = {(t1, t2, t3), ( f1, f2, f3), (t1, t2, f3), ( f1, f2, t3)} × {t4, f4)},
4. {e6, e7} = {(t1, t2, t3), ( f1, f2, f3), ( f1, t2, t3), (t1, f2, f3)} × {t4, f4), and
5. e8 = �{X1,X2,X3,X4}

Notice that (m12 ⊕m23) ⊕m34 is quasi-consonant as the intersection of all eight focal sets is the first focal element e1. Also, 
the normalization constant K in Dempster’s combination of these two BPAs is 1.

Finally, consider (m12 ⊕ m23 ⊕ m34) ⊕ m14. The domain of this BPA is the same as the domain of (m12 ⊕ m23 ⊕ m34). This 
BPA has 15 focal elements. We will describe the focal elements instead of listing them. The first eight focal elements of 
(m12 ⊕ m23 ⊕ m34) ⊕ m14 are the eight focal elements of m12 ⊕ m23 ⊕ m34 intersected with {(t1, t4), ( f1, f4)} × �{X2,X3} . The 
next eight focal elements of (m12 ⊕ m23 ⊕ m34) ⊕ m14 are the intersection of the eight focal elements of m12 ⊕ m23 ⊕ m34
intersected with �{X1,X2,X3,X4} . These eight focal elements are the same as the focal elements of m12 ⊕m23 ⊕m34. The focal 
element e1 appears twice, and its mass will be the sum of the two masses. Again, we have a quasi-consonant BPA with 
focal element e1 included in all 15 focal elements of the joint BPA m12 ⊕ m23 ⊕ m34 ⊕ m14.

If we proceed sequentially by combining one adjacent BPA (whose domain intersects at one or two existing variables) 
at a time, there are two cases. We either extend the domain of the joint by one variable or not. In either case, the 
quasi-consonant property is retained. Given the nature of the BPAs (two focal elements, with one being �(Xi ,X j) , and 
one being {(ti, t j), ( f i, f j)} for link {Xi, X j}), there is never any conflict. By induction, we argue that the focal element 
{(t1, . . . , t70), ( f1, . . . , f70)} will be a subset of every focal element of the joint BPA of the entire model. Thus, the joint is 
quasi-consonant.

6.3. Chest clinic

The Chest Clinic example is from [22], a Bayesian network represented as a directed graphical belief function model, see 
Fig. 6. There are eight binary variables; some of the probabilities in the joint distribution are zeroes (as the CPT for E has 
many zeroes). The conditional probability tables (CPTs) in this example, also shown in Fig. 6, are represented as BPAs using 
Smets’ conditional embedding, and these BPAs are not Bayesian (as demonstrated in Example 1 in Sec. 2.4). The priors for 
A and S are represented by Bayesian BPAs. It is proved in [33, Theorem 2] that the joint BPA of the belief function model 
corresponding to a Bayesian network is a Bayesian BPA corresponding to the joint PMF of the Bayesian network.
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Fig. 6. The directed acyclic graph and the CPTs for the Chest Clinic example.

The strong probability consistency (Property 4) of d-entropy states that the d-entropy of a 2-variable BN is the same as 
Shannon’s entropy of the BN. This can be generalized to a BN of any size. The decomposable entropies of the conditionals 
are as follows (computed using the Algorithm 4.2 in Section 4):

H(mA) ≈ 0.0808, (37)

H(mT |A) ≈ 0.0828, (38)

H(mS) = 1, (39)

H(mL|S) ≈ 0.2749, (40)

H(mB|S) ≈ 0.9261, (41)

H(mE|L,T ) = 0, (42)

H(mX |E) ≈ 0.2770, (43)

H(mB|D E) ≈ 0.6471. (44)

The d-entropy in Eqs. (37) and (39) were computed using Eq. (18) of the Bayesian priors for A and S , respectively. The 
d-entropy of the belief-function representation of the CPT for E in Eq. (42) is 0 as it is deterministic: Suppose ε is a BPA 
for {L, T , E} as follows:

ε({(l, t, e), (l, t̄, e), (l̄, t, e), (l̄, t̄, ē)}) = 1. (45)

Notice that ε is a conditional BPA for E given {T , L}. If we conditionally embed the four Bayesian conditional distributions of 
E and combine these with Dempster’s rule, we obtain BPA ε . Of course, we can write down ε as in Eq. (45) without going 
through this process. The d-entropies of the other conditionals were computed using Eq. (19). For example, to compute the 
d-entropy of the CPT of T , first, we compute the conditional BPA for T given A as shown in Example 1 in Sec. 2.4. Next, we 
compute the marginal of the joint for {A, T }, which is a Bayesian BPA for {A, T }. We skip the details of the computation of 
the remaining conditional d-entropies.

Thus, the d-entropy of the directed graphical belief function model is ≈ 3.2887, the same as Shannon’s entropy of the 
corresponding Bayesian network.
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Fig. 7. Structure of database tables designed to store BPAs defined over two variables X13, X22.

Table 4
Representation of the BPA m13−22 for {X13, X22} from Section 6.2.

id.e X13 X22

1 t13 t22

2 t13 f22

3 f13 t22

4 f13 f22

(a) coding

id.fe id.e

1 1
1 4
2 1
2 2
2 3
2 4

(b) focal_element

id.fe mass

1 0.9
2 0.1

(c) mass

7. Notes on implementation

The power of any belief function software is determined by how the BPAs are represented in the computer’s memory. 
Because of the superexponential growth of the number of subsets of the state space, we store only the focal elements of 
BPAs, i.e., the subsets of the frame of discernment with non-zero BPA values. A list of its elements defines a subset, and 
each element of the frame of discernment is essentially a record of random variable states. Thus, a focal element is a set 
of records assigned with one number – the corresponding BPA value. Computer scientists have developed a potent tool for 
records processing: a relational database. That is why we represent each BPA by a relational database satisfying a set of 
recommendations referred to as the third normal form (3NF) [17].

We did all experiments in R . We have created an R package,7 which is based on relational databases as implemented 
in the R package data.table [8]. Each belief function is an object with three different relations (tables). Fig. 7 shows the 
relationship between the tables.

Consider a BPA for r. The first table, called coding in our implementation, contains all elements from the state space 
of r and assigns a unique identifier id.e to each of them. As we work with subset r, the columns correspond to individual 
variables, and rows to the elements of their joint state space ×X∈r�X . For an example, see Table 4a, which contains all 
combinations of states of two binary variables X13 and X22 described in the Communication Network example in Section 6.2.

The second table, called focal_element, stores each focal element as a set of states using identifiers from the coding table. 
This table always has two columns. The first corresponds to the identifier of the given focal element id.fe, and the second 
refers to the identifier id.e from coding table. Thus, each focal element is defined by one or several rows in this table. As 
shown in Table 4b, the BPA m13−22 has two focal elements. The first one, {(t13, t22), ( f13, f22)} is of cardinality two, while 
the second one contains the whole frame of discernment �{X13,X22} .

The third table, called mass, assigns a BPA value to each focal element. This table also has two columns. The first contains 
the focal element identifiers id.fe - as in the focal_element table. The second column defines the BPA value assigned to the 
corresponding focal element. Each row corresponds to one focal element. Thus, m13−22({(t13, t22), ( f13, f22)}) = 0.9, and 
m13−22(�{X13,X22}) = 0.1.

Dempster’s combination (in the case of BPAs) corresponds to the classic INNER JOIN operation of the focal element tables 
and the corresponding UPDATE of the mass table. The advantage of this approach is that, for example, the marginalization 
corresponds to the SELECT operation in the coding table and the corresponding aggregation in the focal element and mass 
tables. Therefore, the computational limitations of the package are not the number of random variables and their state 
spaces but the number of focal elements. SELECT, JOIN, UPDATE, and other SQL commands are standard terms from struc-
tured query language to write and query data in a database [41]. The corresponding software is very efficient since, for 
many years, SQL has been widely used as the language for database queries.

From an implementation point of view, this paper focuses on computing the d-entropy of the {mi }n
i=1 model. The word 

“decomposable” is essential. To calculate other entropies defined in the literature, it is usually necessary to combine ele-
ments of the model into a single BPA m - which the model represents. So, first, gradually apply Dempster’s rule ⊕ and 

7 When completed, it will be published and available as an open source software.
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compute 
⊕n

i=1 mi into a single BPA. However, this is often not possible in practice. That is why the ability to calculate 
entropy using local computations directly from the model is crucial.

The implementation of the decomposable model entropy follows the algorithm presented in Section 4.2. However, upon 
closer examination, we find that the model’s marginalization procedure fundamentally influences the calculation speed. 
Marginalization of the model employs the method of local calculations (12). Using this method, one can remove one variable 
at a time.

Let {mi}i∈I X be the set of BPAs with variable X in their domains and r as the respective domains union. Hav-
ing variable X to eliminate (marginalize), we combine all BPAs from {mi}i∈I X and marginalize X from the combination 
mX = (

⊕
i∈I X

mi)
↓r\X . Then, we replace all {mi}i∈I X by mX .

Since we usually have more variables to eliminate, we must decide on the elimination order, significantly affecting 
computing time. Unfortunately, the optimal ordering is not known. Our implementation corresponds to the one in the tool 
Belief Function Machine environment in Matlab [9] in that it uses the one-step-look-ahead heuristic for finding the sequence 
in which variables are eliminated. In this heuristic, at each step, we pick a variable that leads to a combination on the 
smallest domain r, and ties are broken arbitrarily.

We use the R package igraph [23] to work with graphs.
Calculating the d-entropy of a single BPA is challenging, as it requires the conversion of the BPA into the corresponding 

CF. Notice that usually Q (a) > 0 for many a ∈ 2�s . It reveals weak points of our approach based on relational databases. In 
general, we cannot store the CF for more than five binary variables, which limits graphical models in terms of the maximum 
size of the parent set for each node. Fortunately, these sets are mostly limited. Similarly, to calculate the d-entropy, we do 
not need to store the entire CF; it is enough to save the intermediate results while generating it.

8. Summary & conclusions

The primary goal is to describe the computation of d-entropy of directed and undirected graphical belief function models. 
The d-entropy has a property that if we construct a joint BPA for two variables {X, Y } by Dempster’s combination of a BPA 
for mX for X and a conditional BPA mY |X for Y given X , then the d-entropy of mX,Y = mX ⊕ mY |X is equal to the d-entropy 
of mX plus the conditional d-entropy of mY |X . This property is analogous to the decomposition property that is a basis for 
Shannon’s entropy for probability distributions. We describe an algorithm for computing the d-entropy of any BFDGM. We 
apply this algorithm to Almond’s Captain’s problem [1] consisting of eight variables with a joint state space of 3, 584 states.

Two BPAs m1 for r1 and m2 for r2 are said to be mutually non-informative if m↓r1∩r2
1 and m↓r1∩r2

2 are vacuous BPAs for 
r1 ∩ r2. We show that the d-entropy of the Dempster combination of two such BPAs satisfies the property: H(m1 ⊕ m2) =
H(m1) + H(m2). Suppose we have a BF undirected graphical belief function model whose belief functions are mutually non-
informative, i.e., every pair of belief functions in the model is mutually non-informative. Then, BPAs in this BF undirected 
graphical model are all distinct. We describe an algorithm for computing a decomposable BFUGM to a BFDGM and then 
use the algorithm for computing the d-entropy of directed graphical models to compute its d-entropy. Haenni-Lehmann’s 
Communication Network model [10] consists of 31 binary variables and 48 BPAs. The set of all BPAs is non-informative. 
Thus, the BPAs are distinct. The joint BPA of this BFUGM is quasi-consonant. Therefore, the d-entropy of this model is 0. No 
algorithm is needed for this problem.

The d-entropy also has a property that if we start with a Bayesian network (BN) probability model and encode all 
the priors and conditionals as belief functions, then the d-entropy of the corresponding belief function model is equal to 
Shannon’s entropy of the Bayesian network model. We illustrate this using Lauritzen-Spiegelhalter’s Chest Clinic example 
[22] consisting of eight binary variables.

The d-entropy is defined using commonality functions. If a graphical model has a clique whose state space is large, then 
computing the d-entropy of the clique may be intractable. For example, in the Captain’s Problem, the conditional for arrival 
delay has three variables with a joint space of 4 × 4 × 7 = 112 states. Fortunately, this conditional is deterministic, and the 
d-entropy of deterministic BPAs is 0. However, if this conditional wasn’t deterministic or consonant or quasi-consonant, and 
the joint commonality function for these three variables had non-zero values for each of the 2112 subsets, the computation 
of the exact d-entropy of the conditional would be intractable. In such cases, we may have to resort to some approximate 
methods. This will be the focus of future work.
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