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1 Introduction

Gradient polyconvex functionals, introduced originally in [10], depend on the gra-
dients of nonlinear minors of the deformation gradient, i.e., they involve not only
the first but also the second spatial derivatives of the deformation field. Materials
having such a broader energy dependence are generally called non-simple [54] and
their idea can be traced back to 1901 when Korteweg [32] considered a gradient
of the density in his model of fluid capillarity. Considering more than only the
first deformation gradient in the description of elastic behavior of solids goes back
to the 1960s and appeared in the work of Toupin [52, 53], and Green and Rivlin
[29]. Such materials are usually called N -grade materials, where N refers to the
highest deformation gradient appearing in the model. This approach has brought
questions on thermodynamical consistency of such models, treated in [13, 22],
for instance. Since then, it has been used and analyzed in many works; see, e.g.,
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[7, 20, 21, 24, 26, 27, 34, 46, 50, 51]. From the material point of view, the more
general energy functionals in higher grade continua lead to an additional force
interaction in a form of an edge traction or the so-called couple-stress or double
force acting on the boundary; see [38, 42, 48, 49].

Mathematically, the presence of higher-order gradients in the model brings
additional compactness properties for the set of admissible functions and ensures
the existence of minimizers. We refer to recent related results on the mathematical
treatment of shape memory materials and solid-to-solid interfaces: [1, 4, 6, 18, 19].
We also refer to [9] for an overview of recent mathematical results in the calculus
of variations. For computational results on NiMnGa see, e.g., [1].

The aim of this contribution (cf. [37]) is to apply a new class of non-simple
material models introduced in [10] (called gradient polyconvex materials) to
evolutionary problems of shape memory alloys and to consider a computational
experiment. The novelty consists in considering only gradients on nonlinear minors
in the stored energy density of the material. It is shown there, and also in Example 2
below, that corresponding deformations do not necessarily have integrable second
weak derivatives. Nevertheless, it is possible to prove existence of an energetic
solution.

The plan of the paper is as follows. We first introduce necessary notation and
tools in Sect. 2. The notion of gradient polyconvexity is thoroughly discussed in
Sect. 3 and the quasistatic evolution in Sect. 4. Finally, in Sect. 5 we consider
a bar made of a specific shape memory material (NiMnGa) and provide first
computational results on the evolution of a solid-to-solid phase transformation in
a tension experiment.

2 Preliminaries

Hyperelasticity is a special area of Cauchy elasticity, where one assumes that the
first Piola-Kirchhoff stress tensor P possesses a potential (called stored energy
density) W : (0,+∞)× R

3×3 → (−∞,∞]. In other words,

P(θ, F ) := ∂W(θ, F )

∂F
(1)

on its domain, where F ∈ R
3×3 is such that detF > 0 and θ stands for the

absolute temperature. This concept emphasizes that all work done by external loads
on the specimen is stored in it. The principle of frame-indifference requires that W
satisfies, for all F ∈ R

3×3 and all proper rotations R ∈ SO(3),

W(θ, F ) = W(θ,RF) = W̃ (θ, F�F) = W̃ (θ, C),

where C := F�F is the right Cauchy-Green strain tensor and W̃ : (0,+∞) ×
R

3×3 → (−∞,∞].
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Additionally, every elastic material is assumed to resist extreme compression,
which is modeled by

W(θ, F )→+∞, if detF ↘ 0. (2)

Let the reference configuration be a bounded Lipshitz domain� ⊂ R
3. Deformation

y : �̄→ R
3 maps the points in the closure of the reference configuration �̄ to their

positions in the deformation configuration. Solutions to the corresponding elasticity
equations can then be formally found by minimizing the energy functional

I (θ, y) :=
∫
�

W(θ,∇y(x)) dx − �(y) (3)

over the class of admissible deformations. Here, � is a functional on the set of
deformations, expressing (in a simplified way) the work of external loads on the
specimen, and ∇y is the deformation gradient, which quantifies the strain. We only
allow for deformations, which are orientation-preserving, i.e., if a, b, c ∈ R

3 satisfy
(a × b) · c > 0, then (Fa × Fb) · Fc > 0 for every F := ∇y(x) and x ∈ �, which
means that detF > 0. This condition can be expressed by extending W by infinity
on matrices with non-positive determinants, i.e.,

W(θ, F ) := +∞, if detF ≤ 0. (4)

In view of (1), (2), and (4), we see that W : (0,+∞) × R
3×3 → (−∞,+∞],

is continuous in the sense that if Fk → F in R
3×3 for k → +∞, then

limk→+∞W(θ, Fk) = W(θ, F ). Furthermore, W(θ, ·) is differentiable on the set
of matrices with positive determinants.

Relying on the direct method of the calculus of variations, the usual approach
to prove the existence of minimizers is to study (weak) lower semicontinuity of the
functional I on appropriate Banach spaces containing the admissible deformations.
For definiteness, we assume that y 
→ −�(y) is weakly sequentially lower semicon-
tinuous. Thus, the question reduces to a discussion of the assumptions on W . It is
well-known that (2) prevents us from assuming convexity of W . See, e.g., [17] or
the recent review for a detailed exposition of weak lower semicontinuity. Following
earlier work by C.B. Morrey, Jr., [43], J.M. Ball [2] defined a polyconvex stored
energy density W by assuming that there is a convex and lower semicontinuous
function W(θ, ·) : R19 → (−∞,+∞] such that

W(θ, F ) := W(θ, F,CofF, detF) ∀F ∈ R
3×3.

Here, CofF denotes the cofactor matrix of F , which, for F being invertible, satisfies
Cramer’s rule:

CofF = (detF)(F−1)�.
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Hence, det CofF = det2 F and because we assume that detF > 0 we have that

F =
( CofF√

det CofF

)−�
,

i.e., we can reconstruct F from CofF . It is well-known that polyconvexity is
satisfied for a large class of constitutive functions and allows for the existence of
minimizers of I under (2) and (4). On the other hand, there are still situations where
polyconvexity cannot be adopted. A prominent example is shape memory alloys,
where W has the so-called multi-well structure; see, e.g., [5, 11, 44]. Namely, there
is a high-temperature phase, called austenite, which is usually of cubic symmetry,
and a low-temperature phase, called martensite, which is less symmetric and exists
in more variants, e.g., in three for the tetragonal structure (NiMnGa) or in twelve
for the monoclinic one (NiTi). We can assume that

W(θ, F ) := min
0≤i≤MWi(θ, F ), (5)

where Wi : (0,+∞) × R
3×3 → (−∞,+∞] is the stored energy density of the

i-th variant of martensite if i > 0, and W0 is the stored energy density of the
austenite. For every admissible i, we have Wi(θ, ·) is minimized if and only if
F = RFi for a given matrix Fi ∈ R

3×3 and an arbitrary proper rotation R ∈ SO(3).
This means that each variant of the martensite and the austenite is modeled as a
hyperelastic material with its own stored energy density Wi . We also assume that
eachWi(θ, ·) is differentiable on the set of matrices with positive determinants. Thus
the variants can be described independently of each other, i.e., the elastic constants
can be chosen differently. The drawback is obviously the non-smoothness of W ,
however, physically realistic elastic strain values do not occur in the set where W
is not differentiable. We refer, e.g., to [39] for other models of the stored energy
density of shape memory alloys.

Given a deformation gradient F , we need to decide if the corresponding
deformation is in the well of the austenite, or in a martensitic variant. In order to
do so, we define a volume fraction λ(F ) as follows: Let λ : R3×3 → R

M+1. Set

λj (F ) := 1

M

(
1− dist(C,Nj (Cj ))∑M

i=0 dist(C,Ni (Ci))

)
∀C = FT F ∈ R

3×3, j = 0, . . . ,M,

(6)

where {Ni (Ci)}i are pairwise disjoint neighborhoods of the right Cauchy-Green
strain tensors Ci = F�i Fi , for i ∈ {0, . . . ,M}. Notice that

∑M
j=0 λ

j (F ) = 1 for

every F , which, together with λj ≥ 0, allows us to interpret λ as a volume fraction.
Moreover, note that λ is continuous and frame-indifferent in the sense that

λ(F ) = λ(RF) for every proper rotation R. Volume fractions will play an important
role in the definition of our evolutionary model in Sect. 4.



Gradient Polyconvexity and Modeling of Shape Memory Alloys 137

Remark 1 Note that this particular choice of λ allows for some elastic behavior
close to the wells SO(3)Fi , i = 0, . . . ,M , since the volume fraction remains
constant on the neighborhoods Ni (Ci), i = 0, . . . ,M .

Let us emphasize that (5) ruins even generalized notions of convexity as,
e.g., rank-one convexity. (We recall that rank-one convex functions are convex
on line segments with endpoints differing by a rank-one matrix and that rank-
one convexity is a necessary condition for polyconvexity; cf. [17], for instance.)
Namely, it is observed (see, e.g., [5, 11]) that there is a proper rotation Rij such
that rank(RijFi − Fj ) = 1. if 0 < i �= j > 0. Hence, generically, W(θ,RijFi) =
W(θ, Fj ) = −wi(θ), but W(θ, F ) > −wi(θ) if F is on the line segment between
RijFi and Fj . Nevertheless, not having a convexity property at hand that implied
existence of minimizers is in accordance with experimental observations for these
alloys.

Indeed, nonexistence of a minimizer corresponds to the formation of microstruc-
ture of strain-states. This is mathematically manifested via a faster and faster
oscillation of deformation gradients in minimizing sequences, driving the functional
I to its infimum. One can then formulate a minimization problem for a lower
semicontinuous envelope of I , the so-called relaxation, see, e.g., [17]. Such a
relaxation yields information of the effective behavior of the material and on the
set of possible microstructures. Thus relaxation is not only an important tool for
mathematical analysis, but also for applications. For numerical considerations it is
a challenging problem, because the relaxation formula is generically not obtained
in a closed form. Further difficulties come from the fact that a sound mathematical
relaxation theory is developed only ifW has p-growth; that is, for some c(θ), c > 1,
p ∈ ]1,+∞[ and all F ∈ R

3×3, the inequality

1

c
(|F | − c(θ)) ≤ W(θ, F ) ≤ c(1+ |F |p + c(θ))

is satisfied. This in particular implies that W < +∞. We refer, however, to
[8, 16, 33] for results allowing for infinite energies. Nevertheless, these works
include other assumptions that severely restrict their usage. Let us point out that the
right Cauchy-Green strain tensor F�F maps SO(3)F as well as (O(3)\SO(3))F
to the same point. Here, O(3) are the orthogonal matrices with determinant ±1.
Thus, for example, F 
→ |F�F − I| is minimized on two energy wells, on SO(3)
and also on O(3)\SO(3). However, the latter set is not acceptable in elasticity,
because the corresponding minimizing affine deformation is a mirror reflection.
In order to distinguish between these two wells, it is necessary to incorporate detF
in the model properly.

Besides relaxation, another approach guaranteeing existence of minimizers is to
resort to non-simple materials, i.e., materials, whose stored energy density depends
also on higher-order derivatives. Simple examples are functionals of the form

I (θ, y) :=
∫
�

W(θ,∇y(x))+ ε|∇2y(x)|p dx − �(y),
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where ε > 0. Obviously, the second-gradient term brings additional compactness to
the problem, which allows to require only strong lower semicontinuity of the term

∇y 
→
∫
�

W(θ,∇y(x)) dx

for existence of minimizers.
Here, we follow a different approach suggested in [10], which is a natural

extension of polyconvexity exploiting weak continuity of minors in Sobolev spaces.
Instead of the full second gradient, it is assumed that the stored energy density of
the material depends on the deformation gradient ∇y and on gradients of nonlinear
minors of ∇y, i.e., on ∇[Cof∇y] and on ∇[det∇y]. The corresponding functionals
are then called gradient polyconvex. While we assume convexity of the stored
energy density in the two latter variables, this is not assumed in the ∇y variable.
The advantage is that minimizers are elements of Sobolev spaces W 1,p(�,R3), and
no higher regularity is required.

The following example is inspired by a similar one in [10]. It shows that there are
maps with smooth nonlinear minors whose deformation gradient is not a Sobolev
map. Hence, gradient polyconvex energies are more general than second-gradient
ones.

Example

Let � = ]0, 1[3. For functions f, g : ]0, 1[ → ]0,+∞[ to be specified later, let us
consider the deformation

y(x1, x2, x3) := (x1, x2f (x1), x3g(x1)) .

Then,

∇y(x1, x2, x3) =
⎛
⎝ 1 0 0
x2f

′(x1) f (x1) 0
x3g

′(x1) 0 g(x1)

⎞
⎠ ,

Cof∇y(x1, x2, x3) =
⎛
⎝f (x1)g(x1) −x2f

′(x1)g(x1) −x3f (x1)g
′(x1)

0 g(x1) 0
0 0 f (x1)

⎞
⎠

and

det∇y(x1, x2, x3) = f (x1)g(x1) > 0 .

Finally, the nonzero entries of ∇2y(x1, x2, x3) are

x2f
′′(x1), f ′(x1), x3g

′′(x1), g′(x1). (7)
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Note that we have in particular

|∇2y(x1, x2, x3)| ≥ |x2||f ′′(x1)|.

Any functions f, g such that y ∈ W 1,p(�;R3), Cof∇y ∈ W 1,q (�;R3×3), 0 <

det∇y ∈ W 1,r (�), (det∇y)−s ∈ L1(�) for some p, q, r ≥ 1 and s > 0, but such
that one of the quantities in (7) is not a function in Lp(�) yield a useful example
since then y /∈ W 2,p(�;R3). To be specific, we choose, for 1 > ε > 0,

f (x1) = x1−ε
1 and g(x1) = x1+ε

1 .

Hence

f ′(x1) = (1− ε)x−ε1 , g′(x1) = (1+ ε)xε1,

f ′′(x1) = −ε(1− ε)x−1−ε
1 , g′′(x1) = ε(1+ ε)x−1+ε

1 .

Since x2f
′′(x1) is not integrable, we have ∇2y �∈ L1(�;R3×3×3) and thus y �∈

W 2,1(�;R3). We have only y ∈ W 1,p(�;R3) ∩ L∞(�;R3) for every 1 ≤ p <

1/ε. Moreover, direct computation shows that both Cof∇y and det∇y lie in W 1,∞.
Finally, det∇y = x2

1 > 0 and (det∇y)−s ∈ L1(�) for all 0 < s < 1/2.
Therefore, for any r, q ≥ 1, s > 0, requiring a deformation y : �→ R

3 to satisfy
det∇y ∈ W 1,r (�), (det∇y)−s ∈ L1(�) and Cof∇y ∈ W 1,q (�;R3×3) is a weaker
assumption than y ∈ W 2,1(�;R3).

3 Gradient Polyconvexity

We start with a definition of gradient polyconvexity.

Definition 1 (See [10, 36]) Let Ŵ : (0,+∞)×R
3×3×R

3×3×3×R
3 → R∪{+∞}

be a lower semicontinuous function, and let � ⊂ R
3 be a bounded open domain.

The functional

J (θ, y) =
∫
�

Ŵ(θ,∇y(x),∇[Cof∇y(x)],∇[det∇y(x)])dx, (8)

defined for any measurable function y : �→ R
3 for which the weak derivatives∇y,

∇[Cof∇y], ∇[det∇y] exist and which are integrable, is called gradient polyconvex
if the function Ŵ (F, ·, ·) is convex for every F ∈ R

3×3.
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With J defined as in (8) and a functional y 
→ −�(y) expressing the work of
external loads, we set

I (θ, y) := J (θ, y)− �(y). (9)

Besides convexity properties, the results of weak lower semicontinuity of I (θ, ·)
on W 1,p(�;R3), in the case 1 ≤ p < +∞, rely on suitable coercivity properties.
Here we assume that there are numbers q, r > 1 and c, c(θ), s > 0 such that for
every F ∈ R

3×3, �1 ∈ R
3×3×3, and every �2 ∈ R

3

Ŵ (θ, F,�1,�2)

≥
⎧⎨
⎩
c
(|F |p + |CofF |q + (detF)r + (detF)−s + |�1|q + |�2|r

)− c(θ), if detF > 0,

+∞, otherwise.

(10)

The following existence result is taken from [10] where it is stated without the
explicit dependance on θ . For the reader’s convenience, we provide a proof below.

Proposition 1 Let θ > 0 be fixed. Let � ⊂ R
3 be a bounded Lipschitz domain, and

let � = �0∪�1 be an H2-measurable partition of � = ∂� with the area of �0 > 0.
Let further −� : W 1,p(�;R3) → R be a weakly lower semicontinuous functional
satisfying, for some C̃ > 0 and 1 ≤ p̄ < p,

�(y) ≤ C̃‖y‖p̄
W 1,p(�;R3)

, for all y ∈ W 1,p(�;R3). (11)

Further, let J , as in (8), be gradient polyconvex on � and such that there is a Ŵ
as in Definition 1 which in addition satisfies (10) for p > 2, q ≥ p

p−1 , r > 1,

s > 0. Moreover, assume that, for some given measurable function y0 : �0 → R
3,

the following set

A : = {y ∈ W 1,p(�;R3) : Cof∇y ∈ W 1,q (�;R3×3), det∇y ∈ W 1,r (�),

(det∇y)−s ∈ L1(�), det∇y > 0 a.e. in �, y = y0 on �0
}

is nonempty. If infA I (θ, ·) < ∞ for I from (9), then the functional I has a
minimizer on A.

Proof Our proof closely follows the approach in [10]. Let {yk} ⊂ A be a
minimizing sequence of I . Due to coercivity assumption (10), the bound on the
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loading (11), the Poincaré inequality, and the Dirichlet boundary conditions on �0,
we obtain that

sup
k∈N

(
‖yk‖W 1,p(�;R3) + ‖Cof∇yk‖W 1,q (�;R3×3) + ‖ det∇yk‖W 1,r (�)

+‖(det∇yk)−s‖L1(�)

)
<∞. (12)

Hence, by standard results on weak convergence of minors, see, e.g., [14, Thm. 7.6-
1], there are (not explicitly labeled) subsequences such that

yk ⇀ y in W 1,p(�;R3), Cof∇yk ⇀ Cof∇y in Lq(�;R3×3),

det∇yk ⇀ det∇y in Lr(�)

for k →∞. Moreover, since bounded sets in uniformly convex Sobolev spaces are
weakly sequentially compact,

Cof∇yk ⇀ H in W 1,q (�;R3×3), det∇yk ⇀ D in W 1,r (�) (13)

for someH ∈ W 1,q (�;R3×3) andD ∈ W 1,r (�). Since the weak limit is unique, we
have H = Cof∇y and D = det∇y. By compact embedding, also Cof∇yk → H in
Lq(�;R3×3) and hence we obtain a (not explicitly labeled) subsequence such that,
for k→∞,

Cof∇yk → Cof∇y a.e. in �. (14)

Since, by Cramer’s formula, det(Cof∇y) = (det∇y)2, we have, for k→∞, that

det∇yk → det∇y a.e. in �. (15)

Next we show that y belongs to the set of admissible functions A. Notice that
det∇y ≥ 0 since det∇yk > 0 for any k ∈ N. Further, the conditions (10), (11), (12),
and the Fatou lemma imply that

+∞ > lim inf
k→∞ I (θ, yk)+ �(yk) ≥ lim inf

k→∞

∫
�

1

(det∇yk(x))s dx

≥
∫
�

1

(det∇y(x))s dx.

Hence, inevitably, det∇y > 0 almost everywhere in � and (det∇y)−s ∈ L1(�).
Since the trace operator is continuous, we obtain that y ∈ A.
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By Cramer’s rule, the inverse of the deformation gradient satisfies, for almost all
x ∈ � and k→∞, that

(∇yk(x))−1 = (Cof∇yk(x))�
det∇yk(x) −→ (Cof∇y(x))�

det∇y(x) = (∇y(x))−1. (16)

Notice that, for almost all x ∈ �,

sup
k∈N

|∇yk(x)| = sup
k∈N

det∇yk(x) |((Cof(∇yk(x)))−1))�|

≤ sup
k∈N

3

2
det∇yk(x) |(∇yk(x))−1|2 <∞

because of the pointwise convergence of {det∇yk} and (16).
Due to (16), we have, for almost all x ∈ � and k→∞, that

∇yk(x) = ((Cof(∇yk(x))−1)� det∇yk(x) −→ ((Cof(∇y(x))−1)� det∇y(x)
= ∇y(x),

where we have used that the cofactor of some matrix is invertible whenever the
matrix itself is invertible too. As the Lebesgue measure on � is finite, we get by the
Egoroff theorem, c.f. [23, Thm. 2.22],

∇yk → ∇y in measure. (17)

Since Ŵ (θ, ·) is bounded from below and continuous on matrices with positive
determinants and Ŵ (θ, F, ·, ·) is convex, we may use [23, Cor. 7.9] to conclude,
from (17) and (13), that

∫
�

Ŵ(θ,∇y(x),∇ Cof∇y(x),∇ det∇y(x)) dx

≤ lim inf
k→∞

∫
�

Ŵ(θ,∇yk(x),∇ Cof∇yk(x),∇ det∇yk(x)) dx .

To pass to the limit in the functional −�, we exploit its weak lower semicontinuity.
Therefore, the whole functional I is weakly lower semicontinuous along {yk} ⊂ A
and hence y ∈ A is a minimizer of I (θ, ·).
Remark 2 Note that the pointwise convergence (15) of the determinant, necessary
for obtaining the crucial convergence in (17), was not achieved by compact
embedding, as it was done for Cof∇y in (14). Hence, the coercivity in ∇[det∇y]
is of minor importance and can be relaxed, provided the function Ŵ from (8) does
not depend on its last argument, c.f. [10, Prop. 5.1]. On the other hand, although only
∇[Cof∇y] is necessary for regularizing the whole problem, making the functional
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in (8) dependent also on ∇[det∇y] may be interesting from the applications point
of view.

Let L3 denote the Lebesgue measure in R
3. If p > 3 and y ∈ W 1,p(�;R3)

is such that det∇y > 0 almost everywhere in �, then the so-called Ciarlet-Nečas
condition

∫
�

det∇y(x) dx ≤ L3(y(�)), (18)

derived in [15], ensures almost everywhere injectivity of deformations. We also
refer to [28, Sec. 6, Thm.2] and to [3] for other conditions ensuring injectivity of
deformations, requiring, however, a prescribed Dirichlet boundary datum on the
whole ∂�, which is difficult to ensure in a physical lab. If

|∇y|3
det∇y ∈ L

δ(�) (19)

for some δ > 2 and (18) holds, then we even get invertibility everywhere in � due
to [30, Theorem 3.4]. Namely, this then implies that y is an open map. Hence, we
get the following corollary of Proposition 1.

Corollary 1 Let � ⊂ R
3 be a bounded Lipschitz domain, and let � = �0 ∪ �1

be an H2-measurable partition of � = ∂� with the area of �0 > 0. Let further
� : W 1,p(�;R3) → R be a weakly upper semicontinuous functional and J as
in (8) be gradient polyconvex on � such that Ŵ satisfies (10). Finally, let p > 6,
q ≥ p

p−1 , r > 1, s > 2p/(p − 6), and assume that, for some given measurable

function y0 : �0 → R
3, the following set

A : = {y ∈ W 1,p(�;R3) : Cof∇y ∈ W 1,q (�;R3×3), det∇y ∈ W 1,r (�),

(det∇y)−s ∈ L1(�), det∇y > 0 a.e. in �, y = y0 on �0, (18) holds}

is nonempty. If infA I <∞ for I from (9), then the functional I has a minimizer on
A which is injective everywhere in �.

A simple example of an energy density which satisfies the assumptions of
Proposition 1 and Corollary 1 is

Ŵ (θ, F,�1,�2)

=
⎧⎨
⎩
W(θ, F )+ ε

(|F |p + |CofF |q + (detF)r + (detF)−s + |�1|q + |�2|r
)
, if detF > 0,

+∞, otherwise,

for W defined in (5).
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Remark 3 (Gradient Polyconvex Materials and Smoothness of Stress) Gradient
polyconvex materials enable us to control regularity of the first Piola-Kirchhoff
stress tensor by means of smoothness of the Cauchy stress. Assume that the
Cauchy stress tensor T y : y(�) → R

3×3 is Lipschitz continuous, for instance.
If Cof∇y : � → R

3×3 is Lipschitz continuous too, then the first Piola-Kirchhoff
stress tensor P inherits the Lipschitz continuity from T y because

P(x) := T y(xy)Cof∇y(x),

where xy := y(x). In a similar fashion, one can transfer Hölder continuity of T y to
P via Hölder continuity of x 
→ Cof∇y(x).

4 Evolution

If the loading changes in time or if the boundary condition becomes time-dependent,
then the specimen evolves as well. We consider here the case, in which evolution is
connected with energy dissipation. Experimental evidence shows that considering a
rate-independent dissipation mechanism is a reasonable approximation in a wide
range of rates of external loads. We hence need to define a suitable dissipation
function.

Since we consider a rate-independent processes, this dissipation will be
positively one-homogeneous. We associate the dissipation with the magnitude
of the time derivative of the dissipative variable z ∈ R

M+1, where M ∈ N, i.e.,
with |ż|M+1, where | · |M+1 denotes a norm on R

M+1 (in our setting, the internal
variable z can be seen as a vector of volume fractions of austenite and M variants
of martensite). Therefore, the specific dissipated energy associated with a change
from state z1 to z2 is postulated as

D(z1, z2) := |z1 − z2|M+1. (20)

Hence, for zi : �→ R
M+1, i = 1, 2, the total dissipation reads

D(z1, z2) :=
∫
�

D(z1(x), z2(x)) dx,

and the total D-dissipation of a time-dependent curve z : t ∈ [0, T ] 
→ z(t), where
z(t) : �→ R

M+1 is defined as

DissD(z, [s, t]) := sup
{ N∑
j=1

D(z(ti−1), z(ti)) : N ∈ N, s = t0 ≤ . . . ≤ tN = t
}
.
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Let Z denote the set of all admissible states of internal variables z : �→ R
M+1

and A be the set of admissible deformations as before. For a given triple (t, y, z) ∈
[0, T ] ×A× Z , we define the total energy of the system by

E(t, θ, y, z) =
{
J (θ, y)− L(t, y), if z = λ(∇y) a.e. in �,
+∞, otherwise,

where L(t, ·) is a functional on deformations expressing time-dependent loading
of the specimen, and λ is defined in (6).

4.1 Energetic Solution

Suppose, that we look for the time evolution of t 
→ y(t) ∈ A and t 
→ z(t) ∈ Z :=
L∞(�,RM+1) during a process on a time interval [0, T ], where T > 0 is the time
horizon. We use the following notion of solution from [25], see also [40, 41].

Definition 2 (Energetic Solution) Let an energy E : [0, T ]×(0,+∞)×A×Z →
R∪ {+∞} and a dissipation distance D : Z ×Z → R∪ {+∞} be given. The set of
admissible configurations is defined as

Q := {(y, z) ∈ A× Z : λ(∇y) = z a.e. in �}.

We say that (y, z) : [0, T ] → Q is an energetic solution to (Q, E,D), if the mapping
t 
→ ∂tE(t, θ, y(t), z(t)) is in L1(0, T ) and if, for all t ∈ [0, T ], the stability
condition

E(t, θ, y(t), z(t)) ≤ E(t, θ, ỹ, z̃)+D(z(t), z̃) ∀(ỹ, z̃) ∈ Q (S)

and the energy balance

E(t, θ, y(t), z(t))+ DissD(z; [s, t]) = E(s, θ, y(s), z(s))

+
∫ t

s

∂tE(a, θ, y(θ), z(θ)) da
(E)

are satisfied for any 0 ≤ s < t ≤ T .

An important role is played by the set of so-called stable states, defined for each
t ∈ [0, T ] as

S(t) := {(y, z) ∈ Q : E(t, θ, y, z) < +∞ and E(t, θ, y, z) ≤ E(t, θ, ỹ, z̃)
+D(z, z̃) ∀(ỹ, z̃) ∈ Q} .
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4.2 Existence of an Energetic Solution

A standard way how to prove the existence of an energetic solution is to construct
time-discrete minimization problems and then to pass to the limit. Before we give
the existence proof we need some auxiliary results. For given N ∈ N and for
0 ≤ k ≤ N , we define the time increments tk := kT /N . Furthermore, we use
the abbreviation q := (y, z) ∈ Q. We assume that there exists an admissible
deformation y0 being compatible with the initial volume fraction z0, i.e., q0 :=
(y0, z0) ∈ S(0). For k = 1, . . . , N , we define a sequence of minimization problems

minimize Ik(θ, y, z) := E(tk, θ, y, z)+D(z, zk−1), (y, z) ∈ Q. (21)

We denote a minimizer of (21), for a given k, as qNk := (yk, zk) ∈ Q for 1 ≤ k ≤ N .
The following lemma shows that a minimizer always exists if the elastic energy is
not identically infinite on Q:

Lemma 1 Let � ⊂ R
3 be a bounded Lipschitz domain, and let � = �0 ∪ �1

be an H2-measurable partition of � = ∂� with the area of �0 > 0. Let J , of
the from (8), be gradient polyconvex on � and such that the stored energy density
Ŵ satisfies (10). Moreover, let L ∈ C1[0, T ] ×W 1,p(Ω;R3) be such that, for some
C > 0 and 1 ≤ α < p,

L(t, y) ≤ C‖y‖α
W 1,p , for all t ∈ [0, T ]

and y 
→ −L(t, y) is weakly lower semicontinuous on W 1,p(�;R3) for all t ∈
[0, T ]. Finally, let p > 6, q ≥ p

p−1 , r > 1, s > 2p/(p − 6).
If there is (y, z) ∈ Q such that Ik(y, z) <∞ for Ik from (21), then the functional

Ik has a minimizer qNk = (yk, zk) ∈ Q such that yk is injective everywhere in �.
Moreover, qNk ∈ S(tk) for all 1 ≤ k ≤ N .

Proof Since the discretized problem (21) has a purely static character, we can
follow the proof of Proposition 1. Let {(ykj , zkj )}j∈N ⊂ Q be a minimizing sequence.
As

∇ykj −→ ∇yk strongly in Lp̃(�,R3×3) as j →∞

for every 1 ≤ p̃ < p and λ ∈ C(R3×3,RM+1) is bounded, we obtain that

zkj = λ(∇ykj ) −→ λ(∇yk) strongly in Lp̃(�,RM+1) as j →∞.

Since ‖zkj‖L1(�,RM+1) is uniformly bounded in j , there is a subsequence (not

explicitly relabeled) such that zkj
∗
⇀ μk in Radon measures on �. This shows that

zk := μk = λ(∇yk) and hence qNk = (yk, zk) ∈ Q. Since D(·, zk−1) is convex,
we obtain that qNk is indeed a minimizer of Ik . Moreover, yk is injective everywhere
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by the reasoning used for proving Corollary 1. The stability qNk ∈ S(tk) follows by
standard arguments; see, e.g., [25].

Denoting by B ([0, T ];A) the set of bounded maps t ∈ [0, T ] 
→ y(t) ∈ A,
we have the following result showing the existence of an energetic solution to the
problem (Q, E,D):
Theorem 1 Let θ > 0 be fixed. Let T > 0 and let the assumptions in Lemma 1 be
satisfied. Moreover, let the initial condition be stable, i.e., q0 := (y0, z0) ∈ S(0).
Then there is an energetic solution to (Q, E,D) satisfying q(0) = q0 and such that
y ∈ B ([0, T ];A), z ∈ BV

([0, T ];L1(�;RM+1)
) ∩ L∞(0, T ;Z), and such that

for all t ∈ [0, T ] the identity λ(∇y(t, ·)) = z(t, ·) holds a.e. in �. Moreover, for all
t ∈ [0, T ], the deformation y(t) is injective everywhere in �.

Proof Let qNk := (yk, zk) be the solution of (21), which exists by Lemma 1, and let
qN : [0, T ] → Q be given by

qN(t) :=
{
qNk , if t ∈ [tk, tk+1[ if k = 0, . . . , N − 1,

qNN , if t = T .

Following [25], we get, for some C > 0 and for all N ∈ N, the estimates

‖zN‖BV (0,T ;L1(�;RM+1)) ≤ C, ‖zN‖L∞(0,T ;BV (�;RM+1)) ≤ C, (22a)

‖yN‖L∞(0,T ;W 1,p(�;R3)) ≤ C, (22b)

as well as the following two-sided energy inequality

∫ tk

tk−1

∂tE(a, θ, qNk ) da ≤ E(tk, θ, qNk )+D(zk, zk−1)− E(tk−1, θ, q
N
k−1)

≤
∫ tk

tk−1

∂tE(a, θ, qNk−1) da. (23)

The second inequality in (23) follows since qNk is a minimizer of (21) and by
comparison of its energy with q := qNk−1. The lower estimate is implied by the
stability of qNk−1 ∈ S(tk−1), see Lemma 1, when compared with q̃ := qNk . By this
inequality, the a-priori estimates and a generalized Helly’s selection principle [41,
Cor. 2.8], we get that there is indeed an energetic solution obtained as a limit for
N →∞.

Let us comment more on the two main properties of the minimizer, namely that it
is orientation-preserving and injective everywhere in �. The condition det∇y > 0
a.e. in � follows from the fact that if tj → t , (y(j), z(j)) ∈ S(tj ) and (y(j), z(j)) ⇀



148 M. Horák et al.

(y, z) in W 1,p(�;R3)×BV (�;RM+1), then (y, z) ∈ S(t). Indeed, we have z(j) →
z in L1(�;RM+1) in our setting and hence for all (ỹ, z̃) ∈ Q, we get

E(t, θ, y, z) ≤ lim inf
j→∞ E(tj , θ, y(j), z(j)) ≤ lim inf

j→∞ (E(tj , θ, ỹ, z̃)+D(z(j), z̃))

= E(t, θ, ỹ, z̃)+D(z, z̃).

In particular, as E(tj , θ, ỹ, z̃) is finite for some (ỹ, z̃) ∈ Q, we get E(t, θ, y, z) <
+∞ and thus det∇y > 0 a.e. in � in view of (10).

To prove injectivity, we profit again from the fact that quasistatic evolution of
energetic solutions is very close to a purely static problem. In view of (22b), we
obtain, for each t ∈ [0, T ], all necessary convergences that were used in the proof
of Corollary 1 to pass to the limit in the conditions (18) and (19).

5 Computational Experiments

In this section, we demonstrate computational performance of the above model on
a numerical experiment. We will use a St.Venant-Kirchhoff -like form of the stored
energy of each particular phase variant, which allows for an explicit reference to
measured data and can easily be applied to various materials. We consider that
the material can occur in M + 1 stress-free configurations that are determined by
distortion matrices Fi , i = 0, . . . ,M , which are independent of θ , i.e., thermal
expansion is neglected. The austenite well is defined by F0 = I.

The frame-indifferent free energy of particular phase (variant) is considered as
a function of Green strain tensor ε� related to the distortion of this phase(variant).
In the simplest case (cf. [47, Sect. 6.6], or [35], e.g.), one can consider a function
quadratic in terms of ε� of the form (if detF > 0)

W�(F, θ) =
d∑

i,j,k,l=1

ε�ijC�ijklε�kl + d�(θ)+ α((detF)−2 + |∇[CofF ]|2),

ε� = (F�� )−1F�FF−1
� − I

2
, (24)

where C� = {C�ijkl} is the fourth-order tensor of elastic moduli satisfying the usual
symmetry relations depending also on symmetry of the specific phase(variant) � and
d� is some offset. The overall stored energy is assembled as in (5).

The data required for the potential are available for many alloys, except perhaps
the measurements of the elastic tensor C�, which are standardly done (with few
exceptions) only for the austenite so that elastic response of the martensitic variants
has to be extrapolated. The heat capacities c� are usually obtained experimentally,
while the offsets d� are then to be fitted to get the agreement with energetical
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equilibrium between martensite and austenite at a specific temperature. Typically,
heat capacity of austenite is larger than that of martensite, which is just what causes
the shape memory effect.

We performed our computation on a prismatic single crystal of Ni2MnGa in a
specific orientation, mostly (1,0,0). This alloy (or, more precisely, intermetallic)
undergoes a cubic/tetragonal transformation, which is relatively easy to model
because the martensite forms only 3 variants, i.e., M = 3.

Following [12] we describe the variants of martensite by F1 = diag(η2, η1, η1),
F2 = diag(η1, η2, η1) and F3 = diag(η1, η1, η2) where η1 = 0.9512 and η2 =
1.130. The stretch tensor of the austenite is the identity, i.e., F0 = diag(1, 1, 1).
The Euclidean distance between any two variants of the martensite is about 0.253
while the distance between the austenite and any variant of the martensite is 0.147.
The distances here are calculated as the Frobenius norms of the corresponding right
Cauchy-Green strains. Hence, we can define Ni (Ci) = {C ∈ R

3×3 : |C−Ci | < εi}
for some εi > 0. Then

dist(C,Ni (Ci)) =
{

0 if |C − Ci | < εi,

|C − Ci | − εi otherwise.

We can take εi = 0.07 for every 0 ≤ i ≤ 3. This formula is then used in (6). As the
elastic moduli are much bigger than the transformation strains, the volume fraction
λ will have one dominant component because ∇y must be pointwise in a small
vicinity of some energy well. Using [5] we can see that the martensitic variants are
rank-one connected with each other while none of them is rank-one connected with
the austenite. Rank-one connection allows for the formation of a planar interface
between two martensitic variants.

We prescribe the dissipation energy density as 0.35 MPa for transformations
between the austenite and any martensitic variant [1] and almost no dissipation is
assumed for transformations among martensitic variants. This can be done by setting
|z|4 := ∑3

i=0 γi |zi | in (20) and taking γ0 = 35 × 104 Pa and γi = 1 Pa if i �= 0.
The equilibrium temperature θ0 of the austenite and the martensite is about 288 K.
The Clausius-Clapeyron constant describing the rate of the increase of the bottoms
of the martensitic wells with respect to the austenite is about 0.2 MPa/K. Therefore,
we can take d�(θ) = 0.2 MPa (θ − 288 K) for � > 0 and d0(θ) = 0.

Elastic moduli of the austenite are taken zero but C0
1111 = 136 GPa, C0

1122 =
C0

2211 = 92 GPa, C0
2323 = C0

2332 = C0
3223 = C0

3232 = 102 GPa.
We consider a simple problem of uniaxial tension of a three-dimensional bar, i.e.,

the horizontal displacements are fixed at the left end and all the nodes at the right end
are loaded by increasing horizontal displacements, while the vertical displacements
at the both ends are prescribed such as the rigid body modes are removed but the bar
is free to deform laterally. In the case the bar is considered as perfectly uniform, the
onset of phase transition from austenite to martensite is reached for all the points at
the same time. This situation can be studied analytically, assuming zero dissipation
for simplicity. First, we know that the only nonzero component of the second Piola-
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Kirchhoff stress tensor S� is S�33 calculated as

S�33 = C33ε
�
33 + C23ε

�
22 + C13ε

�
11. (25)

The condition of zero stress components S�11 and S�22 can be written as

S�11 = C11ε
�
11 + C12ε

�
22 + C13ε

�
33 = 0 (26)

S�22 = C12ε
�
11 + C22ε

�
22 + C23ε

�
33 = 0, (27)

whereCij are components of the stiffness tensor in Voigt notation, i.e.,C12 = C21 =
C2211 = C1122, C22 = C2222, C23 = C23 = C2233 = C3322, etc. Solution of the
above system of two equations is given as

ε�11 = ε�22 (28)

ε�22 = −
C23

C22 + C12
ε�33. (29)

Substituting back to (25) we arrive at

S�33 =
(
C33 − 2

C2
23

C22 + C23

)

︸ ︷︷ ︸
K

ε�33. (30)

The transformation from austenite to the first variant of martensite happens when
the energy of both phases is the same

W0(F ) = W3(F ) (31)

which can be written in terms of strain as

K(ε0
33)

2 = K(ε3
33)

2, (32)

where the strains are calculated as

ε0
33 =

1

2

(
F 2

33 − 1
)

(33)

ε3
33 =

1

2

(
F 2

33

η2
2

− 1

)
. (34)
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Therefore, the critical stretch Fc of the bar at the onset of transformation from
austenite to martensite can be determined as

Fc =
√

2η2
2

η2
2 + 1

(35)

for the given value of η2 = 1.13, the stretch is Fc = 1.059, and the strains are

ε0
33 =

1

2

(
F 2
c − 1

)
= 0.0608 (36)

ε3
33 =

1

2

(
F 2
c

η2
2

− 1

)
= −0.0608. (37)

The solution is represented graphically in Fig. 1.
Moreover, also remaining nonzero components of the strain tensor before and

after transformation can be calculated as

ε0
22 = −

C23

C33 + C23
ε0

33 = −0.608
92

136+ 92
= −0.0245 (38)

ε3
22 = −

C23

C33 + C23
ε1

11 = 0.608
92

136+ 92
= 0.0245 (39)

1 1.059 1.13 1.2
0

2

4

6

F33

W
�

[G
P

a
]

Austenite � = 0
Martensite � = 3

Fig. 1 Uniaxial tension: free energy of particular phase(variant)s, namely W0 and W3 in terms of
F33
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and the stretches in the lateral direction before and after deformation are therefore
given as

F 0
22 =

√
2ε0

22 + 1 = 0.9752 (40)

F 3
22 =

√
2ε3

22 + 1 = 1.0242. (41)

Let us now calculate also the stress at the point of transition from austenite to
martensite. The first Piola-Kirchhoff stresses right before and after the transforma-
tion, i.e., P 0

33 and P 1
33 are calculated as

P 0
33 = FcS

0
33 = Fc

(
C33 − 2

C2
23

C22 + C23

)
ε0

33 (42)

= 1.059

(
136− 2

92

136+ 92

)
0.0608 = 8.705 GPa. (43)

P 3
33 = FcS

3
33 = Fc

(
C33 − 2

C2
23

C22 + C23

)
ε1

33 (44)

= 1.059

(
136− 2

92

136+ 92

)
(−0.0608) = −8.705 GPa. (45)

Interestingly, jump from tension to compression occurs during the transformation,
see Fig. 2 for the dependence of the first Piola-Kirchhoff stress on the stretch.

1 1.059 1.13 1.2
−10

−5

0

5

10

F33

P
33

[G
P
a]

Fig. 2 Uniaxial tension: first Piola-Kirchoff stress—stretch graph
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However, in reality, the material is never homogeneous and uniform but shows
certain variation in material properties. Such a variation can trigger the transfor-
mation from austenite to martensite only in a small part of the bar. Nonetheless,
such a uniaxial state would violate the equilibrium condition as well as the
compatibility condition since the distortion matrices F0 and F3 are not rank-1
connected. Therefore, the bar must deform in a more complex way that is in general
not possible to study analytically. Therefore, we simulate this case by the finite
element method.

The proposed material model enhanced by gradient polyconvexity has been
implemented into a finite element code OOFEM [45]. The implementation of
gradient polyconvexity was based on the so-called micromorphic approach, see [31]
for more details. Thus, in the present example we perform a uniaxial tension test of
a bar with η2 considered as a random variable with a Gaussian distribution, specified
by mean μ = 1.13 and standard deviation parameter σ = 0.01. As expected,
the martensite transformation starts in several separated parts of the bar leading
to violation of uniaxial stress state resulting into bending of the bar. Moreover, since
the variants � = 0 and � = 3 are not rank-1 connected, an interface consisting of the
other two variants of martensite is created. The transformation process is depicted
in Fig. 3 where gradual change from the initial austenite state to the final state of
martensite variant � = 3 is shown.

Fig. 3 Uniaxial tension test: evolution of a austenite-martensite transformation form (a) to (f).
Blue color represents the austenite variant, while the remaining colors represent different variants
of martensite according to the color bar
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Note that the solution was obtained by the Newton-Raphson procedure which
generally leads to a critical point rather than the global minima. Since the present
problem involves several local minima, a more robust technique will be further
implemented into OOFEM to allow development of austenite-martensite laminates
without perturbing material parameters.
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