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Abstract

We consider a quasistatic nonlinear model in thermoviscoelasticity at a finite-
strain setting in the Kelvin–Voigt rheology, where both the elastic and viscous stress
tensors comply with the principle of frame indifference under rotations. The force
balance is formulated in the reference configuration by resorting to the concept of
nonsimple materials, whereas the heat transfer equation is governed by the Fourier
law in the deformed configurations. Weak solutions are obtained by means of a
staggered in-time discretization where the deformation and the temperature are
updated alternatingly. Our result refines a recent work by Mielke and Roubíček
(Arch Ration Mech Anal 238:1–45, 2020) since our approximation does not re-
quire any regularization of the viscosity term. Afterwards, we focus on the case of
deformations near the identity and small temperatures, and we show by a rigorous
linearization procedure that weak solutions of the nonlinear system converge in a
suitable sense to solutions of a system in linearized thermoviscoelasticity. The same
property holds for time-discrete approximations and we provide a corresponding
commutativity result.

1. Introduction

Nonlinear and large strain continuum mechanics has become a thriving field of
research over the last few decades; it is still subject of important advancements and,
at the same time, offers many challenging open questions. For instance, rigorous
studies on large strain viscoelastic materials [19,24,26,31] or nonlinear models
in thermoviscoelasticity [33] have been initiated only recently. Besides analytical
intricacies, the usage of large strain models in engineering practice is often im-
peded due to nonconvex behavior that complicates numerical implementations. On
many occasions, however, linearized models are still sufficient to describe observed
phenomena and are significantly easier to treat, both analytically and numerically.
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Roughly speaking, heuristic calculations suggest that, if the deformation of the body
is “close” to the identity, nonlinear models can be replaced by linear ones with a
negligible error. Clearly, the reliability of such predictions depends on the rigorous
derivation of simplified linearized models, e.g., via �-convergence [7,12]. This is
an intensive research program that has been initiated in the context of linearized
elastostatics in [13]. Subsequently, this work was extended in various directions,
among others, models for incompressible materials [23,27,28], atomistic models
[8,40], or problems without Dirichlet boundary conditions [29] have been consid-
ered. For multiwell energies allowing for phase transitions we refer to [1,14,39],
and we mention also settings beyond elasticity such as plasticity [34] or fracture
[18,20]. As to evolutionary models, we refer to [19] where viscoelasticity in the
Kelvin–Voigt rheology and its linearized version are treated.

The goal of this contribution is to couple the nonlinear equations of viscoelastic-
ity with a heat transfer equation. We first analyze a corresponding frame-indifferent
and thermodynamically-consistent model of thermoviscoelasticity at large strains,
and refine the results obtained recently by Mielke and Roubíček [33]. Afterwards,
in the spirit of the isothermal result [19], we pass to a linearized limit in terms of
rescaled displacement fields and different regimes of rescaled temperatures.

We start by introducing the large strain model. Neglecting inertia effects, a non-
linear viscoelastic material in Kelvin–Voigt rheology obeys the following system
of equations

− div
(
∂FW (∇ y, θ) + ∂Ḟ R(∇ y,∇ ẏ, θ)

) = f in [0, T ] × �. (1.1)

here [0, T ] is a process time interval with T > 0, � ⊂ R
d is a bounded domain

representing the reference configuration, y : [0, T ] × � → R
d is a deformation

mapping, ∇ y is the deformation gradient, θ denotes the temperature, W : Rd×d ×
[0,∞) → R∪{+∞} is a stored energy density, which represents a potential of the
first Piola–Kirchhoff stress tensor ∂FW , and F ∈ R

d×d is the placeholder of ∇ y.
Finally, R : Rd×d ×R

d×d ×[0,∞) → R denotes a (pseudo)potential of dissipative
forces, where Ḟ is the time derivative of F , and f : [0, T ] × � → R

d is a volume
density of external forces acting on �.

The density W respects frame indifference under rotations and positivity of
the determinant of the deformation gradient, i.e., local non-self-penetration is real-
ized. (In contrast to [24], we do not consider conditions implying global non-self-
penetration.) At the same time, we focus on physically correct viscous stresses,
i.e., as observed by Antman [3], R must comply with a time-continuous frame
indifference principle meaning that for all F it holds that

R(F, Ḟ, θ) = R̂(C, Ċ, θ)

for some nonnegative function R̂, where C := F�F and Ċ := ḞT F + FT Ḟ .
In contrast to the rapidly developed static theory at large strains, already in the

isothermal case existence of solutions to (1.1) remains a challenging problem and
results for models respecting the physically relevant frame indifference for both
W and R are scarce. We refer, e.g., to [26] for local in-time existence or to [15]
for the existence of measure-valued solutions. To date, weak solutions in finite
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strain isothermal viscoelasticity [19,24,33] can only be guaranteed by using the
concept of second-grade nonsimple materials where the stored energy density (and
consequently the first Piola–Kirchhoff stress tensor) additionally depends on the
second gradient of the deformation. This idea was first introduced by Toupin [41,42]
and proved to be useful in mathematical continuum mechanics, see e.g. [4,5,32,35].
In this spirit, we consider a version of (1.1) for nonsimple materials where the stored
energy density depends also on the second gradient of y, and (1.1) is replaced by

− div
(
∂FW (∇ y, θ)−div(∂GH(∇2y))+∂Ḟ R(∇ y,∇ ẏ, θ)

)
= f in [0, T ]×�,

(1.2)
which corresponds to an additional convex term

∫
�
H(∇2y)dx in the stored energy.

Let us mention that a main justification of this model lies in the observation that, in
the small strain limit and under suitable scaling, the problem leads to the standard
system of linear viscoelasticity without second gradient [19].

In the present contribution, we focus on a nonlinear coupling of the system
(1.2) with a heat transfer equation of the form

cV (∇ y, θ) θ̇ = div(K(∇ y, θ)∇θ) + ∂Ḟ R(∇ y,∇ ẏ, θ) : ∇ ẏ

+ θ∂FθW
cpl(∇ y, θ) : ∇ ẏin [0, T ] × �, (1.3)

where ∂Fθ := ∂F∂θ , W cpl denotes a thermo-mechanical coupling potential,
cV (F, θ) = −θ∂2

θ W
cpl(F, θ) is the heat capacity, K denotes the matrix of the

heat-conductivity coefficients, and the last term plays the role of an adiabatic heat
source. This corresponds to heat transfer modeled by the Fourier law in the deformed
configuration which is however pulled back to the reference configurations, whence
K depends on the deformation gradient. Here, following [33], we assume a rather
weak thermal coupling by using the splitting of the free energy W via the explicit
ansatz

W (F, θ) = W el(F) + W cpl(F, θ), (1.4)

implying that ∂θW = ∂θW cpl. The coupled system (1.2)–(1.3) is equipped with
suitable initial and boundary conditions, see (2.17)–(2.18) below.

Thermoviscoelasticity is a notoriously difficult problem already at small strains,
e.g., there is no obvious variational structure of thermal part due to the low regular-
ity of data. New developments in the the L1-theory for the nonlinear heat equation
[9,10] paved the way to advancements in small strain thermoviscoelasticity (for ex-
ample, see [6,11,37]) which eventually culminated in the analysis of a physically
sound large-strain model by Mielke and Roubíček [33]. We refer to [33, Introduc-
tion; items (α)–(ε)] for the main properties and challenges for this model which
coincides with ours up to minor points, see Remark 2.1. Their existence result is
based on a time-incremental approach for a regularized system which does not
comply with the above mentioned frame indifferent principles, e.g., in (1.2) a term
λ∇ ẏ is added for λ > 0. Then, they first pass to the time-continuous limit in the
regularized problem and eventually recover the original system in the limit of the
vanishing regularization parameter λ.
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The first result of our work (Theorem 2.3) revisits their study by proposing a
slightly different semidiscretization in time which directly approximates the PDE
system in the limit for vanishing time steps and comes along without any regu-
larization. Although establishing the same existence result on weak solutions, our
approach sheds new light on the issue as we propose a time-discrete approxima-
tion scheme complying with frame indifference. This, combined with a spatial
discretization, see e.g. [25, Section 9.3], could be the basis for a numerical imple-
mentation. As in [33], our scheme is staggered, i.e., first the deformation is updated
at fixed temperature from the previous time step and then the temperature is up-
dated. Our scheme differs in the usage of explicit or implicit steps, i.e., whether in
certain terms the ‘old’ or the ‘new’ temperature is used, see Remark 2.4. By means
of delicate estimates on the coupling potential, we are hereby able to establish the
necessary a priori bounds without any regularization. At this point, we derive a pri-
ori estimates for different scalings of the elastic strains and the temperature which
is at the basis of our subsequent analysis on small-strain limits.

In the second part of our work, we are interested in the case of small strains
and temperatures, i.e., when ∇u := ∇ y − Id is of order ε for some small ε > 0
and θ is of order εα for any exponent α > 0. Here, u := y − id is the displacement
corresponding to y with id and Id standing for the identity map and identity matrix,
respectively. Such properties are certainly reasonable if initial values and boundary
values for the deformation and the temperature are close to the identity or zero,
respectively. Therefore, it is convenient to introduce the rescaled displacement
uε = ε−1(y − id) and rescaled temperature με = ε−αθ , and to replace f by ε f .
We write (1.2)–(1.3) in terms of the rescaled quantities and multiply (1.2) with ε−1

and (1.3) with ε−α . Then, formally, we can pass to the limit and obtain the system

− div
(
CWe(u) + CDe(u̇) + B

(α)μ
) = f,

c̄V μ̇ − div(K0∇μ) = C
(α)
D e(u̇) : e(u̇), (1.5)

where CW := ∂2
FW

el(Id) is the tensor of elastic constants (W el is defined in (1.4)),
CD := ∂2

Ḟ
R(Id, Ḟ, 0) is the tensor of viscosity coefficients, B(α) represents a

thermal expansion matrix, c̄V is the heat capacity at zero temperature and the stress
free material state, and K0 := K(Id, 0). Finally, e(u) := (∇u+ (∇u)�)/2 denotes
the linear strain tensor and e(u̇) the strain rate. By different scaling properties of
the two equations, it turns out that the limit is α-dependent and, as we point out
later, only meaningful in the regime α ∈ [1, 2]. The matrix B

(α) is only active
for α = 1 and in this case it is related to the coupling potential, namely B

(α) =
∂FθW cpl(Id, 0). On the other hand, C(α)

D is nonzero only for α = 2 and then
it coincides with CD . Interestingly, although the nonlinear thermoviscoelasticity
system is written for a nonsimple material, in the limit we obtain linear equations
without spatial gradients of e(u). This relies on the fact that we assume H to have
super-quadratic growth at 0. Formal derivations of such PDE systems is not new and
can be found, e.g., in [21, Section 59]. The second main contribution of our work
(Theorem 2.7) is to make this limit passage rigorous, i.e., we show that solutions to
the nonlinear system (1.2)–(1.3) converge in a suitable sense to the unique solution
of the linear system (1.5) as ε → 0. Besides this convergence result, we also
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get analogous convergences for time-discretized problems, and we confirm that
convergences for vanishing time step and ε → 0 commute, see Theorem 2.8.

To the best of on knowledge, this is the first linearization result of a mechanical
model coupled with heat transfer in the material. We perform linearization near
the natural (i.e., stress free) state and zero temperature. Without further details,
let us however mention that by a shifting argument our techniques would allow to
linearize about a fixed, positive temperature θc, whenever the initial and boundary
data lie above θc and the coupling potential W cpl(F, θ) vanishes for θ � θc.

We now give an outline of the paper and present some fundamental ingredients
of the proof. After some basic notations, we introduce the nonlinear setting in
Sect. 2.1. In Sect. 2.2, we formulate our semi-discrete approximation result in the
nonlinear setting and briefly highlight the differences to the scheme in [33], see
Remark 2.4. In Sect. 2.3, we introduce the linearized setting and present our results
on convergence of solutions in the nonlinear-to-linear passage.

In Sects. 3.1–3.2, we address the well-definedness of the staggered time-
incremental scheme. The core of our approach is an inductive bound on the to-
tal energy, see Lemma 3.11: this is achieved by suitably testing the momentum
balance and the heat-transfer equation, adding the two equations, and exploiting
cancellation of the dissipation. In contrast to [33], see particularly [33, Remark
6.1], this cancellation is already possible in the time-discrete setting as we use a
simpler, explicit, thermo-mechanical coupling term in the scheme allowing us to
proceed without the necessity of regularizing terms. This, however, comes at the
expense of the fact that the argument to guarantee nonnegativity of the temperature
in the thermal step is more sophisticated. For this, we need a delicate estimate for
the coupling potential, see Proposition 3.8.

As a preparation for the passage to the linearized system, we need an adaption
of the bound on the total energy, see Sect. 3.3. In fact, due to the different scaling
ε and εα of the mechanical and the heat-transfer equation, the above mentioned
cancellation cannot be used in general for small ε. Thus, novel techniques are
required to tame the contribution of the dissipation including higher integrability
of the temperature variable, see Lemma 3.15 for details. Section 3 is closed with
a priori bounds derived from the energy bound, see Sect. 3.4. As in [33], the main
ingredients here are Gagliardo–Nirenberg interpolation inequalities and special test
functions developed by Boccardo and Gallouët [10] for parabolic equations with
measure-valued right-hand side. For convenience of the reader, almost complete
proofs are provided since in addition to [33] we need scaling invariant estimates in
terms of the small parameter ε.

In Sect. 4 we then address the passage to vanishing time steps in the nonlinear
model. At this point, having settled the a priori estimates, we can essentially follow
[33]. Since we work without regularization terms, however, we need to combine
and adapt the techniques from Sections 5–6 of [33], and therefore we elaborate the
proofs to some extent. Eventually, Sect. 5 is devoted to the linearization. In Sect. 5.1
we first deal with the passage to the time-continuous problem. The strategy in the
proof is similar to the one in the nonlinear setting in Sect. 4, with the additional
challenge that in each term we need to ensure that higher order terms in Taylor
expansions are asymptotically negligible. In particular, we show that contributions
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of the second gradient vanish in the limit. As in the nonlinear setting, strong con-
vergence of the strains and the strain rates is necessary to pass to the limit, see
Lemma 4.5 and Lemma 5.4. Due to rescaling of the equations, however, this is
more demanding in the passage to the linerized setting as higher integrability of
the temperature is needed to control the coupling term, cf. Remark 4.3. Eventu-
ally, Sect. 5.2 is devoted to time-discrete problems which particularly involves a
�-convergence result for the mechanical part, see Proposition 5.7.

2. The Model and Main Results

2.1. The setting and modeling assumptions

In what follows, we use standard notation for Lebesgue and Sobolev spaces.
The lower index + means nonnegative elements, i.e., L2+(�) denotes the convex
cone of nonnegative functions belonging to L2(�) and a similar definition is used
for H1+(�). We also set R+ := [0,+∞). Let a ∧ b := min{a, b} for a, b ∈ R.
Denoting by d � 2 the dimension, we let Id ∈ R

d×d be the identity matrix, and
id(x) := x stands for the identity map on R

d . We define the subsets SO(d) :=
{A ∈ R

d×d : AT A = Id, det A = 1}, GL+(d) := {F ∈ R
d×d : det(F) > 0}, and

R
d×d
sym := {A ∈ R

d×d : AT = A}. Furthermore, F−T := (F−1)T = (FT )−1, and
given a tensor (of arbitrary dimension), |F | will denote its Frobenius norm. We
denote the scalar product between vectors, matrices, or 3rd-order tensors by ·, :,
and

..., respectively. As usual, in the proofs generic constants C may vary from line
to line. If not stated otherwise, constants depend only on d, p > d, �, α > 0,
and the potentials introduced in the sequel. We frequently use a scaled version of
Young’s inequality with constant λ ∈ (0, 1) by which we mean ab � λa p +Cbq/λ
for a, b � 0, exponents p, q � 1 with 1/p + 1/q = 1, and C > 0 large enough.

Consider an open bounded set � ⊂ R
d with Lipschitz boundary � := ∂�. Let

�D, �N be disjoint Borel subsets of � such thatHd−1(�D) > 0, and � = �D∪�N ,
representing Dirichlet and Neumann parts of the boundary, respectively. For p > d,
we introduce the set of admissible deformations by

Yid := {∗}y ∈ W 2,p(�;Rd) : y = id on �D, det(∇ y) > 0 in �, (2.1)

and we say that the absolute temperature θ is admissible if θ ∈ L1+(�). We also
introduce the space

W 2,p
�D

(�;Rd) := {y ∈ W 2,p(�;Rd) : y = 0 on �D}. (2.2)

Next, we discuss our variational setting. In this regard, let c0, C0 with 0 < c0 <

C0 < ∞ be some fixed constants.

2.1.1. Mechanical energy and coupling energy The elastic energy Wel : Yid
→ R+ is given by

Wel(y) :=
∫

�

W el(∇ y)dx, (2.3)
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where W el : GL+(d) → R+ is a frame indifferent elastic energy potential with the
usual assumptions in nonlinear elasticity. More precisely, we require that

(W.1) W el is continuous and C3 in a neighborhood of SO(d);
(W.2) Frame indifference: W el(QF) = W el(F) for all F ∈ GL+(d) and Q ∈

SO(d);
(W.3) Lower bound: W el(F) � c0

(|F |2 + det(F)−q
) − C0 for all F ∈ GL+(d),

where q � pd
p−d .

Adopting the concept of 2nd-grade nonsimple materials, see [41,42], we also con-
sider a strain gradient energy term H : Yid → R+, defined as

H(y) :=
∫

�

H(∇2y)dx, (2.4)

where its potential H : Rd×d×d → R+ satisfies

(H.1) H is convex and C1;
(H.2) Frame indifference: H(QG) = H(G) for all G ∈ R

d×d×d and Q ∈ SO(d);
(H.3) c0|G|p � H(G) � C0(1 + |G|p) and |∂GH(G)| � C0|G|p−1 for all

G ∈ R
d×d×d .

The mechanical energy M : Yid → R+ is then defined as the sum

M(y) := Wel(y) + H(y). (2.5)

Besides the mechanical energy, we introduce a coupling energy Wcpl : Yid ×
L1+(�) → R given by

Wcpl(y, θ) :=
∫

�

W cpl(∇ y, θ)dx,

where W cpl : GL+(d)×R+ → R describes mutual interactions of mechanical and
thermal effects (see e.g. [21]), and satisfies

(C.1) W cpl is continuous and C2 in GL+(d) × (0,∞);
(C.2) W cpl(QF, θ) = W cpl(F, θ) for all F ∈ GL+(d), θ � 0, and Q ∈ SO(d);
(C.3) W cpl(F, 0) = 0 for all F ∈ GL+(d);
(C.4) |W cpl(F, θ) − W cpl(F̃, θ)| � C0(1 + |F | + |F̃ |)|F − F̃ | for all F, F̃ ∈

GL+(d), and θ � 0;
(C.5) For all F ∈ GL+(d) and θ > 0 it holds that

|∂2
FW

cpl(F, θ)| � C0, |∂FθW
cpl(F, θ)| � C0(1 + |F |)

max{θ, 1} ,

c0 � −θ∂2
θ W

cpl(F, θ) � C0.

Notice that, by (C.3) and the second bound in (C.5), ∂FW cpl can be continuously
extended to zero temperatures with ∂FW cpl(F, 0) = 0. For F ∈ GL+(d) and
θ � 0, we define the total free energy potential

W (F, θ) := W el(F) + W cpl(F, θ). (2.6)

We refer to [33, Examples 2.4 and 2.5] for a class of coupling potentials satisfying
all assumptions above.
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2.1.2. Dissipationpotential The dissipation functionalR : Yid×W 2,p
�D

(�;Rd)×
L1+(�) → R+ is defined as

R(ỹ, y − ỹ, θ) :=
∫

�

R(∇ ỹ,∇ y − ∇ ỹ, θ)dx, (2.7)

where R : Rd×d×R
d×d×R+ → R+ is the potential of dissipative forces satisfying

(D.1) R(F, Ḟ, θ) := 1
2 D(C, θ)[Ċ, Ċ] := 1

2 Ċ : D(C, θ)Ċ , where C := FT F ,
Ċ := ḞT F + FT Ḟ , and D ∈ C(Rd×d

sym × R+;Rd×d×d×d) with Di jkl =
Djikl = Dkli j for 1 � i, j, k, l � d;

(D.2) c0|Ċ|2 � Ċ : D(C, θ)Ċ � C0|Ċ |2 for all C, Ċ ∈ R
d×d
sym , and θ � 0.

Notice that the fact that R can be written as a function depending on the right
Cauchy-Green tensor C = FT F and its time derivative Ċ is equivalent to dynamic
frame indifference (see also [2]). Condition (D.1) also implies that the viscous stress
∂Ḟ R(F, Ḟ, θ) is linear in the time derivative Ċ as indeed a simple calculation shows
for any i, j ∈ {1, . . . , d}:

∂Ḟi j R(F, Ḟ, θ) = ∂Ḟi j

(
Ḟmk Fml + Fmk Ḟml

)(
D(C, θ)Ċ

)
kl

= (δimδk j Fml + δimδ jl Fmk)
(
D(C, θ)Ċ

)
kl

= Fil
(
D(C, θ)Ċ

)
jl + Fik

(
D(C, θ)Ċ

)
kl ,

where we have used Einstein summation convention for l,m in {1, . . . , d}, and δi j
denotes the Kronecker symbol. Hence, by the symmetry of D(C, θ) (see (D.1)) and
the arbitrariness of i and j this proves

∂Ḟ R(F, Ḟ, θ) = 2F(D(C, θ)Ċ). (2.8)

The choice of a linear material viscosity is crucial in our approach and is a relevant
modeling assumption for non-activated dissipative processes with rather moderate
rates. We emphasize, however, that the geometrical nonlinearity of finite elasticity
is still present due to Ċ in (2.8), and that ∂Ḟ R necessarily also depends on F , even
for constant functions D. We also define the associated dissipation rate ξ : Rd×d ×
R
d×d × R+ → R+ as

ξ(F, Ḟ, θ) := ∂Ḟ R(F, Ḟ, θ) : Ḟ = 2F(D(C, θ)Ċ) :
Ḟ = D(C, θ)Ċ : (ḞT F + FT Ḟ) = 2R(F, Ḟ, θ), (2.9)

where the second identity follows from (2.8), and the third from the symmetries in
(D.1).

2.1.3. Heat conductivity and internal energy The map K : R+ → R
d×d
sym will

denote the heat conductivity tensor of the material in the deformed configura-
tion. We require that K is continuous, symmetric, uniformly positive definite, and
bounded. More precisely, for all θ � 0 it holds that

c0 � K(θ) � C0, (2.10)
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where the inequalities are meant in the eigenvalue sense. We define the pull-back
K : GL+(d) × R+ → R

d×d
sym of K into the reference configuration by (see [33,

(2.24)])
K(F, θ) := det(F)F−1

K(θ)F−T . (2.11)

2.1.4. Internal and total energy The (thermal part of the) internal energy
W in : GL+(d) × (0,∞) → R is defined as

W in(F, θ) := W cpl(F, θ) − θ∂θW
cpl(F, θ). (2.12)

Using (C.3) and the third bound in (C.5), we can easily see that W in can be continu-
ously extended to zero temperatures by setting W in(F, 0) = 0 for all F ∈ GL+(d).
Also by the third bound in (C.5), the internal energy is controlled by the temperature
in the sense that

∂θW
in(F, θ) = −θ∂2

θ W
cpl(F, θ) ∈ [c0,C0] for all F ∈ GL+(d) and θ > 0,

(2.13)

which along with (C.3), yields

c0θ � W in(F, θ) � C0θ. (2.14)

Eventually, the total energy functional E : Yid × L1+(�) → R+ is then given by

E(y, θ) := M(y) + W in(y, θ) with W in(y, θ) :=
∫

�

W in(∇ y, θ)dx . (2.15)

Remark 2.1. (Comparison to [33]) We close this part on modeling assumptions by
highlighting the differences to the assumptions in [33]: Our condition in (W.3) is
slightly more general than the corresponding one in [33, (2.30a)], where the term
|F |2 is replaced by |F |s for s > 2. We do not assume that W cpl is bounded from
below. Condition (C.3) as well as bounds similar to (C.4)–(C.5) are also required in
[33], see [33, (2.15), (2.30)]. There, the bound on ∂FθW cpl is slightly more general
for θ near zero, and only an upper bound on the eigenvalues of ∂2

FW
cpl(F, θ) is

required, see [33, (2.30c)]. This similarity of the assumptions will in particular allow
us to employ several intermediate steps proven in [33]. For models complying with
the above assumptions we refer to [33, Examples 2.4, 2.5].

2.1.5. Equations of nonlinear thermoviscoelasticity Fixing a finite time hori-
zon T > 0, let us from now on shortly write I := [0, T ]. We fix a constant
ε ∈ (0, 1] which represents the magnitude of the elastic strain. In the first part
of the paper, we are mainly interested in the large strain setting, where ε = 1.
However, later we perform the passage to the small strain limit ε → 0. To al-
low for a consistent notation, we include the parameter ε throughout the entire
paper. Let ε f with f ∈ W 1,1(I ; L2(�;Rd)) be a time-dependent dead force,
εg with g ∈ W 1,1(I ; L2(�N ;Rd)) be a boundary traction, and let εαθ� with
θ� ∈ W 1,1(I ; L2+(�)) and α > 0 be an external temperature. We study the coupled
system
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ε f = − div
(
∂FW (∇ y, θ) + ∂Ḟ R(∇ y, ∇ ẏ, θ) − div(∂GH(∇2y))

)
, (2.16a)

− θ∂2
θ W

cpl(∇ y, θ) θ̇ = div(K(∇ y, θ)∇θ) + ξ(∇ y,∇ ẏ, θ) + θ∂FθW
cpl(∇ y, θ) : ∇ ẏ,

(2.16b)

which, as in [33], is complemented with the boundary conditions
(
∂FW (∇ y, θ) + ∂Ḟ R(∇ y,∇ ẏ, θ)

)
ν − divS

(
∂GH(∇2y)ν

) = εg on I × �N ,

(2.17a)

y = id on I × �D, (2.17b)

∂GH(∇2y) : (ν ⊗ ν) = 0 on I × �, (2.17c)

K(∇ y, θ)∇θ · ν + κθ = κεαθ� on I × �. (2.17d)

here ν denotes the outward pointing unit normal on � and κ � 0 is aphenomenologi-
cal heat-transfer coefficient on �. Moreover, divS represents the surface divergence,
defined by divS(·) = tr(∇S(·)), where tr denotes the trace and ∇S := (Id−ν⊗ν)∇
denotes the surface gradient. We refer to [33, (2.28)–(2.29)] for an explanation and
derivation of the boundary conditions. Note that by (2.9) the system (2.16) indeed
coincides with (1.2)–(1.3). The mechanical evolution (2.16a) is the quasistatic ver-
sion of the Kelvin–Voigt rheological model (neglecting inertia), corresponding to
the sum of the conservative and the dissipative forces. The equation (2.16b) follows
from the entropy equation θ ṡ = ξ −div q, where the entropy s is expressed in terms
of the free energy by s = −∂θW = −∂θW cpl. Furthermore, the dissipation rate ξ is
defined in (2.9) and the heat flux q is modeled by the Fourier law in the deformed
configuration, pulled back to the reference configuration, i.e., q = −K(F, θ)∇θ .
The term −θ∂2

θ W
cpl(∇ y, θ) corresponds to the heat capacity at constant volume

and the last term in (2.16b) is an adiabatic heat source. We again refer to [33] or
to [25, Section 8.1] for details. Notice that the the purely mechanical stored energy
W el, see (2.3), does not influence the heat production and transfer in (2.16b).

We consider a corresponding initial-value problem, by imposing the initial
conditions

y(0, ·) = y0,ε := id + εu0 and θ(0, ·) = θ0,ε := εαμ0 (2.18)

for some μ0 ∈ L2+(�) and some u0 ∈ W 2,p
�D

(�;Rd). We now define weak solutions
associated to the initial-boundary-value problem (2.16)–(2.18).

Definition 2.2. (Weak solution of the nonlinear system) A couple (y, θ) : I ×� →
R
d×R is called aweak solution to the initial-boundary-value problem (2.16)–(2.18)

if y ∈ L∞(I ;Yid) ∩ H1(I ; H1(�;Rd)) with y(0, ·) = y0,ε, θ ∈ L1(I ;W 1,1(�))

with θ � 0 a.e., and if it satisfies the identities
∫ T

0

∫

�

∂GH(∇2y)
...∇2z

+
(
∂FW (∇ y, θ) + ∂Ḟ R(∇ y,∇ ẏ, θ)

)
: ∇zdxdt

= ε

∫ T

0

∫

�

f · zdxdt + ε

∫ T

0

∫

�N

g · zdHd−1dt (2.19)
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for any test function z ∈ C∞(I × �;Rd) with z = 0 on I × �D , as well as

∫ T

0

∫

�

K(∇ y, θ)∇θ · ∇ϕ − (
ξ(∇ y,∇ ẏ, θ) + ∂FW

cpl(∇ y, θ) : ∇ ẏ
)
ϕ − W in(∇ y, θ)ϕ̇dxdt

+ κ

∫ T

0

∫

�

θϕdHd−1dt = κεα

∫ T

0

∫

�

θ�ϕdHd−1dt +
∫

�

W in(∇ y0,ε, θ0,ε) ϕ(0)dx (2.20)

for any test function ϕ ∈ C∞(I × �) with ϕ(T ) = 0.

One can indeed show that sufficiently smooth weak solutions lead to the classical
formulation (2.16) along with the boundary conditions (2.17), see [33]. We refer to
[33, (2.28)–(2.29)] for details on the derivation of (2.16a), particularly how to treat
the boundary terms. For the derivation of (2.16b), one uses standard integration by
parts and the fact that by the definition in (2.12) we have

d

dt
(W in(∇ y, θ)) = ∂FW

cpl(∇ y, θ) : ∇ ẏ − θ∂FθW
cpl(∇ y, θ) : ∇ ẏ − θ∂2

θ W
cpl(∇ y, θ)θ̇ .

Moreover, using test functions with ϕ(0) = 0 we obtain W in(∇ y(0), θ(0)) =
W in(∇ y0,ε, θ0,ε), and by the strict monotonicity in (2.13) along with y(0) = y0,ε

we conclude θ(0) = θ0,ε. We emphasize that one can only expect the regularity
∇ ẏ ∈ L2(I × �;Rd×d) and thus ξ(∇ y,∇ ẏ, θ) ∈ L1(I × �) by (2.9). Therefore,
(2.16b) can be understood as a heat equation with L1-data. For this, (2.20) is a
standard weak formulation, see e.g. [37].

2.2. Approximation of solutions in the nonlinear setting

In this subsection, we study the nonlinear system and therefore we fix ε = 1.
(In the notation, ε is still included, as before.) The existence of energy-conserving
weak solutions to (2.16) in the sense of Definition 2.2 has been proven in [33,
Theorem 2.2]. In contrast to this work, we show here that the solutions can be
obtained directly as limits of a staggered time-incremental scheme without using
any additional regularization.

We fix a discrete time step size τ ∈ (0, 1]. For the sake of notational clarity,
we assume without a further mention that any τ we encounter evenly divides the
time interval [0, T ]. Given any sequence (al)l�0, it will be useful to introduce the
following notation for discrete differences

δτal := al − al−1

τ
, l ∈ N.

Our time-discrete staggered scheme is initialized by setting

y(0)
τ := y0,ε and θ(0)

τ := θ0,ε, (2.21)

where y0,ε and θ0,ε are as in (2.18). We then alternate between a mechanical
step, deforming the material while keeping the temperature fixed, and a ther-
mal step, adjusting the temperature distribution inside the material without chang-
ing the deformation. More precisely, suppose that we have already constructed
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y(0)
τ , . . . , y(k−1)

τ ∈ Yid, and θ
(0)
τ , . . . , θ

(k−1)
τ ∈ L2+(�) for some k ∈ {1, . . . , T/τ }.

The next deformation y(k)
τ is a solution of the minimization problem

min
y∈Yid

{
M(y) + Wcpl(y, θ(k−1)

τ ) + 1

τ
R(y(k−1)

τ , y − y(k−1)
τ , θ (k−1)

τ ) − ε〈�(k)
τ , y〉

}
,

(2.22)
where

〈�(k)
τ , y〉 :=

∫

�

f (k)
τ · ydx +

∫

�N

g(k)
τ · ydHd−1 (2.23)

for f (k)
τ := τ−1

∫ kτ
(k−1)τ

f (t)dt and g(k)
τ := τ−1

∫ kτ
(k−1)τ

g(t)dt . We define the k-th

temperature step θ
(k)
τ as a solution of the minimization problem

min
θ∈H1+(�)

{∫

�

∫ θ

0

1

τ

(
W in(∇ y(k)

τ , s) − W in(∇ y(k−1)
τ , θ (k−1)

τ )
)
dsdx

+
∫

�

1

2
∇θ · K(∇ y(k−1)

τ , θ (k−1)
τ )∇θdx

−
∫

�

hτ (y
(k)
τ , y(k−1)

τ , θ (k−1)
τ ) θdx + κ

2

∫

�

(θ − εαθ
(k)
�,τ )2dHd−1

}
,

(2.24)

where hτ plays the role of a heat source given by

hτ (y
(k)
τ , y(k−1)

τ , θ (k−1)
τ )

:= ∂FW
cpl(∇ y(k−1)

τ , θ (k−1)
τ ) : δτ∇ y(k)

τ + ξ(∇ y(k−1)
τ , δτ∇ y(k)

τ , θ (k−1)
τ ) (2.25)

and θ
(k)
�,τ := 1

τ

∫ kτ
(k−1)τ

θ�(t)dt . The underlying idea is that the Euler–Lagrange equa-
tions associated to (2.22) and (2.24) lead to time-discretized variants of the equa-
tions (2.16), see (3.7) and (3.11) below. Supposing that the steps y(0)

τ , . . . , y(T/τ)
τ

and θ
(0)
τ , . . . , θ

(T/τ)
τ as described above exist, we define interpolations as fol-

lows: for k ∈ {0, . . . , T/τ }, we let yτ (kτ) = y
τ
(kτ) = ŷτ (kτ) := y(k)

τ and
for t ∈ ((k − 1)τ, kτ)

yτ (t) := y(k)
τ , y

τ
(t) := y(k−1)

τ , ŷτ (t) := kτ − t

τ
y(k−1)
τ + t − (k − 1)τ

τ
y(k)
τ .

(2.26)

A similar notation is employed for yτ , y
τ
, and ŷτ . We now formulate our first main

result concerning the convergence of solutions to the staggered scheme towards a
weak solution of (2.16)–(2.18).

Theorem 2.3. (Staggered time-incremental scheme and convergence to solutions)
Given any T > 0 there exists τ0 ∈ (0, 1] such that for any τ ∈ (0, τ0) the following
holds:

(i) (Existence of the scheme) The sequences y(0)
τ , . . . , y(T/τ)

τ and θ
(0)
τ , . . . , θ

(T/τ)
τ

satisfying (2.21), (2.22), and (2.24) exist.
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(ii) (Convergence to solutions) There exist y ∈ L∞(I ;Yid) ∩ H1(I ; H1(�;Rd))

and θ ∈ L1(I ;W 1,1(�)) such that the couple (y, θ) is a weak solution to
(2.16)–(2.18) in the sense of Definition 2.2, and up to selecting a subsequence,
it holds that

ŷτ → y in L∞(I ;W 1,∞(�;Rd )) and ˙̂yτ → ẏε strongly in L2(I ; H1(�;Rd )),

(2.27)

θ̂τ → θ in Ls(I × �) and θ̂τ ⇀ θ weakly in Lr (I ;W 1,r (�)) (2.28)

as τ → 0 for any r ∈ [1, d+2
d+1 ) and s ∈ [1, d+2

d ). The same holds true if we

replace ŷτ by yτ or y
τ
in the first part of (2.27), and θ̂τ by θτ or θτ in (2.28).

Let us mention that the proof shows that weak solutions satisfy a total energy
balance of the form

d

dt
E(y, θ) = ε

∫

�

f · ẏdx + ε

∫

�N

g · ẏdHd−1 − κ

∫

�

(θ − εαθ�)dHd−1,

i.e., the total energy is conserved up to the work of the external loadings and the
heat flux through �.

Remark 2.4. (Difference to scheme in [33]) The scheme has several differences
to the one considered in [33, (4.5)–(4.7)]. On the one hand, both steps in [33]
are suitably regularized. More precisely, in (2.22) an additional dissipative term
λ

2τ
‖∇ y − ∇ y(k−1)

τ ‖2
L2(�)

is considered, where λ > 0 is a regularization parameter
(called ε there), and in (2.24) the dissipation rate ξ is replaced by a smoothly
truncated version ξ

1+λξ
. On the other hand, the term ∂FW cpl(∇ y(k−1)

τ , θ
(k−1)
τ ) θ in

(2.24)–(2.25) is replaced by the more involved term
∫ θ

0 ∂FW cpl(∇ y(k)
τ , s)ds. One of

the main novelties in the present work is that the same result on existence and time-
discrete approximations is achieved for the simpler, explicit, thermo-mechanical
coupling term ∂FW cpl(∇ y(k−1)

τ , θ
(k−1)
τ ) and without regularizing terms.

2.3. Passage to linearized thermoviscoelasticity

We are now interested in the passage to a small strain regime ε → 0. This is
induced by small external loading, boundary traction, and external temperature as
ε → 0, see (2.16a) and the boundary conditions in (2.17). In a similar fashion, we
suppose that the initial values are small when ε is small, see (2.18). At this point,
we additionally require that

(W.4) W el(F) � c0 dist2(F, SO(d)) for all F ∈ GL+(d), and W el(F) = 0 if
F ∈ SO(d);

(H.4) H(0) = 0;
(C.6) The heat capacity cV (F, θ) := −θ∂2

θ W
cpl(F, θ) for F ∈ GL+(d) and

θ > 0 as well as ∂FθW cpl can be continuously extended to GL+(d) × R+;
(C.7) For all F ∈ GL+(d) and θ > 0 it holds that ∂FFθW cpl(F, θ) � C0

max{θ,1} .
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In order to ensure the compatibility of (W.4) with (W.3), we assumeC0 � c0(d+1)

from now on. We write the equations (2.16) and the boundary conditions (2.17)
equivalently in terms of the rescaled displacement field u = ε−1(y − id) and the
rescaled temperature μ = ε−αθ . Then, for α ∈ [1, 2], rescaling the equations by
ε−1 and ε−α , respectively, and letting ε → 0 we obtain, at least formally, the system

− div
(
CWe(u) + CDe(u̇) + B

(α)μ
) = f,

c̄V μ̇ − div(K0∇μ) = C
(α)
D e(u̇) : e(u̇), (2.29)

along with the boundary conditions

u = 0 on I × �D,
(
CWe(u) + CDe(u̇) + B

(α)μ
)
ν = g on I × �N , K0∇μ · ν + κμ = κθ� on I × �

(2.30)

and the initial conditions

u(0) = u0, μ(0) = μ0. (2.31)

Here, e(u) := 1
2 (∇u + (∇u)T ) denotes the linear strain tensor, and the tensors of

elasticity and viscosity coefficients are defined by

CW := ∂2
FW

el(Id), CD := ∂2
Ḟ
R(Id, 0, 0) = 4D(Id, 0). (2.32)

Moreover, the heat conductivity tensor and the heat capacity (see also (C.6)) at zero
temperature and the natural material state are given by

K0 := K(0), c̄V := cV (Id, 0). (2.33)

Eventually, we have the α-dependent quantities

B
(α) =

{
∂FθW cpl(Id, 0) if α = 1

0 if α ∈ (1, 2] , C
(α)
D =

{
0 if α ∈ [1, 2)

CD if α = 2,
(2.34)

where B
(α) plays the role of a thermal expansion matrix. Notice that in the formal

analysis above the elasticity tensor does not depend on the coupling potential. This
is due to the fact that ∂2

FW
cpl(Id, 0) = 0, see (C.3).

Although the nonlinear system is given for a nonsimple material, in the limit
we obtain equations without spatial gradients of e(u). This is a consequence of
the growth conditions in (H.3). Moreover, there is an interesting decoupling effect
due to the different scaling of coupling terms in the mechanical and the heat-
transfer equation, expressed in terms of the α-dependent quantities in (2.34). This
computation also shows why we restrict to the range α ∈ [1, 2]. Indeed, formally,
we would have B

(α) = +∞ for α < 1 while C
(α)
D = +∞ for α > 2.

The second main goal of this article is to show that the above formal linearization
can be made rigorous. In the case α ∈ [1, 2), our analysis requires a regularization
of the thermal evolution. More precisely, we define the k-th thermal step through

(2.24) with ξ replaced by ξ
reg
α , (2.24ε)
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where

ξ
reg
α :=

{
ξ if ξ � 1,

ξα/2 else.
(2.35)

Due to the different scaling of the mechanical and the heat-transfer equation, the
existence of a solution to the scheme is more delicate for ε small and α = 2. More
specifically, we need higher integrability of W in defined in (2.12) in L2/α which can
be guaranteed by the choice in (2.35). We refer to Sect. 3.3 below for details. We
also emphasize that for α = 2 no regularization is applied as ξ

reg
α = ξ . A similar

result as Theorem 2.3 holds true in the regularized setting.

Proposition 2.5. (Vanishing time-discretization in the regularized nonlinear set-
ting) Given any T > 0 there exists ε0, τ0 ∈ (0, 1] such that for any τ ∈ (0, τ0) and
ε ∈ (0, ε0) the following holds:

(i) (Existence of the scheme) The sequences y(0)
ε,τ , . . . , y

(T/τ)
ε,τ and θ

(0)
ε,τ , . . . , θ

(T/τ)
ε,τ

satisfying (2.21), (2.22), and (2.24ε) exist.
(ii) (Convergence to solutions) The convergences (2.27)–(2.28) towards a limit

(yε, θε) hold true for the interpolations of the steps from (i). Here (yε, θε) is a
weak solution to the system in a sense similar to Definition 2.2, namely (2.19)
is satisfied and (2.20) holds with ξ replaced by ξ

reg
α .

We will prove that (2.29) admits a unique weak solution and that solutions of
the above described regularization guaranteed by Proposition 2.5(ii) converge to
the solution of (2.29) in a suitable sense. Setting

H1
�D

(�;Rd) := {u ∈ H1(�;Rd) : u = 0 on �D} (2.36)

we have the following definition of weak solutions for the linearized system:

Definition 2.6. (Weak solution of the linearized system) A couple (u, μ) : I×� →
R
d×R is called aweak solution to the initial-boundary-value problem (2.29)–(2.31)

if u ∈ H1(I ; H1
�D

(�;Rd)) with u(0, ·) = u0, μ ∈ L1(I ;W 1,1(�)) with μ � 0
a.e., and if it satisfies the identities

∫ T

0

∫

�

(
CWe(u) + CDe(u̇) + μB(α)

) : ∇zdxdt

=
∫ T

0

∫

�

f · zdxdt +
∫ T

0

∫

�N

g · zdHd−1dt (2.37)

for any z ∈ C∞(I × �;Rd) with z = 0 on I × �D , as well as

∫ T

0

∫

�

K∇μ · ∇ϕ − C
(α)
D e(u̇) : e(u̇)ϕ − c̄Vμϕ̇dxdt + κ

∫

�

μϕdHd−1dt

= κ

∫

�

θ�ϕdHd−1dt + c̄V

∫

�

μ0ϕ(0)dx (2.38)

for any ϕ ∈ C∞(I × �) with ϕ(T ) = 0.
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Indeed, it is a standard matter to check that sufficiently smooth weak solu-
tions lead to the classical formulation (2.29). Next, we state the relation between
time-continuous or time-discrete solutions of the nonlinear system and solutions to
(2.29)–(2.31).

Theorem 2.7. (Passage to linearized thermoviscoelasticity) Under the above as-
sumptions we have:

(i) There exists a unique weak solution (u, μ) to (2.29)–(2.31) in the sense of
Definition 2.6.

(ii) Givenany sequence (εk)k converging to zeroandany sequenceofweak solutions
(yεk , θεk ) given by Proposition 2.5 (ii), the functions uεk := ε−1

k (yεk − id) and
μk = ε−α

k θεk satisfy

uεk → u in L∞(I ; H1(�;Rd)), ˙̂uk → u̇ in L2(I ; H1(�;Rd)),

μεk → μ in Ls(I × �), μεk ⇀ μ weakly in Lr (I ;W 1,r (�))

for any s ∈ [1, d+2
d ) and r ∈ [1, d+2

d+1 ).

(iii) Given sequences (εk)k , (τk)k converging to zeroandany sequence (yεk ,τk
, θεk ,τk )

of time-discrete solutions given by Proposition 2.5 (i), uk := ε−1
k (yεk ,τk

− id)

and μk = ε−α
k θεk ,τk satisfy

ûk → u in L∞(I ; H1(�;Rd)), ˙̂uk → u in L2(I ; H1(�;Rd)),

μ̂k → μ in Ls(I × �), μ̂k ⇀ μ weakly in Lr (I ;W 1,r (�))

for any s ∈ [1, d+2
d ) and r ∈ [1, d+2

d+1 ). Apart from the convergence of ˙̂uk, the
same holds true if we replace ŷεk ,τk by yεk ,τk

or y
εk ,τk

and θ̂εk ,τk by θεk ,τk or

θεk ,τk
, and consider the corresponding rescaled quantities.

Note particularly that we obtain strong convergence of strains and strain rates.
Finally, we study the relation between the time-discrete solutions in the nonlinear
and the linear setting, as well as the convergence of time-discrete solutions in the
linearized setting under vanishing time-discretization.

Theorem 2.8. (Passage to linearized thermoviscoelasticity, time-discrete solutions)
The following properties hold:

(i) Let τ be sufficiently small. For every k ∈ {1, . . . , T/τ } we have as ε → 0

1

ε
(y(k)

ε,τ − id) → u(k)
τ strongly in H1(�;Rd ),

1

εα
θ
(k)
ε,τ ⇀ μ

(k)
τ weakly in W 1,r (�)

(2.39)

for any r ∈ [1, d+2
d+1 ), where u(k)

τ is uniquely determined by

∫

�

(
CWe(u(k)

τ ) + CDe(δτu
(k)
τ ) + μ(k−1)

τ B
(α)

) : ∇zdx − 〈�(k)
τ , z〉 = 0 (2.40)
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for all z ∈ H1
�D

(�;Rd) and μ
(k)
τ is uniquely determined by

∫

�

(
c̄V δτμ

(k)
τ − C

(α)
D e(δτu

(k)
τ ) : e(δτu

(k)
τ )

)
ϕdx

+
∫

�

K0∇μ(k)
τ · ∇ϕdx + κ

∫

�

(μ(k)
τ − θ

(k)
�,τ )ϕdHd−1 = 0 (2.41)

for all ϕ ∈ C∞(�), where δτu
(k)
τ := (u(k)

τ − u(k−1)
τ )/τ and δτμ

(k)
τ := (μ

(k)
τ −

μ
(k−1)
τ )/τ .

(ii) Given (u(k)
τ )k and (μ

(k)
τ )k from (i), define ûτ and μ̂τ similarly to (2.26). Then,

ûτ → u in L∞(I ; H1(�;Rd)), ˙̂uτ → ˙̂u in L2(I ; H1(�;Rd)),

μ̂τ → μ in Ls(I × �), μ̂τ ⇀ μ weakly in Lr (I ;W 1,r (�)) (2.42)

as τ → 0 for any s ∈ [1, d+2
d ) and r ∈ [1, d+2

d+1 ), where (u, μ) is the unique
weak solution of (2.29)–(2.31) in the sense ofDefinition 2.6. Apart from the time
derivative, the convergences in (2.42) also hold for the other interpolations.

Remark 2.9. (Variational structure in the time-discrete linear setting) With regard to
Theorem 2.8, we can in fact show that u(k)

τ is the unique solution of the minimization
problem

argminu∈H1
�D

(�;Rd )

{
1

2

∫

�

(CWe(u) + μ(k−1)
τ B

(α)) : e(u)dx

+ 1

2τ

∫

�

CDe(u − u(k−1)
τ ) : e(u − u(k−1)

τ )dx − 〈�(k)
τ , u〉

}

and for α ∈ [1, 2) that the nonnegative function μ
(k)
τ is the unique solution of the

minimization problem

argminμ∈H1(�)
{
c̄V
2τ

∫

�

(μ − μ(k−1)
τ )2dx −

∫

�

C
(α)
D e(δτu

(k)
τ ) : e(δτu

(k)
τ )μ

+ 1

2
K0∇μ · ∇μdx + κ

2

∫

�

(μ − θ
(k)
�,τ )2dx

}
. (2.43)

From the a priori bounds in the nonlinear setting, we will be only able to prove that
CDe(δτu

(k)
τ ) : e(δτu

(k)
τ ) ∈ L1(�). Consequently, the functional in (2.43) might

not be well-defined on H1(�) for α = 2. Nevertheless, for sufficiently smooth �,
smooth functions f and θ�, and �D = �, it follows by elliptic regularity theory

that CDe(δτu
(k)
τ ) : e(δτu

(k)
τ ) ∈ L2(�). In this case, μ

(k)
τ is a minimizer of (2.43)

also for α = 2.

Section 3 is devoted to existence of the staggered time-incremental scheme
leading to Theorem 2.3(i) and Proposition 2.5(i). Then, in Sect. 4 we pass to the
limit τ → 0 and show Theorem 2.3(ii) and Proposition 2.5(ii). Eventually, in Sect. 5
we address the limit ε → 0 and prove Theorems 2.7 and 2.8.
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3. Staggered Time-Incremental Scheme

This section is devoted to the analysis of the staggered time-incremental scheme
described in the previous section. Let us start with some fundamental auxiliary
results.

Lemma 3.1. (A priori estimates, positivity of determinant) Given M > 0 there
exists a constant CM > 0 such that for all y ∈ Yid with M(y) � M (where M is
defined in (2.5)) it holds that

‖y‖W 2,p(�) � CM , ‖y‖C1,1−d/p(�) � CM ,

‖(∇ y)−1‖C1−d/p(�) � CM , det(∇ y) � 1

CM
in �. (3.1)

If W additionally satisfies (W.4), there exists a universal constant C and a constant
C∗
M > 0 with C∗

M → 0 as M → 0 such that

‖y − id‖H1(�) � C‖dist(∇ y, SO(d))‖L2(�), (3.2)

‖y − id‖W 1,∞(�) � C∗
M . (3.3)

Proof. For a proof of the first part we refer to [33, Theorem 3.1] relying on a result
in [22]. The second part can be found in [19, Lemma 4.2], where S M

δ therein
simply corresponds to M(y) � Mδ2. ��

Lemma 3.2. (Generalized Korn’s inequality) Given M > 0 there exists a constant
cM > 0 such that for all v ∈ H1

�D
(�;Rd) and y ∈ Yid with M(y) � M it holds

that ∫

�

|∗|(∇v)T∇ y + (∇ y)T∇v
2
dx � cM‖v‖2

H1(�)
.

Proof. The statement can be found in [33, Corollary 3.4], relying on the result in
[36]. ��

Lemma 3.3. (Heat conductivity)For any M > 0 there exist constants cM , CM > 0
such that for y ∈ Yid satisfyingM(y) � M and θ ∈ L1(�)we have thatK(∇ y, θ)

is well-defined and

cM � K(∇ y, θ) � CM . (3.4)

Proof. By Lemma 3.1 we see that (∇ y(x))−1 exists for every x ∈ � which shows
the well-definedness of K(∇ y, θ), see (2.11). The bound in (3.4) is a direct conse-
quence of the latter three estimates in (3.1) combined with (2.10). ��

Lemma 3.4. (Estimate on coupling potential) For all F ∈ GL+(d) and θ � 0 it
holds that

|∂FW cpl(F, θ)| � 2C0(θ ∧ 1)(1 + |F |). (3.5)
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Proof. We start by proving (3.5) for θ � 1. To this end, we use that ∂FW cpl(F, 0) =
0 (see (C.3) and comments thereafter), (C.5), and apply the Fundamental Theorem
of Calculus to get that

|∂FW cpl(F, θ)| =
∣∣∣∂FW cpl(F, 0) +

∫ θ

0
∂FθW

cpl(F, s)ds
∣∣∣

�
∫ θ

0
|∂FθW

cpl(F, s)|ds

� C0(1 + |F |)
∫ θ

0
max{s, 1}−1ds = C0θ(1 + |F |).

On the other hand, for θ � 1, we use (C.4) in the limit F̃ → F to find
|∂FW cpl(F, θ)| � C0(1 + 2|F |) for every F ∈ GL+(d). ��

3.1. Existence of solutions to time-discretized schemes

In this subsection, we show that for τ ∈ (0, τ0] a single time step of the stag-
gered time-discretization scheme introduced in (2.22)–(2.24) is well-defined. The
parameter τ0 in principle depends on a bound of the mechanical energy of previous
deformations, but we stress that a posteriori τ0 can be chosen independently of the
step. Here, we treat the case α = 2 and ε ∈ (0, 1] postponing necessary adaptions
for α < 2 to Sect. 3.3 below. We assume the same set-up of Sect. 2.2. More precisely,
consider initial steps y(0)

ε,τ := y0,ε ∈ Yid and θ
(0)
ε,τ := θ0,ε ∈ L2+(�)with y0,ε and θ0,ε

as in (2.18). Further, let f ∈ W 1,1(I ; L2(�;Rd)), g ∈ W 1,1(I ; L2(�N ;Rd)), θ� ∈
W 1,1(I ; L2+(�)), and for each k ∈ {1, . . . , T/τ } let �(k)

τ be as in (2.23). Suppose that

we have already constructed y(0)
ε,τ , . . . , y

(k−1)
ε,τ ∈ Yid and θ

(0)
ε,τ , . . . , θ

(k−1)
ε,τ ∈ L2+(�)

for some k ∈ {1, . . . , T/τ }. (We always add an index ε for clarification.) We first
investigate the existence of the k-th mechanical step.

Proposition 3.5. (Mechanical step) For any M > 0 there exists τ0 ∈ (0, 1] such
that if k ∈ {1, . . . , T/τ }, τ ∈ (0, τ0), and M(y(k−1)

ε,τ ) � M the minimization
problem (2.22) is well-posed, i.e.,

min
y∈Yid

{
M(y) + Wcpl(y, θ(k−1)

ε,τ ) + 1

τ
R(y(k−1)

ε,τ , y − y(k−1)
ε,τ , θ (k−1)

ε,τ ) − ε〈�(k)
τ , y〉

}

(3.6)
attains a solution. Furthermore, such a minimizer y(k)

ε,τ solves the corresponding

Euler–Lagrange equation, i.e., it holds for all z ∈ W 2,p
�D

(�;Rd) (see (2.2)) that

∫

�

(
∂FW (∇ y(k)

ε,τ , θ
(k−1)
ε,τ ) + ∂Ḟ R(∇ y(k−1)

ε,τ , δτ∇ y(k)
ε,τ , θ

(k−1)
ε,τ )

) :

∇z + ∂GH(∇2y(k)
ε,τ )

...∇2zdx − ε〈�(k)
τ , z〉 = 0. (3.7)

Proof. We provide the proof for the coercivity in W 2,p(�;Rd). The remaining
argument coincides with the one in [33, Proposition 4.1], and we only include a
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brief sketch for convenience of the reader. Let us shortly write ỹ := y(k−1)
ε,τ and

θ̃ := θ
(k−1)
ε,τ . Let (yn)n ⊂ Yid be a minimizing sequence for the problem in (3.6).

Using ỹ as a competitor we can, without loss of generality, assume that for all n ∈ N

M(yn)+Wcpl(yn, θ̃ )+ 1

τ
R(ỹ, yn−ỹ, θ̃ )−ε〈�(k)

τ , yn〉 � M(ỹ)+Wcpl(ỹ, θ̃ )−ε〈�(k)
τ , ỹ〉

and therefore

M(yn)+ 1

τ
R(ỹ, yn − ỹ, θ̃ ) � M(ỹ)+|Wcpl(yn, θ̃ ) − Wcpl(ỹ, θ̃ )|+ε|〈�(k)

τ , yn − ỹ〉|.
(3.8)

By Lemma 3.2 and (D.2) there exists cM > 0 (only depending on M) such that

1

τ
R(ỹ, yn − ỹ, θ̃ ) � cM

τ

∫

�

|∇ yn − ∇ ỹ|2dx .

By (3.5), the Fundamental Theorem of Calculus, Young’s inequality with constant
cM/(2τ), and (W.3) we derive

∣∣Wcpl(yn, θ̃ ) − Wcpl(ỹ, θ̃ )
∣∣ � 2C0

∫

�

(θ̃ ∧ 1)(1 + |∇ yn| + |∇ ỹ|)|∇ yn − ∇ ỹ|dx

� CMτ

∫

�

(θ̃ ∧ 1)2
(

1 + 2C0c
−1
0 + c−1

0 W el(∇ yn) + c−1
0 W el(∇ ỹ)

)
dx

+ cM
4τ

∫

�

|∇ yn − ∇ ỹ|2dx

� CMτ
(‖θ̃ ∧ 1‖2

L2(�)
+ Wel(yn) + Wel(ỹ)

) + cM
4τ

∫

�

|∇ yn − ∇ ỹ|2dx

for CM sufficiently large depending on M and c0. By using Poincaré’s inequality,
the trace estimate on the bulk and surface term, respectively, and Young’s inequality
with constant cM/(4Cτε) we derive that

ε|〈�(k)
τ , yn − ỹ〉| = ε

∣∣
∣
∫

�

f kτ · (yn − ỹ)dx +
∫

�N

gkτ · (yn − ỹ)dHd−1
∣∣
∣

� Cε
(‖ f kτ ‖L2(�) + ‖gkτ‖L2(�N )

)‖∇ yn − ∇ ỹ‖L2(�)

� CMτε2(‖ f kτ ‖2
L2(�)

+ ‖gkτ‖2
L2(�N )

) + cM
4τ

‖∇ yn − ∇ ỹ‖2
L2(�)

.

Combining the aforementioned estimates with (3.8), and using M � Wel we get
that

(1 − CMτ)M(yn) + cM
2τ

‖∇ yn − ∇ ỹ‖2
L2(�)

� (1 + CMτ)M(ỹ) + CMτ(‖θ̃ ∧ 1‖2
L2(�)

+ ε2‖ f kτ ‖2
L2(�)

+ ε2‖gkτ‖2
L2(�N )

).

(3.9)

For τ0 sufficiently small such that CMτ0 � 1/2, Lemma 3.1 then shows the
desired coercivity in W 2,p(�;Rd). The functional is weakly lower semicontin-
uous on W 2,p(�;Rd) by the convexity of H , see (H.1), the compact embedding
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W 2,p(�;Rd) ⊂ W 1,∞(�;Rd), and the continuity ofW el,W cpl, and R. This proves
the existence of a minimizer.

For the derivation of the Euler–Lagrange equation, we recall the definitions in
(2.4)–(2.6). The treatment of the convex term H is standard by (H.3) and (H.1). The
Gâteaux differentiability of the other terms relies on the uniform bound on gradients
and the control on the determinant, see (3.1). We refer also to [33, Proposition 3.2].
��

From the previous proof, we directly deduce

Lemma 3.6. (Bound on mechanical energy and dissipation) For any M > 0 there
exist constants cM , CM > 0 and τ0 ∈ (0, 1] such that if k ∈ {1, . . . , T/τ }, τ ∈
(0, τ0), and M(y(k−1)

ε,τ ) � M it holds that

M(y(k)
ε,τ ) + cMτ‖δτ∇ y(k)

ε,τ‖2
L2(�)

� (1 + CMτ)M(y(k−1)
ε,τ ) + CMτ

(‖θ(k−1)
ε,τ ∧ 1‖2

L2(�)

+ ε2‖ f (k)
τ ‖2

L2(�)
+ ε2‖g(k)

τ ‖2
L2(�N )

)
. (3.10)

Proof. Let CM as in (3.9). For τ0 sufficiently small with respect to CM we derive
1

1−CM τ
� 1 + 2CMτ for all τ ∈ (0, τ0). Dividing (3.9) (for y(k)

ε,τ in place of yn) by
1 − CMτ we get the desired estimate, up to changing the constants CM and cM . ��

Remark 3.7. By 1∧s � √
s for s � 0, (2.14), (2.15), by the definition below (2.23),

and by a standard application of Hölder’s inequality, we deduce from (3.10) that

M(y(k)
ε,τ ) + cMτ‖δτ∇ y(k)

ε,τ‖2
L2(�)

� M(y(k−1)
ε,τ ) + CM (τE(y(k−1)

ε,τ , θ (k−1)
ε,τ ) + ε2‖ f ‖2

L2(I×�)
+ ε2‖g‖2

L2(I×�N )
).

In fact, we have ‖ f (k)
τ ‖2

L2(�)
= τ−2

∫
�

∣
∣ ∫ kτ

(k−1)τ
f (t, x)dt

∣
∣2dx

� τ−1
∫ T

0 ‖ f (t)‖2
L2(�)

dt and a similar computation holds for g.

In the next lemma we discuss the well-definedness of the thermal step.

Proposition 3.8. (Thermal step) For any M > 0 there exists τ0 ∈ (0, 1] such that
if the minimizer given by Proposition 3.5 exists, τ ∈ (0, τ0), and M(y(k−1)

ε,τ ) � M
the minimization problem (2.24) is well-posed on H1+(�). More precisely,

T (θ) :=
∫

�

∫ θ

0

1

τ

(
W in(∇ y(k)

ε,τ , s) − W in(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )
)
dsdx

+ 1

2

∫

�

∇θ · K(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )∇θdx

−
∫

�

hτ (y
(k)
ε,τ , y

(k−1)
ε,τ , θ (k−1)

ε,τ )θdx + κ

2

∫

�

(θ − ε2θ
(k)
�,τ )2dHd−1
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is finite on H1(�) and attains a unique minimizer θ
(k)
ε,τ on H1+(�). Moreover, θ(k)

ε,τ

satisfies

∫

�

(
w

(k)
ε,τ − w

(k−1)
ε,τ

τ
− ∂FW

cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ ) :

δτ∇ y(k)
ε,τ − ξ(∇ y(k−1)

ε,τ , δτ∇ y(k)
ε,τ , θ

(k−1)
ε,τ )

)
ϕdx

+
∫

�

K(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )∇θ(k)
ε,τ · ∇ϕdx + κ

∫

�

(θ(k)
ε,τ − ε2θ

(k)
�,τ )ϕdHd−1 = 0

(3.11)

for any ϕ ∈ H1(�), where, for brevity, w
(k−1)
ε,τ := W in(∇ y(k−1)

ε,τ , θ
(k−1)
ε,τ ) and

w
(k)
ε,τ := W in(∇ y(k)

ε,τ , θ
(k)
ε,τ ).

Remarkably, the nonnegativity constraint in the minimization problem (2.24)
does not influence the stationarity condition (3.11). We also emphasize that in
contrast to [33] we can ensure uniqueness of the minimizer. This is due to the fact
that we use a simpler (explicit) thermo-mechanical coupling term in the scheme;
see Remark 2.4 for details.

Proof. Step 1 (Finiteness) We start by showing that all terms of T are well-defined
and integrable. First, by (2.14) we find that

∫ θ

0
W in(∇ y(k)

ε,τ , s)ds ∈ [ c0
2 θ2, C0

2 θ2] (3.12)

and
∫ θ

0 w
(k−1)
ε,τ ds � C0θθ

(k−1)
ε,τ a.e. on �, which both lie in L1(�) by Hölder’s

inequality. By Lemma 3.3, K(∇ y(k−1)
ε,τ , θ

(k−1)
ε,τ ) is well-defined in �, and the cor-

responding term inT is integrable. Finally, by (3.5), (D.2), (2.9), and the second esti-
mate in (3.1) we get that the term hτ defined in (2.25) satisfies
hτ (y

(k)
ε,τ , y

(k−1)
ε,τ , θ

(k−1)
ε,τ ) ∈ L∞(�), i.e., the third term is also well-defined. This

completes the proof of the well-definedness of T .
Step 2 (Existence) The functional is coercive on H1+(�) due to

∫ θ

0

W in(∇ y(k)
ε,τ , s)ds � c0

2 θ2 by (3.12), the estimate ∇θ · K(∇ y(k−1)
ε,τ , θ

(k−1)
ε,τ )∇θ �

cM |∇θ |2 by (3.4), and the fact that all other terms are either nonnegative or linear
in θ . Moreover, the functional is weakly lower semicontinuous on H1+(�). To see
this, we again use (3.4), the weak continuity of the trace operator in H1(�), and
the fact that all other bulk terms are continuous in L2(�) by the reasoning in Step
1. This shows that a minimizer θ

(k)
ε,τ exists.

Step 3 (Euler–Lagrange equation) In order to prove (3.11) for test functions ϕ ∈
H1(�) which are not constrained to be nonnegative, we extend the minimization
problem (2.24) to possibly negative functions θ ∈ H1(�) and we show that θ

(k)
ε,τ

minimizes T on H1(�). To this end, recalling that W in(F, 0) = 0 for F ∈ GL+(d)

(see below (2.12)), we continuously extend W in to negative temperatures by setting
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W in(F, θ) = 0 for θ < 0. It now suffices to check that there exists a constant cM > 0
such that for all θ ∈ H1(�) it holds that

T (θ) � T (θ+) + cM
2

‖∇θ−‖2
L2(�)

, (3.13)

where θ− := max{−θ, 0} and θ+ := max{θ, 0}, i.e., θ = θ+−θ−. This guarantees
that minimizers of T are nonnegative, and because T is strictly convex (to see this,
use (2.13)), θ

(k)
ε,τ is its unique minimizer on H1(�). Once this is achieved, in view

of (2.25) and (3.12), by taking first variations it is a standard matter to check that
(3.11) holds true.

Hence, it remains to prove (3.13). First, as θ
(k)
�,τ � 0 Hd−1-a.e. on �, we find

that ∫

�

(θ − ε2θ
(k)
�,τ )2dHd−1 �

∫

�

(θ+ − ε2θ
(k)
�,τ )2dHd−1. (3.14)

Next, by using (3.4) we see that

1

2

∫

�
∇θ · K(k−1)

ε,τ ∇θdx = 1

2

∫

�
∇θ+ · K(k−1)

ε,τ ∇θ+dx + 1

2

∫

�
∇θ− · K(k−1)

ε,τ ∇θ−dx

� 1

2

∫

�
∇θ+ · K(k−1)

ε,τ ∇θ+dx + cM
2

∫

�
|∇θ−|2dx, (3.15)

where for brevity we have setK(k−1)
ε,τ := K(∇ y(k−1)

ε,τ , θ
(k−1)
ε,τ ). Moreover, for a.e. x ∈

� we have that

∫ θ(x)

0
W in(∇ y(k)

ε,τ , s)ds �
∫ θ+(x)

0
W in(∇ y(k)

ε,τ , s)ds. (3.16)

This follows from W in(F, s) = 0 for all (F, s) ∈ GL+(d)× (−∞, 0). Eventually,
we consider the terms involving hτ and w

(k−1)
ε,τ . At this point, our argument for

proving nonnegativity of the temperature is more delicate compared to [33] as we
use the backward approximation θ

(k−1)
ε,τ , see Remark 2.4. By (C.2) there exists a

function Ŵ cpl such that W cpl(F, θ) = Ŵ cpl(C, θ) withC = FT F . Clearly, ∂C Ŵ cpl

is symmetric which implies with the chain rule that

∂FW
cpl(F, θ) = F

(
∂C Ŵ

cpl(C, θ) + (∂C Ŵ
cpl(C, θ))T

) = 2F∂C Ŵ
cpl(C, θ).

(3.17)

By Lemma 3.1, ∇ y(k−1)
ε,τ is invertible at every point in �. Hence, setting C (k−1)

ε,τ :=
(∇ y(k−1)

ε,τ )T∇ y(k−1)
ε,τ , we derive, by the second and third bound in (3.1), (3.5), (3.17),

and the fact that t ∧ 1 �
√
t for all t � 0, that

∣∣∂C Ŵ cpl(C (k−1)
ε,τ , θ (k−1)

ε,τ )
∣∣ = 1

2

∣∣∣(∇ y(k−1)
ε,τ )−1∂FW

cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )

∣∣∣

� 2C0|(∇ y(k−1)
ε,τ )−1|(θ(k−1)

ε,τ ∧ 1)(1 + |∇ y(k−1)
ε,τ |) � CM

√
θ

(k−1)
ε,τ (3.18)
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for CM > 0 sufficiently large. Let us further define Ċ (k)
ε,τ := (δτ∇ y(k)

ε,τ )
T∇ y(k−1)

ε,τ +
(∇ y(k−1)

ε,τ )T δτ∇ y(k)
ε,τ . By the symmetry of ∂C Ŵ cpl we have for all F ∈ GL+(d),

G ∈ R
d×d , and θ � 0

F∂C Ŵ
cpl(C, θ) : G = ∂C Ŵ

cpl(C, θ) : FTG = ∂C Ŵ
cpl(C, θ) : GT F,

where, again, C := FT F . We now use this identity with F = ∇ y(k−1)
ε,τ and G =

δτ∇ y(k)
ε,τ . By (2.14), (3.17), (3.18), and Young’s inequality with constant τ it follows

that

|∂FW cpl(∇ y(k−1)
ε,τ , θ

(k−1)
ε,τ ) : δτ ∇ y(k)

ε,τ | = 2
∣
∣∇ y(k−1)

ε,τ ∂C Ŵ
cpl(C(k−1)

ε,τ , θ
(k−1)
ε,τ ) : δτ ∇ y(k)

ε,τ

∣
∣

= |∂C Ŵ cpl(C(k−1)
ε,τ , θ

(k−1)
ε,τ ) : Ċ(k)

ε,τ | � CM

√
w

(k−1)
ε,τ |Ċ(k)

ε,τ | � w
(k−1)
ε,τ

τ
+ C2

Mτ |Ċ(k)
ε,τ |2.

Choosing τ0 sufficiently small such that C2
Mτ0 � c0, we derive by (D.1), (D.2),

and (2.9) for all τ ∈ (0, τ0) that

∂FW
cpl(∇ y(k−1)

ε,τ , θ (k−1)
ε,τ ) : δτ∇ y(k)

ε,τ � −w
(k−1)
ε,τ

τ
− ξ(∇ y(k−1)

ε,τ , δτ∇ y(k)
ε,τ , θ

(k−1)
ε,τ ).

(3.19)

This shows τ−1w
(k−1)
ε,τ + hτ (y

(k)
ε,τ , y

(k−1)
ε,τ , θ

(k−1)
ε,τ ) � 0 a.e. on �. From this we

deduce that

−
∫

�

(w
(k−1)
ε,τ

τ
+ hτ (y

(k)
ε,τ , y

(k−1)
ε,τ , θ (k−1)

ε,τ )
)

θdx

� −
∫

�

(w
(k−1)
ε,τ

τ
+ hτ (y

(k)
ε,τ , y

(k−1)
ε,τ , θ (k−1)

ε,τ )
)

θ+dx . (3.20)

Combining the estimates (3.14)–(3.20) leads to (3.13), which concludes the proof.
��
Remark 3.9. (Nonnegativity of temperature without dissipation rate) To derive es-
timate (3.19), it was essential that ξ(F, Ḟ, θ) � c|ḞT F + FT Ḟ |q for some q > 1
. The pointwise nonnegativity can still be established only under the assumption
that ξ � 0, at the expense of assuming that M(y(k−1)

ε,τ ) � η and M(y(k)
ε,τ ) � η for

some η sufficiently small, and that W additionally satisfies (W.4). Indeed, in this
case we can show that

∂FW
cpl(∇ y(k−1)

ε,τ , θ (k−1)
ε,τ ) : δτ∇ y(k)

ε,τ � −w
(k−1)
ε,τ

τ
(3.21)

a.e. in �, which, along with ξ � 0, implies (3.20). To see this, by (2.14), (3.3), and
(3.5), we can estimate that

|∂FW cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ ) : δτ∇ y(k)
ε,τ | � 2C0θ

(k−1)
ε,τ (1 + |∇ y(k−1)

ε,τ |)|δτ∇ y(k)
ε,τ |

� 2C0

c0
w(k−1)

ε,τ (1 + |Id| + C∗
η)

2C∗
η

τ
.

Since C∗
η → 0 as η → 0, (3.21) indeed follows for η small enough. This property

will be exploited in the adaptions to the case α < 2 in Sect. 3.3 below.
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For any y(k)
ε,τ and θ

(k)
ε,τ as given in this subsection, we define from now on

w(k)
ε,τ := W in(∇ y(k)

ε,τ , θ
(k)
ε,τ ).

3.2. Well-definedness of the scheme

For fixed time horizon T > 0 and time step τ ∈ (0, 1] small enough, we
will now prove the well-definedness of the staggered time-discretization scheme
described in the previous subsection. In this part, we are interested in the large-
strain setting, and treat the case ε = 1 and α = 2, where ξ is not regularized. For
later purposes, we again include ε in the estimates. (The reader only interested in
large strains, can readily set ε = 1.) As before, we assume for the sake of simplicity
that T/τ is an integer. Although not being necessary, for convenience we suppose
that (W.4) holds. At the end of the subsection, we briefly indicate the changes if
(W.4) is not assumed.

We start with a bound on the total energy E defined in (2.15). We also need
to take the work of the external forces into account. To this end, similarly to the
notation in (2.23), we consider, for each t ∈ I , the functionals �(t) on H1(�;Rd)

defined by

〈�(t), v〉 :=
∫

�

f (t) · vdx +
∫

�N

g(t) · vdHd−1 (3.22)

for all v ∈ H1(�;Rd). Furthermore, we define

C f,g := ‖ f ‖W 1,1(I ;L2(�)) + ‖g‖W 1,1(I ;L2(�N )). (3.23)

Note that the trace estimate in H1(�;Rd) shows that

‖�(t)‖H−1 � C
(‖ f (t)‖L2(�) + ‖g(t)‖L2(�N )

)
,

and, hence, by the Fundamental Theorem of Calculus in W 1,1(I ; L2(�)) and
W 1,1(I ; L2(�N )) we get that

‖�(t)‖H−1 � CTC f,g (3.24)

for a constant CT only depending on T . Given the sequences y(0)
ε,τ , . . . , y

(k)
ε,τ and

θ
(0)
ε,τ , . . . , θ

(k)
ε,τ for some k ∈ {1, . . . , T/τ }, as described in Sect. 3.1, we define, for

l ∈ {0, . . . , k},
F (l) := E(y(l)

ε,τ , θ
(l)
ε,τ ) − ε〈�(lτ), y(l)

ε,τ − id〉, (3.25)

and observe the following relation between F (l) and the total energy E(y(l)
ε,τ , θ

(l)
ε,τ ):

Lemma 3.10. There exists a constant CT > 0 only depending on T such that for
all l ∈ {0, . . . , k} with k ∈ {1, . . . , T/τ } it holds that

ε|〈�(lτ), y(l)
ε,τ − id〉| � min{F (l), E(y(l)

ε,τ , θ
(l)
ε,τ )} + ε2CTC

2
f,g,

with C f,g as defined in (3.23).
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Proof. By y(l)
ε,τ ∈ Yid, Poincaré’s inequality, (3.2), and (W.4) we derive that

‖y(l)
ε,τ − id‖2

H1(�)
� C‖∇ y(l)

ε,τ − Id‖2
L2(�)

� CWel(y(l)
ε,τ ).

Hence, by (3.24) and Young’s inequality with constant λ/ε (to be chosen below) it
follows that

|〈�(lτ), y(l)
ε,τ − id〉| � ‖�(lτ)‖H−1‖y(l)

ε,τ − id‖H1(�)

� CTC f,g‖y(l)
ε,τ − id‖H1(�)

� CT ε

λ
C2

f,g + λ

ε
‖y(l)

ε,τ − id‖2
H1(�)

� CT ε

λ
C2

f,g + C
λ

ε
E(y(l)

ε,τ , θ
(l)
ε,τ ).

Now, take λ small enough such that Cλ � 1
2 . Then, by the definition of F (l) we

discover that

F (l) = E(y(l)
ε,τ , θ

(l)
ε,τ ) − ε〈�(lτ), y(l)

ε,τ − id〉 � 1

2
E(y(l)

ε,τ , θ
(l)
ε,τ ) − ε2CTC

2
f,g,

and the statement follows. ��
We now proceed with the bound on the total energy. For definiteness, we set

�(t) = 0 for t /∈ I .

Lemma 3.11. (Inductive bound on the total energy) For any M > 0 there exist
CM such that, if the sequences y(0)

ε,τ , . . . , y
(k)
ε,τ and θ

(0)
ε,τ , . . . , θ

(k)
ε,τ , as described in

Sect. 3.1, for some k ∈ {1, . . . , T/τ } exist satisfyingF (l) � M for all l = 0, . . . , k−
1 with F (l) defined in (3.25), it holds that

F (k) � F (0) + CMτVk + ε2CT (1 + C3
f,g) + C

k∑

l=0

F (l)

×
∫ lτ

(l−1)τ

(‖�̇(t)‖H−1 + ‖�̇(t + τ)‖H−1
)
dt

+ κε2
∫ kτ

0

∫

�

θ�dHd−1dt, (3.26)

where C is a universal constant, CT a constant only depending on T , and

Vk :=
k∑

l=1

τ

∫

�

|δτ∇ y(l)
ε,τ |2dx . (3.27)

Proof. Step 1 Let us fix l ∈ {1, . . . , k}. Using Proposition 3.5 for l in place of k,
(2.9), and testing (3.7) with z = δτ y

(l)
ε,τ it follows that

0 =
∫

�

∂FW (∇ y(l)
ε,τ , θ

(l−1)
ε,τ ) : δτ∇ y(l)

ε,τ + ∂GH(∇2y(l)
ε,τ )

...δτ∇2y(l)
ε,τ dx

+
∫

�

ξ(∇ y(l−1)
ε,τ , δτ∇ y(l)

ε,τ , θ
(l−1)
ε,τ )dx − ε〈�(l)

τ , δτ y
(l)
ε,τ 〉. (3.28)
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Similarly, using Proposition 3.8 for l in place of k we test (3.11) with ϕ = 1 to
obtain

0 =
∫

�

δτw
(l)
ε,τ − ∂FW

cpl(∇ y(l−1)
ε,τ , θ (l−1)

ε,τ ) : δτ∇ y(l)
ε,τ

−
∫

�

ξ(∇ y(l−1)
ε,τ , δτ∇ y(l)

ε,τ , θ
(l−1)
ε,τ )dx + κ

∫

�

(θ(l)
ε,τ − ε2θ

(l)
�,τ )dH

d−1. (3.29)

Adding (3.28) to (3.29), multiplying by τ , and eventually summing over l =
1, . . . , k we discover that

∫

�
w0,εdx = τ

k∑

l=1

( ∫

�
∂FW

el(∇ y(l)
ε,τ ) : δτ ∇ y(l)

ε,τ dx +
∫

�
∂GH(∇2y(l)

ε,τ )
...δτ ∇2y(l)

ε,τ dx
)

+ τ

k∑

l=1

∫

�

(
∂FW

cpl(∇ y(l)
ε,τ , θ

(l−1)
ε,τ ) − ∂FW

cpl(∇ y(l−1)
ε,τ , θ

(l−1)
ε,τ )

) : δτ ∇ y(l)
ε,τ dx

−
k∑

l=1

(
τκ

∫

�
(ε2θ

(l)
�,τ − θ

(l)
ε,τ )dHd−1 + τε〈�(l)

τ , δτ y
(l)
ε,τ 〉

)
+

∫

�
w

(k)
ε,τ dx,

(3.30)

where w0,ε := W in(∇ y0,ε, θ0,ε). Here, we also used that W = W el + W cpl.
Step 2 We continue by bounding the first two sums on the right-hand side of

(3.30) from below. By the convexity of H (see (H.1)) it follows for l ∈ {1, . . . , k}
that

H(∇2y(l−1)
ε,τ ) � H(∇2y(l)

ε,τ ) + ∂GH(∇2y(l)
ε,τ )

...(∇2y(l−1)
ε,τ − ∇2y(l)

ε,τ ).

Integrating the above inequality over � and summing over l = 1, . . . , k leads to

τ

k∑

l=1

∫

�

∂GH(∇2y(l)
ε,τ )

...δτ∇2y(l)
ε,τ dx � H(y(k)

ε,τ ) − H(y0,ε), (3.31)

where we recall the notation in (2.4). By using the piecewise affine function ŷε,τ
introduced in (2.26), and that Wel is Gateaux differentiable (see [33, Proposition
3.2]) we get that

k∑

l=1

∫ lτ

(l−1)τ

∫

�

∂FW
el(∇ ŷε,τ (t)) : δτ∇ y(l)

ε,τ dxdt

=
∫ kτ

0

∫

�

∂FW
el(∇ ŷε,τ (t)) : ∇ ˙̂yε,τ (t)dxdt = Wel(y(k)

ε,τ ) − Wel(y0,ε).

(3.32)

For τ0 sufficiently small, we can apply Lemma 3.6 in the version of Remark 3.7.
This along with Lemma 3.10, F (l) � M for l ∈ {0, . . . , k − 1}, and (3.23) implies
for all l ∈ {1, . . . , k} that
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M(y(l)
ε,τ ) � M(y(l−1)

ε,τ ) + CM
(E(y(l−1)

ε,τ , θ
(l−1)
ε,τ ) + ε2‖ f ‖2

L2(I×�)
+ ε2‖g‖2

L2(I×�N )

)

� 2(1 + CM )F (l−1) + CMε2CTC
2
f,g � 2(1 + CM )M + CMε2CTC

2
f,g .

Together with Lemma 3.1 we get that there exists a compact convex set K , only
depending on M , T , f , and g, such that ∇ y(l)

ε,τ ∈ K a.e. on � for all l ∈ {0, . . . , k}.
Then, by the regularity of W el, setting CM := supF∈K |∂FFW el(F)|, we can esti-
mate for any t ∈ [(l − 1)τ, lτ ] with l ∈ {1, . . . , k} that

|∂FW el(∇ ŷε,τ (t)) − ∂FW
el(∇ y(l)

ε,τ )|
� CM |∇ ŷε,τ (t) − ∇ y(l)

ε,τ | = CM
lτ − t

τ
|∇ y(l)

ε,τ − ∇ y(l−1)
ε,τ | � CM |∇ y(l)

ε,τ − ∇ y(l−1)
ε,τ |.

Consequently, we get

k∑

l=1

∣∣
∣∣

∫ lτ

(l−1)τ

∫

�

∂FW
el(∇ ŷε,τ (t)) : δτ ∇ y(l)

ε,τ dxdt − τ

∫

�

∂FW
el(∇ y(l)

ε,τ ) : δτ ∇ y(l)
ε,τ dx

∣∣
∣∣

� CM

k∑

l=1

τ

∫

�

|∇ y(l)
ε,τ − ∇ y(l−1)

ε,τ ||δτ ∇ y(l)
ε,τ |dx = CMτ

k∑

l=1

τ

∫

�

|δτ ∇ y(l)
ε,τ |2dx = CMτVk .

Combined with (3.32), this leads to

τ

k∑

l=1

∫

�

∂FW
el(∇ y(l)

ε,τ ) : δτ∇ y(l)
ε,τ dx � Wel(y(k)

ε,τ )−Wel(y0,ε)−CMτVk . (3.33)

In a similar fashion, using the first bound in (C.5), we can estimate

τ

k∑

l=1

∫

�

(
∂FW

cpl(∇ y(l)
ε,τ , θ

(l−1)
ε,τ ) − ∂FW

cpl(∇ y(l−1)
ε,τ , θ

(l−1)
ε,τ )

) : δτ ∇ y(l)
ε,τ dx � −C0τVk .

(3.34)
Now, employing (3.31), (3.33), and (3.34) in (3.30), and using the definition of the
total energy E we conclude that

E(y(k)
ε,τ , θ

(k)
ε,τ ) � E(y0,ε, θ0,ε) +CMτVk +

k∑

l=1

τε〈�(l)
τ , δτ y

(l)
ε,τ 〉 +

k∑

l=1

τκ

∫

�

(ε2θ
(l)
�,τ − θ(l)

ε,τ )dHd−1.

(3.35)
Step 3: It remains to estimate the last two terms on the right-hand side of (3.35).

By the nonnegativity of θ
(l)
ε,τ and the definition of θ

(l)
�,τ below (2.25) we can bound

k∑

l=1

τκ

∫

�
(ε2θ

(l)
�,τ − θ

(l)
ε,τ )dHd−1 �

k∑

l=1

τκε2
∫

�
θ
(l)
�,τ dHd−1 = κε2

∫ kτ

0

∫

�
θ�dHd−1dt.

(3.36)
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Note that for any l ∈ {1, . . . , k} and t ∈ ((l−1)τ, lτ) we have that δτ y
(l)
ε,τ = ˙̂yε,τ (t).

Consequently, integration by parts yields

k∑

l=1

τ 〈�(l)
τ , δτ y

(l)
ε,τ 〉 =

∫ kτ

0
〈�(t), ˙̂yε,τ (t)〉dt (3.37)

= 〈�(kτ), ŷε,τ (kτ) − id〉 − 〈�(0), ŷε,τ (0) − id〉 −
∫ kτ

0
〈�̇(t), ŷε,τ (t) − id〉dt

� 〈�(kτ), ŷε,τ (kτ) − id〉 − 〈�(0), ŷε,τ (0) − id〉

+
∫ kτ

0
‖�̇(t)‖H−1‖ŷε,τ (t) − id‖H1(�)dt. (3.38)

By Poincaré’s inequality, (3.2), and (W.4), for t ∈ [(l − 1)τ, lτ ], we have that

‖ŷε,τ (t) − id‖2
H1(�)

� 2(‖y(l−1)
ε,τ − id‖2

H1(�)
+ ‖y(l)

ε,τ

−id‖2
H1(�)

) � C
(
Wel(y(l−1)

ε,τ ) + Wel(y(l)
ε,τ )

)
.

Therefore, by Lemma 3.10, (3.24), and
√
s � s/ε for all s � ε2 we get that

∫ kτ

0
‖�̇(t)‖H−1‖ŷε,τ (t) − id‖H1(�)dt

� C
k∑

l=1

(
ε + ε−1E(y(l−1)

ε,τ , θ (l−1)
ε,τ ) + ε−1E(y(l)

ε,τ , θ
(l)
ε,τ )

) ∫ lτ

(l−1)τ

‖�̇(t)‖H−1dt

� C

ε

k∑

l=1

((
F (l−1) + F (l))

∫ lτ

(l−1)τ

‖�̇(t)‖H−1dt
)

+ εCT (C f,g + C3
f,g).

Then, using an index shift and C f,g � 2
3 + 1

3C
3
f,g we get that

∫ kτ

0
‖�̇(t)‖H−1‖ŷτ (t) − id‖H1(�)dt (3.39)

� C

ε

k∑

l=0

(
F (l)

∫ lτ

(l−1)τ

(‖�̇(t)‖H−1 + ‖�̇(t + τ)‖H−1
)
dt

)
+ εCT (1 + C3

f,g)

(3.40)

for a possibly larger CT > 0. We plug this into (3.37) and use (3.36) to estimate
the terms on the right-hand side of (3.35), which by (3.25) concludes the proof. ��

We proceed with a bound on the (discrete) strain rates Vk defined in (3.27).

Lemma 3.12. (Inductive bound on the strain rates) Given M, T > 0, there exist
a constant CM and τ0 ∈ (0, 1] only depending on M, and a constant CT only
depending on T such that for τ ∈ (0, τ0) the following holds: Suppose that there
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exist the sequences y(0)
ε,τ , . . . , y

(k)
ε,τ and θ

(0)
ε,τ , . . . , θ

(k)
ε,τ for some k ∈ {1, . . . , T/τ }, as

described in Sect. 3.1, withM(y(l)
ε,τ ) � M for all l ∈ {0, . . . , k − 1}. Then,

k∑

l=1

τ

∫

�

|δτ ∇ y(l)
ε,τ |2dx � CMM(y0,ε)+ ε2CMCTC

2
f,g +CMτ

k−1∑

l=0

(M(y(l)
ε,τ )+‖θ(l)

ε,τ ∧ 1‖2
L2(�)

)
.

(3.41)

Proof. By Lemma 3.6 there exist constants cM , CM > 0 depending on M such
that we have for l ∈ {1, . . . , k}

M(y(l)
ε,τ ) + cMτ

∫

�

|δτ∇ y(l)
ε,τ |2dx � (1 + CMτ)M(y(l−1)

ε,τ )

+ CMτ
(‖θ(l)

ε,τ ∧ 1‖2
L2(�)

+ ε2‖ f (l)
τ ‖2

L2(�)
+ ε2‖g(l)

τ ‖2
L2(�N )

)
.

Summing the above inequality over l = 1, . . . , k and recalling the definition of
f (l)
τ , g(l)

τ below (2.23), we arrive at

M(y(k)
ε,τ ) − M(y0,ε) + cM

k∑

l=1

τ

∫

�

|δτ∇ y(l)
ε,τ |2dx

= CMε2
∫ kτ

0

(‖ f (t)‖2
L2(�)

+ ‖g(t)‖2
L2(�N )

)
dt

+ CMτ

k−1∑

l=0

(
M(y(l)

ε,τ ) + ‖θ(l)
ε,τ ∧ 1‖2

L2(�)

)
.

As M(y(k)
ε,τ ) � 0, we conclude the proof by (3.24). ��

We are ready to prove the well-definedness of our time-discretization scheme,
i.e., Theorem 2.3(i). At the same time, we will also derive two useful a priori bounds,
namely on the total energy and on the (discrete) strain rate, respectively.

Theorem 3.13. (Well-definedness of the scheme) For any T > 0 there exist a
constant C̄T > 0, corresponding constants

M ′ := 2eC̄T C f,g
(
ε−2F (0) + C̄T (1 + C3

f,g) + κ

∫ T

0

∫

�

θ�dHd−1dt
)
,

M := 2M ′ + C̄T C
2
f,g, (3.42)

aswell as constantsCM > 0and τ0 ∈ (0, 1]dependingon M such that the following
holds true: for each τ ∈ (0, τ0) such that T/τ ∈ N the sequences y(0)

ε,τ , . . . , y
(T/τ)
ε,τ

and θ
(0)
ε,τ , . . . , θ

(T/τ)
ε,τ as described in Sect. 3.1 exist, and for all k ∈ {0, . . . , T/τ }

we have that

E(y(k)
ε,τ , θ

(k)
ε,τ ) � ε2M, (3.43)

k∑

l=1

τ

∫

�

|δτ∇ y(l)
ε,τ |2dx � ε2CMM(1 + T ) + ε2CMC̄TC

2
f,g. (3.44)
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Proof. Step 1LetCT be the maximum of the constantsCT from Lemmas 3.10, 3.11,
3.12, and equation (3.24), and letC be the universal constant of Lemma 3.11. Define
C̄T = max{2CTCT , 2CT , 2}, and let M ′ and M be as in (3.42). Then, letCM > 0 be
the maximum of the constants CM from Lemmas 3.11 and 3.12. Moreover, let τ0 ∈
(0, 1] be chosen sufficiently small so that Lemma 3.5, Lemma 3.6, Proposition 3.8,
Lemma 3.11, and Lemma 3.12 hold true (all applied for M from (3.42)). In place
of (3.43), we focus on showing

F (k) = E(y(k)
ε,τ , θ

(k)
ε,τ ) − ε〈�(kτ), y(k)

ε,τ 〉 � ε2M ′, (3.45)

as then (3.43) follows directly by Lemma 3.10.
We will prove the statement by induction over K . In the base case K = 0,

(3.45) is satisfied by our choice of M ′, and the fact that y(0)
ε,τ = y0,ε and θ

(0)
ε,τ = θ0,ε.

Given K ∈ {1, . . . , T/τ }, let us assume that the statement as well as (3.45) hold
true for K − 1. We now show that the statement holds true for K . Applying first
Proposition 3.5 and then Proposition 3.8 we see that y(k)

ε,τ and θ
(k)
ε,τ exist, where for

both propositions we use the induction hypothesis (3.43) for K − 1.
Step 2 In this step, we prove that for τ0 small enough we have that

CMτVK � ε2, (3.46)

where VK is defined in (3.27). By ε2M � M , Remark 3.7, and (3.23) there exists
a constant C̃M only depending on M such that

1

C̃Mτ
‖∇ y(K )

ε,τ − ∇ y(K−1)
ε,τ ‖2

L2(�)
� ε2M + ε2C̃M (M + TC2

TC
2
f,g),

where we again used the hypothesis (3.43) for K − 1. Hence, by possibly further
decreasing τ0 (depending only on M , f , g, T , and the initial values) we can ensure
that

CM‖∇ y(K )
ε,τ − ∇ y(K−1)

ε,τ ‖2
L2(�)

� ε2

2
.

Furthermore, by possibly decreasing τ0 (depending only on M , u0, μ0, f , g, and
T ) and using the hypothesis (3.44) for K − 1 in place of K we get CMτVK−1 �
ε2/2. Consequently, combining the previous estimates and using τVK = τVK−1 +
‖∇ y(K )

ε,τ − ∇ y(K−1)
ε,τ ‖2

L2(�)
, the desired bound (3.46) follows.

Step 3By hypothesis the energy bound in (3.45) is satisfied for k ∈ {0, . . . , K −
1}. Consequently, Lemma 3.11 applies for any k ∈ {0, . . . , K }. By (3.46) we have
that

F (k) � F (0) + ε2 + ε2CT (1 + C3
f,g) + C

k∑

l=0

F (l)

×
∫ lτ

(l−1)τ

(‖�̇(t)‖H−1 + ‖�̇(t + τ)‖H−1)dt + κε2
∫ T

0

∫

�

θ�dHd−1dt.
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We now use the following discrete version of Grönwall’s Lemma: if β > 0, (al)l
is a nonnegative sequence, (bl)l ⊂ (0, 1/2), and

ak � β +
k∑

l=0

blal for k � 0,

then

ak � 2β exp
( k−1∑

l=0

2bl
)

for k � 0.

Indeed, as bl � 1/2, we get ak � 2β +∑k−1
l=0 2blal , and then the statement follows

from the elementary discrete Grönwall inequality. We apply this result for

β := F (0) + ε2 + ε2CT (1 + C3
f,g) + κε2

∫ T

0

∫

�

θ�dHd−1dt,

al := F (l), bl := C
∫ lτ

(l−1)τ

(‖�̇(t)‖H−1 + ‖�̇(t + τ)‖H−1
)
dt, (3.47)

where we note that bl � 1/2 for all l, provided that τ0 is chosen small enough
depending on f and g. In view of (3.24), we then see that (3.45) for K is true.
Finally, (3.44) directly follows from the application of Lemma 3.12 and the fact
that the last term in (3.41) can be controlled by E , see e.g. Remark 3.7. ��

Eventually, if (W.4) is not assumed, we get additional additive constants in
Lemma 3.10 and in the derivation of (3.40), leading to an additional constant in
(3.26) which however does not scale as ε2. This does influence the proof of the
well-definedness, only the scaling of the energy in terms of ε.

3.3. Adaptions for exponents α < 2

In this subsection, we prove Proposition 2.5(i). This part can be skipped by
a reader only interested in the proof of Theorem 2.3. In the previous subsection,
we have already established the well-definedness of the scheme in the large-strain
setting, as well as the energy bound (3.43). The latter will be essential to obtain
a priori bounds for the limit passage τ → 0 in Sect. 4. In the case α < 2, for
the passage to the linearized setting ε → 0, however, the bound (3.43) and the
induced a priori bounds are not expedient. This is due to the different scaling of
the internal and mechanical energy, being of order εα and ε2, respectively. To
this end, it is necessary to establish energy bounds for rescaled versions of the
energy functionals from Sect. 2.1, namely Mε := 1

ε2 M, Wcpl
ε := 1

ε2 Wcpl, and for
α ∈ [1, 2],

Eε(y, θ) := Mε(y) + α

2ε2

∫

�

W in(∇ y, θ)
2
α dx, (3.48)

where both ‘types of energy’ are of the same order. Controlling this energy is more
delicate compared to Proposition 3.11, as the mechanical and thermal equation
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(3.28)–(3.29) scale with different powers of ε and cannot simply be added up.
Therefore, novel ideas are required to control the contributions of W cpl and ξ . To
achieve this, higher integrability of W in in L2/α is needed which can be guaranteed
by using the regularization of ξ

reg
α introduced in (2.35). This in turn induces new

challenges for the analysis of the time-discrete scheme since showing the nonneg-
ativity of the temperature in the thermal step, see Proposition 3.8, is more delicate.
For this, it will be essential to assume that strains are small, i.e., we suppose that
the parameter ε ∈ (0, 1] is sufficiently small.

Note that for the entire subsection we can assume that α ∈ [1, 2) since in the case
α = 2 there is no regularization of the dissipation rate, the existence of the scheme
is already guaranteed by Theorem 2.3(i), and also an energy bound for Eε follows
already from (3.43). The mechanical step is not affected by the regularization, but
Proposition 3.8 needs to be adapted.

Proposition 3.14. (Thermal step with regularization) For any M > 0 there exists
ε0 > 0 such that if ε ∈ (0, ε0), if the minimizer y

(k)
ε,τ given in Proposition 3.5 exists,

and if Mε(y
(k−1)
ε,τ ) � M and Mε(y

(k)
ε,τ ) � M the minimization problem (2.24ε)

attains a unique solution θ
(k)
ε,τ satisfying (3.11) for all ϕ ∈ H1(�) with ξ replaced

by ξ
reg
α .

Proof. As ξ � ξ
reg
α , the existence and uniqueness of θ

(k)
ε,τ follows by the same

reasoning as in Steps 1–2 of the proof of Proposition 3.8. Since ξ
reg
α � 0, the

nonnegativity of the temperature follows by Remark 3.9 for ε0 sufficiently small,
where we use M(y(k−1)

ε,τ ) � Mε2 and M(y(k)
ε,τ ) � Mε2. ��

Our next goal is to adapt Proposition 3.11 to the present setting. As a preparation,
supposing that for k ∈ {0, . . . , T/τ } the steps y(k)

ε,τ and θ
(k)
ε,τ exist, we define

F (k)
ε := Eε(y

(k)
ε,τ , θ

(k)
ε,τ ) − ε−1〈�(kτ), y(k)

ε,τ − id〉, (3.49)

where � is defined in (3.22). By repeating the proof of Lemma 3.10 we find that

ε−1|〈�(kτ), y(k)
ε,τ − id〉| � min{F (k)

ε , Eε(y
(k)
ε,τ , θ

(k)
ε,τ )} + CTC

2
f,g (3.50)

for k ∈ {0, . . . , T/τ }, for a constant CT > 0 only depending on T and C f,g as in
(3.23).

Lemma 3.15. (Inductive bound on the rescaled total energy) There exists τ0 ∈
(0, 1] and, given M > 0, ε0 ∈ (0, 1] such that the following holds true: suppose
that for τ ∈ (0, τ0), ε ∈ (0, ε0), and k ∈ {1, . . . , T/τ } the steps y(0)

ε,τ , . . . , y
(k)
ε,τ and

θ
(0)
ε,τ , . . . , θ

(k)
ε,τ exist such that F (l)

ε � M for all l ∈ {0, . . . , k − 1}. Then, for a a
universal constant C and a constant CT possibly depending on T it holds that

F (k)
ε � C

(
F (0)

ε +
k∑

l=0

F (l)
ε

∫ lτ

(l−1)τ

(
1 + ‖�̇(t)‖H−1 + ‖�̇(t + τ)‖H−1

)
dt

+ κ

∫ kτ

0

∫

�

θ2
� dHd−1dt

)

+ CT (1 + C3
f,g).
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Proof. As a preliminary step, we show that the assumption F (l)
ε � M for all

l ∈ {0, . . . , k − 1} implies bounds on the rescaled mechanical energy for all l ∈
{0, . . . , k}. First, by (3.50) we get for l ∈ {0, . . . , k − 1} that

Eε(y
(l)
ε,τ , θ

(l)
ε,τ ) = F (l)

ε +ε−1〈�(kτ), y(k)
ε,τ − id〉 � 2F (l)

ε +CTC
2
f,g � 2M+CTC

2
f,g.

(3.51)
Consequently, we can choose ε0 sufficiently small such that M(y(l)

ε,τ ) � 1 for
l ∈ {0, . . . , k − 1}. Then, we apply (3.10) for M = 1 to get τ0 such that for
τ ∈ (0, τ0] it holds that

M(y(k)
ε,τ ) � (1 + C1τ)M(y(k−1)

ε,τ ) + C1τ
(‖θ(k−1)

ε,τ ∧ 1‖2
L2(�)

+ ε2‖ f (k)
τ ‖2

L2(�)
+ ε2‖g(k)

τ ‖2
L2(�)

)
,

where C1 is a universal constant. By (2.14) and the fact that 1 ∧ t � t1/α for t � 0
we find that

‖θ(k−1)
ε,τ ∧ 1‖2

L2(�)
� C0‖w(k−1)

ε,τ ‖
2
α

L
2
α (�)

, (3.52)

such that, dividing the above estimate by ε2 and recalling (3.48) as well as Re-
mark 3.7 we get that

Mε(y
(k)
ε,τ ) � (1 + C1τ)Eε(y

(k−1)
ε,τ , θ (k−1)

ε,τ ) + C1
(‖ f ‖2

L2(I×�)
+ ‖g‖2

L2(I×�N )

)
.

This along with (3.51) shows that, possibly decreasing ε0, we have Mε(y
(l)
ε,τ ) � 1

for all l ∈ {0, . . . , k}. This induces that in the following proof the constants coming
from Lemmas 3.1, 3.6, and 3.12 are universal and denoted by C1.

As in the proof of Proposition 3.11, the strategy relies on a suitable test of the
mechanical and the thermal equation, see also (3.28)–(3.29). In contrast, however,
the resulting equations cannot be summed up, but have to be treated separately.
This will allow us to show the estimates

Mε(y
(k)
ε,τ ) − ε−1〈�(kτ), y(k)

ε,τ − id〉 + τ

ε2

k∑

l=1

∫

�

ξ(∇ y(l−1)
ε,τ , δτ∇ y(l)

ε,τ , θ
(l−1)
ε,τ )dx

� CMε(y
(0)
ε,τ ) + CT (1 + C3

f,g)

+ C
k∑

l=0

F (l)
ε

∫ lτ

(l−1)τ

(
1 + ‖�̇(t)‖H−1 + ‖�̇(t + τ)‖H−1

)
dt, (3.53)

and

α

2ε2

∫

�

(w(k)
ε,τ )

2
α dx − τ

ε2

k∑

l=1

∫

�

ξ(∇ y(l−1)
ε,τ , δτ∇ y(l)

ε,τ , θ
(l−1)
ε,τ )dx

� α

ε2

∫

�

(w(0)
ε,τ )

2
α dx + CMε(y

(0)
ε,τ ) + CT (1 + C2

f,g)

+ Cτ

k∑

l=0

F (l)
ε + κ

∫ kτ

0

∫

�

θ2
� dHd−1dt, (3.54)
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where C is a universal constant and CT possibly depends on T . Then, in view of
(3.48), (3.49), and (3.51) for l = 0, the result follows by summing up the two
estimates. We now treat (3.53) and (3.54) separately. Step 1 (Inductive bound on
the mechanical energy): The first part is achieved by bounds similar to the ones
obtained in the proof of Proposition 3.11, and we therefore refer to estimates therein.
Testing (3.7) for l in place of k with z = δτ y

(l)
ε,τ we get (3.28). Then, multiplying

both sides by τ
ε2 , summing over l = 1, . . . , k, and using W = W el + W cpl, (3.31),

as well as (3.33), by possibly increasing C1 we derive that

Mε(y
(k)
ε,τ ) − Mε(y0,ε) + τ

ε2

k∑

l=1∫

�

(
∂FW

cpl(∇ y(l)
ε,τ , θ

(l−1)
ε,τ ) : δτ∇ y(l)

ε,τ + ξ(∇ y(l−1)
ε,τ , δτ∇ y(l)

ε,τ , θ
(l−1)
ε,τ )

)
dx

� C1
τ 2

ε2

k∑

l=1

∫

�

|δτ∇2y(l)
ε,τ |2dx + τ

ε

k∑

l=1

〈�(l)
τ , δτ y

(l)
ε,τ 〉. (3.55)

Here, we also used the definition of Vk in (3.27), and the fact that the initial value
is given by y0,ε. By (3.5), (3.52), and Young’s inequality it follows that

1

ε2

∣∣∣
∫

�

∂FW
cpl(∇ y(l)

ε,τ , θ
(l−1)
ε,τ ) : δτ∇ y(l)

ε,τ dx
∣∣∣

� C

ε2

∫

�

(θ(l−1)
ε,τ ∧ 1)(1 + |∇ y(l)

ε,τ − Id|)|δτ∇ y(l)
ε,τ |dx

� C

ε2

∫

�

(
(w(l−1)

ε,τ )
2
α + |∇ y(l)

ε,τ − Id|2)dx + C

ε2

∫

�

|δτ∇ y(l)
ε,τ |2dx . (3.56)

By Lemma 3.12 and (3.52) we get that

k∑

l=1

τ

∫

�

|δτ∇ y(l)
ε,τ |2dx � ε2C1Mε(y0,ε) + ε2C1CTC

2
f,g

+ C1τ

k−1∑

l=0

(
M(y(l)

ε,τ ) + ‖(w(l−1)
ε,τ )

1
α ‖2

L2(�)

)
.

Using the definition of the total energy in (3.48), the definition of Wel
ε , and (W.4),

we insert this in (3.56) to obtain

τ

ε2

k∑

l=1

∣
∣∣
∫

�

∂FW
cpl(∇ y(l)

ε,τ , θ
(l−1)
ε,τ ) : δτ∇ y(l)

ε,τ dx
∣
∣∣ + τ

ε2

k∑

l=1

∫

�

|δτ∇2y(l)
ε,τ |2dx

(3.57)

� Cτ

k∑

l=0

Eε(y
(l)
ε,τ , θ

(l)
ε,τ ) + CMε(y0,ε) + CCTC

2
f,g. (3.58)
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Next, by repeating the argument in (3.37)–(3.40) we find that

τ

ε

k∑

l=1

〈�(l)
τ , δτ y

(l)
ε,τ 〉

� ε−1〈�(kτ), ŷτ (kτ) − id〉 − ε−1〈�(0), ŷτ (0) − id〉

+ C
k∑

l=0

(
F (l)

ε

∫ lτ

(l−1)τ

(‖�̇(t)‖H−1 + ‖�̇(t + τ)‖H−1
)
dt

)
+ CT (1 + C3

f,g).

(3.59)

Employing (3.57) and (3.59) in (3.55), and using again (3.50) we arrive at (3.53).
Step 2 (Inductive bound on the temperature): For α ∈ [1, 2), let χ(t) :=

α
2 (εα + t)

2
α for t � 0. The convexity of χ implies that

∫

�

(w(l)
ε,τ − w(l−1)

ε,τ )χ ′(w(l)
ε,τ )dx �

∫

�

χ(w(l)
ε,τ )dx −

∫

�

χ(w(l−1)
ε,τ )dx .

Summation of this estimate over l = 1, . . . , k leads to

α

2

∫

�

(w(k)
ε,τ )

2
α dx

�
∫

�

χ(w(k)
ε,τ )dx �

∫

�

χ(w(0)
ε,τ )dx +

k∑

l=1

∫

�

(w(l)
ε,τ − w(l−1)

ε,τ )χ ′(w(l)
ε,τ )dx . (3.60)

This suggests to test (3.11) (for l in place of k, ξ
reg
α in place of ξ , and εαθ

(l)
�,τ in

place of ε2θ
(l)
�,τ ) with ϕ = χ ′(w(l)

ε,τ ) which yields

0 =
∫

�

(
δτw

(l)
ε,τ − ∂FW

cpl(∇ y(l−1)
ε,τ , θ (l−1)

ε,τ ) :

δτ∇ y(l)
ε,τ − ξ

reg
α (∇ y(l−1)

ε,τ , δτ∇ y(l)
ε,τ , θ

(l−1)
ε,τ )

)
χ ′(w(l)

ε,τ )dx

+
∫

�

K(∇ y(l−1)
ε,τ , θ (l−1)

ε,τ )∇θ(l)
ε,τ · ∇(χ ′(w(l)

ε,τ ))dx + κ

∫

�

(θ(l)
ε,τ

− εαθ
(l)
�,τ )χ

′(w(l)
ε,τ )dHd−1. (3.61)

We now estimate the various terms separately. First, we employ (3.5), (2.14), (3.1),
and Young’s inequality with powers 2/α and 2/(2 − α) to obtain

∣∣∣
∫

�

[
∂FW

cpl(∇ y(l−1)
ε,τ , θ (l−1)

ε,τ ) : δτ∇ y(l)
ε,τ

]
χ ′(w(l)

ε,τ )dx
∣∣∣

� 2C0

∫

�

(θ(l−1)
ε,τ ∧ 1)(1 + |∇ y(l−1)

ε,τ |)|δτ∇ y(l)
ε,τ |(εα + w(l)

ε,τ )
2
α
−1dx

� C(1 + C1)

∫

�

(
(w(l−1)

ε,τ ∧ 1)
2
α |δτ∇ y(l)

ε,τ |
2
α + (

ε2 + (w(l)
ε,τ )

2
α
))

dx . (3.62)
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If α ∈ (1, 2), we use in the last estimate another Young’s inequality, now with
powers α/(α − 1) and α, as well as t ∧ 1 � t (α−1)/α for all t � 0 to show that

∣∣
∣
∫

�

[
∂FW

cpl(∇ y(l−1)
ε,τ , θ (l−1)

ε,τ ) : δτ∇ y(l)
ε,τ

]
χ ′(w(l)

ε,τ )dx
∣∣
∣

� C
∫

�

(
ε2 + (w(l−1)

ε,τ )
2
α + (w(l)

ε,τ )
2
α + |δτ∇ y(l)

ε,τ |2
)
dx

� Cε2
(

1 + Eε(y
(l−1)
ε,τ , θ (l−1)

ε,τ ) + Eε(y
(l)
ε,τ , θ

(l)
ε,τ ) + 1

ε2

∫

�

|δτ∇ y(l)
ε,τ |2dx

)
.

(3.63)

Notice that for α = 1 the above bound follows directly from (3.62), simply using
w

(l−1)
ε,τ ∧ 1 � 1.

Next, we estimate the ξ
reg
α -term. From the definition of ξ

reg
α in (2.35), we have

that ξ
reg
α � ξ

α
2 . Hence, by Young’s inequality with power 2/α and 2/(2 − α), and

by a similar reasoning as before, it follows that
∫

�

ξ
reg
α (∇ y(l−1)

ε,τ , δτ∇ y(l)
ε,τ , θ

(l−1)
ε,τ )χ ′(w(l)

ε,τ )dx

�
∫

�

ξ(∇ y(l−1)
ε,τ , δτ∇ y(l)

ε,τ , θ
(l−1)
ε,τ )dx + Cε2(1 + Eε(y

(l)
ε,τ , θ

(l)
ε,τ )). (3.64)

We continue by investigating the K-term. By (2.12) and the chain rule we have that

∇(χ ′(w(l)
ε,τ )) = 2 − α

α
(εα + w(l)

ε,τ )
2
α
−2

×
[(

∂FW
cpl(∇ y(l)

ε,τ , θ
(l)
ε,τ ) − θ(l)

ε,τ ∂FθW
cpl(∇ y(l)

ε,τ , θ
(l)
ε,τ )

)
: ∇2y(l)

ε,τ

− θ(l)
ε,τ ∂

2
θ W

cpl(∇ y(l)
ε,τ , θ

(l)
ε,τ )∇θ(l)

ε,τ

]
.

This combined with (3.5), the second and third bound in (C.5), (2.14), (3.3), and
(3.4) leads to

K(l−1)
ε,τ ∇θ(l)

ε,τ · ∇(χ ′(w(l)
ε,τ ))

� 2 − α

α
(εα + w(l)

ε,τ )
2
α
−2

(
c|∇θ(l)

ε,τ |2 − C(w(l)
ε,τ ∧ 1)|∇2y(l)

ε,τ ||∇θ(l)
ε,τ |

)
(3.65)

for some c > 0, where we set K(l−1)
ε,τ := K(∇ y(l−1)

ε,τ , θ
(l−1)
ε,τ ) for brevity. (In the

definition of χ , the addend εα appears to ensure that (εα +w
(l)
ε,τ )

2
α
−2 is well-defined

for α > 1.) By t ∧ 1 � t1−2/(pα) for all t � 0, Young’s inequality twice (firstly
with power 2 and constant λ ∈ (0, 1), secondly with powers p/(p − 2) and p/2)
we derive that

(w(l)
ε,τ ∧ 1)|∇2y(l)

ε,τ ||∇θ(l)
ε,τ | � λ|∇θ(l)

ε,τ |2 + 1

λ
(w(l)

ε,τ )
2 p−2

p (w(l)
ε,τ )

4(α−1)
pα |∇2y(l)

ε,τ |2

� λ|∇θ(l)
ε,τ |2 + 1

λ

(
(w(l)

ε,τ )
2 + (w(l)

ε,τ )
2 α−1

α |∇2y(l)
ε,τ |p

)
.
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Choosing λ small enough such that Cλ < c/2 (with c and C as in (3.65)), we
derive, with (3.65), that

∫

�
K(l−1)

ε,τ ∇θ
(l)
ε,τ ·∇(χ ′(w(l)

ε,τ ))dx � c

2

2 − α

α
(εα+w

(l)
ε,τ )

2
α
−2|∇θ

(l)
ε,τ |2−Cε2Eε(y

(l)
ε,τ , θ

(l)
ε,τ ).

(3.66)
Lastly, for the boundary term, we use (2.14) as well as Young’s inequality with
powers 2/α and 2/(2 − α) and constant λ ∈ (0, 1) to arrive at

∫

�
(θ

(l)
ε,τ − εαθ

(l)
�,τ )χ ′(w(l)

ε,τ )dHd−1 �
∫

�
(C−1

0 w
(l)
ε,τ − εαθ

(l)
�,τ )(εα + w

(l)
ε,τ )

2
α
−1dHd−1

� 1

C0

∫

�
(w

(l)
ε,τ )

2
α dHd−1 − ε2

λ

∫

�
(θ

(l)
�,τ )

2
α dHd−1 − λ

∫

�
(εα + w

(l)
ε,τ )

2
α dHd−1.

Therefore, choosing λ sufficiently small with respect to 1/C0, we get that

∫

�

(θ(l)
ε,τ − εαθ

(l)
�,τ )χ

′(w(l)
ε,τ )dHd−1 � −Cε2

(
1 +

∫

�

(θ
(l)
�,τ )

2
α dHd−1

)
. (3.67)

We then divide (3.60) by ε2, insert (3.61) multiplied by τ in this inequality, and use
(3.63), (3.64), (3.66), and (3.67) to estimate the various terms. This together with
the bounds from (3.50) and (3.57), and the fact that

τ

k∑

l=1

‖(θ(l)
�,τ )

2
α ‖L1(�) � Cτ

k∑

l=1

(
1 + ‖θ(l)

�,τ‖2
L2(�)

)
� CT + C‖θ�‖2

L2([0,kτ ]×�)

by Hölder’s inequality yields (3.54). This concludes the proof. ��

Theorem 3.16. (Well-definedness of the scheme) For any T > 0 there exist a
constant C̄T , corresponding constants

M ′ := 2eC̄T (1+C f,g)
(
C̄TF (0) + C̄T (1 + C3

f,g) + κ

∫ T

0

∫

�

θ2
� dHd−1dt

)
,

M := 2M ′ + C̄T C
2
f,g,

as well as constants ε0, τ0 ∈ (0, 1] depending also on M such that the following
holds true: for each ε ∈ (0, ε0) and τ ∈ (0, τ0) such that T/τ ∈ N the sequences
y(0)
ε,τ , . . . , y

(T/τ)
ε,τ and θ

(0)
ε,τ , . . . , θ

(T/τ)
ε,τ exist, and for all k ∈ {0, . . . , T/τ } we have

that

Eε(y
(k)
ε,τ , θ

(k)
ε,τ ) � M,

T/τ∑

k=1

τ

ε2

∫

�

|δτ∇ y(l)
ε,τ |2dx � C̄T M(1 + T ) + C̄T C

2
f,g. (3.68)
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Proof. The theorem is a consequence of Lemma 3.15 and Lemma 3.12. The argu-
ment is similar to the one of Theorem 3.13 and we therefore omit the details. Let
us just mention that the energy bound follows in the same way by induction, up to
using different values β, al , and bl in (3.47), and by employing (3.50) in place of
Lemma 3.10. Based on the uniform energy bound, Proposition 3.14 indeed shows
that the scheme is well-defined, provided that ε0 is chosen sufficiently small. Even-
tually, the bound on the strain rates follows from Lemma 3.12, see particularly
(3.57) in the previous proof. ��
Remark 3.17. Due to our regularization of the dissipation rate, in the case α ∈ [1, 2)

we obtain the additional control
∫ T

0

∫

�

|∇με,τ |2
(1 + με,τ )

2(1− 1
α
)
dxdt � Cα < ∞ (3.69)

for a constant Cα depending on α, but independent of ε and τ , where we shortly
wrote με,τ := ε−αθε,τ (see also (2.26) for the definition of θε,τ ). This follows by
using the positive term on the right-hand side of (3.66).

3.4. A Priori bounds

Fix initial values (y0,ε, θ0,ε) with Eε(y0,ε, θ0,ε) � E0 for some E0 > 0. Without

further notice, we suppose in this subsection that the sequences y(0)
ε,τ , . . . , y

(T/τ)
ε,τ

and θ
(0)
ε,τ , . . . , θ

(T/τ)
ε,τ exist by Theorem 2.3(i) or Proposition 2.5(i), respectively, for

ε ∈ (0, ε0) for some ε0 depending only on α, E0, f , g, θ�, and T . (In the case
α = 2, we can set ε = 1). We derive a priori bounds on the rescaled displacements
ε−1(y(l)

ε,τ − id) and the rescaled temperatures ε−αθ
(l)
ε,τ for l ∈ {1, . . . , T/τ }. To

this end, for small ε, we will again assume (W.4). Recall the definition of the
interpolations in (2.26). In a similar way, we write wε,τ = W in(yε,τ , θε,τ ), and
similarly for the other interpolations. The next lemma is a direct consequence of
Theorem 3.13 and Theorem 3.16.

Lemma 3.18. (First a priori bounds) Let E0 > 0 such that Eε(y0,ε, θ0,ε) � E0.
Then, there exists a constant C > 0 depending on α, E0, f , g, θ�, and T such that

Eε(y
(k)
ε,τ , θ

(k)
ε,τ ) � C for all k ∈ {1, . . . , T/τ }, and the interpolants constructed from

the discrete solutions satisfy

‖yε,τ − id‖L∞(I ;W 1,∞(�;Rd ))
+ ‖∇2yε,τ‖L∞(I ;L p(�;Rd ))

� Cε2/p, (3.70a)

‖yε,τ − id‖L∞(I ;H1(�;Rd ))
� Cε, (3.70b)

‖∇ ˙̂yε,τ‖L2(I×�;Rd×d ) � Cε, (3.70c)

‖θε,τ‖L∞(I ;L1(�)) + ‖wε,τ‖L∞(I ;L1(�)) � Cεα (3.70d)

Estimates (3.70a)–(3.70b) also hold for y
ε,τ

, and (3.70d) holds for θε,τ , θ̂ε,τ , wε,τ ,

and ŵε,τ , as well.
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Proof. Let us first suppose that (W.4) holds. The energy bound on Eε for α = 2 and
α ∈ [1, 2) follows directly from Theorems 3.13 and 3.16, respectively. The first two
estimates can be shown from the uniform bound on the energy, (W.4), (3.2), (5.21),
and Poincaré’s inequality. In a similar way, the bound on wε,τ in (3.70d) follows
from the bound on the total rescaled energy, (3.48), and Hölder’s inequality. Then,
the proof of (3.70d) is concluded by (2.14). Finally, (3.70c) is a direct consequence
of (3.44) and (3.68), respectively. Eventually, for α = 2 and ε near 1, the result also
holds without assuming (W.4) as (W.3) allows us to derive (3.70a)–(3.70b) with C
in place of Cε2/p and Cε on the right-hand side. ��

In order to pass to the limit τ → 0 in the next section, we need additional
a priori bounds for the temperature. Testing the equation (3.11) turns out to be
delicate since for α = 2 the viscous dissipation ξ(∇ y(k−1)

ε,τ , δτ∇ y(k)
ε,τ , θ

(k−1)
ε,τ ) is

only bounded in L1(I × �). Thus, to obtain improved estimates that work in this
case, we employ special test functions developed by Boccardo and Gallouët [10]
for parabolic equations with a measure-valued right-hand side, see also [16]. We
follow here the approach in [33]. However, almost complete proofs are provided
since compared to their setting we perform the estimates in the time discrete setting
and we derive fine estimates in terms of the small parameter ε.

Lemma 3.19. (Weighted L2-bound) For any η ∈ (0, 1) there exists a constant C
independent of ε, τ , and α such that

T/τ∑

k=1

τ

∫

�

η
(

1 + ε−αw
(k)
ε,τ

)1+η

∣∣∇w(k)
ε,τ

∣∣2dx � Cε2α. (3.71)

Actually, this statement is needed only for α = 2 since for α ∈ [1, 2) we have a
better estimate by Remark 3.17. Still, we state and prove the result for any α since
the following argument does not depend on α.

Proof. Step 1: In the following, C will denote a constant independent of k, ε, τ , α,
and η. Given k ∈ {1, . . . , T/τ }, we have by (3.11) (for ξ

reg
α in place of ξ ) that for

any ϕk ∈ H1(�)

∫

�

δτw
(k)
ε,τ ϕkdx =

∫

�

hkε,τ ϕkdx

−
∫

�

K(k−1)
ε,τ ∇θ(k)

ε,τ · ∇ϕkdx − κ

∫

�

(θ(k)
ε,τ − εαθ

(k)
�,τ )ϕkdHd−1, (3.72)

where we write

h(k)
ε,τ := ∂FW

cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ ) : δτ∇ y(k)
ε,τ + ξ

reg
α (∇ y(k−1)

ε,τ , δτ∇ y(k)
ε,τ , θ

(k−1)
ε,τ ),

K(k−1)
ε,τ := K(∇ y(k−1)

ε,τ , θ (k−1)
ε,τ ) (3.73)

for brevity. Given η ∈ (0, 1), let χη,ε : R → R be the function uniquely determined

byχη,ε(0) = 0 andχ ′
η,ε(t) = 1− 1

(1+ε−α t)η for all t � 0. Choosingϕk := χ ′
η,ε(w

(k)
ε,τ )
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in (3.72), multiplying both sides by τ , and summing over k = 1, . . . , T/τ , we arrive
at

T/τ∑

k=1

∫

�

(w(k)
ε,τ − w(k−1)

ε,τ )χ ′
η,ε(w

(k)
ε,τ )dx =

T/τ∑

k=1

τ

∫

�

h(k)
ε,τ χ

′
η,ε(w

(k)
ε,τ )dx

−
T/τ∑

k=1

τ

∫

�

χ ′′
η,ε(w

(k)
ε,τ )K(k−1)

ε,τ ∇θ(k)
ε,τ · ∇w(k)

ε,τ dx

− κ

T/τ∑

k=1

τ

∫

�

(θ(k)
ε,τ − εαθ

(k)
�,τ )χ ′

η,ε(w
(k)
ε,τ )dHd−1. (3.74)

Our goal is to show that

T/τ∑

k=1

τ

∫

�

χ ′′
η,ε(w

(k)
ε,τ )K(k−1)

ε,τ ∇θ(k)
ε,τ · ∇w(k)

ε,τ dx � Cεα. (3.75)

To this end, we estimate the various terms in (3.74). First, notice that by the con-
vexity of χη,ε we have, for any k ∈ {1, . . . , T/τ }, that

χη,ε(w
(k−1)
ε,τ ) � χη,ε(w

(k)
ε,τ ) + χ ′

η,ε(w
(k)
ε,τ )(w

(k−1)
ε,τ − w(k)

ε,τ ),

and therefore,

T/τ∑

k=1

∫

�

(
w(k)

ε,τ − w(k−1)
ε,τ

)
χ ′

η,ε(w
(k)
ε,τ )dx �

T/τ∑

k=1

∫

�

(
χη,ε(w

(k)
ε,τ ) − χη,ε(w

(k−1)
ε,τ )

)
dx

=
∫

�

χη,ε(w
(T/τ)
ε,τ )dx −

∫

�

χη,ε(w
(0)
ε,τ )dx � −

∫

�

w(0)
ε,τ dx � −Cεα,

where we used χη,ε � 0 and χη,ε(t) � t for all t � 0, and in the last step also
(3.70d). Using (3.5), ξ

reg
α � ξ , (2.9), (D.2), and (3.70a) we see that

T/τ∑

k=1

∫

�

|h(k)
ε,τ |dx � C

T/τ∑

k=1

∫

�

(√
θ

(k−1)
ε,τ |δτ∇ y(k)

ε,τ | + |δτ∇ y(k)
ε,τ |2

)
dx,

where we used that t ∧ 1 �
√
t for t � 0. Then, by Young’s inequality, χ ′

η,ε � 1,
(3.70c), and (3.70d) we get

T/τ∑

k=1

τ

∫

�

h(k)
ε,τ χ

′
η,ε(w

(k)
ε,τ )dx

�
T/τ∑

k=1

τ

∫

�

|h(k)
ε,τ |dx � C

T/τ∑

k=1

τ

∫

�

(
θ(k−1)
ε,τ + |δτ∇ y(k)

ε,τ |2
)
dx � Cεα,(3.76)
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where we have used α � 2. Lastly, by θ
(k)
ε,τ � 0, κ � 0, χ ′

η,ε ∈ [0, 1], and the

definition of θ
(k)
�,τ it follows that

− κ

T/τ∑

k=1

τ

∫

�

(θ(k)
ε,τ − εαθ

(k)
�,τ )χ ′

η,ε(w
(k)
ε,τ )dHd−1

� κ

T/τ∑

k=1

τ

∫

�

εαθ
(k)
�,τ χ ′

η,ε(w
(k)
ε,τ )dHd−1

� κεα

∫ T

0

∫

�

θ�dxdt � Cεα,

where C also depends on θ�. Employing all the aforementioned estimates in (3.74)
we obtain (3.75).

Step 2:We are now ready to show (3.71). In this regard, first notice the following
relation between ∇w

(k)
ε,τ and ∇θ

(k)
ε,τ : since w

(k)
ε,τ = W in(∇ y(k)

ε,τ , θ
(k)
ε,τ ), (2.12) implies

that

∇w(k)
ε,τ =

[
∂FW

cpl(∇ y(k)
ε,τ , θ

(k)
ε,τ ) − θ(k)

ε,τ ∂FθW
cpl(∇ y(k)

ε,τ , θ
(k)
ε,τ )

]
:

∇2y(k)
ε,τ − θ(k)

ε,τ ∂2
θ W

cpl(∇ y(k)
ε,τ , θ

(k)
ε,τ )∇θ(k)

ε,τ

=: W̃ (k)
1 : ∇2y(k)

ε,τ + W̃ (k)
2 ∇θ(k)

ε,τ . (3.77)

By (3.5), (C.5), and (3.70a), we find that the abbreviations W̃ (k)
1 and W̃ (k)

2 sat-

isfy W̃ (k)
1 � C(θ

(k)
ε,τ ∧ 1) and W̃ (k)

2 ∈ [c0,C0], respectively. Then, using (3.77),
Lemma 3.3, and the energy bound from Lemma 3.18 we see that there exists a
constant c > 0 such that

c

C0
χ ′′

η,ε(w
(k)
ε,τ )|∇w(k)

ε,τ |2 �
(
W̃ (k)

2

)−1
χ ′′

η,ε(w
(k)
ε,τ )K(k−1)

ε,τ ∇w(k)
ε,τ · ∇w(k)

ε,τ

� χ ′′
η,ε(w

(k)
ε,τ )K(k−1)

ε,τ ∇θ(k)
ε,τ · ∇w(k)

ε,τ

+ Cχ ′′
η,ε(w

(k)
ε,τ )(θ

(k)
ε,τ ∧ 1)|∇2y(k)

ε,τ ||∇w(k)
ε,τ |. (3.78)

We now control the second term above. By t ∧ 1 � t
p−1
p for all t � 0 and Young’s

inequality with constant λ ∈ (0, 1) (to be chosen later), we estimate by (2.14)

Cχ ′′
η,ε(w

(k)
ε,τ )(θ

(k)
ε,τ ∧ 1)|∇2y(k)

ε,τ ||∇w(k)
ε,τ |

� Cχ ′′
η,ε(w

(k)
ε,τ )

(
λ|∇w(k)

ε,τ |2 + 1

λ
(w(k)

ε,τ )
2 p−1

p |∇2y(k)
ε,τ |2

)
. (3.79)

Using the elementary fact

χ ′′
η,ε(w

(k)
ε,τ ) = η

εα
(

1 + ε−αw
(k)
ε,τ

)1+η
� 1

εα + w
(k)
ε,τ

, (3.80)
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we derive by Young’s inequality with powers p/(p − 2) and p/2 that

χ ′′
η,ε(w

(k)
ε,τ )(w

(k)
ε,τ )

2 p−1
p |∇2y(k)

ε,τ |2 � (w(k)
ε,τ )

2 p−1
p −1|∇2y(k)

ε,τ |2

= (w(k)
ε,τ )

p−2
p |∇2y(k)

ε,τ |2 � C(w(k)
ε,τ + |∇2y(k)

ε,τ |p).
Let us take λ small enough so that Cλ � c/(2C0) where c is as in (3.78) and C is
as in (3.79). Then, inserting (3.79) into (3.78) we derive that

c

2C0
χ ′′

η,ε(w
(k)
ε,τ )|∇w(k)

ε,τ |2 � C
(
χ ′′

η,ε(w
(k)
ε,τ )K(k−1)

ε,τ ∇θ(k)
ε,τ ·∇w(k)

ε,τ +w(k)
ε,τ +|∇2y(k)

ε,τ |p
)
.

Integrating the above inequality over �, multiplying by τ , and summing over k =
1, . . . , T/τ we derive by (3.75), (3.70a), and (3.70d) that

T/τ∑

k=1

τ

∫

�

χ ′′
η,ε(w

(k)
ε,τ )|∇w(k)

ε,τ |2dx � C(1 + T )εα.

where in the final step we used α � 2. By using the first identity in (3.80), we
conclude the proof of (3.71). ��
Theorem 3.20. (Further a priori bounds on the temperature) For any q ∈ [1, d+2

d )

and r ∈ [1, d+2
d+1 ) there exist constants Cq and Cr , respectively, both independent

of ε and τ such that

T/τ∑

k=0

τ

∫

�

(|θ(k)
ε,τ |q + |w(k)

ε,τ |q
)
dx � Cqε

αq , (3.81)

T/τ∑

k=1

τ

∫

�

(|∇θ(k)
ε,τ |r + |∇w(k)

ε,τ |r
)
dx � Crε

αr . (3.82)

Moreover, we can find a constant C independent of ε and τ such that

T/τ∑

k=1

τ‖δτw
(k)
ε,τ‖W 1,∞(�)∗ � Cεα. (3.83)

Proof. Let q, r be as in the statement. As w
(k)
ε,τ ∈ H1(�) (see (2.24)), it fol-

lows that ‖wε,τ‖L∞(I ;H1(�)) < ∞. Therefore, by using the a priori estimate
‖1 + ε−αwε,τ‖L∞(I ;L1(�)) � C +Ld(�) (see (3.70d)) as well as Lemma 3.19, we
can repeat the argument from the proof of [33, Proposition 6.3, equation (6.6)] for
ε−αwε,τ in place of wε, cf. also Remark 3.21 below. This gives the existence of
constants Cq , Cr such that

T/τ∑

k=0

τ

∫

�

|w(k)
ε,τ |qdx � Cqε

αq ,

T/τ∑

k=1

τ

∫

�

|∇w(k)
ε,τ |rdx � Crε

αp. (3.84)
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By (2.14) we then directly see that (for a possibly larger Cq )

T/τ∑

k=0

τ

∫

�

|θ(k)
ε,τ |qdx � Cqε

αq . (3.85)

To conclude the proof of (3.81)–(3.82), it remains to control the gradient of the
temperature. Employing the relation between ∇w

(k)
ε,τ and ∇θ

(k)
ε,τ in (3.77), by (3.5)

and (C.5) we see that

|∇θ(k)
ε,τ | � C

(|∇w(k)
ε,τ | + (θ(k)

ε,τ ∧ 1)|∇2y(k)
ε,τ |

)
.

Consequently, using t ∧1 � t
p−1
p for all t � 0 and Young’s inequality with powers

p/(p − r) and p/r we derive that
∫

�

|∇θ(k)
ε,τ |rdx � C

∫

�

|∇w(k)
ε,τ |rdx + Cεαr

∫

�

(ε−αθ(k)
ε,τ )

r p−1
p |ε− α

p ∇2y(k)
ε,τ |rdx

� C
∫

�

|∇w(k)
ε,τ |rdx + Cεαr

∫

�

(
(ε−αθ(k)

ε,τ )
r p−1
p−r + 1

εα
|∇2y(k)

ε,τ |p
)
dx .

(3.86)

As r was chosen strictly smaller than d+2
d+1 , we see by p � 2 that

r
p − 1

p − r
<

d + 2

d + 1

p − 1

p − d+2
d+1

= d + 2

d

1

1 + p−2
d(p−1)

� d + 2

d
.

Consequently, multiplying (3.86) with τ , summing over k = 1, . . . , T/τ , and using
(3.70a), (3.84), and (3.85) we conclude the proof of (3.82). Here, we again used
α � 2. Lastly, we show (3.83). Testing (3.11) for the k-th step with arbitrary
ϕ ∈ W 1,∞(�), and using the shorthand notation for h(k)

ε,τ and K(k−1)
ε,τ from (3.73),

we see by (3.4) and the continuity of the trace operator in W 1,1(�) that

∣∣
∣
∫

�

δτw
(k)
ε,τ ϕdx

∣∣
∣ =

∣∣
∣
∫

�

h(k)
ε,τ ϕdx −

∫

�

K(k−1)
ε,τ ∇θ(k)

ε,τ · ∇ϕdx

− κ

∫

�

(θ(k)
ε,τ − εαθ

(k)
�,τ )ϕdHd−1

∣∣∣

� ‖h(k)
ε,τ‖L1(�)‖ϕ‖L∞(�) + C‖∇θ(k)

ε,τ ‖L1(�)‖∇ϕ‖L∞(�)

+
(
Cκ‖θ(k)

ε,τ ‖W 1,1(�) + κεα

∫

�

θ
(k)
�,τ dHd−1

)
‖ϕ‖L∞(�)

�
(
‖h(k)

ε,τ‖L1(�) + C‖θ(k)
ε,τ ‖W 1,1(�) + Cεα

∫

�

θ
(k)
�,τ dHd−1

)
‖ϕ‖W 1,∞(�).

By the arbitrariness of ϕ this shows that

‖δτw
(k)
ε,τ‖W 1,∞(�)∗ � ‖h(k)

τ ‖L1(�) +C‖θ(k)
ε,τ ‖W 1,1(�) +Cεα

∫

�

θ
(k)
�,τ dHd−1. (3.87)
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We have already seen in the proof of Lemma 3.19 (see in particular (3.76)) that

T/τ∑

k=1

τ‖h(k)
ε,τ‖L1(�) � Cεα.

Consequently, by (3.81)–(3.82) for q = r = 1 and (3.87) the desired bound (3.83)
follows. ��
Remark 3.21. For α ∈ [1, 2), by means of Remark 3.17 we obtain a stronger bound
on the temperature: given q = 2

α
+ 4

αd and r = 2 d+2
αd+2 , we can find a constant C

independent of ε and τ such that

T/τ∑

k=1

τ

∫

�

|θ(k)
ε,τ |qdx � Cεαq ,

T/τ∑

k=1

τ

∫

�

|∇θ(k)
ε,τ |rdx � Cεαr . (3.88)

This can be seen as follows: We start with the second bound. In this regard, by a
For α = 1, this directly follows from (3.69), where we recall με,τ = ε−αθε,τ . Let
α ∈ (1, 2). Note that r ∈ [1, 2) and let m := r(1 − 1

α
). Employing a standard

truncation and approximation argument we can assume, without loss of generality,
that με,τ ∈ L∞(I × �). Then, by (3.69) and Hölder’s inequality with powers 2

2−r

and 2
r we derive that

‖∇με,τ‖rLr (I×�) =
∫ T

0

∫

�

(1 + με,τ )
m |∇με,τ |r

(1 + με,τ )
m

dxdt

� ‖1 + με,τ‖m
L

2m
2−r (I×�)

(∫ T

0

∫

�

|∇με,τ |2
(1 + με,τ )

2(1− 1
α
)
dxdt

) r
2

� C‖1 + με,τ‖m
L

2m
2−r (I×�)

. (3.89)

With r = 2 d+2
αd+2 = 2 − 2 αd

αd+2 (1 − 1
α
) we can use the anisotropic Gagliardo–

Nirenberg interpolation inequality (see e.g. [30, Lemma 4.2]) with θ = αd
αd+2 ,

s = p = r
θ

, s1 = ∞, s2 = p2 = r , and p1 = 2
α

to get

‖1 + με,τ‖
L

2m
2−r (I×�)

� C‖1 + με,τ‖
2

αd+2

L∞(I ;L 2
α (�))

×
(
‖1 + με,τ‖L∞(I ;L 2

α (�))
+ ‖∇με,τ‖Lr (I×�)

) αd
αd+2

,

(3.90)

where we use r
θ

= 2m
2−r . Notice that by (3.48) and the energy bound in Lemma 3.18

we have that ‖1+με,τ‖L∞(I ;L2/α(�)) is uniformly bounded in ε and τ . Hence, with

(3.89) and m αd
αd+2 = (α−1)d

αd+2 r we derive that

‖∇με,τ‖rLr (I×�) � C

(
1 + ‖∇με,τ‖

(α−1)d
αd+2 r
Lr (I×�)

)
.
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As (α−1)d
αd+2 < 1, this shows the second bound in (3.88) for the case α ∈ (1, 2). The

first estimate in (3.88) then follows from the second one and (3.90), where we use
that 2m

2−r = r
θ

= q.

4. Existence of Solutions in the Nonlinear Setting

In this section we pass from time-discrete to time-continuous solutions by letting
τ → 0 and establish Proposition 2.5(ii). Notice that for the special case α = 2 and
ε = 1 this will lead to Theorem 2.3(ii). For the deformation and the momentum
balance we can closely follow [33, Section 5], and therefore proofs are omitted or
sketched only. For the limit passage in the heat equation, however, our arguments are
different as we work without regularization terms, cf. Remark 2.4. We first use the
a priori estimates on the interpolants in order to extract convergent subsequences.
Afterwards, we pass to the limit in the discretized weak forms of the momentum
balance and the heat equation. Here, the most delicate term is the dissipation rate
ξ which is quadratic in Ḟ . Therefore, strong convergence in L2(I ; H1(�)) for
the strain rates is required. As before, we assume for simplicity that T/τ ∈ N.
Moreover, without further notice, we suppose from now on that τ ∈ (0, τ0) and ε ∈
(0, ε0], where τ0 and ε0 = ε0(α) are chosen such that all statements from Sects. 3.1–
3.4 are satisfied. In particular, ε0 = 1 for α = 2. The corresponding time-discrete
solutions are denoted by y(0)

ε,τ , . . . , y
(T/τ)
ε,τ ∈ Yid and θ

(0)
ε,τ , . . . , θ

(T/τ)
ε,τ ∈ L2+(�). We

recall the definition of the interpolations in (2.26) and employ similar notation for
θε,τ , θε,τ , and θ̂ε,τ , as well as wε,τ , wε,τ , and ŵε,τ . All generic constants C > 0
are always assumed to be independent of τ and ε.

We start with the convergence of the deformations under vanishing time-
discretization.

Lemma 4.1. (Convergence of deformations) For each ε ∈ (0, ε0], we can find
yε ∈ L∞(I ;Yid) ∩ H1(I ; H1(�;Rd)) with yε(0, ·) = y0,ε such that, up to a
subsequence (not relabeled), it holds that

ŷε,τ
∗
⇀ yε weakly* in L∞(I ;Yid) and ŷε,τ ⇀ yε weakly in H1(I ; H1(�;Rd)),

(4.1a)

∇ ŷε,τ → ∇ yε in L∞(I ; L∞(�;Rd×d)) (4.1b)

as τ → 0. In the first convergence of (4.1a), and in (4.1b), the same holds true if
we replace ŷε,τ by y

ε,τ
or yε,τ .

Proof. First, (4.1a) follows from the a priori estimates (3.70a), (3.70c) and by
Banach’s selection principle. For (4.1b), one uses the embedding W 2,p(�;Rd) ⊂
C1,1− d

p (�;Rd) to obtain a Hölder estimate in space and (3.70c) for a Hölder
estimate in time. Then, by an interpolation estimate one can show that the sequence
is bounded in Cγ (I ;C1,γ (�;Rd)) for some γ > 0, and the uniform convergence
of the gradients follows then from the Arzelà-Ascoli theorem. We refer to [33, Proof
of Proposition 5.1, Step 1] for more details. To conclude that the first convergences
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in (4.1a) and (4.1b) also hold for y
ε,τ

or yε,τ one again uses (3.70b)–(3.70c) to see

‖∇ ŷε,τ − ∇ yε,τ‖L∞(I ;L2(�)) � Cτ
1
2 . ��

We proceed with the convergence of the temperatures.

Lemma 4.2. (Convergence of temperatures) For each ε ∈ (0, ε0], there exists θε ∈
L1(I ;W 1,1(�)) with θε � 0 a.e. such that, up to a subsequence (not relabeled), it
holds that

θε,τ ⇀ θε and wε,τ ⇀ wε weakly in Lr (I ;W 1,r (�)) for any r ∈
[
1, d+2

d+1

)
,

(4.2a)

θ̂ε,τ → θε and ŵε,τ → wε in Ls(I × �) for any s ∈ [
1, d+2

d

)
, (4.2b)

as τ → 0 where wε := W in(∇ yε, θε) for yε as in Lemma 4.1. In (4.2b), the
same holds true if we replace θ̂ε,τ with θε,τ or θε,τ and ŵε,τ with wε,τ or wε,τ ,
respectively.

Proof. The existence of the limit and the convergences in (4.2a) follow from the a
priori bounds in Theorem 3.20 together with Banach’s selection principle.

Let t0 ∈ (0, T ) and r ∈ [1, d+2
d+1 ). By Theorem 3.20, (ŵε,τ )τ is bounded in

Lr ([t0, T ];W 1,r (�)) ∩ W 1,1([t0, T ];W 1,∞(�)∗).

Hence, for any r̃ < r∗ := rd
d−r , due to the compact embeddingW 1,r (�) ⊂⊂ Lr̃ (�),

the Aubin-Lions’ theorem shows that there exists ŵε ∈ Lr ([t0, T ]; Lr̃ (�)) such
that (ŵε,τ )τ → ŵε in Lr ([t0, T ]; Lr̃ (�)), up to taking a subsequence. We observe
that ŵε = wε. Indeed, it is elementary to check that by (3.83)

‖ŵε,τ − wε,τ‖L1(I ;W 1,∞(�)∗) � ‖wε,τ − wε,τ‖L1(I ;W 1,∞(�)∗)

� τ‖ ˙̂wε,τ‖L1(I ;W 1,∞(�)∗) → 0 (4.3)

as τ → 0. Next, we show that the convergence ŵε,τ → wε in Lr ([t0, T ]; Lr̃ (�))

as τ → 0 can be improved to convergence in Ls([t0, T ]; Ls(�)) for any exponent
s ∈ [1, d+2

d ). To this end, we will interpolate with the bound

‖wε‖L∞(I ;L1(�)) � sup
τ>0

‖wε,τ‖L∞(I ;L1(�)) < ∞, (4.4)

which follows from (3.70d). Fix s ∈ (1, d+2
d ) and consider r ∈ (1, d+2

d+1 ), r̃ ∈
(1, r∗), both to be specified later. Now, as limr→ d+2

d+1

rd
d−r � d+2

d > s, notice that

for r, r̃ large enough it holds that λ := r̃−s
s(r̃−1)

∈ (0, 1). Writing vτ := ŵε,τ − wε

for shorthand and using Hölder’s inequality in the integral over � with powers
q1 = r̃−1

r̃−s and q ′
1 = r̃−1

s−1 , we derive that

‖vτ‖sLs ([t0,T ];Ls (�)) =
∫ T

t0

∫

�

|vτ |λs |vτ |(1−λ)sdxdt

�
∫ T

t0

( ∫

�

|vτ |dx
) 1

q1
( ∫

�

|vτ |r̃dx

) 1
q′

1
dt, (4.5)
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where we have used λsq1 = 1 and (1 − λ)sq ′
1 = r̃ . Let q2 := r(r̃−1)

r̃(s−1)
and notice

that

lim
r→ d+2

d+1

lim
r̃→r∗ q2 = lim

r→ d+2
d+1

r(d + 1) − d

d(s − 1)
= 2

d(s − 1)
> 1

where the last inequality is due to s < 1+ 2
d . Hence, by possibly increasing r and r̃

we can assure that q2 > 1. We denote by q ′
2 the conjugate of q2. Consequently, by

ŵε,τ → ŵε in Lr ([t0, T ]; Lr̃ (�)) as τ → 0, by (4.4), and by Hölder’s inequality
in the integral in (4.5) over [t0, T ] with powers q ′

2 and q2 we get

‖vτ‖sLs ([t0,T ];Ls (�)) �
( ∫ T

t0

( ∫

�

|vτ |dx
) q′

2
q1 dt

) 1
q′

2

( ∫ T

t0

( ∫

�

|vτ |r̃dx
) r

r̃
dt

) 1
q2

�
(
2 supτ>0‖wε,τ‖L∞(I ;L1(�))

) 1
q1 ‖ŵε,τ − wε‖

r
q2

Lr ([t0,T ];Lr̃ (�))

→ 0 as τ → 0. (4.6)

Sending t0 → 0 and using (3.81), this shows (4.2b) for the sequence (ŵε,τ )τ . To
obtain the same convergence for wε,τ and wε,τ , we use a more general version of
Aubin-Lions for time-derivatives as measures, see Corollary 7.9 in [38]. To this
end it suffices to see that wε,τ and wε,τ are bounded in Lr ([t0, T ];W 1,r (�)) ∩
BV ([t0, T ];W 1,∞(�)∗), and then by repeating (4.5)–(4.6) we get (4.2b) for wε,τ

and wε,τ , up to taking a subsequence.
It remains to show (4.2b) for the three different interpolations of the temper-

atures. In view of (2.13), for any F ∈ GL+(d), the map W in(F, ·) is invertible
with d

dθ
(W in(F, ·)−1) � 1

c0
. Thus, from the definition wε,τ = W in(yε,τ , θε,τ ) we

get θε,τ = W in(∇ yε,τ , ·)−1(wε,τ ). Setting θε := W in(∇ yε, ·)−1(wε), by (4.1b) for
yε,τ and by wε,τ → wε in Ls(I × �) (see (4.2b)), we get

θε,τ = W in(∇ yε,τ , ·)−1(wε,τ ) → W in(∇ yε, ·)−1(wε) = θε in Ls(I × �).

The convergence for (θε,τ )τ follows in a similar fashion. Lastly, combining the

convergence of (θε,τ )τ and (θε,τ )τ we obtain (4.2b) also for θ̂ε,τ . ��

Remark 4.3. (i) Note that (4.2a) does not holds in general for θ̂ε,τ , θε,τ , ŵε,τ ,
and wε,τ as we did not assume Sobolev regularity for the initial datum
θ0,ε ∈ L2+(�). Yet, the statement could be obtained on any subinterval
I ′ ⊂ I with 0 /∈ I ′.

(ii) The result only relies on the a priori bounds in Theorem 3.20. Consequently,
the same convergence result holds true for the rescaled temperature and
rescaled internal energy, namely along (interpolations of) the sequences
(ε−α

k θ
(k)
εk ,τk )k and (ε−α

k w
(k)
εk ,τk )k for sequences (εk, τk)k with εk → 0 as k →

∞. Namely, the proof of ε−α
k wεk ,τk → w̃ in Ls(I × �) for some w̃ is the

same, taking the a priori bounds in (3.70d) and Theorem 3.20 into account.
In view of (C.6), c̄V = cV (Id, 0) exists and by the third estimate in (C.5)
we have c̄V � c0. Hence, we can define θ̃ := w̃/c̄V . Furthermore, by
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W in(F, 0) = 0 for all F ∈ GL+(d), cV = ∂θW in (see (2.13)), and the
Fundamental Theorem of Calculus we find

θεk ,τk = W in(∇ yεk ,τk
, ·)−1(wεk ,τk )

=
∫ wεk ,τk

0
cV (∇ yεk ,τk

,W in(∇ yεk ,τk
, ·)−1(s))−1ds

= εα
k

∫ ε−α
k wεk ,τk

0
cV (∇ yεk ,τk

,W in(∇ yεk ,τk
, ·)−1(εα

k s))
−1ds, (4.7)

where we changed coordinates in the last identity. Consequently, using the
third inequality in (C.5), we can derive the bound

|ε−α
k θεk ,τk − c̄−1

V w̃| =
∣∣
∣
∫ ε−α

k wεk ,τk

0
cV (∇ yεk ,τk

,W in(∇ yεk ,τk
, ·)−1(εα

k s))
−1ds

−
∫ w̃

0
c̄−1
V ds

∣∣
∣

� 1

c0
|ε−α
k wεk ,τk − w̃| + fk,

where

fk :=
∫ w̃

0
|cV (∇ yεk ,τk

,W in(∇ yεk ,τk
, ·)−1(εα

k s))
−1 − c̄−1

V |ds.

It remains to show that fk → 0 in Ls(I × �). By the third bound in (C.5)
we see that | fk | � 2

c0
w̃ ∈ Ls(I × �). Then, by (C.6) and the definition of

c̄V , it follows that fk → 0 a.e. in I ×�. Dominated Convergence yields the
desired result. The same argument holds for the other interpolations.

(iii) In the case α = 1, the convergence can be improved to ε−1
k θεk ,τk

→ θ̃ in
L2(I ; L2(�)). Indeed, by Remark 3.21 and θ0,ε ∈ L2+(�) we get that

‖θεk ,τk‖L2(I×�) + ‖θεk ,τk
‖L2(I×�) + ‖∇θεk ,τk‖L2(I×�) � Cε.

Then, the convergence in L2(I ; L2(�)) follows by repeating the argument
above via Aubin-Lions’ theorem, simply using the compact embedding
H1(�) ⊂⊂ L2(�).

We are ready to pass to the limit in the time-discrete mechanical evolution.

Proposition 4.4. (Convergence of the mechanical equation)Let yε beas inLemma4.1
and θε as in Lemma 4.2. Then, for any test-function z ∈ C∞(I × �) with z = 0 on
I × �D we have that (2.19) holds.

Proof. The statement is proved in [33, Proof of Proposition 5.1, Step 2] and we
include a sketch for the reader’s convenience. For y ∈ Yid we define a functional
on X := W 2,p(�;Rd) by

〈H(y), z〉 =
∫ T

0

∫

�

∂GH(∇2y)
...∇2z.
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Note that H is a hemicontinuous and monotone operator as H is convex. We further
choose bετ , bε ∈ X∗ such that (3.7) can be written as

〈H(yε,τ ), z〉 = 〈bετ , z〉 (4.8)

for all z ∈ W 2,p
�D

(�;Rd), and (2.19) can be written as

〈H(yε), z〉 = 〈bε, z〉 (4.9)

for all z ∈ W 2,p
�D

(�;Rd). Note that (4.8) holds by Proposition 3.5, and that our goal
is to confirm (4.9).

First,bετ
∗
⇀ bε weakly* in X∗ for τ → 0 as in each of the three terms ofbετ (i.e.,

∂FW , ∂Ḟ R, and �
(k)
τ , respectively, see (3.7)) one can pass to the limit by using weak

convergence of (∇ ˙̂yε,τ )τ in L2(I ; H1(�;Rd)) (see (4.1a)), uniform convergence of
(∇ yε,τ )τ , (∇ y

ε,τ
)τ on I×� (see (4.1b)), and pointwise a.e. convergence of (θε,τ )τ

on I × � (up to a subsequence, see (4.2b)). At this point, we use in particular that
∂Ḟ R is linear in ∇ ˙̂yε,τ and that ∂FW (yε,τ , θε,τ ) is bounded due to (W.1), (3.5),
and (3.70a). Moreover, due to uniform convergence of the gradients we also have
〈bετ , yε,τ 〉 → 〈bε, yε〉. We now use Minty’s trick for the monotone operator H:

identity (4.8) and the convergences yε,τ ⇀ yε weakly in X , bετ
∗
⇀ bε weakly*

in X∗, and 〈bετ , yε,τ 〉 → 〈bε, yε〉 imply H(yε) = bε as elements of X∗, i.e., (4.9)
holds. ��

For the limit passage in the time-discrete heat equation, we will need the strong
convergence of the strain rates (∇ ˙̂yε,τ )τ in L2(I ; L2(�;Rd×d)) since the dissipa-
tion rate ξ(∇ y

ε,τ
,∇ ˙̂yε,τ , θε,τ ) is quadratic in ∇ ˙̂yε,τ . Note that our a priori bounds

currently only guarantee weak convergence. The next lemma improves this con-
vergence.

Lemma 4.5. (Strong convergence of the strain rates) For yε as in Lemma 4.1, we
have that, up to taking a subsequence,

˙̂yε,τ → ẏε strongly in L2(I ; H1(�;Rd)) as τ → 0. (4.10)

Proof. The proof follows essentially by combining Steps 4 in the proof of [33,
Proposition 5.1, Proposition 6.4]. We give the main steps here in our setting because
we work completely without regularization. First, in the time-continuous setting,
one derives the energy balance

M(yε(T )) + 2
∫ T

0
R(yε, ẏε, θε)dt = M(y0,ε) + ε

∫ T

0
〈�(t), ẏε〉dt

−
∫ T

0

∫

�

∂FW
cpl(∇ yε, θε) : ∇ ẏεdxdt, (4.11)

where we recall the notation in (2.5), (2.7), and (3.22). This follows by testing the
momentum balance (2.19) derived in Proposition 4.4 with ẏε ∈ L2(I ; H1(�)),
employing (2.9), and using a chain rule for the �-convex functional M, see [33,
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Proposition 3.6]. Our next goal is to show a similar balance in the time-discrete set-
ting. To this end, we test the Euler–Lagrange equation (3.7) of the k-th mechanical
step with y(k)

ε,τ − y(k−1)
ε,τ to get that

2τR(y(k−1)
ε,τ , δτ y

(k)
ε,τ , θ

(k−1)
ε,τ ) = τε〈�(k)

τ , δτ y
(k)
ε,τ 〉 − τ

∫

�

∂FW
cpl(∇ y(k)

ε,τ , θ
(k−1)
ε,τ ) : δτ ∇ y(k)

ε,τ dx

−
∫

�

∂GH(∇2y(k)
ε,τ )

.

.

.(∇2y(k)
ε,τ − ∇2y(k−1)

ε,τ ) − ∂FW
el(∇ y(k)

ε,τ ) : (∇ y(k)
ε,τ − ∇ y(k−1)

ε,τ )dx .

(4.12)

By the �-convexity of M derived in [33, Proposition 3.2], we can find � > 0 de-
pending on the energy bound in Lemma 3.18 and the bound in (3.1) but independent
of ε, τ , and k such that

M(y(k−1)
ε,τ ) � M(y(k)

ε,τ ) − �‖∇ y(k−1)
ε,τ − ∇ y(k)

ε,τ‖2
L2(�)

+
∫

�

∂GH(∇2y(k)
ε,τ )

...(∇2y(k−1)
ε,τ − ∇2y(k)

ε,τ )dx

+
∫

�

∂FW
el(∇ y(k)

ε,τ ) : (∇ y(k−1)
ε,τ − ∇ y(k)

ε,τ )dx .

Using this bound in (4.12) then leads to

M(y(k)
ε,τ ) − M(y(k−1)

ε,τ ) + 2τR(y(k−1)
ε,τ , δτ y

(k)
ε,τ , θ

(k−1)
ε,τ ) − �τ 2‖δτ∇ y(k)

ε,τ‖2
L2(�)

� τε〈�(k)
τ , δτ y

(k)
ε,τ 〉 − τ

∫

�

∂FW
cpl(∇ y(k)

ε,τ , θ
(k−1)
ε,τ ) : δτ∇ y(k)

ε,τ dx .

Summing the above inequality over k ∈ {1, . . . , T/τ } we arrive at a discrete analog
of (4.11), namely,

M(yε,τ (T )) + 2
∫ T

0
R(y

ε,τ
, ˙̂yε,τ , θε,τ )dt − �τ

∫ T

0

∫

�

|∇ ˙̂yε,τ |2dxdt

� M(y0,ε) + ε

∫ T

0
〈�(t), ˙̂yε,τ 〉dt −

∫ T

0

∫

�

∂FW
cpl(∇ yε,τ , θε,τ ) : ∇ ˙̂yε,τ dxdt,

(4.13)

where in the integral for the force terms we used the definition in (2.23). Up to
selecting a further subsequence, we can suppose that the convergences in Lemma 4.1
and Lemma 4.2 hold true, and that θε,τ → θε pointwise a.e. in I × �, ˙̂yε,τ ⇀ ẏε
weakly in L2(I ; H1(�;Rd)), and yε,τ (T ) ⇀ yε(T ) weakly in W 2,p(�) as τ → 0.
This shows that

I (1)
ε := lim

τ→0

(
ε

∫ T

0
〈�(t), ˙̂yε,τ 〉dt −

∫ T

0

∫

�

∂FW
cpl(∇ yε,τ , θε,τ ) : ∇ ˙̂yε,τ dxdt

)

= ε

∫ T

0
〈�(t), ẏε〉dt −

∫ T

0

∫

�

∂FW
cpl(∇ yε, θε) : ∇ ẏεdxdt. (4.14)
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Setting

Ċετ := (∇ ˙̂yε,τ )T∇ y
ε,τ

+ (∇ y
ε,τ

)T∇ ˙̂yε,τ , Ċε := (∇ ẏε)
T∇ yε + (∇ yε)

T∇ ẏε

we see by (4.1) that Ċετ ⇀ Ċε weakly in L2(I × �;Rd×d). Consequently, by the
convexity of H and the fact that R is convex in Ċ = ḞT F + FT Ḟ , standard lower
semicontinuity arguments (see also [17, Theorem 7.5]) imply that

I (2)
ε := lim inf

τ→0
M(yε,τ (T )) � M(yε(T )),

I (3)
ε := lim inf

τ→0

∫ T

0
R(y

ε,τ
, ˙̂yε,τ , θε,τ )dt �

∫ T

0
R(yε, ẏε, θε)dt. (4.15)

Combining (4.11), (4.13), (4.14), and (4.15), and using that limτ→0 τ
∫ T

0

∫
�
|∇ ˙̂yε,τ |2

dxdt = 0 we get that

M(yε(T )) + 2
∫ T

0
R(yε, ẏε, θε)dt = M(y0,ε) + I (1)

ε

� I (2)
ε + 2I (3)

ε � M(yε(T )) + 2
∫ T

0
R(yε, ẏε, θε)dt,

and thus both inequalities in (4.15) are actually equalities. Consequently, we get
by (2.7) and (D.1) that

∫ T

0

∫

�

D(Cετ , θε,τ ) Ċετ : Ċετ dxdt →
∫ T

0

∫

�

D(Cε, θε) Ċε : Ċεdxdt, (4.16)

where we shortly write Cετ := (∇ y
ε,τ

)T∇ y
ε,τ

and Cε := (∇ yε)T∇ yε. Based on
this, we show the strong convergence of the strain rates. By (D.2) it follows that

c0

∫ T

0

∫

�

|Ċετ − Ċε|2dxdt

�
∫ T

0

∫

�

D(Cετ , θε,τ )(Ċετ − Ċε) : (Ċετ − Ċε)dxdt

=
∫ T

0

∫

�

D(Cετ , θε,τ ) Ċετ : Ċετ dxdt − 2
∫ T

0

∫

�

D(Cετ , θε,τ ) Ċε : Ċετ dxdt

+
∫ T

0

∫

�

D(Cετ , θε,τ ) Ċε : Ċεdxdt.

By a weak-strong convergence argument and (4.1) we get that Ċετ ⇀ Ċε weakly in
L2(I ; L2(�;Rd×d)). Moreover, by (D.2), D(Cετ , θε,τ ) is uniformly bounded and
D(Cετ , θε,τ )Ċε converges to D(Cε, θε) Ċε strongly in L2(�;Rd×d). Thus, (4.16)
and Dominated Convergence imply that

lim
τ→0

‖Ċετ − Ċε‖L2(I×�) = 0. (4.17)

It remains to show that ∇ ˙̂yε,τ → ∇ ẏε strongly in L2(I ; L2(�;Rd×d)) as then
(4.10) follows from Poincaré’s inequality. By the uniform bound on the energy in
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Lemma 3.18, we can apply the generalized Korn’s inequality stated in Lemma 3.2
for a constant c depending only on the initial data and f , g, θ�, and T . This shows
that

c‖∇ ˙̂yε,τ − ∇ ẏε‖L2(I×�)

� ‖(∇ ˙̂yε,τ − ∇ ẏε)
T∇ yε + (∇ yε)

T (∇ ˙̂yε,τ − ∇ ẏε)‖L2(I×�)

� ‖(∇ ˙̂yε,τ )T∇ y
ε,τ

+ (∇ y
ε,τ

)T∇ ˙̂yε,τ − (∇ ẏε)
T∇ yε − (∇ yε)

T∇ ẏε‖L2(I×�)

+ 2‖∇ ˙̂yε,τ‖L2(I×�)‖∇ y
ε,τ

− ∇ yε‖L∞(I×�).

Now, (4.1b), (4.17), and supτ>0 ‖∇ ˙̂yε,τ‖L2(I×�) < +∞ by (4.1a) show ‖∇ ˙̂yε,τ −
∇ ẏε‖L2(I×�) → 0 as τ → 0. This concludes the proof. ��

The last step in the proof of Theorem 2.3(ii) and Proposition 2.5(ii) consists in
passing to the limit of the thermal evolution.

Proposition 4.6. (Convergence of the heat-transfer equation) Let yε be as in
Lemma 4.1 and θε as in Lemma 4.2. Then, for any test-function ϕ ∈ C∞(I × �)

with ϕ(T ) = 0, we have that (yε, θε) satisfies (2.20) with ξ
reg
α in place of ξ .

Proof. Suppose that we have already selected a subsequence such that Lemmas 4.1
and 4.2 apply. By possibly taking a further subsequence we can also assume that
θε,τ → θε pointwise a.e. in I × �. Furthermore, let ϕ as in the statement. Sum-
ming the Euler–Lagrange equation (3.11) (for ξ

reg
α in place of ξ ) for each step and

integrating by parts we get that

∫ T

0

∫

�

K(∇ y
ε,τ

, θε,τ )∇θε,τ · ∇ϕdxdt + κ

∫ T

0

∫

�

θε,τ ϕdHd−1dt

−
∫ T

0

∫

�

(
ξ

reg
α (∇ y

ε,τ
,∇ ˙̂yε,τ , θε,τ ) + ∂FW

cpl(∇ y
ε,τ

, θε,τ ) : ∇ ˙̂yε,τ
)
ϕdxdt

−
∫ T

0

∫

�

ŵε,τ ϕ̇dxdt

= κεα

∫ T

0

∫

�

θ�,τ ϕdHd−1dt +
∫

�

W in(∇ y0,ε, θ0,ε)ϕ(0)dx, (4.18)

where θ�,τ (t) := θ
(k)
�,τ for t ∈ ((k − 1)τ, kτ ] and k ∈ {1, . . . , T/τ }. As θ� ∈

W 1,1(I ; L2(�)) we see ‖θ�,τ − θ�‖L1(I ;L1(�)) � τ‖θ̇�‖L1(I ;L2(�)). Consequently,

∫ T

0

∫

�

θ�,τ ϕdHd−1dt →
∫ T

0

∫

�

θ�ϕdHd−1dt as τ → 0. (4.19)

It thus remains to show that the left-hand side of the above equality converges to-
wards the left-hand side of (2.20) (with ξ

reg
α in place of ξ ) as τ → 0. By Lemma 3.3
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and our choice of ϕ we have |K(∇ y
ε,τ

, θε,τ )∇ϕ| � C |∇ϕ| a.e. in I × �. Conse-

quently, by the weak convergence of (θε,τ )τ in Lr (I ;W 1,r (�)), see (4.2), it follows
that

∫ T

0

∫

�

K(∇ y
ε,τ

, θε,τ )∇θε,τ · ∇ϕdx + κ

∫ T

0

∫

�

θε,τ ϕdHd−1dt

→
∫ T

0

∫

�

K(∇ yε, θε)∇θε · ∇ϕdx + κ

∫ T

0

∫

�

θεϕdHd−1dt.

The strong convergence of (ŵε,τ )τ in Ls(I ×�) for some s ∈ (1, d+2
d ), see (4.2b),

leads to

−
∫ T

0

∫

�

ŵε,τ ϕ̇dxdt → −
∫ T

0

∫

�

wεϕ̇dxdt = −
∫ T

0

∫

�

W in(∇ yε, θε)ϕ̇dxdt.

As in the proof of Lemma 4.5, (see (4.14)), we obtain

∫ T

0

∫

�
∂FW

cpl(∇ y
ε,τ

, θε,τ ) : ∇ ˙̂yε,τ ϕdxdt →
∫ T

0

∫

�
∂FW

cpl(∇ yε, θε) : ∇ ẏεϕdxdt.

Note that by (D.2), (2.9), and by ξ
reg
α � ξ , we have that

ξ
reg
α (∇ y

ε,τ
,∇ ˙̂yε,τ , θε,τ ) � 2C0

∣∣(∇ ˙̂yε,τ )T∇ y
ε,τ

+ (∇ y
ε,τ

)T∇ ˙̂yε,τ
∣∣2

.

By Lemma 4.5 and (4.1b) ((∇ ˙̂yε,τ )T∇ y
ε,τ

+ (∇ y
ε,τ

)T∇ ˙̂yε,τ )τ converges strongly

in L2(I ; L2(�;Rd×d)). Consequently, we get that
(
ξ

reg
α (∇ y

ε,τ
,∇ ˙̂yε,τ , θε,τ )

)
τ

is
equi-integrable. Using the pointwise convergence of (∇ y

ε,τ
)τ and (θε,τ )τ as well as

the continuity of ξ
reg
α , we can also pass to the limit in the ξ

reg
α -term by an application

of Vitali’s convergence theorem. As we passed to the limit in each term, the proof
is concluded. ��

5. Passage to the Linearized System

This section is devoted to the proofs of Theorems 2.7–2.8. In the following,
let (εk)k and (τk)k be sequences with εk → 0 and either τk = τ constant or
τk → 0. Suppose that initial data (y0,εk , θ0,εk ) as in (2.18) are given. For brevity, we
denote the corresponding time-discrete interpolations by yk := yεk ,τk

, y
k

:= y
εk ,τk

,

and ŷk := ŷεk ,τk , see (2.26). A similar shorthand notation is also used for the
interpolation of the temperatures as well as the internal energies. Recall that the
objects exist by Proposition 2.5(i). In a similar way, we denote the time-continuous
solutions obtained in Proposition 2.5(ii) by (yεk , θεk ). It will be useful to use a
similar notation for the rescaled quantities: for time-discrete solutions we define

uk := yk − id
εk

, uk := y
k
− id

εk
, ûk := ŷk − id

εk
, μk := θk

εα
k
, μ

k
:= θk

εα
k
,
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and for time-continuous solutions we let

uεk := yεk − id
εk

, μεk := θεk

εα
k

.

For any v ∈ L2(I ; H1(�;Rd)) we denote the symmetrized gradient by e(v) :=
1
2 (∇v + ∇vT ). Finally, all constants we encounter in this section are implicitly
assumed to be independent of k.

We start with compactness results for the rescaled quantities which directly
follow from the a priori estimates for the nonlinear system. Recall the definition of
H1

�D
in (2.36).

Lemma 5.1. (Compactness for the rescaled displacements) There exist u, ũ ∈
H1(I ; H1

�D
(�;Rd)) with u(0) = ũ(0) = u0 such that, up to possibly taking a

subsequence, it holds that

ûk → u in L∞(I ; L2(�;Rd)), ûk ⇀ u weakly in H1(I ; H1(�;Rd)), (5.1)

uεk → ũ in L∞(I ; L2(�;Rd)), uεk ⇀ ũ weakly in H1(I ; H1(�;Rd)). (5.2)

Moreover, if τk → 0, we also have

uk, uk ⇀ u weakly in H1(I ; H1(�;Rd)). (5.3)

Later, by uniqueness of the solution to the linear system, we will see that actually
u = ũ.

Proof. By the definition of uk and (3.70b) we derive for any t ∈ I that ‖uk(t)‖H1(�)

= ε−1
k ‖yk − id‖H1(�) � C . For the other interpolations, we proceed in a similar

fashion and get for all t ∈ I that

‖ûk(t)‖H1(�) � C. (5.4)

Moreover, using Poincaré’s inequality, (3.70c), and the definition of ûk we have
that

‖ ˙̂uk‖L2(I ;H1(�)) � C‖∇ ˙̂uk‖L2(I ;L2(�)) = 1

εk
‖∇ ˙̂yk‖L2(I×�) � C. (5.5)

Combining (5.4)–(5.5) we discover that (ûk)k is bounded in L∞(I ; H1(�;Rd)) ∩
H1(I ; H1(�;Rd)) and thus (ûk)k is compact in C(I ; L2(�;Rd)) by the Aubin-
Lions’ theorem. This together with Banach’s selection principle shows (5.1). More-
over, (5.3) follows from (5.5) and the definition of the interpolations. Finally, due
to (5.1) and the fact that ûk ∈ H1(I ; H1

�D
(�;Rd)) with ûk(0) = u0 (see (2.1) and

(2.18)), it directly follows that u ∈ H1(I ; H1
�D

(�;Rd)) with u(0) = u0.
We now show (5.2). To this end, suppose that for each k ∈ N the solution

(yεk , θεk ) is obtained as the limit of time discrete solutions (ŷεkτl , θ̂εkτl ) for a se-
quence (τl)l converging to zero. Repeating (5.4)–(5.5) the corresponding rescaled
quantities satisfy ‖ûεkτl‖L∞(I ;H1(�)) � C and ‖ ˙̂uεkτl‖L2(I ;H1(�)) � C for a con-
stant C independent of l. Then, using (2.27) we get

‖uεk‖L∞(I ;H1(�)) � C and ‖u̇εk‖L2(I ;H1(�)) � C.
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Now, (5.2) and the other properties of ũ again follow by the Aubin-Lions’ theorem.
��
Lemma 5.2. (Compactness for the rescaled temperatures) There exist μ, μ̃ ∈
L1(I ;W 1,1(�)) with μ, μ̃ � 0 such that, up to possibly taking a subsequence,
for any s ∈ [1, d+2

d ) and r ∈ [1, d+2
d+1 ) it holds that

μk → μ in Ls(I × �), μk ⇀ μ weakly in Lr (I ;W 1,r (�)), (5.6)

μεk → μ̃ in Ls(I × �), μεk ⇀ μ̃ weakly in Lr (I ;W 1,r (�)). (5.7)

Moreover, if τk → 0, we also have that

μ
k
, μ̂k → μ in Ls(I × �). (5.8)

Later, by uniqueness of the solution to the linear system, we will see that actually
μ = μ̃.

Proof. Let r and s be as in the statement. The proof of (5.6) relies on the a priori
bounds on the internal energy in Theorem 3.20, i.e.,

‖θk‖Lr (I ;W 1,r (�)) + ‖wk‖Ls (I×�) + ‖wk‖Lr (I ;W 1,r (�)) + ‖ ˙̂wk‖L1(I ;W 1,∞(�)∗) � Cεα
k .

(5.9)

In fact, we can follow closely the lines of the proof of Lemma 4.2, see Remark 4.3(ii).
In particular, one first shows the convergence of the internal energies and then by
(4.7) the convergence of the temperatures. Here, we also see that for τk → 0
property (4.3) implies (5.8).

To see (5.7), we suppose that for each k ∈ N the solution (yεk , θεk ) is obtained
as the limit of time discrete solutions (ŷεkτl , θ̂εkτl ) for a sequence (τl)l converging
to zero. By the above reasoning we obtain (5.9) for θεkτl in place of θk and wεkτl :=
W in(∇ yεkτl

, θεkτl ) in place of wk . Then by (4.2) and the lower semicontinuity of
the norms we get that

‖θεk‖Lr (I ;W 1,r (�)) + ‖wεk‖Ls (I×�) + ‖wεk‖Lr (I ;W 1,r (�)) � Cεα
k ,

where wεk := W in(∇ yεk , θεk ). It now suffices to check that, also,

‖ẇεk‖L1(I ;W 1,∞(�)∗) � Cεα
k (5.10)

holds, as then the statement follows by repeating the proof of Lemma 4.2, see again
Remark 4.3(ii). To derive (5.10), we use (2.20) (for ξ

reg
α in place of ξ ) to get that

ẇεk coincides in the distributional sense with σ where for each t ∈ I and each
ϕ ∈ C∞

c (�) we set that

〈σ(t), ϕ〉 := κ

∫

�

(
εα
k θ� − θεk

)
ϕdHd−1(x)

−
∫

�

(
K(∇ yεk , θεk )∇θεk · ∇ϕ − (

ξ
reg
α (∇ yεk ,∇ ẏεk , θεk )

+ ∂FW
cpl(∇ yεk , θεk ) : ∇ ẏεk

)
ϕ
)

dx,
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where all functions on the right-hand side are evaluated at t ∈ I . By passing
to the limit τ → 0 in (3.70a)–(3.70c) and (3.81)–(3.82) we obtain the a pri-
ori bounds ‖yεk − id‖L∞(I ;W 1,∞(�)) � Cε

2/p
k , ‖yεk − id‖H1(I ;H1(�)) � Cεk ,

and ‖θεk‖L1(I ;W 1,1(�)) � Cεα
k . This along with (D.2), ξ

reg
α � ξ , (3.4), (3.5),

α � 2, and the trace estimate shows that t �→ ‖σ(t)‖W 1,∞(�)∗ lies in L1(I ) with
‖σ‖L1(I ;W 1,∞(�)∗) � Cεα

k . This concludes the proof of (5.10). ��
We now proceed with the proofs of Theorems 2.7 and 2.8 which we split into

two subsections.

5.1. Proof of Theorem 2.7

We will only prove Theorem 2.7(iii) as item (ii) of the statement can be obtained
along similar lines by performing the linearization directly in the weak formula-
tion (2.19)–(2.20) in place of the Euler–Lagrange equations (3.7) and (3.11). Note
that the proof of Theorem 2.7(iii) will also imply the existence statement in The-
orem 2.7(i). In this subsection, we also address the uniqueness of the solutions to
the linearized system.

Proposition 5.3. (Linearization of the mechanical equation) Let u and μ be given
as in Lemmas 5.1–5.2. Then, for any z ∈ C∞(I × �;Rd) with z = 0 on I × �D

we have that (2.37) holds.

Proof. Let z be as in the statement. As z ∈ W 2,p
�D

(�;Rd), we can multiply (3.7)
with τk/εk and sum over all steps 1, . . . , T/τ to get that

1

εk

∫ T

0

∫

�

(
∂FW (∇ yk, θk) + ∂Ḟ R(∇ y

k
,∇ ˙̂yk, θk)

)
: ∇z + ∂GH(∇2yk)

...∇2zdxdt

=
∫ T

0
〈�τk (t), z〉dt, (5.11)

where �τk (t) := �
(l)
τk for t ∈ ((l − 1)τ, lτ ] and l ∈ {1, . . . , T/τ }. Our goal now

is to show that (2.37) arises as the limit of the above equation as k → ∞. First,
recalling (2.23) we can easily check that

∫ T

0
〈�τk (t), z(t)〉dt →

∫ T

0

∫

�

f · z +
∫ T

0

∫

�N

g · zdxdt (5.12)

as k → ∞. By (H.3) for ∂GH , (3.70a), and Hölder’s inequality with powers p
p−1

and p, we derive that

1

εk

∣∣
∣∣

∫ T

0

∫

�

∂GH(∇2yk)
...∇2zdxdt

∣∣
∣∣ � C0

εk

∫ T

0

∫

�

|∇2yk |p−1|∇2z|dxdt

� C0

εk

∫ T

0
‖∇2yk‖p−1

L p(�)‖∇2z‖L p(�)dt � Cε

2(p−1)
p −1

k

= Cε
1− 2

p
k → 0, (5.13)
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as p > d � 2. We now address the coupling term. In view of ∂FW cpl(Id, 0) = 0,
(3.70a), and (3.5), a Taylor expansion implies that

∣∣∣∂FW cpl(∇ yk, θk) −
(
∂2
FW

cpl(Id, 0)εk∇uk + ∂FθW
cpl(Id, 0)(εα

k μ
k
∧ 1)

)∣∣∣

� C |εk∇uk |2 + C
(|εα

k μ
k
|2 ∧ 1

)
(5.14)

pointwise a.e. in I × �. Thus, by (5.1) and (5.8), along with t2 ∧ 1 � t s for t � 0
for some fixed s ∈ (1, d+2

d ) it follows that

lim
k→∞

1

εk

∫ T

0

∫

�
∂FW

cpl(∇ yk , θk) : ∇zdxdt

= lim
k→∞

∫ T

0

∫

�

(
∂2
FW

cpl(Id, 0)∇uk + ε−1
k ∂FθW

cpl(Id, 0)(εα
k μk ∧ 1)

) : ∇zdxdt.

Recalling ∂2
FW

cpl(Id, 0) = 0 (cf. (C.3)) and the definition of B(α) in (2.34) we find
that

lim
k→∞

1

εk

∫ T

0

∫

�

∂FW
cpl(∇ yk, θk) : ∇zdxdt =

∫ T

0

∫

�

B
(α)μ : ∇zdxdt. (5.15)

By a Taylor expansion, (3.70a), and the fact that W el is C3 we have that

∣∣∣ε−1
k ∂FW

el(∇ yk) − ∂2
FW

el(Id)∇uk
∣∣∣ � C

εk
|∇ yk − Id|2.

Integrating the above inequality over I × � and using (3.70b) we get that
∣∣∣
∣

∫ T

0

∫

�

(
ε−1
k ∂FW

el(∇ yk) − ∂2
FW

el(Id)∇uk
)

: ∇zdxdt

∣∣∣
∣

� Cε−1
k ‖∇ yk − Id‖2

L2(I×�)
� CT εk → 0. (5.16)

By (2.8)

∂Ḟ R(∇ y
k
,∇ ˙̂yk, θk) : ∇z = 2∇ y

k
(D(Ck, θk)εkĊk) :

∇z = εkĊk : D(Ck, θk)(∇zT∇ y
k
+ ∇ yT

k
∇z), (5.17)

where

Ck := ∇ yT
k
∇ y

k
, Ċk := ∇ ˙̂uTk ∇ y

k
+ ∇ yT

k
∇ ˙̂uk . (5.18)

Note that the second identity is obtained by an elementary computation using the
symmetries of D stated in (D.1). By (3.70a) and (5.1) we then see that

Ċk ⇀ 2e(u̇) weakly in L2(I × �;Rd×d
sym ). (5.19)

Using (D.2) we also have that

|D(Ck, θk)(∇zT∇ y
k
+ ∇ yT

k
∇z)| � 2C0‖∇z‖L∞(�)‖∇ y

k
‖L∞(�).
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Up to taking a subsequence (not relabeled), we can suppose that ∇ y
k

→ Id and
θk → 0 a.e. in I × �. Thus, Dominated Convergence implies

D(Ck, θk)(∇zT∇ y
k
+ ∇ yT

k
∇z) → D(Id, 0)(∇z + ∇zT ) = 2D(Id, 0)∇z

strongly in L2(I × �;Rd×d). This along with (5.17) and (5.19) leads to

ε−1
k

∫ T

0

∫

�

∂Ḟ R(∇ y
k
,∇ ˙̂yk, θk) : ∇zdxdt →

∫ T

0

∫

�

4D(Id, 0)e(u̇) : ∇zdxdt.

(5.20)

Recalling the definition ofCD andCW in (2.32), as well as collecting (5.12), (5.13),
(5.15), (5.16), and (5.20) we conclude the proof. ��

Similarly as in Sect. 4, for the limit passage in the heat-transfer equation, we
will need the strong convergence of the strain rates (∇ ˙̂uk)k in L2(I ; L2(�;Rd×d))

since the dissipation rate is quadratic in ∇ ˙̂uk . We now improve the compactness
in Lemma 5.1 as follows. At this state, we need the additional assumption (H.4)
which combined with the bound on ∂GH(G) from (H.3) leads to

|H(G)| � C0|G|p for all G ∈ R
d×d×d . (5.21)

Lemma 5.4. (Strong convergence of the rescaled strains and strain rates) With u as
in Lemma 5.1, up to possibly taking a subsequence, we have that

ûk(t) → u(t) strongly in H1(�;Rd) for all t ∈ I,

∇ ˙̂uk → ∇u̇ strongly in L2(I ; L2(�;Rd×d)). (5.22)

The first convergence also holds with uk or uk in place of ûk .

Proof. Step 1 (Lower bounds for elastic energy and dissipation) Suppose we have
already selected a subsequence so that the convergences of Lemma 5.1 as well as
Lemma 5.2 hold true. Recall the definition of Mεk before (3.48). For convenience,
for any v ∈ H1(�;Rd), we define

M0(v) := 1

2

∫

�

CWe(v) : e(v)dx,

where CW = ∂2
FW

el(Id) is as in (2.32). Let us fix an arbitrary t ∈ I . By the
non-negativity of H , a Taylor expansion, and (3.70a) we derive that

Mεk (yk(t)) � ε−2
k

∫

�

W el(∇ yk(t))dx

� 1

2

∫

�

∂2
FW

el(Id)∇uk(t) : ∇uk(t) − C
∫

�

|yk(t) − Id||∇uk(t)|2dx

� 1

2

∫

�

∂2
FW

el(Id)∇uk(t) : ∇uk(t) − Cε
2/p
k

∫

�

|∇uk(t)|2dx .

(5.23)
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Consequently, using (5.3), it follows that

I1 := lim inf
k→∞ Mεk (yk(t)) � lim inf

k→∞ M0(uk(t)) � M0(u(t)). (5.24)

Let Ck and Ċk be as in (5.18). In (5.19) we have seen that Ċk ⇀ 2e(u̇) weakly
in L2(I × �;Rd×d). This along with the definition in (2.9), CD = 4D(Id, 0), the
pointwise convergences of (∇ y

k
)k and (θk)k , and standard lower semicontinuity

arguments (see also [17, Theorem 7.5]) show

I2 := lim inf
k→∞ ε−2

k

∫ t

0

∫

�

ξ(∇ y
k
,∇ ˙̂yk, θk)dxds

= lim inf
k→∞

∫ t

0

∫

�

D(Ck, θk)Ċk : Ċkdxds

�
∫ t

0

∫

�

CDe(u̇) : e(u̇)dxds. (5.25)

Step 2 (Convergence of elastic energies and dissipations) Our next goal is to show
the reverse inequalities for the lim sup. To this end, we draw ideas from the proof
of Lemma 4.5 and compare an energy balance on the nonlinear time-discrete level
with a time-continuous energy balance in the linearized setting. First, recall from
(4.13) that for K ∈ N with K τk ∈ [t, t + τk) it holds that

Mεk (yk (K τk )) + ε−2
k

∫ K τk

0

∫

�
ξ(∇ y

k
, ∇ ˙̂yk , θk )dxds − τk�

∫ K τk

0

∫

�
|∇ ˙̂uk |2dxds

� Mεk (y0,εk ) + 1

εk

∫ K τk

0
〈�(s), ˙̂yk (s)〉ds −

∫ K τk

0

∫

�
ε−1
k ∂FW

cpl(∇ yk , θk ) : ∇ ˙̂ukdxds,

(5.26)

where � > 0 does not depend on k. Here, we also used (2.9) to replace R by ξ .
Now, in a similar fashion, testing (2.37) with z = u̇ we see that

M0(u(t)) − M0(u0) +
∫ t

0

∫

�

(
CDe(u̇) : e(u̇) + μB(α) : ∇u̇

)
dxds =

∫ t

0
〈�(s), u̇(s)〉ds.

(5.27)
We now address the convergence of the various terms. First of all, by (5.1) we
clearly have that

1

εk

∫ K τk

0
〈�(s), ˙̂yk(s)〉ds =

∫ K τk

0
〈�(s), ˙̂uk(s)〉ds →

∫ t

0
〈�(s), u̇(s)〉ds. (5.28)

For α = 1, by arguing similarly as in (5.14)–(5.15), and using (3.70a) as well as
μ
k

→ μ strongly in L2(I × �), by Remark 4.3(iii) we find that

I3 := lim
k→∞

1

εk

∫ K τk

0

∫

�

∂FW
cpl(∇ yk, θk) : ∇ ˙̂ukdxds =

∫ t

0

∫

�

B
(α)μ : ∇u̇dxdt,

(5.29)
where we also used the definition of B(α) in (2.34). For α ∈ (1, 2], (5.29) also holds
(with B

(α) = 0), since by Remark 3.21 we find that μ
k

is bounded in Lq(I ; Lq(�))
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for some q ∈ (2/α, 2], and therefore using t ∧ 1 � tq/2 for t � 0 and Young’s
inequality with constant ε

αq/2
k we get that

ε−1
k

∫ T

0

∫

�

∣
∣(εα

k μ
k
) ∧ 1

∣
∣|∇ ˙̂uk |dxdt

� ε−1
k

(
ε
−αq/2
k ‖εα

k μ
k
‖qLq (I×�) + ε

αq/2
k ‖∇ ˙̂uk‖2

L2(I×�)

)
→ 0. (5.30)

Eventually, we get that

lim
k→∞Mεk (y0,εk ) = lim

k→∞Mεk (id + εku0) = M0(u0). (5.31)

In fact, for the convergence of the elastic energy we repeat the Taylor expansion
in (5.23) (with equality), and for the second-gradient term we get by (5.21), u0 ∈
W 2,p(�;Rd), and p > 2 that

ε−2
k

∣∣
∣
∫

�

H(εk∇2u0)dx
∣∣
∣ � Cε

p−2
k

∫

�

|∇2u0|pdx � Cε
p−2
k → 0.

Combining (5.26)–(5.27), K τk � t , the convergences (5.24), (5.25), (5.28), (5.29),
and (5.31), as well as using that τk

∫ K τk
0

∫
�
|∇ ˙̂uk |2dxds → 0 as τk → 0 we get that

M0(u(t)) +
∫ t

0

∫

�

(
CDe(u̇) : e(u̇) + μB(α) : ∇u̇

)
dxds = M0(u0) +

∫ t

0
〈�(s), u̇(s)〉ds

� I1 + I2 + I3 � M0(u(t)) +
∫ t

0

∫

�

(
CDe(u̇) : e(u̇) + μB(α) : ∇u̇

)
dxds.

Thus, all inequalities in (5.24) and (5.25) are equalities. In particular, we derive
that

lim
k→∞

1

2

∫

�

CWe(uk(t)) : e(uk(t))dx = 1

2

∫

�

CWe(u(t)) : e(u(t))dx, (5.32)

lim
k→∞

1

ε2
k

∫ t

0

∫

�

ξ(∇ y
k
,∇ ˙̂yk, θk)dxds =

∫ t

0

∫

�

4D(Id, 0)e(u̇) : e(u̇)dxds,

(5.33)

where we also used the definition of CD in (2.32).
Step 3 (Strong convergence) Strong convergence for uk in H1(�;Rd), i.e., the first
part of (5.22), follows directly from (5.32), Korn’s and Poincaré’s inequality, and
the fact thatCW is positive definite onRd×d

sym . In the same way we obtain convergence
of uk by employing y

k
(t) in place of yk(t) in (5.23). Hence, the statement also holds

for ûk . For the second part of (5.22), we will first show strong convergence of (Ċk)k
defined in (5.18): by (D.2) we estimate

c0

∫ T

0

∫

�
|Ċk − 2e(u̇)|2dxdt �

∫ T

0

∫

�
D(Ck , θk)(Ċk − 2e(u̇)) : (Ċk − 2e(u̇))dxdt

= ε−2
k

∫ T

0

∫

�
ξ(∇ y

k
, ∇ ˙̂yk , θk)dxdt − 2

∫ T

0

∫

�
2D(Ck , θk)e(u̇) : Ċkdxdt

+
∫ T

0

∫

�
4D(Ck , θk)e(u̇) : e(u̇)dxdt.
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By (5.33) for t = T , the pointwise convergence of (∇ y
k
)k and (θk)k to Id and 0,

respectively (see (5.1)–(5.3) and (5.6)), and the already shown weak convergence of
Ċk towards 2e(u̇) (cf. (5.19)) we see that the above derived upper bound converges
to 0 as k → ∞. Then, the desired strong convergence of (∇ ˙̂uk)k is derived as
follows: by using Poincaré’s and Korn’s inequality, (5.1), and (3.70a) we get that

∫ T

0

∫

�

|∇ ˙̂uk − ∇u̇|2dxdt � C
∫ T

0

∫

�

|sym(∇ ˙̂uk − ∇u̇)|2dxdt

� C
∫ T

0

∫

�

|Ċk − 2e(u̇)|2dxdt + C
∫ T

0

∫

�

|∇ y
k
− Id|2|∇ ˙̂uk |2dxdt

� C
∫ T

0

∫

�

|Ċk − 2e(u̇)|2dxdt + Cε
4/p
k

∫ T

0

∫

�

|∇ ˙̂uk |2dxdt → 0.

This concludes the proof. ��
Proposition 5.5. (Linearization of the heat-transfer equation) Let u be as in
Lemma 5.1 and μ as in Lemma 5.2. Then, for any ϕ ∈ C∞(I × �) with ϕ(T ) = 0
we have that (2.38) holds.

Proof. Similarly to the proof of Proposition 4.6, see (4.18), we can show that

∫ T

0

∫

�
K(∇ y

k
, θk)∇μk · ∇ϕdxdt −

∫ T

0

∫

�
ε−α
k ŵk ϕ̇dxdt + κ

∫ T

0

∫

�
μkϕdHd−1dt

−
∫ T

0

∫

�

(
ε−α
k ξ

reg
α (∇ y

k
, ∇ ˙̂yk , θk) + ε1−α

k ∂FW
cpl(∇ y

k
, θk) : ∇ ˙̂uk

)
ϕdxdt

= κ

∫ T

0

∫

�
θ�,τ ϕdHd−1dt + ε−α

k

∫

�
W in(∇ y0,ε, θ0,ε)ϕ(0)dx, (5.34)

where ŵk := ŵεk ,τk , ∇ y0,ε = Id+εk∇u0, and θ0,ε = εα
k μ0. Note that in contrast to

(4.18), we rescaled both sides with ε−α
k . We will now pass to the limit in each integral

above as k → ∞. Recall that cV (F, θ) := −θ∂2
θ W

cpl(F, θ) for any F ∈ GL+(d)

and θ � 0.
Using (C.6) and Dominated Convergence we can show in a similar fashion as

in Remark 4.3 that

ε−α
k

∫

�

W in(∇ y0,ε, θ0,ε)ϕ(0)dx →
∫

�

c̄Vμ0ϕ(0)dx .

By Lemma 3.3 we have that |K(∇ y
k
, θk)| is uniformly bounded. Consequently,

from the pointwise convergence of ∇ y
k

and θk to Id and 0, respectively, see (5.1)–
(5.3) and (5.6), we derive that

∫ T

0

∫

�

K(∇ y
k
, θk)∇μk · ∇ϕdxdt + κ

∫ T

0

∫

�

μkϕdHd−1dt

→
∫ T

0

∫

�

K0∇μ · ∇ϕdxdt + κ

∫

�

μϕdHd−1dt,
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whereK0 is defined in (2.33). By a change of variables and Dominated Convergence
we find that

ε−α
k W in(∇ yk, θk) =

∫ μk

0
cV (∇ yk, ε

α
k s)ds =

∫ μ

0
cV (∇ yk, ε

α
k s)ds + O(|μk − μ|)

→ cV (Id, 0) μ (5.35)

pointwise a.e. in I×�, where we again used that by (C.5) the function cV is bounded,
the pointwise convergence of (∇ yk)k to Id, and the pointwise convergence μk → μ

(see (5.6), up to a subsequence). By Dominated Convergence this convergence also
holds in L1(I×�). The same holds true for y

k
, θk in place of yk , θk . Thus, recalling

the definition of ŵk , we have shown that

∫ T

0

∫

�

ε−α
k ŵk ϕ̇dxdt →

∫ T

0

∫

�

cV (Id, 0)μϕ̇dxdt =
∫ T

0

∫

�

c̄Vμϕ̇dxdt.

(5.36)
We now prove that the contribution of the coupling potential vanishes in the limit.
Indeed, by (3.5), (3.70a), (3.81), (5.1), and t ∧ 1 � t s/2 for some s >

2(α−1)
α

with
s ∈ (1, d+2

d ), the Cauchy-Schwarz and Hölder’s inequality we see that

∣∣∣
∫ T

0

∫

�

ε1−α
k W cpl(∇ y

k
, θk) : ∇ ˙̂ukϕdxdt

∣∣∣

� ε1−α
k

∫ T

0

∫

�

C(θk ∧ 1)(1 + |∇ y
k
− Id|)|∇ ˙̂uk ||ϕ|dxdt

� Cε1−α
k ‖θ

s
2
k ‖L2(�)‖∇ ˙̂uk‖L2(�)‖ϕ‖L∞(�)

� Cε
1−α+αs/2
k ‖μ

k
‖

s
2
Ls (�)‖∇ ˙̂uk‖L2(�)‖ϕ‖L∞(�) → 0.

Lastly, by (5.18), by the second convergence in (5.22), (2.9), and the continuity of
D one can show for α = 2 that

∫ T

0

∫

�

ε−α
k ξ

reg
α (∇ y

k
,∇ ˙̂yk, θk)ϕ =

∫ T

0

∫

�

ε−α
k ξ(∇ y

k
,∇ ˙̂yk, θk)ϕ

→
∫ T

0

∫

�

CDe(u̇) : e(u̇)ϕdxdt.

For α < 2 instead, it is easy to check using ξ
reg
α � ξ that the term vanishes as

k → ∞. Collecting all convergences and recalling the definition of C(α)
D in (2.34),

we get that (2.38) holds true, where for the external temperature we use (4.19). ��
Lemma 5.6. (Uniqueness of the linearized system)There exists atmost one solution
in the sense of Definition 2.6.

Proof. We start with α ∈ (1, 2]. In this case, (2.37) is independent of the variable
μ. We show uniqueness of u. To this end, we suppose that there exist two solutions
u1, u2, and set u := u1 −u2. Then u = 0 on I ×�D and u(0) = 0. Subtracting the
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weak formulations (2.37) for both u1 and u2, we see that for any z ∈ C∞(I×�;Rd)

with z = 0 on I × �D it holds that
∫ T

0

∫

�

(
CWe(u) + CDe(u̇)

)
: ∇zdxdt = 0. (5.37)

Let us now define

a(t) := 1

2

∫

�

CDe(u(t)) : e(u(t))dx for t ∈ I.

Note that a ∈ W 1,1(I ) with

ȧ(t) =
∫

�

CDe(u̇(t)) : e(u(t))dx =
∫

�

CDe(u̇(t)) : ∇u(t)dx

for a.e. t ∈ I . Let ϕ̃ ∈ C∞(I ). Testing (5.37) with a sequence of smooth maps
(zh)h vanishing on I × �D and converging to ϕ̃u in L2(I ; H1(�)) we derive that

∫ T

0
ϕ̃

∫

�

(
CWe(u) + CDe(u̇)

)
: ∇udxdt = 0.

By the arbitrariness of ϕ̃ it then follows for almost all t ∈ I that
∫

�

(
CDe(u̇(t)) + CWe(u(t))

) : ∇u(t)dx = 0.

This shows that

ȧ(t) =
∫

�

CDe(u̇(t)) : ∇u(t)dx = −
∫

�

CWe(u(t)) : e(u(t))dx � 0.

As a(0) = 0, it follows that a = 0, and therefore u = 0. Now, given a unique
u ∈ H1(I ; H1(�)), we see that (2.38) is an equation in the variable μ only. More
precisely, it corresponds to the weak formulation of a heat equation with L1-data.
Uniqueness has been provided in [37, Proposition 1]. This finishes the proof in the
case α ∈ (1, 2].

We now briefly give the argument for α = 1. In this case, (2.38) does not
depend on u and uniqueness follows again from [37, Proposition 1]. Then, the term∫ T

0

∫
�
B

αμ : ∇zdxdt in (2.37) is only a datum, and uniqueness of u follows by
repeating the argument starting with (5.37). ��

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. We start with the proof of Theorem 2.7(iii). First, by Lem-
mas 5.1–5.2, we obtain limits u ∈ H1(I ; H1

�D
(�;Rd)) and μ ∈ L1(I ;W 1,1(�)).

In view of (5.1), (5.6), and Lemma 5.4, the convergences stated in the statement
hold, up to selecting a subsequence. In particular, (5.3) and (5.8) show that the con-
vergence holds for all three different interpolations. By Propositions 5.3 and 5.5
we see that (u, μ) is a weak solution in the sense of Definition 2.6. As the weak
solution is unique by Lemma 5.6, Urysohn’s subsequence principle implies that
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the convergence holds for the whole sequence. This concludes the proof of Theo-
rem 2.7(i),(iii).

We briefly describe the adaptions for Theorem 2.7(ii). First, in the compactness
result we replace (5.1) and (5.6) by (5.2) and (5.7), respectively. The lineariza-
tion of the mechanical equation and the heat-transfer equation in Propositions 5.3
and 5.5, respectively, can be derived along similar lines, by replacing the time
discrete equations (5.11) and (5.34) with their time-continuous analogs in (2.19)
and (2.20), respectively. In a similar fashion, for the proof Lemma 5.4, we use the
time-continuous energy balance (4.11) in place of (5.26). The rest of the argument
remains unchanged. ��

5.2. Proof of Theorem 2.8

We start with a �-convergence result. With the notation from Sects. 2.1–2.2
we define for k ∈ {1, . . . , T/τ } the functional E (k)

ε : H1
�D

(�;Rd) → R through

E (k)
ε (u) = +∞ if u /∈ W 2,p(�;Rd) and

E (k)
ε (u) := 1

ε2 M(id + εu) + 1

ε2 W
cpl(id + εu, θ(k−1)

ε,τ )

+ 1

τε2 R(y(k−1)
ε,τ , id + εu − y(k−1)

ε,τ , θ (k−1)
ε,τ )

− 〈�(k)
τ , u〉 − 1

ε2

∫

�

θ(k−1)
ε,τ ∂θW

cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )dx (5.38)

if u ∈ W 2,p(�;Rd). Although the last term in (5.38) does not influence the min-
imizers of E (k)

ε for fixed k, it is needed to ensure the boundedness of (|E (k)
ε |)ε as

ε → 0 along sequences of minimizers. Recall also Eε from (3.48).

Proposition 5.7. Suppose that supε>0 Eε(y
(k−1)
ε,τ , θ

(k−1)
ε,τ ) < +∞ and u(k−1)

ε,τ :=
ε−1(y(k−1)

ε,τ − id) → u(k−1)
τ strongly in H1(�;Rd) as ε → 0. Suppose that

ε−αθ
(k−1)
ε,τ → μ

(k−1)
τ in L1(�) and that the convergence holds in L2(�) if α = 1.

Then, the sequence (E (k)
ε )ε, defined in (5.38),�-converges in the weak H1-topology

to Ē (k)
0 : H1

�D
(�;Rd) → R given by

Ē(k)
0 (u) :=

∫

�

(1

2
CWe(u) : e(u)dx + 1

2τ
CDe(ũ) : e(ũ) + c̄Vμ

(k−1)
τ + μ

(k−1)
τ B

(α) : ∇ũ
)

dx

− 〈�(k)
τ , u〉,

where ũ := u−u(k−1)
τ ,CW , CD as in (2.32), c̄V as in (2.33), and B(α) as in (2.34).
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Proof. All constants we encounter in this proof are implicitly assumed to be inde-
pendent of ε. We will work with the equivalent representation

E (k)
ε (u) = 1

ε2 M(id + εu) + 1

τε2 R(y(k−1)
ε,τ , id + εu − y(k−1)

ε,τ , θ (k−1)
ε,τ )

+ 1

ε2

∫

�

W in
ε (Id + ε∇u, θ(k−1)

ε,τ )dx

+ 1

ε2

∫

�

θ(k−1)
ε,τ

(
∂θW

cpl(Id + ε∇u, θ(k−1)
ε,τ )

− ∂θW
cpl(∇ y(k−1)

ε,τ , θ (k−1)
ε,τ )

)
dx − 〈�(k)

τ , u〉, (5.39)

which can be derived from (5.38) by adding and subtracting

1

ε2

∫

�

θ(k−1)
ε,τ ∂θW

cpl(Id + ε∇u, θ(k−1)
ε,τ )

and using the definition of W in in (2.12).
Step 1 (Mechanical energy bound): Let (uε)ε ⊂ W 2,p

�D
(�;Rd) be a sequence such

that supε>0 E
(k)
ε (uε) < ∞. We will show that then also supε>0 ε−2M(yε) < ∞,

where we shortly wrote yε := id + εuε. By the nonnegativity of W in and R we
derive that

E (k)
ε (uε) � 1

ε2 M(yε) + 1

ε2

∫

�

θ(k−1)
ε,τ

(
∂θW

cpl(∇ yε, θ
(k−1)
ε,τ )

− ∂θW
cpl(∇ y(k−1)

ε,τ , θ (k−1)
ε,τ )

)
dx − 〈�(k)

τ , uε〉. (5.40)

By the second bound in (C.5), Young’s inequality with constant λ, and 1 ∧ t �
√
t

for t � 0 it follows that

θ(k−1)
ε,τ

∣
∣∂θW

cpl(∇ yε, θ
(k−1)
ε,τ ) − ∂θW

cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )
∣
∣

� C(θ(k−1)
ε,τ ∧ 1)(1 + |∇ yε − Id| + |∇ y(k−1)

ε,τ − Id|)
� C

λ
θ(k−1)
ε,τ + Cλ|∇ yε − Id|2 + Cλ|∇ y(k−1)

ε,τ − Id|2.

Integrating over � and using (3.2) as well as (W.4) we get that

1

ε2

∣∣∣
∫

�

θ(k−1)
ε,τ

(
∂θW

cpl(∇ yε, θ
(k−1)
ε,τ ) − ∂θW

cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )
)
dx

∣∣∣

� C

λε2

∫

�

θ(k−1)
ε,τ dx + Cλ

ε2 Wel(y(k−1)
ε,τ ) + Cλ

ε2 Wel(yε). (5.41)

Again by (3.2), Poincaré’s inequality, and Young’s inequality with constant λ/ε we
see that

|〈�(k)
τ , uε〉| = ε−1|〈�(k)

τ , yε − id〉| � C

λ
‖�(k)

τ ‖2
H−1 + C

λ

ε2 W
el(yε).
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Hence, combining the above estimate with (5.41) and (5.40), and using Hölder’s
inequality, we arrive at

E (k)
ε (yε) � (1 − Cλ)ε−2M(yε) − C

λ

(
Eε(y

(k−1)
ε,τ , θ (k−1)

ε,τ ) + ‖�(k)
τ ‖2

H−1

)
.

Choosing λ sufficiently small such that 1−Cλ � 1/2 this leads the desired bound.
Consequently, in the sequel, we can assume that (3.70a)–(3.70b) holds for both yε
and y(k−1)

ε,τ .
Step 2 (�-lim inf): Let (uε)ε ⊂ H1

�D
(�;Rd) be such that uε ⇀ u weakly in

H1(�;Rd). Without loss of generality we can assume that supε>0 E
(k)
ε (yε) < ∞

and lim infε→0 E
(k)
ε (uε) = limε→0 E

(k)
ε (uε). In particular, we can select a subse-

quence (without relabeling) such that θ
(k−1)
ε,τ → 0 a.e. in �. We are now ready

to compute the lim inf of the various terms of E (k)
ε (uε). By (3.70a) we see that

∇ yε → Id uniformly. Hence, by the weak convergence of (uε)ε in H1(�;Rd) we
can show similarly to the derivation of (5.24) that

lim inf
ε→0

1

ε2 M(yε) � lim inf
ε→0

1

2

∫

�

CW∇uε : ∇uεdx � 1

2

∫

�

CWe(u) : e(u)dx .

(5.42)
As in the proof of (5.25), it follows from the pointwise convergence of (y(k−1)

ε,τ )ε

and (θ
(k−1)
ε,τ )ε that

lim inf
ε→0

1

τε2 R(y(k−1)
ε,τ , yε − y(k−1)

ε,τ , θ
(k−1)
ε,τ ) � 1

2τ

∫

�
CDe(u−u(k−1)

τ ) : e(u−u(k−1)
τ )dx .

By the same argument as in (5.36), the L1-convergence of ε−αθ
(k−1)
ετ implies that

lim
ε→0

1

εα

∫

�

W in(∇ yε, θ
(k−1)
ε,τ )dx = c̄V

∫

�

μ(k−1)
τ dx . (5.43)

For the remaining coupling term in (5.39), we Taylor expand around (Id, θ
(k−1)
ε,τ )

and get by the second bound in (C.5), (C.7), and (3.70a), applied for both yε and
y(k−1)
ε,τ , that

θ(k−1)
ε,τ

∣∣(∂θW
cpl(∇ yε, θ

(k−1)
ε,τ ) − ∂θW

cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )
)

− ∂θFW
cpl(Id, θ(k−1)

ε,τ ) : ∇(yε − y(k−1)
ε,τ )

∣∣

� C(θ(k−1)
ε,τ ∧ 1)

(|∇ yε − Id|2 + |∇ y(k−1)
ε,τ − Id|2)

� Cε
1+ 2

p (θ(k−1)
ε,τ ∧ 1)

(|∇uε| + |∇u(k−1)
ε,τ |).

pointwise a.e. in �. Thus, by repeating the argument in (5.30) we derive that

lim
ε→0

1

ε2

∫

�

θ(k−1)
ε,τ

(
∂θW

cpl(∇ yε, θ
(k−1)
ε,τ ) − ∂θW

cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )
)
dx

= lim
ε→0

∫

�

ε−1θ(k−1)
ε,τ ∂θFW

cpl(Id, θ(k−1)
ε,τ ) : ∇(uε − u(k−1)

ε,τ ).
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Thus, by the definition of B(α) in (2.34) and by repeating the argument in (5.29)–
(5.30) we conclude that

1

ε2

∫

�

θ(k−1)
ε,τ

(
∂θW

cpl(∇ yε, θ
(k−1)
ε,τ ) − ∂θW

cpl(∇ y(k−1)
ε,τ , θ (k−1)

ε,τ )
)
dx

→
∫

�

μ(k−1)
τ B

(α) : ∇(u − u(k−1)
τ )dx (5.44)

as ε → 0. Finally, notice that the weak convergence also implies limε→0〈�(k)
τ , uε〉 =

〈�(k)
τ , u〉. Combining all aforementioned estimates we conclude the proof of the �-

lim inf.
Step 3 (�-lim sup) Let u ∈ H1(�;Rd) with u = 0 on �D . By a standard

approximation argument in Sobolev spaces we can assume without loss of gener-
ality that u ∈ C∞(�;Rd). Choose uε = u for all ε. We only need to check the
convergence of the energy. First, notice that by (5.21) and p > 2

1

ε2

∫

�

H(∇2yε)dx � 1

ε2

∫

�

C0|ε∇2u|pdx = C0ε
p−2

∫

�

|∇2u|pdx → 0,

where yε := id + εu. By a Taylor expansion we also see that

1

ε2

∫

�

W el(∇ yε)dx = 1

2ε2

∫

�

CW ε∇u : ε∇udx + O
(
ε

∫

�

|∇3u|dx
)

→ 1

2

∫

�

CWe(u) : e(u)dx .

Furthermore, using (D.1) we can write that

1

ε2 R(y(k−1)
ε,τ , yε − y(k−1)

ε,τ , θ (k−1)
ε,τ ) = 1

2

∫

�

D(Cε, θ
(k−1)
ε,τ )Ċε : Ċε,

where Cε := (∇ y(k−1)
ε,τ )T∇ y(k−1)

ε,τ and Ċε := (∇u − ∇u(k−1)
ε,τ )T∇ y(k−1)

ε,τ +
(∇ y(k−1)

ε,τ )T (∇u−∇u(k−1)
ε,τ ). By the strong convergence of (u(k−1)

ε,τ )ε in H1(�;Rd)

it follows that Ċε → 2e(u − u(k−1)
τ ) strongly in L2(�;Rd×d). Consequently,

1

τε2 R(y(k−1)
ε,τ , yε − y(k−1)

ε,τ , θ (k−1)
ε,τ ) → 1

2τ

∫

�

CDe(u − u(k−1)
τ ) : e(u − u(k−1)

τ ).

The convergence of the terms (5.43) and (5.44) follows as in the previous step. This
concludes the proof. ��

We close with the proof of Theorem 2.8.

Proof of Theorem 2.8. We prove the result by induction on k. For the base case
k = 0, we only need to check the convergences and the energy convergence. In
fact, setting u(0)

τ := u0 and μ
(0)
τ := μ0, this directly follows from (2.18) and

repeating the argument in the �-lim sup above.
Suppose now that the statement is true for k − 1 where k ∈ {1, . . . , T/τ }. With

(3.70b) we have u(k)
ε,τ = ε−1(y(k)

ε,τ − id) ⇀ u(k)
τ weakly in H1(�;Rd) (up to a sub-

sequence). By the induction hypothesis it holds that u(k−1)
ε,τ = ε−1(y(k−1)

ε,τ − id) →
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u(k−1)
τ strongly in H1(�;Rd) and ε−αθ

(k−1)
ε,τ ⇀ μ

(k−1)
τ weakly in W 1,r (�) for

any r ∈ [1, d+2
d+1 ). Therefore, we also find ε−αθ

(k−1)
ε,τ → μ

(k−1)
τ strongly in

L1(�). If α = 1, Remark 4.3(iii) even yields convergence in L2(�). As also
supε>0 Eε(y

(k−1)
ε,τ , θ

(k−1)
ε,τ ) < +∞ due to Lemma 3.18, we can apply Proposi-

tion 5.7. By the fundamental theorem of �-convergence, u(k)
τ is a minimizer of

Ē (k)
0 and E (k)

ε (u(k)
ε,τ ) → Ē (k)

0 (u(k)
τ ). As Ē (k)

0 is strictly convex, u(k)
τ is the unique

minimizer of the corresponding minimization problem. In particular, the weak
H1-convergence of (u(k)

ε,τ )ε holds true without selecting a subsequence. Moreover,
energy convergence implies that in (5.42) equality holds. This along with weak con-
vergence, as well as Korn’s and Poincaré’s inequality yields u(k)

ε,τ → u(k)
τ strongly

in H1(�;Rd). Clearly, u(k)
τ satisfies (2.40).

Let r ∈ [1, d+2
d+1 ) and s ∈ [1, d+2

d ). As τ > 0 was fixed, we see by (5.6) that,

up to selecting a subsequence, ε−αθ
(k)
ε,τ → μ

(k)
τ weakly in W 1,r (�) and strongly in

Ls(�). This limit μ
(k)
τ solves (2.41). Indeed, testing (3.11) (with ξ

reg
α in place of ξ )

with ϕ ∈ C∞(�̄) and dividing by εα we can pass to the limit ε → 0, and obtain
(2.41) by an argument similar to the one in the proof Proposition 5.5 neglecting
the time dependence. The main difference is that we do not perform integration by
parts in time, but by using the argument in (5.35) we pass directly to the limit in
the term

1

εα

∫

�

τ−1(w(k)
ε,τ − w(k−1)

ε,τ

)
ϕdx →

∫

�

c̄V τ−1(μ(k)
τ − μ(k−1)

τ

)
ϕdx .

To conclude the induction step, it remains to show the uniqueness of μ
(k)
τ , which in

particular will imply that the weak W 1,r -convergence holds true without selecting
a subsequence. Suppose that μ̃

(k)
τ also satisfies (2.41). Then, for the difference

μ := μ
(k)
τ − μ̃

(k)
τ it holds that
∫

�

(
c̄V

μ

τ
ϕ + K0∇μ · ∇ϕ

)
dx + κ

∫

�

μϕdHd−1 = 0.

Taking a smooth sequence (ϕh)h ⊂ C∞
c (�) converging to χ(μ) in C1, where

χ(t) := arctan(t), this shows with (2.10), χ(t)t � 0 for all t , and χ ′ � 0 that∫
�

μ
τ
χ(μ)dx = 0. As χ(t)t � 0 for all t and χ(t) = 0 if and only if t = 0, we

have proved μ ≡ 0, and thus uniqueness holds.
(ii) We only sketch the proof as it follows along the lines of the reasoning

in Sect. 4. Let ûτ , uτ , uτ be defined similar to (2.26), and use similar notation
for μ. We first observe that (ûτ )τ is bounded in H1(I ; H1(�;Rd)) and (μ̂τ )τ
is bounded in Lr (I ;W 1,r (�)). This follows from Lemmas 5.1–5.2 and (2.39).
Additional control can be recovered from the estimates stated in Theorem 3.20.
Thus, we can find u ∈ H1(I ; H1

�D
(�;Rd)) such that ∇ ˙̂uτ ⇀ ∇u̇ and ∇uτ ⇀ ∇u

weakly in L2(I × �;Rd×d). Moreover, there exists μ ∈ L1(I ;W 1,1(�)) with
μ � 0 a.e. such that the latter two convergences in (2.42) can be derived (up to a
subsequence) using the Aubin-Lions’ theorem and by following the reasoning in
Lemma 4.2.
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Using (2.40) for every smooth z ∈ L2(I ; H1
�D

(�;Rd)) and summing over
every k ∈ {1, . . . , T/τ } we derive that

∫ T

0

∫

�

(
CWe(uτ ) + μ

τ
B

(α) + CDe( ˙̂uτ )
) : ∇zdxdt −

∫ T

0
〈�τ (t), z(t)〉dt = 0.

Consequently, we can then pass to the limit τ → 0 in the above equality which
results in (2.37). Using (2.41) for every k ∈ {1, . . . , T/τ } we also see that for any
ϕ ∈ C∞(I × �̄) with ϕ(T ) = 0 it holds that

∫ T

0

∫

�

(
C

(α)
D e( ˙̂uτ ) : e( ˙̂uτ ) ϕ + K0∇μτ · ∇ϕ − c̄V μ̂τ ϕ̇

)
dxdt + κ

∫ T

0

∫

�

(μτ

− θ�,τ )ϕdHd−1 = c̄V

∫

�

μ0ϕ(0)dx,

where as usual we applied integration by parts. In particular, as τ → 0 by (2.42)
we see that

lim
τ→0

∫ T

0

∫

�

(−c̄V μ̂τ ϕ̇ + K0∇μτ · ∇ϕ)dxdt + κ

∫ T

0

∫

�

(μτ − θ�,τ )ϕdHd−1

=
∫ T

0

∫

�

(−c̄Vμϕ̇ + K0∇μ · ∇ϕ)dxdt + κ

∫ T

0

∫

�

(μ − θ�)ϕdHd−1. (5.45)

We also find that

lim
τ→0

1

2

∫

�

CWe(ū(t)) : e(ū(t))dx = 1

2

∫

�

CWe(uτ (t)) : e(uτ (t))dx,

lim
τ→0

∫ T

0

∫

�

CDe( ˙̂uτ ) : e( ˙̂uτ ) ϕdxdt =
∫ T

0

∫

�

CDe(u̇) : e(u̇) ϕdxdt. (5.46)

Indeed, inequalities follow from weak convergence, and the equalities are recovered
by resorting to energy balances in the time-discrete and time-continuous setting,
see Lemma 4.5, in particular (4.15)–(4.16), for details. Let us highlight that at this
point for α = 1 we exploit

∫ T
0

∫
�

μ
τ
B

(α) : ∇ ˙̂uτ dx → ∫ T
0

∫
�

μB(α) : ∇u̇dx since

we can assume μ
τ

→ μ in L2(I ; L2(�)) by Remark 4.3(iii).
The second part of (5.46) along with (5.45) implies that (2.38) holds. This shows

that (u, μ) is a weak solution of (2.29)–(2.31) in the sense of Definition 2.6. This
solution is unique (see Theorem 2.7(i)), all aforementioned convergences hold true
without selecting a subsequence. Energy convergence in (5.46) along with weak
convergence implies uτ (t) → u(t) strongly in H1(�;Rd) for every t ∈ I . For the
other interpolations, one can argue in a similar fashion by replacing uτ (t) by uτ (t)
in (5.46).
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182 00 Prague 8
Czechia.

e-mail: kruzik@utia.cas.cz

and

Martin Kružík
Faculty of Civil Engineering,
Czech Technical University,

Thákurova 7,
166 29 Prague 6

Czechia.

(Received March 4, 2022 / Accepted December 12, 2022)
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer

Nature (2023)


	Nonlinear and Linearized Models  in Thermoviscoelasticity
	Abstract
	1 Introduction
	2 The Model and Main Results
	2.1 The setting and modeling assumptions
	2.1.1 Mechanical energy and coupling energy
	2.1.2 Dissipation potential
	2.1.3 Heat conductivity and internal energy
	2.1.4 Internal and total energy
	2.1.5 Equations of nonlinear thermoviscoelasticity

	2.2 Approximation of solutions in the nonlinear setting
	2.3 Passage to linearized thermoviscoelasticity

	3 Staggered Time-Incremental Scheme
	3.1 Existence of solutions to time-discretized schemes
	3.2 Well-definedness of the scheme
	3.3 Adaptions for exponents α< 2
	3.4 A Priori bounds

	4 Existence of Solutions in the Nonlinear Setting
	5 Passage to the Linearized System
	5.1 Proof of Theorem 2.7
	5.2 Proof of Theorem 2.8

	Acknowledgements.
	References




