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Abstract

As in probability theory, graphical and compositional models in the Dempster-Shafer
(D-S) belief function theory handle multidimensional belief functions applied to sup-
port inference for practical problems. Both types of models represent multidimensional
belief functions using their low-dimensional marginals. In the case of graphical models,
these marginals are usually conditionals; for compositional models, they are uncondi-
tional. Nevertheless, one must introduce some conditioning to compose unconditional
belief functions and avoid double-counting knowledge. Thus, conditioning is crucial in
processing multidimensional compositional models for belief functions.

This paper summarizes some important open problems, the solution of which should
enable a trouble-free design of computational processes employing D-S belief functions
in AI. For some of them, we discuss possible solutions. The problems considered in this
paper are of two types. There are still some gaps that should be filled to get a math-
ematically consistent uncertainty theory. Other problems concern the computational
tractability of procedures arising from the super-exponential growth of the space and
time complexity of the designed algorithms.

Keywords: belief functions, conditioning, composition, conditional independence.

1 Introduction

By compositional models, we mean multidimensional belief functions constructed from low-dimen-
sional belief functions using some standard composition operator. Such models are much less
space-demanding than general belief functions, and the computations with them should be faster
and sometimes even better justifiable.

When considering probabilistic compositional models, we mean multidimensional probability
distributions composed from their low-dimensional marginals. Similarly, within the framework of
D-S belief functions, we consider multidimensional basic probability assignments (BPAs) assembled
from a system of low-dimensional (marginal) BPAs. The beneficial effect of their use is apparent.
The cardinality of state spaces, for which BPAs are defined, grows super-exponentially with the
number of variables. It reflects in the computational complexity of some procedures, even if we have
BPAs with few focal elements (BPAs representable by a small number of parameters). Namely,
some procedures must go through all states, regardless of the number of focal elements defining
the BPAs.

Considering BPAs representable by a “reasonable” number of parameters means we cannot
handle all possible belief functions. We can process only the belief functions for which a system of
conditional independence relations holds. This is similar to the framework of probability theory.
In this paper, we consider the notion of conditional independence relation introduced in [1], though
many others were introduced in the literature, as, e.g., [2, 3, 4]. The other notion closely connected
with all the methods the authors know for efficiently representing multidimensional models is the
notion of conditional BPAs. Without conditional BPAs, one could not set up directed graphical
belief function models. Without conditioning, we would not be able to define a composition
operator, and we would not be able to construct compositional models. Thus, after Section 2,
where the notation and basic notions of D-S belief functions are stated, in Section 3, we present
the open problems connected with conditioning. Section 4 presents open problems associated with
applying compositional models to inference.
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2 Belief Function Notation

This paper uses the same notation as in our paper presented at ISIPTA’23 [5]. X, Y , . . . denote
discrete (finite-valued) variables. Lower-case characters r, s, t, . . . denote the sets of variables.
ΩX , ΩY , . . . denote the state spaces of the corresponding variables. For a set of variables r, the
corresponding state space is a Cartesian product Ωr = ×X∈rΩX . 2Ωr will denote the set of all
subsets of Ωr.

A basic probability assignment (BPA) for r is a mapping m : 2Ωr → [0, 1], such that∑
a⊆Ωr

m(a) = 1 and m(∅) = 0. We often call it a joint BPA to highlight that it is defined for a
group of variables r. We say that a ⊆ Ωr is a focal element of m if m(a) > 0. A BPA with only one
focal element is called deterministic. ιr denotes the deterministic BPA for r, the focal element of
which is the entire state space: ιr(Ωr) = 1. Since ιr represents total ignorance, it is called vacuous.
BPA m is said to be Bayesian if all its focal elements are singletons: (m(a) > 0 ⇒ |a| = 1).

A BPA m for r can also be specified by a corresponding plausibility function, belief function
(BEL), and commonality function (CF) [6]. These functions are also mappings 2Ωr → [0, 1]. The
latter two can be derived from BPA m as follows:

Belm(a) =
∑

b⊆Ωr: b⊆a

m(b), (1)

Qm(a) =
∑

b⊆Ωr: b⊇a

m(b). (2)

These representations are equivalent; we can uniquely compute the others when one of them is
given:

m(a) =
∑
b⊆a

(−1)|a\b|Belm(b), (3)

m(a) =
∑

b⊆Ωr: b⊇a

(−1)|b\a|Qm(b). (4)

Based on the requirement of non-negativity and normality of BPAs, and on Eq. (4), it follows that
function Q : 2Ωr → [0, 1] is a CF for r iff

Q(∅) = 1, (5)∑
b⊆Ωr: b⊇a

(−1)|b\a|Q(b) ≥ 0, for all a ⊆ Ωr, and (6)

∑
∅̸=a⊆Ωr

(−1)|a|+1Q(a) = 1. (7)

It follows from Eq. (2) that a CF is non-increasing in the sense that

a ⊆ b =⇒ Q(a) ≥ Q(b). (8)

Consider a BPA m for r, and suppose s ⊂ r. A marginal of m for s is denoted m↓s (defined
in Eq. (9)). A similar notation is used for projections. For a ∈ Ωr, a

↓s denote the element of Ωs

that is obtained from a by omitting the values of variables from r \ s. Similarly, for subset b ⊆ Ωr,
its projection b↓s = {a↓s : a ∈ b}. The projection of sets enables us to define a join of two sets.
Consider two arbitrary sets r and s of variables (they may be disjoint or overlapping, or one may
be a subset of the other), and a ⊆ Ωr, b ⊆ Ωs. Their join is defined as:

a ▷◁ b = {c ∈ Ωr∪s : c
↓r ∈ a & c↓s ∈ b}.

Notice that if r and s are disjoint, then a ▷◁ b = a× b, if r = s, then a ▷◁ b = a∩ b, and, in general,
for c ⊆ Ωr∪s, c is a subset of c↓r ▷◁ c↓s, which may be a proper one.

For BPA m for r and s ⊆ r, the marginal BPA m↓s for s is defined as follows:

m↓s(b) =
∑

a⊆Ωr: a↓s=b

m(a), (9)

for all b ⊆ Ωs.
An important operator of the Dempster-Shafer (D-S) theory is Dempster’s combination rule,

which combines distinct belief functions. Consider two BPAs m1 and m2 for r and s, respectively,
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and assume they are distinct (independent). Dempster’s combination rule is defined for each
c ⊆ Ωr∪s as follows:

(m1 ⊕m2)(c) =
1

K

∑
a⊆Ωr, b⊆Ωs: a▷◁b=c

m1(a) ·m2(b), (10)

where the normalization constant

K =
∑

a⊆Ωr, b⊆Ωs: a▷◁b̸=∅

m1(a) ·m2(b). (11)

(1−K) can be interpreted as the amount of conflict between m1 and m2. If (1−K) = 1, we say
that BPAs m1 and m2 are in total conflict, and their Dempster’s combination is undefined. The
assumption of distinct BPAs is fundamental because Dempster’s combination is not idempotent1.

It is known that Dempster’s combination is commutative and associative [6]. Another impor-
tant property of Dempster’s combination rule relates to the marginalization of joint BPAs. This
property, called local computation in [8], says that for m1 and m2 defined for r and s, respectively,

(m1 ⊕m2)
↓t = m↓t

1 ⊕m2, (12)

if s ⊆ t ⊆ r ∪ s.
When introducing conditioning for belief functions, Shafer, in his seminal book [6], starts by

describing how Dempster’s rule of combination makes describing the assimilation of new evidence
possible. More than its role for “updating” the evidence, we emphasize in this paper its power
to describe knowledge in a form appropriate for belief-function directed graphical models, which
generalize probabilistic graphical models called Bayesian networks. This topic is described in the
next section.

3 Removal Operator and Conditioning

Belief-function directed graphical models use low-dimensional conditional belief functions (condi-
tionals) as basic building blocks of multidimensional BPAs. Compositional models defined in the
next section are composed of (unconditional) low-dimensional BPAs. However, to avoid double-
counting of knowledge, we have to compute conditionals from some of them. Therefore, in both
these ways of the efficient representation of multidimensional BPAs, we need conditional BPAs.

Consider two BPAs, m1 for r and m2 for s. Assume they are marginals of some BPA m, defined
for variables r∪ s. This means that if r and s are not disjoint, one cannot expect m1 and m2 to be
distinct. Still, for compositional models, we need to combine them. One cannot use Dempster’s
rule of combination unless double-counting is prevented. For this reason, we introduce an operator
that is an inverse to Dempster’s rule of combination.

We use the fact that Dempster’s combination rule can be expressed in terms of CFs. Let Qm1

and Qm2 be commonality functions of BPAs m1 and m2 from Eq. (10). As shown in [6], the
CF Qm1⊕m2

of their Dempster’s combination can be computed for each ∅ ̸= c ⊆ Ωr∪s using the
product formula:

Qm1⊕m2(c) =
1

L
Qm1(c

↓r) ·Qm2(c
↓s), (13)

where the normalization constant

L =
∑

∅̸=c⊆Ωr∪s

(−1)|c|+1Qm1(c
↓r) ·Qm2(c

↓s) (14)

equals the normalization constant K from Eq. (11).
Eq. (13) enables us to define the inverse of Dempster’s combination rule called removal in

[1] (in [9], it is called the decombination operator). Consider BPA m for r ⊇ s. By removing
m↓s from m, we understand the computation of a BPA m̄ for r, for which m̄ ⊕m↓s = m. Since
the combination is defined as the pointwise multiplication of CFs followed by normalization, the
removal can be defined as the pointwise division of CFs followed by normalization. It means that
for the corresponding CF Qm,

(Qm ⊖Qm↓s)(a) = L−1 Qm(a)/Qm↓s(a↓s) (15)

1An operator ⊕ is said to be idempotent if m⊕m = m for all m. Nevertheless, m⊕m = m holds only for some
BPAs, e.g., BPAs with several disjoint focal elements, which are all assigned the same value. The idea of distinct
belief functions corresponds to no double-counting of non-idempotent knowledge. See a detailed discussion of this
notion in [7].
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should hold for all nonempty a ⊆ Ωr. In this case, the normalization constant L equals

L =
∑

∅̸=a⊆Ωr

(−1)|a|+1Qm(a)/Qm↓s(a↓s). (16)

Notice that we want to define the removal only when we remove a marginal Qm↓s from Qm.
Thus, if Qm↓s(a↓s) = 0, then also Qm(a) = 0. So, Eq. (15) does not uniquely specify the value of
(Qm⊖Qm↓s)(a) for those a, for which in Eq. (15) we get indefinite expression 0/0. In such situations,
we have to assign the value not to violate Eq. (8) expressing the fact that CF (Qm ⊖ Qm↓s)
should be non-increasing function. It may happen that even this requirement does not specify the
value for some states uniquely2. In this case, we assign the maximum possible value. The above
considerations summarize in the following formal definition.

Definition 1 Let m be a BPA for r, Qm denote the corresponding CF, and s ⊂ r. Denote by R
an auxiliary function R : 2Ωr → [0, 1]

R(a) =


Qm(a)/Qm↓s(a↓s) if Qm↓s(a↓s) > 0,

min
{
Qm(b)/Qm↓s(b↓s) : a ⊇ b ⊆ Ωr

}
∪ {1} otherwise,

(17)

and by Q its normalized version Q = R/L (where L =
∑

∅̸=a⊆Ωr
(−1)|a|+1R(a)), which is generally

a pseudo-CF. If Q↓s is vacuous, then we call CF Q conditional CF and denote it Qm ⊖Q↓s
m = Q.

If Q↓s is not vacuous, then Qm ⊖Q↓s
m is undefined.

Remark Despite the fact that we define the removal operator and the conditional for CFs, in
what follows, we also use them for BPAs. Thus, mr|s = m⊖m↓s denotes the BPA corresponding
to CF Qm ⊖ Qm↓s . It means that m ⊖ m↓s can be computed from Qm ⊖ Qm↓s using Eq. (4).
Notice that it can also be computed in another way. Applying Eq. (4) directly to function R, i.e..
computing the function

h(a) =
∑

b⊆Ωr: b⊇a

(−1)|b\a|R(b)

for all a ⊆ Ωr, we obviously get a function h : 2Ωr → [0, 1] which, after a possible normalization,
equals m⊖m↓s = h(a)/L.

We emphasize that it may happen that m ⊖m↓s has negative masses – then, it is not a BPA
and we call it a pseudo-BPA. We call m⊖m↓s a conditional BPA for r \ s given s. We do it only
when (m⊖m↓s)↓s is vacuous, which is generally the necessary condition for conditionals [10].

Example 1 Consider variables X and Y with ΩX = {x, x̄}, ΩY = {y, ȳ}. Consider BPA mX,Y for
{X,Y } with two focal elements: mX,Y ({(x, y)}) = 0.9 and mX,Y ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.1. Its
marginal BPA (mX,Y )

↓X = mX has also two focal elements: mX({x}) = 0.9, mX({x, x̄}) = 0.1.
The computation of QmX,Y

⊖QmX
is shown in Table 1. To save room in the heading of the table,

we slightly modified the notation: mX denotes m↓X
X,Y , and m

↑{X,Y }
X denotes mX ⊕ ιY . Notice

also that QmX,Y
⊖ QmX

= QmX,Y
/QmX

= QmX,Y
/Q

m
↑{X,Y }
X

. The last column in the table is the

pseudo-BPA corresponding to QmX,Y
⊖QmX

computed using Eq. (4).

Simple Facts about the Removal Operator

Suppose m is a BPA defined for r, and s ⊂ r.

1. m⊖m is always defined, m⊖m is vacuous.

2. If (m⊖m↓s) is defined, then m↓s ⊕ (m⊖m↓s) = m.

3. If (m⊖m↓s)↓s is a (non-negative) BPA, then for any focal element a of (m⊖m↓s), a↓s = Ωs.

4. For a deterministic m, m↓s ⊕ (m↓r\s ⊕ ιs) = m.

2The reader can easily show it occurs for BPAs, for which Dempster’s rule is idempotent (m ⊕ m = m), which
holds for BPAs, the focal element of which are disjoint and all of them are assigned the same value. The examples
are deterministic BPAs and uniform Bayesian BPA. In this case, m ⊕ m = m, as well as m ⊕ ιm = m. Naturally,
we do not expect m⊖m = m. We prefer that m⊖m = ιm holds for all m,
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Table 1: The computation of mX,Y ⊖mX in Example 1. Empty cell values equal 0.

2
ΩX,Y mX,Y m

↑{X,Y }
X

QmX,Y
Q

m
↑{X,Y }
X

QmX,Y
/Q

m
↑{X,Y }
X

mX,Y ⊖ mX

∅ 1 1 1
{(x, y)} 0.9 1 1 1 0.9
{(x, ȳ)} 0.1 1 0.1
{(x̄, y)} 0.1
{(x̄, ȳ)} 0.1 0.1 1
{(x, y), (x, ȳ)} 0.9 0.1 1 0.1 −0.9
{(x, y), (x̄, y)} 0.1
{(x, y), (x̄, ȳ)} 0.1 0.1 1
{(x, ȳ), (x̄, y)} 0.1
{(x, ȳ), (x̄, ȳ)} 0.1 0.1 1
{(x̄, y), (x̄, ȳ)} 0.1
{(x, y), (x, ȳ), (x̄, y)} 0.1
{(x, y), (x, ȳ), (x̄, ȳ)} 0.1 0.1 0.1 1 1
{(x, y), (x̄, y), (x̄, ȳ)} 0.1
{(x, ȳ), (x̄, y), (x̄, ȳ)} 0.1
ΩX,Y 0.1 0.1

5. For a deterministic m with a focal element a, the conditional (m ⊖ m↓s) is a deterministic
BPA with a focal element a↓r\s × Ωs.

Proofs: Let Qm be CF corresponding to BPA m.

Ad. 1. For any a ⊆ Ωr, for which Qm(a) > 0, R(a) = 1, and therefore R(a) = 1 for all a ⊆ Ωr,
which equals the normalized CF for vacuous BFA.

Ad. 2. For ∅ ̸= a ⊆ Ωr such that Qm(a) > 0(
Q↓s

m ⊕ (Qm ⊖Qm↓s)
)
(a) =

1

K

(
Q↓s

m · (Qm ⊖Qm↓s)
)
(a)

=
1

K

(
Q↓s

m ·
(
1

L
· Qm

Qm↓s

))
(a) =

1

K · L
Qm(a).

Since ifQm(a) = 0, then also
(
Q↓s

m ⊕ (Qm ⊖Qm↓s)
)
(a) = 0, the product of normalization constants

K · L must equal 1 because both Qm and
(
Q↓s

m ⊕ (Qm ⊖Qm↓s)
)
are normalized CFs.

Ad. 3. If there were a focal element a ⊊ Ωr of (m ⊖m↓s), then a↓s would be a focal element of
(m⊖m↓s)↓s, which contradicts to (m⊖m↓s)↓s = ιs.

Ad. 4. Consider a deterministic BPA m with a focal element c, and a ⊆ Ωs, b ⊆ Ωr. Then

m↓s(a) · (m↓r\s ⊕ ιs)(b) = 1

only if a = c↓s and b↓r\s = c↓r\s, or, equivalently, if a ▷◁ b = c. Otherwise, this product equals 0.
Therefore, due to Eq. (10), m↓s ⊕ (m↓r\s ⊕ ιs) is a deterministic BPA with focal element c.

Ad. 5. CF Qm for a deterministic BPA m with a focal element c is

Qm(a) =

{
1 if a ⊆ c,
0 otherwise,

(18)

and therefore

Qm(a)/Qm↓s(a↓s) =

 1 if a ⊆ c,
0 if a↓s ⊆ c↓s & a ⊈ c,
0/0 otherwise.

Using Eq. (17), we get that function R (and therefore also Qm ⊖ Qm↓s) equals 0 for a ⊆ Ωr, for
which a↓s ⊆ c↓s, and simultaneously a ⊈ c, which occurs when a↓r\s ⊈ c↓r\s. Otherwise, it equals
1 regardless whether Qm/Qm↓s is equal 1 or it is the indefinite expression 0/0. Thus, R equals CF
of the deterministic BPA with focal element c↓r\s. □
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Open Problems

• Does (m⊖m↓s)↓s = ιs hold for all BPAs m?
We conjecture that in Definition 1, the assumption that Q↓s is vacuous is unnecessary, that
it holds for all BPAs m. If not, for which BPAs this equality holds?

• Is it possible to compute conditionals without transforming BF into the corre-
sponding CF?
In computations, we represent knowledge using BPAs as the list of focal elements, the number
of which is usually very small. However, when we convert a BPA to a corresponding CF, the
CF is usually non-zero for all subsets of the state space. If we want to compute the condi-
tional using Definition 1, then we have to assess the values of the function R for all states. For

example, in Table 1, even though m
↑{X,Y }
X has only two focal elements, the corresponding CF

in column five is non-zero for all subsets of ΩX,Y . This is true because mX(ΩX) = 0.1 > 0.
So, computations of a conditional using Definition 1 are of high computational complexity
and can only be computed for three or four-dimensional BPAs.

As shown in Simple Facts above, the conditional for a deterministic BPA can be easily
obtained. Does a more general class of BPAs exist for which one can compute conditionals
directly without enumerating the corresponding CFs?

• Is it possible to characterize BPAs m, which can be factored as Dempster’s
combination of its marginal and the corresponding conditional BPA?
In probability theory, a joint distribution PX,Y can always be factored into marginal PX =
(PX,Y )

↓X and a conditional PY |X such that PX,Y = PX · PY |X . This is not always true for
belief functions. Because of the great computational complexity of the respective algorithms,
it would be useful to recognize when such a factorization does not exist. In [11], we proved
that QmX,Y

⊖ QmX
is a CF if and only if there exists a BPA m̂ for {X,Y } such that

mX,Y = mX ⊕ m̂, and m̂↓X is the vacuous BPA for X. Nevertheless, the question remains
about recognizing whether such m̂ exists.

• Computational problems.
As mentioned, when transforming a commonality function to a corresponding BPA, we usu-
ally deal with an enormous number of sets. For each of them, we have to find its supersets.
The transformation itself (Eq. (4)) is a Möbius transform - i.e., repeated addition and sub-
traction of many, usually very small numbers. This process often leads to rounding errors.
As a rule, it does not happen in the inverse transformation (Eq. (2)) because we handle BPAs
with only a few focal elements. So the question is whether there is a class of CFs for which
a suitable representation in computer memory would resolve these issues.

4 Compositional Models

Consider two BPAs, m1 for r and m2 for s. Assume they are marginals of some BPA m, defined
for variables r ∪ s. Naturally, there is no way how to reconstruct m from its marginals m1, m2.
However, if we accept the assumption that there is a relation of conditional independence between
the considered variables, there may be a unique BPA with the given marginals. In the considered
case, it would be the assumption that variables r\s and variables s\r are conditionally independent
given variables r ∩ s. First, we define the notion of conditional independence for BPAs from [1].

Definition 2 Consider three disjoint sets of variables r, s, t, and a BPA m defined for variables
containing r∪ s∪ t. Assume r and s are nonempty. We say r and s are conditionally independent
given t, with respect to m, written as r⊥⊥ms|t, if there exist BPAs m1 for r ∪ t and m2 for s ∪ t
such that m↓r∪s∪t = m1 ⊕m2.

In the above definition, if t is empty, r and s are said to be unconditionally independent,
and the joint BPA m↓r∪s is equal to Dempster’s combination of its marginals. If t ̸= ∅, then
one cannot combine the marginal for r ∪ t with the marginal for s ∪ t because the marginal for
variables t would be counted twice – recall that Dempster’s combination rule is not idempotent.
To avoid double-counting this marginal, one has to use the composition instead of Dempster’s rule
of combination. For the reasons explained later, we call it a d-composition. It is derived from
Dempster’s combination rule in [12] and defined as follows.
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Definition 3 Consider BPAs m1 for r and m2 for s. Their d-composition m1 ▷d m2 is defined as

m1 ▷d m2 = m1 ⊕ (m2 ⊖m↓r∩s
2 ),

if the right-hand side of this equality is a BPA. Otherwise m1 ▷d m2 is undefined.

Notice that this paper excludes the possibility of composing BPAs that would yield a pseudo-
BPA (with negative values). Nevertheless, we admit situations when the expression (m2 ⊖m↓r∩s

2 )
defining the composition is not a conditional BPA when it is only a pseudo-BPA.

Example 1 (continued) Dempster’s combination of one-dimensional BPA mX with two focal

elements mX({x}) = 0.9, mX({x, x̄}) = 0.1, and pseudo-BPA (mX,Y ⊖m↓X
X,Y ) from the last column

of Table 1 yields BPA mX,Y from the first column of Table 1, i.e., for the (pseudo-)BPAs

mX ⊕ (mX,Y ⊖m↓X
X,Y ) = mX,Y .

Similarly, the reader can show that Dempster’s combination of pseudo-BPA (mX,Y ⊖m↓X
X,Y ) with

any positive one-dimensional Bayesian BPA mX results in a BPA. Nevertheless, considering other
one-dimensional BPAs mX , their Dempster’s combination with pseudo-BPA (mX,Y ⊖m↓X

X,Y ) may

yield pseudo-BPAs. For example, ιX ⊕ (mX,Y ⊖m↓X
X,Y ) = (mX,Y ⊖m↓X

X,Y ).

In [13], another composition operator for belief functions was introduced. This operator is
called the f-composition operator in this paper.

Definition 4 Consider BPAs m1 for r and m2 for s. Their f-composition is a BPA m1 ▷f m2

defined for each nonempty c ⊆ Ωr∪s by one of the following expressions:

(i) if m↓r∩s
2 (c↓r∩s) > 0 and c = c↓r ▷◁ c↓s, then (m1 ▷f m2)(c) =

m1(c
↓r) ·m2(c

↓s)

m↓r∩s
2 (c↓r∩s)

;

(ii) if m↓r∩s
2 (c↓r∩s) = 0 and c = c↓r × Ωs\r, then (m1 ▷f m2)(c) = m1(c

↓r);

(iii) in all other cases, (m1 ▷f m2)(c) = 0.

An important difference between this definition and the definition of d-composition is visible
at first sight. The reader can see that one and only one expression applies for each c ⊆ Ωr∪s.
Therefore, f-composition is defined for any couple of belief functions. This is its indisputable
advantage. A disadvantage is that from the viewpoint of D-S theory, there is no connection to
Dempster’s rule of combination. The f-composition does not guarantee an expected conditional
independence relation among the variables.

However, what is important, both the composition operators introduced in Definitions 3 and 4
satisfy the following properties (properties 1. - 4. are sometimes considered axioms for composi-
tion). For proofs, see [13] and [12], where also other properties are studied, including property 5.
which also holds for Dempster’s combination rule.

Proposition 1 For both composition operators (d-composition and f-composition) the following
statements hold. Assume that BPAs mr,ms, and mt are for r, s, and t, respectively, and that all
the d-compositions are defined. Then,

1. (Domain): mr ▷ ms is a BPA for variables r ∪ s.

2. (Composition preserves first marginal): (mr ▷ ms)
↓r = mr.

3. (Commutativity under consistency): If mr and ms are consistent, i.e., m↓r∩s
r = m↓r∩s

s , then
mr ▷ ms = ms ▷ mr.

4. (Associativity under special condition): If r ⊇ (s∩ t), or, s ⊇ (r ∩ t) then, (mr ▷ms) ▷mt =
mr ▷ (ms ▷ mt).

5. (Local computation): If (r ∩ s) ⊆ t ⊆ (r ∪ s), then (mr ▷ ms)
↓t = m↓r∩t

r ▷ m↓s∩t
s .
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Unlike Dempster’s rule, which can be applied only to a couple of distinct BPAs, the composition
operators are typically used to compose two non-distinct marginals with a non-empty intersection,
to assemble two pieces of evidence with some common knowledge. The composition operator is
defined to avoid double counting of evidence from the two composed pieces of evidence. Thus,
composition and Dempster’s combination are designed for different purposes and possess different
properties. While Dempster’s rule is always commutative and associative, the composition operator
meets these properties only in particular situations (see properties 3. and 4. from Proposition 1).
On the other hand, Dempster’s rule does not preserve the first marginal; it is not idempotent.

Consider BPAs m1 for r and m2 for s such that m2 ⊖ m↓r∩s
2 is a BPA. In connection with

Definition 3, we will identify situations when conditional BPA m2 ⊖m↓r∩s
2 is, in a way, “adapted”

to BPA m1. We say that m2⊖m↓r∩s
2 is tight with respect to m1 if for all couples of focal elements

a and b (a is a focal element of m1, and b is a focal element of m2⊖m↓r∩s
2 ) the following condition

holds:
for ∀ b ∈ b, ∃ a ∈ a, such that {a} ▷◁ {b} ̸= ∅. (19)

Expression (ii) in Definition 4 applies to states for which the composed BPAs are, in a way,
incompatible; the second argument does not bear the information on how to divide the mass
assigned to a focal element of the first argument. Therefore, Expression (ii) assigns the respective
value of a mass function to the least specific focal element. The acceptance of this idea makes the
f-composition of any couple of BPAs possible. Notice that if the conditional of mY,Z is tight with
respect to mX,Y , then Expression (ii) does not find its use.

Facts about the operators of composition (proved in [11])

Suppose m1 and m2 are BPAs defined for r and s, respectively.

1. If m2 ⊖m↓r∩s
2 is a non-negative BPA, then BPA m2 ⊖m↓r∩s

2 is tight with respect to m1 if
and only if m1 ▷f m2 = m1 ▷d m2.

2. If m1 ▷d m2 is defined, then Belm1▷fm2
≤ Belm1▷dm2

.

Example 2 In this example, we present a pair of BPAs, for which the f-composition and d-
composition differ. Notice that mY,Z from Table 2 is a conditional, because m↓Y

Y,Z is vacuous,

and thus mY,Z ⊖ (mY,Z)
↓Y = mY,Z . Notice also that mY,Z is not tight with respect to mX,Y .

Their compositions mX,Y ▷d mY,Z and mX,Y ▷f mY,Z (see Table 2) differ only in the fact that the
d-composition assigns mass 0.70 to {(x̄ȳz), (xȳz)}. In contrast, the f-composition assigns this mass
to {(x̄ȳz̄), (x̄ȳz), (xȳz̄), (xȳz)} by Expression (ii). Thus, as more precisely expressed in the asser-
tion above, the result of the f-composition is less specific than that of the d-composition. By the loss
of specificity, we have to pay for the ability to combine any couple of BPAs. In other words, when
we want to compose two BPAs whose d-composition is undefined, we can do it using f-composition,
but we have to reconcile to a partial loss of information.

Table 2: An example illustrating the relation between ▷d and ▷f
a mX,Y (a)

{(x̄ȳ), (xȳ)} 0.70
{(x̄ȳ), (x̄y), (xȳ)} 0.30

a mY,Z(a)
{(ȳz), (yz̄)} 0.51
{(ȳz), (yz)} 0.49

(mX,Y ▷ mY,Z)(a)
a ▷d ▷f

{(x̄ȳz), (xȳz)} 0.70
{(x̄ȳz̄), (x̄ȳz), (xȳz̄), (xȳz)} 0.70
{(x̄ȳz), (x̄yz̄), (xȳz)} 0.15 0.15
{(x̄ȳz), (x̄yz), (xȳz)} 0.15 0.15
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Open Problems

• What are the necessary and sufficient conditions for m1 ▷d m2 = m1 ▷f m2?

Fact 1 characterize situations whenm1▷dm2 = m1▷fm2 under the assumption thatm2⊖m↓r∩s
2

is a non-negative BPA. How is it for situations when m2 ⊖m↓r∩s
2 is a pseudo-PBA?

• Is it possible to characterize pairs of BPAs m1 and m2 for which the d-composition
yields a non-negative BPA?
Consider BPAs m1 for r and m2 for s. If m2⊖m↓r∩s

2 is a BPA, then m1 ▷dm2 is also a BPA.
This is a sufficient condition. But, as shown in Example 1, it is not necessary.

• Given BPA m for r ⊋ s, and its conditional pseudo-BPA m ⊖ m↓s. What is the
class of BPAs m̄, for which m̄ ▷d m is a non-negative BPA.
This is a sub-problem of the problem above. Consider, for example mX,Y from Example 1.
It is not difficult to show that m̄X ▷d mXY is a non-negative BPA for any Bayesian m̄ for X.

• Computational problems.
Because of the computational problems mentioned in the preceding section, we can currently
compute m1 ▷d m2 only when the dimension of m2 is not greater than four. For higher
dimensions, we have to approximate m1 ▷d m2 by m1 ▷f m2. Are there chances to find the

representation of conditionals m2 ⊖m↓r∩s
2 in computer memory so that the computation of

m1 ▷d m2 would be tractable for higher dimensions?

5 Summary

Both graphical and compositional models for belief functions are based on the idea that a mul-
tidimensional model is constructed from low-dimensional belief functions, introducing conditional
independence relations among the variables. Both models must employ conditional belief func-
tions to avoid double-counting of knowledge. In this paper, we study the possibility of obtaining
conditional BPAs by applying the removal operator, an operator that is inverse to Dempster’s
combination operator. It is associated with two types of problems, some of which remain open.
Theoretical problems arise from the fact that, in some situations, the removal operator is unde-
fined. Also, what causes even more severe problems, the result may go beyond the classical belief
function theory because the corresponding BPAs may have negative masses. The other problem is
connected with the super-exponential computational complexity of the removal operator. Namely,
we only know one way to implement the removal operator based on the transformation of BPAs
into commonality functions, which becomes intractable if the dimension of the domains of the
BPAs exceeds four.
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