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Abstract:Wederive, bymeans of variational techniques, a limiting description for a class of integral function-
als under linear differential constraints. The functionals are designed to encode the energy of a high-contrast
composite, that is, a heterogeneous material which, at a microscopic level, consists of a periodically perfo-
rated matrix whose cavities are occupied by a filling with very different physical properties. Our main result
provides a Γ-convergence analysis as the periodicity tends to zero, and shows that the variational limit of the
functionals at stake is the sum of two contributions, one resulting from the energy stored in the matrix and
the other from the energy stored in the inclusions. As a consequence of the underlying high-contrast struc-
ture, the study is faced with a lack of coercivity with respect to the standard topologies in Lp, which we tackle
by means of two-scale convergence techniques. In order to handle the differential constraints, instead, we
establish new results about the existence of potentials and of constraint-preserving extension operators for
linear, k-th order, homogeneous differential operators with constant coefficients and constant rank.
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1 Introduction

The goal of this contribution is to derive a unified limiting description for a class of integral functionals that
are inspired by the physics of high-contrast composites and that are evaluated on fields subject to certain
differential constraints.

High-contrast materials are characterized by the property that their microscopic physical features may
change abruptly from point to point. In the case of a binary periodic medium of this kind, we have two rele-
vant microscales: the periodicity of the microstructure and the high-contrast parameter, which encodes the
strong (high-contrast) difference in the properties of the two components. Typically, the scale at which peri-
odicity is observed is much smaller than the size of the specimen. It is hence natural, from a mathematical
viewpoint, to study the asymptotics of the quantities that describe the system in the limit of vanishing period.
This procedure is called homogenization. It allows tomake predictions on the effective character of heteroge-
neous media when no experiments are available, and eases numerical simulations by reducing the degrees
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of freedom of the problem. Therefore, mathematical homogenization has been a lively field of investigation
for many decades. We refer, e.g., to the monographs [15, 33] for a thorough introduction to the subject.

In this paper we tackle the case in which both the periodicity and the high-contrast are quantified by
a small number ε > 0 (see (1.3) and Remark 2.1). We assume that the vector fields that encode the significant
quantities of the system satisfy a linear first-order differential constraint. The rationale behind this choice
becomes transparent if one focuses on specific theories: in large strain elasticity the deformation gradient
is a significant strain measure, while electromagnetism deals with the differential operators encoded by the
Maxwell system. In other settings, the elastic behavior of some materials can be influenced by electric cur-
rents or magnetic fields and vice versa (see, e.g., [74] for a recent contribution). In all these cases, the key
quantities lie in the kernel of a suitable differential operator. We therefore see that the need of combining
homogenization and differential constraints naturally arises and leads to generalized notions of convexity
(see [12] for an overview). It is well known that all the differential constraints above (and many more) can be
treated in aunifiedway in the framework ofA -quasiconvexity (see [48] and references therein). Such anotion
allows to extend various results which were originally available only for Sobolev maps and their gradients
to the setting where admissible fields belong to the kernel of a linear first-order differential operator A of
constant rank. We incidentally mention that highly heterogeneous media under differential constraints also
appear in the homogenization approach to topology optimization, which plays a central, for instance, in the
modeling of lattice materials for additive manufacturing [3, 4].

The novelty of our contribution consists in tackling homogenization of high-contrast materials in the
setting ofA -quasiconvexity. In order to describe our main results, we need to introduce some basic notation.

For d ∈ ℕ, d ≥ 2, let Ω ⊂ ℝd be a bounded, connected, open set with Lipschitz boundary. We regard Ω
as a reference configuration for a composite with a high-contrast microstructure obtained by periodically
inserting inclusions of a specific kind in a surrounding matrix. For instance, in the context of elasticity, M.
Cherdantsev and K. D. Cherednichenko [25] considered a stiff matrix with embedded soft fillings. In general,
applications require that the properties of the inclusions and of the matrix are tuned so that the resulting
effective behavior of the composite is the desired one.

To depict the fine texture of the material in mathematical terms, we consider the periodicity cell
Q := (0, 1)d ⊂ ℝd and an open connected subset with Lipschitz boundary D0 ⋐ Q (see Figure 1), where
the symbol ⋐ indicates that D0 is compactly contained in Q. The high-contrast behavior of the composite
sitting in Ω is identified by means of the sets D0 and D1 := Q \ D̄0 in the following way: we introduce a small
parameter ε > 0 representing the periodicity scale and we define the sets

Ω0,ε := ⋃
z∈Zε

ε(D0 + z) with Zε := {z ∈ ℤd : ε(D̄0 + z) ⊂ Ω}, (1.1)

and
Ω1,ε := Ω \ Ω0,ε , (1.2)

which correspond respectively to the inclusions and to the surrounding matrix (see Figure 2).
Hereafter, we will systematically adopt the adjectives “soft” and “stiff” to refer respectively to Ω0,ε and

to Ω1,ε, as well as to their related quantities. This use is informal and just meant to convey ideas, though
being justified by the possible interpretation of our model in the framework of elasticity. The reader should
however bear in mind that our treatment is suited for a wider range of applications.

The main goal of this contribution is to characterize the asymptotic behavior as ε → 0 in the sense of
Γ-convergence [14, 37] of the energy functionals

∫
Ω0,ε

f0,ε(εu)dx + ∫
Ω1,ε

f1(
x
ε
, u)dx, (1.3)

evaluated on fields u ∈ Lp(Ω;ℝN) satisfying A u = 0, where A is a suitable linear first-order partial differen-
tial operator. The precise class of constraints is presented in Section 2.2 below and further investigated in
Section 7. In the expression above, the family {f0,ε} represents the energy densities stored in the “soft” inclu-
sions, while f1 encodes the behavior of the “stiff” matrix. The assumptions on {f0,ε}ε>0 and f1 are collected
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D0

D1

Figure 1: The subdivision of the unit cube Q into the “soft” region D0 (white) and the “stiff” region D1 (grey).

ε

Figure 2: The reference set Ω and its microscopic structure. The collection of the “soft” inclusions Ω0,ε is depicted in white,
whereas the matrix Ω1,ε is in grey.

in Section 2.1. We point out that considering a sequence of ε-dependent energy densities for the “soft” com-
ponent is not merely a mathematical mannerism: on the contrary, it is a modeling necessity that arises when
the admissible maps u are assumed to have the form u = ∇v for suitable fields v, i.e., whenA = curl. We refer
to [25, Remark 2] for a discussion on this point.

Even though {f0,ε} and f1 in (1.3) are assumed to satisfy p-growth conditions from above and below, the
fact that the “soft” energies are evaluated on εu rather than u results in a loss of coercivity. Consequently, clas-
sical weak and strong Lp-topologies are not capable to capture the asymptotic behavior of the problem and
one needs to resort to an ad hoc notion of ‘convergence in the high-contrast sense’, which instead keeps track
of the finest features of the microstructure, cf. Definition 2.5. Denoting by U1 the set of maps in Lp(Ω;ℝN)
such thatA u = 0 in Ω, our main result consists in showing that the limiting behavior of the energies in (1.3)
is encoded by the functional F : U1 → ℝ defined as

F (u) := α0 + ∫
Ω

fhom(u(x))dx.

In the formula above, α0 is a constant determined by f0 (see (2.6)), fhom is a suitable energy density related
to f1 (see (2.7)), and the conditionA u = 0 in Ω has to be interpreted in adistributional sense (see Section2.2).

Our first main result is presented in Theorem 2.6, and, loosely speaking, states the following:

Theorem. The functionalF is the Γ-limit as ε → 0 of the energies in (1.3) restricted toA -free fieldswith respect
to the high-contrast convergence.

Key techniques to establish the theoremare p-equiintegrability arguments, aswell as the notions of two-scale
convergence [2] and of periodic unfolding [31, 32, 78, 79]. The proof relies essentially on the possibility of
decoupling thebehavior of thematerial in the “soft” and “stiff” contributions. The Γ-convergence of the “stiff”
portion is a corollary of homogenization results in the setting of A -quasiconvex [45]. The study of the “soft”
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part is instead more challenging, for the presence of the high-contrast microstructure and its interplay with
the differential constraint result in the emergence of a second, hidden scale. This makes both the identifica-
tion of a lower bound and the proof of its optimality need a delicate combination of two-scale results and
weak-Lp compactness.

The decoupling of the system into regions having different material features hinges on careful compact-
ness and splitting arguments. The latter are in turn based on two essential properties of the differential
constraint A : the fact that A -free maps in the periodicity cell have null average, and the existence of a suit-
able extension operator on perforated domains (see Assumptions 1 and 2). In our general setting, it is not
effortless to ensure such conditions, in contrast to thewell-understood case inwhich the set Ω is contractible,
A is the curl operator, and the A -free fields are gradients. In particular, to the authors’ knowledge, even for
standard operators, it is still an open question whether extension operators preserving theA -free constraint
from a perforated domain to the ‘filled’ set exist. Similar results are available for gradients both in the Sobolev
setting [1] and in the weaker one of antiplane fracture [20]. We also mention the recent result in [19] for the
case of symmetric gradients in linearized fracture (in the space GSBD [38]).

The analysis of the differential constraints satisfying the aforementioned Assumptions 1 and 2 is the
focus of Section 7. A special case inwhich the first requirement holds is that of operatorsA admitting “poten-
tials”, namely such thatA u = 0 if and only if u = Bw for a suitable differential operatorB and a field w. The
secondmain contribution of this paper consists in showing that for a broad class of operatorsA existence of
potentials and existence of extension operators are closely related. Roughly speaking,we prove the following.

Theorem. Let Ω be a “nice” set and let A be a linear homogeneous differential operator with constant coeffi-
cients and constant rank. If an extension operator from A -free maps on Ω to A -free maps on the whole space
exists, then A admits a potential on Ω. Conversely, if A admits a potential on Ω for which a suitable Korn-type
inequality holds true, then there exists an extension operator from Ω to the whole space which preserves the
property of being A -free.

We refer to Theorems 2.10 and 2.11 for the precise formulation of the result, as well as to Section 7 for
a broader discussion on the topic. We point out that assuming the existence of potentials imposes some topo-
logical constraints on the set Ω. An example is easily provided by the case A = curl for d = 3: one needs
to require at least Ω to be simply connected, cf. Remark 7.2 and Examples 7.17–7.20. Essential tools for
the proof of Theorems 2.10 and 2.11 are the theory of Fourier multipliers and the notion of generalized
Moore–Penrose inverse.

Before proceeding with the mathematical details of our analysis, we conclude the section with some
bibliographical notes.

The very first mathematical analysis of high-contrast materials was developed in the seminal work [8]
by G. L. Auriault, who employed formal asymptotic expansions. In the early 2000, V. V. Zhikov [80] intro-
duced a novel approach by extending classical two-scale techniques [2] to the setting of PDEs with rapidly
oscillating coefficients. The study of high-contrast problems has been ever since at the center of an extensive
scientific effort, with applications ranging from elastodynamics [75] to Maxwell’s equations [13, 27]. A full
characterization of the settings of linear elasticity and of conductingmaterialswas provided in [21, 22], while
the nonlinear elastic setting was considered in [25, 26] (see also [17]). The effects of microstructure on free-
discontinuity functionals havebeen studiedwhenhigh-contrast behavior appears in bulk termsonly [10, 11],
when it is just in surface terms [72, 73], and when both contributions are affected [18]. Mumford–Shah
energies with high-contrast surface contributions have been recently characterized in [66]. The analysis of
variational models for layered high-contrast materials was undertaken in [29, 30, 39].

As for the notion of A -quasiconvexity, its introduction goes back to [35], while an extensive study was
carried out in [48] for operators A with constant coefficients and constant rank (see (2.1) and (2.2) below).
In [16] and [45], under p-growth assumptions on the energy density, relaxation and homogenization results
were obtained for integral functionals evaluated onA -free fields (i.e., fields in the kernel ofA ); see also [44]
for a related analysis on quasicrystals. Problems featuring simultaneously homogenization and dimension
reduction were addressed in [59, 60], whereas oscillations and concentrations generated by A -free fields
were characterized in [46]. The case of nonpositive energy densities has been studied in [58]. A complete
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theory under linear growth assumptions on the energy density was established in [5, 7, 9, 62]. The character-
ization of A -quasiconvexity was extended to operators with variable coefficients in [71]. We refer to [40, 41]
for homogenization results in this purview, and to [42] for a corresponding relaxation formula. Applications
to the theory of compressible Euler systems, as well as to adaptive image processing and to data-driven finite
elasticity were the subject of [28], [43], and [34], respectively. To complete our review on A -quasiconvexity,
we mention the works [69, 70] on BVA -spaces for elliptic and cancelling operators, [61] for a characteriza-
tion of associated Young measures, as well as [49, 50, 67, 68] for the corresponding Sobolev analysis, and
[53] for a compensated-compactness result.

1.1 Structure of the paper

The plan of the paper is as follows. In Section 2, we describe the setting of the problem and the related
assumptions, andwe formulate the precise statements of ourmain results, i.e., Theorems 2.6, 2.10, and 2.11.
To lay the ground for the proofs, we collect auxiliary assertions and properties concerning measurable selec-
tion criteria, A -free sequences, two-scale convergence, and Fourier analysis in Section 3. In Section 4 we
study compactness properties of sequences of fields with equibounded energies, we detail the splitting argu-
ment, and present the proof of Theorem 2.6. Sections 5 and 6 contain the Γ-convergence analysis for the
“soft” and “stiff” energy-contributions. Section 7 is focused on the description of the class of the differential
operators that are admissible for our analysis, and deals with the proofs of Theorems 2.10 and 2.11.

2 Setting and main results

This section is devoted to the set-up of our analysis and to the presentation of the main achievements of this
contribution. We will first fix the notation and the hypotheses used throughout the paper. The major results
will be summarized in Section 2.3.

2.1 Energy functionals

Let Ω ⊂ ℝd, d ∈ ℕ, d ≥ 2, be a bounded, connected, open set with Lipschitz boundary. We denote by χ0,ε and
χ1,ε the characteristic functions respectively of Ω0,ε and Ω1,ε in Ω (see (1.1) and (1.2)), i.e., for i = 0, 1,

χi,ε(x) :=
{
{
{

1 if x ∈ Ωi,ε ,
0 otherwise.

Similarly, we let

χi(y) :=
{
{
{

1 if y ∈ Di ,
0 otherwise,

denote the characteristic function χi of Di in Q.
We assume that {f0,ε}ε>0 and f1 in (1.3) fulfill the following set of hypotheses:

(H1) Each f0,ε : ℝN → ℝ is continuous and f1 : ℝd × ℝN → ℝ is a Carathéodory function.
(H2) The function f1( ⋅ , ξ) is Q-periodic for every ξ ∈ ℝN .
(H3) There exist a, λ, Λ > 0 such that for a.e. x ∈ ℝd, for all ξ ∈ ℝN , and all ε > 0,

λ(−a + |ξ|p) ≤ f0,ε(ξ) ≤ Λ(1 + |ξ|p),
λ(−a + |ξ|p) ≤ f1(x, ξ) ≤ Λ(1 + |ξ|p),

for a fixed p ∈ (1, +∞).



6 | E. Davoli, M. Kružík and V. Pagliari, High-contrast homogenization

(H4) There exists μ > 0 such that for a.e. x ∈ Ω, for all ξ, η ∈ ℝN , and ε > 0,

|f0,ε(ξ) − f0,ε(η)| ≤ μ(1 + |ξ|p−1 + |η|p−1)|ξ − η|,
|f1(x, ξ) − f1(x, η)| ≤ μ(1 + |ξ|p−1 + |η|p−1)|ξ − η|,

where p is the same as in (H3).
(H5) There exists f0 : ℝN → ℝ such that for all ξ ∈ ℝN

lim
ε→0

f0,ε(ξ) = f0(ξ).

Remark 2.1 (Degeneracy of the “soft” component). We draw again attention to the fact that, in spite of the
standard coercivity and growth of f0,ε, the problemwe address features some degeneracy, which is expressed
by the factor ε multiplying the argument of the “soft” integrand (see (1.3)). From a modeling perspective,
this ε accounts for the high-contrast between the two components, in that it makes the “soft” component
less and less sensitive to external stimuli. This can be easily seen in the simple instance f0,ε(ξ) = f1(ξ) = |ξ|p:
formula (1.3) becomes

εp ∫
Ω0,ε

|u|p dx + ∫
Ω1,ε

|u|p dx,

and the ratio 1
εp between the “stiffness coefficients” of the two components blows up as ε vanishes.

Owing to the growth conditions prescribedbyhypothesis (H3), the natural environment for our problem is the
space Lp. We will often work with Q-periodic functions, i.e., those u : ℝd → ℝN such that u(x + z) = u(x) for
all x ∈ ℝd and all z ∈ ℤd.Wewill use the subscript ‘per’ to denote subspaces of Q-periodicmaps; for instance,

Lpper(ℝd;ℝN) := {u ∈ L
p
loc(ℝ

d;ℝN) : u is Q-periodic}.

We endow the previous space with the norm of Lp(Q;ℝN). With a slight abuse of notation, we will tacitly
identify Lp(Q;ℝN) with Lpper(ℝd;ℝN) by mapping the unit cube into the unit torus in ℝd and extending the
corresponding fields by periodicity. Analogously, we will denote the subspace of Lploc(Ω × ℝ

d;ℝN) contain-
ing all the functions that are Q-periodic with respect to their second argument by Lp(Ω; Lpper(ℝd;ℝN)) and
implicitly identify this space with Lp(Ω × Q;ℝN).

2.2 The differential constraint

Let p ∈ (1, +∞) be as in (H3) and (H4) above. We suppose that the constraint that we couple with the energy
in (1.3) fallswithin the framework ofA -quasiconvexity as described by I. Fonseca and S.Müller [48]. Namely,
for N,M ∈ ℕ \ {0}, we letA be a partial differential operator onℝd fromℝN toℝM whose action on a function
u : ℝd → ℝN is given by

A u :=
d
∑
i=1
A(i) ∂u

∂xi
, (2.1)

where A(i) : ℝN → ℝM are linear maps for all i = 1, . . . , d. In other words,A is a linear first-order differential
operator with constant coefficients.

Our fundamental requirement on A is the constant rank assumption introduced by F. Murat [64],
that is, we suppose that there exists r ∈ ℕ such that the symbol 𝔸 of A satisfies the following: for all
ω = (ω1, . . . , ωd) ∈ ℝd \ {0}, the operator

𝔸[ω] :=
d
∑
i=1
ωiA(i) (2.2)

has rank equal to r.
We observe that for every open set O ⊂ ℝd, A can be regarded as an operator from Lp(O;ℝN) to

W−1,p(O;ℝM), where W−1,p(O;ℝM) denotes the dual of the Sobolev space W1,p/(p−1)
0 (O;ℝM). To see this,
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we introduce the formal adjoint of A , denoted by A ∗. For v : O → ℝM, we set

A ∗v := −
d
∑
i=1
A(i),∗ ∂v

∂xi
,

where A(i),∗ is the adjoint (i.e., the transpose) of A(i). In this way,

∫
O

A ϕ ⋅ ψ dx = ∫
O

ϕ ⋅A ∗ψ dx for all ϕ ∈ C1c (O;ℝN) and ψ ∈ C1c (O;ℝM),

and for u ∈ Lp(O;ℝN) we define the pairing

⟨A u, v⟩ := ∫
O

u ⋅A ∗v dx for all v ∈ W1,p󸀠
0 (O;ℝ

M),

where p󸀠 is the conjugate exponent to p. In what follows, if u ∈ Lp(O;ℝN), equalities of the formA u = 0 in O
are always tacitly understood in the sense ofW−1,p, or, in other words, in the sense that

∫
O

u ⋅A ∗v dx = 0 for all v ∈ W1,p󸀠
0 (O;ℝ

M). (2.3)

When such a relation holds, we say that u is A -free on O. Similarly, if u ∈ Lpper(ℝd;ℝN), we say that it is
A -free on the unit torus𝕋d when the equality in (2.3) is satisfied for O = Q and for all v ∈ W1,p󸀠

per (ℝd;ℝM); in
particular, if u ∈ Lpper(ℝd;ℝN) is A -free on 𝕋d, then it is A -free on Q as well.

In addition to the constant rank hypothesis, we need to consider further restrictions on the class of
operators A for which our analysis will be performed. We formulate two ad hoc assumptions:

Assumption 1 (Null-average). For all u ∈ Lpper(ℝd;ℝN) such that u = 0 on D1 and A u = 0 on 𝕋d, it holds
∫Q u(y)dy = 0.

Assumption 2 (A -free extension). There exist an ε-independent constant c > 0 and a sequence of operators
{EεA } with E

ε
A : Lp(Ω;ℝN) → Lp(Ω;ℝN) such that the following holds: for all A -free u ∈ Lp(Ω;ℝN),

(1) EεA u = u a.e. in Ω1,ε,
(2) ‖EεA u‖Lp(Ω;ℝN ) ≤ c‖u‖Lp(Ω1,ε;ℝN ),
(3) A (EεA u) = 0 on Ω, and
(4) if {uε} ⊂ Lp(Ω;ℝN) is p-equiintegrable, then {EεA uε} is also p-equiintegrable in Lp(Ω;ℝN).

We recall that {uε} ⊂ Lp(Ω;ℝN) is p-equiintegrable if for every η > 0 there exists m > 0 such that

∫
E

|uε|p dx < η for all ε > 0

whenever E ⊂ Ω satisfies L d(E) < m. Thanks to the Dunford–Pettis Theorem, this is equivalent to the fact
that {|uε|p} admits a subsequence that is weakly convergent in L1(Ω). We point out that in Assumption 2
it is essential to start with maps u which are A -free in the whole set Ω, for this is related to the existence
of “potentials” for the operator A . We refer to the considerations after Theorem 2.11 in Section 2.3 for a
discussion on this point, while we collect some comments on Assumption 2 in the next remark.

Remark 2.2 (On Assumption 2). In problems involving perforated media the use of extension techniques is
fairly common (see, e.g., [1] or [15, Chapter 19]), and Assumption 2 is akin to others in the literature. For
comparison, we mention [46, Definition 1.4]. The main differences consist in: (1) the fact that the extension
operator here is assumed to exist on a periodically perforated domain, with constants independent of the
periodicity parameter ε, (2) the fact that the existence of an extended p-equiintegrable sequence here is only
requiredwhen starting froma sequence that also had p-equiintegrability properties.We refer to [46] for a gen-
eral discussion on the connections between the existence of extension operators from an open set to a bigger
surrounding domain, and the theory of DiPerna–Majda measures.
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A notion of A -free extension domain was also considered in [58, Definition 4.4]. There, however, no
p-equiintegrability conditions are prescribed. As pointed out in [58, Section 4.2], such extension results are,
in general, nontrivial. Additionally, they depend both on the topology of the set and on the operatorA under
consideration. In particular, no such A -free extension is possible when A is the operator associated to the
Cauchy-Riemann system, not even in the case of very regular sets Ω.

As far as our analysis is concerned, items (1)–(3) in Assumption 2 are among the main ingredients
in the proof of Proposition 4.1, and without them we would not be able to establish high-contrast com-
pactness for sequences with equibounded energy (see Definition 2.5). On the contrary, the preservation of
p-equiintegrability is not required at this stage, whereas it is used in the proof of our main Γ-convergence
result (see the proofs of Propositions 2.9 and 4.4). Nonetheless, point (4) in Assumption 2 could be dispensed
with in some simplified versions of our problem, e.g., when f0,ε = f0 for every ε > 0 and Ω is a rectangle.

For the sake of brevity, it is convenient to give a name to the class of operators addressed in our study:

Definition 2.3. Let A be a linear first-order differential operator as in (2.1). We say that A is admissible if
and only if it is of constant rank and it satisfies Assumptions 1 and 2.

It is well known that the family of constant rank operators is quite large [48]; as for the subclass of the admis-
sible ones, we prove that it is nonempty in Section 7 where, in particular, we analyze the cases of the curl, of
the curl curl operator, of the divergence, as well as the setting associated with higher-order gradients.

2.3 Main results

The first main result of this paper, Theorem 2.6 below, is the characterization of the asymptotic behavior
as ε → 0 of the functionals in (1.3) when the family is restricted to A -free fields. In order to deduce also
some information on the related energy minimizers, we resort to a variational kind of convergence, namely
Γ-convergence (see, e.g., [14, 37]). Here, we consider a quite abstract version of its definition: indeed, we
consider functionals defined on a certain set for which it is only known that some of its sequences are con-
verging, the limit point being declared too; no topological structure is provided, instead. We summarize this
situation by saying that such a set is endowed with a notion of convergence.

Definition 2.4. Let X be a set endowed with a notion of convergence. We say that the family {Fε}ε>0 of func-
tions on X with values in [−∞, +∞] Γ-converges as ε → 0 to the function F : X → [−∞, +∞] if for any x ∈ X
and for any sequence {εk}k∈ℕ such that εk → 0 the following holds:
(1) for any sequence {xεk }k∈ℕ ⊂ X such that xεk → x, we have

F(x) ≤ lim inf
k→+∞

Fεk (xεk ),

(2) there exists a sequence {xεk }k∈ℕ ⊂ X such that xεk → x and

lim sup
k→+∞

Fεk (xεk ) ≤ F(x).

We have already remarked that the natural domain of the functionals (2.8) is contained in Lp(Ω;ℝN). How-
ever, in our setting, the two kinds of convergence in this space that aremost frequently considered, the strong
and the weak one, are not well suited to perform a Γ-convergence analysis. Indeed, they do not match the
high-contrast nature of the problem and would therefore not yield useful compactness results for sequences
with equibounded energy. This leads us to introduce a peculiar notion of convergence.

Definition 2.5. We say that a family {uε} ⊂ Lp(Ω;ℝN) converges in the high-contrast sense to u ∈ Lp(Ω;ℝN)
(relatively to the sequence of sets {Ω1,ε}) if εuε ⇀ 0 weakly in Lp(Ω;ℝN) and if there exists a second family
{ũε} ⊂ Lp(Ω;ℝN) such that A ũε = 0 inW−1,p(Ω;ℝM), uε = ũε in Ω1,ε and ũε ⇀ u weakly in Lp(Ω;ℝN).

Some comments are in order. The reasonwhy the definition above ismadeupof two requirements is that there
is no standard convergence which is able to capture alone the behaviors of both components. On one hand,
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the convergence of extensions is related to the coercivity of the “stiff” part, and it is a somehow customary
requirement in homogenization (see Section 2.4); on the other, the convergence εu ⇀ 0 is needed to keep
track of the “soft” component. Here, in the light of Assumption 1, the 0 vector turns out to be the average of
some two-scale limit.

If we selectA = curl andwe assume that Ω is simply connected, the problemmay be recast inW1,p(Ω). In
this setting, as far as the asymptotics of the “stiff” part is concerned, Rellich–Kondrachov’s theorem allows to
switch fromweak convergence inW1,p(Ω) to strong convergence in Lp(Ω). Therefore, the use of high-contrast
convergence on the matrix leads to the standard homogenization results for perforated media. At the same
time, it allows to quantify the change in the effective energy of the perforated material that occurs when
“soft” inclusions are added (cf. α0 in (2.5)). Indeed, it can be readily shown that ε∇wε ⇀ 0 ifFε(∇wε) ≤ c by
well-known two-scale properties of gradients.

As a last remark on Definition 2.5, note that it is obvious that the weak convergence in Lp(Ω;ℝN) of
a sequence {uε} of A -free maps entails high-contrast convergence (it suffices to set ũε := uε). In particular,
bounded sequences in Lp are pre-compact in the high-contrast sense. As Proposition 4.1 proves, however,
a much weaker control is enough (see (4.9)), at least for admissible differential operators.

Itwill be convenient to have a special notation for spaces of functions satisfying the differential constraint
encoded by A . For any open Ω󸀠 ⊂ Ω, we define

U0(Ω󸀠) := {u ∈ Lp(Ω; Lpper(ℝd;ℝN)) : u = 0 if y ∈ D1 and Ayu = 0 inW−1,p(𝕋d;ℝM) for a.e. x ∈ Ω󸀠} (2.4)

and
U1 := {u ∈ Lp(Ω;ℝN) : A u = 0 inW−1,p(Ω;ℝM)}.

Note that limit points of high-contrast convergent sequences are automatically in U1. Hereafter, we use the
subscripts x and y to denote that the operatorA acts on the variables x and y, respectively. Wewill prove that
the limiting behavior of the ε-dependent energies constrained to A -free fields is described by the functional
F : U1 → ℝ defined as

F (u) := α0 + ∫
Ω

fhom(u(x))dx, (2.5)

where
α0 := sup

Ω󸀠⋐Ω inf
u∈U0(Ω󸀠) ∫

Ω󸀠 ∫D0

f0(u(x, y))dy dx (2.6)

and
fhom(ξ) := lim inf

k→+∞
inf{ ∑

z∈ℤd
∫

Q∩k−1(D1+z)

f1(ky, ξ + v(y))dy : v ∈ Lpper(ℝd;ℝN), ∫
Q

v(z)dz = 0,

A v = 0 inW−1,p(𝕋d;ℝM)}.
(2.7)

We are now ready to state our main convergence result.

Theorem 2.6. Let F : Lp(Ω; Lpper(ℝd;ℝN)) → ℝ ∪ {+∞} be the functional in formula (2.5) and, for ε > 0, let
Fε : Lp(Ω;ℝN) → ℝ ∪ {+∞} be given by

Fε(u) :=
{{{
{{{
{

∫
Ω0,ε

f0,ε(εu)dx + ∫
Ω1,ε

f1(
x
ε
, u)dx if u ∈ U1,

+∞ otherwise in Lp(Ω;ℝN).

(2.8)

Let us assume that {f0,ε} and f1 fulfill (H1)–(H5), and that A is an admissible partial differential operator in
the sense of Definition 2.3. Then the following properties hold:
(1) If a family {uε} ⊂ Lp(Ω;ℝN) satisfies Fε(uε) ≤ c for all ε > 0 and for some c ≥ 0, then it admits a subse-

quence that is convergent in the high-contrast sense.
(2) For any u ∈ U1 and for any sequence {uε} ⊂ Lp(Ω;ℝN) that converges to u in the high-contrast sense, it

holds that
F (u) ≤ lim inf

ε→0
Fε(uε).
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(3) For any u ∈ U1 there exists a sequence {uε} ⊂ U1 that converges to u in the high-contrast sense and satisfies

lim sup
ε→0

Fε(uε) ≤ F (u).

By standard Γ-convergence techniques, we find the following corollary of Theorem 2.6:

Corollary 2.7. Under the same assumptions and notation of Theorem 2.6, if {uε} ⊂ Lp(Ω;ℝN) is a sequence of
almost-minimizers for {Fε}, i.e., if

lim
ε→0
(Fε(uε) − inf

u∈U1
Fε(u)) = 0,

then there exists a subsequence of {uε} that is convergent in the high-contrast sense to a minimum point of F .
Moreover,

inf
u∈Lp(Ω;ℝN )

Fε(u) → min
u∈U1

F (u).

Our proof of Theorem 2.6 relies on four main intermediate results:
(1) a compactness analysis combined with the characterization of high-contrast limits of A -free fields, cf.

Proposition 4.1,
(2) a splitting argument that allows to reduce the study of the Γ-limit of {Fε} to the study of two indepen-

dent problems, concerning the asymptotic behavior of the “soft” and of the “stiff” energy contributions,
respectively, cf. Lemma 4.2 and Proposition 4.4,

(3) the identification of an optimal lower bound for the “soft” part of the energy, cf. Proposition 2.8,
(4) the identification of the limiting description for the “stiff” part, cf. Proposition 2.9.
The proof of Theorem 2.6 is exposed in Section 4.

Let us now present shortly the results that we obtain for the “soft” and “stiff” parts of the energy. The
splitting procedure in Section 4 yields the functionals

F0,ε(u) :=
{{{
{{{
{

∫
Ω0,ε

f0,ε(εu)dx if u ∈ U1,

+∞ otherwise in Lp(Ω;ℝN),

(2.9)

F1,ε(u) :=
{{{
{{{
{

∫
Ω1,ε

f1(
x
ε
, u)dx if u ∈ U1,

+∞ otherwise in Lp(Ω;ℝN),

(2.10)

where the densities {f0,ε} and f1 satisfy (H1)–(H5). We will show, respectively in Sections 5 and 6, that {F0,ε}
and {F1,ε} Γ-converge to

F0(u) := {
α0 if u = 0,
+∞ otherwise in Lp(Ω;ℝN),

(2.11)

F1(u) :=
{{{
{{{
{

∫
Ω

fhom(u(x))dx if u ∈ U1,

+∞ otherwise in Lp(Ω;ℝN),
(2.12)

Precisely, we establish the following.

Proposition 2.8 (Γ-limit of the “soft” component). LetF0,ε ,F0 : Lp(Ω;ℝN) →ℝ∪ {+∞} be as above. If hypo-
theses (H1) and (H3)–(H5) are satisfied, and ifA is an admissible differential operator as in Definition 2.3, then
for all u ∈ Lp(Ω;ℝN) the following hold:
(1) for every p-equiintegrable sequence {uε} ⊂ Lp(Ω;ℝN) such that uε = 0 on Ω1,ε and that εuε ⇀ u weakly

in Lp(Ω;ℝN), we have
F0(u) ≤ lim inf

ε→0
F0,ε(uε),

(2) there exists a sequence {uε} ⊂ U1 with the properties that uε = 0 in Ω1,ε for every ε > 0, εuε ⇀ u weakly
in Lp(Ω;ℝN), and

lim sup
ε→0

F0,ε(uε) ≤ F0(u).
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We point out that the p-equiintegrability condition in the first part of the previous statement does not affect
the generality of the result, as Proposition 4.4 will prove. For more details on this point, the reader is referred
to the splitting argument in Section 4 below.

Forwhat concerns the functionalsF1,ε, the analysis carried out by I. Fonseca andS.Krömer in [45] yields:

Proposition 2.9 (Γ-limit of the “stiff” component). LetF1,ε ,F1 : Lp(Ω;ℝN)→ℝ ∪ {+∞} be as above. If hypo-
theses (H1)–(H4)are satisfied and ifA is an admissible differential operator as inDefinition 2.3, then the Γ-limit
of {F1,ε} with respect to the weak Lp(Ω;ℝN)-convergence is F1.

The last section is focused on the study of admissible differential operators. Differently from the other parts
of the paper, the analysis of Section 7 encompasses all linear, k-th order, homogeneous differential operators
with constant coefficients and constant rank. It will be useful to consider those operators A for which there
exists a second operator B with the property that u = Bw for some Sobolev function w whenever A u = 0;
in this case we say that B is a potential for A . Our second main result proves that, for A to admit a poten-
tial on a certain open set Ω, it is sufficient that A -free maps on Ω can be extended to A -free maps on the
whole space in such a way that a control on the Lp norm is ensured. We dub a set Ω with this property an
A -extension domain, see Definition 7.1. As Remark 7.2 shows, an A -extension domain has to comply with
some topological requirements; in particular, it cannot have holes, in general.

Theorem 2.10 (Existence of potentials for A -free maps). LetA be a linear, k-th order, homogeneous differen-
tial operator with constant coefficients and constant rank. If Ω ⊂ ℝd is a bounded, connected, open set with
Lipschitz boundary which is also anA -extension domain, then there exists ℓ ∈ ℕ, and a differential operatorB

of order ℓ satisfying the following: for allA -free maps u ∈ Lp(Ω;ℝN) there is a function w ∈ Wℓ,p(Ω;ℝM) such
that u = Bw almost everywhere in Ω.

An immediate consequence of this result is that Assumption 1 holds whenever the unit cube Q is an
A -extension domain (cf. Corollary 7.3).

Our third and last main result shows that for operators admitting a potential satisfying a suitable
Korn-type inequality it is possible to define an extension operator preserving A -free maps.

Theorem 2.11. Let A be a linear, k-th order, homogeneous differential operator with constant coefficients and
constant rank. Let also B be a linear, ℓ-th order, homogeneous differential operator with constant coefficients
such that

ker𝔸[ω] = im𝔹[ω] for all ω ∈ ℝd \ {0},

where𝔸 and 𝔹 are the symbols of A and B, respectively. We further assume that:
∙ for all A -free u ∈ Lp(Ω;ℝN) there exists w ∈ Wℓ,p(Ω;ℝM) satisfying u = Bw,
∙ for any bounded, connected and open set D ⊂ ℝd with Lipschitz boundary there exist a projection operator

on the subspace of B-free maps ΠB : Wℓ,p(D;ℝM) → Wℓ,p(D;ℝM), as well as a constant c > 0 such that

‖∇ℓ(w − ΠBw)‖Lp(D;ℝN×dℓ ) ≤ c‖Bw‖Lp(D;ℝN ) for all w ∈ Wℓ,p(D;ℝM). (2.13)

Then there exist a constant c := c(d, p, D1) > 0 independent of ε and Ω, as well as a sequence of maps {EεA },
with EεA : Lp(Ω;ℝN) → Lp(Ω;ℝN), satisfying Assumption 2.

It is fundamental to observe that the maps under consideration in the theorem above are already a priori in
the kernel of the operator A on the whole set Ω. For this reason, it is meaningful to assume the existence
of potentials B. In the case in which, instead, our fields were in the kernel of the operator A only in the
perforated domain, its lack of contractibility would prevent the existence of a potential to hold even in the
simple setting d = 3 and A = curl. We refer once again to Remark 7.2 for a counterexample.

2.4 Comparison with other works

Before getting to the heart of the matter, we take the chance to compare our main convergence result, Theo-
rem 2.6, with similar ones in the literature.
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When A is the curl operator, our analysis is akin to the one performed by M. Cherdantsev and K. D.
Cherednichenko in [25]. However, our conclusions differ from theirs, also in the simple situation of a con-
tractible Ω. Indeed, even though under this topological assumption curl-free maps coincide with gradients,
the notion of convergence that we use is much weaker than the strong two-scale convergence considered
in [25]. Another key difference with [25] is that in our setting convergence of minimizers follows directly
from Theorem 2.6 (see Corollary 2.7), whereas in [25] it had to be shown a posteriori (see [25, Section 10]).
Actually, the introduction of high-contrast convergence is motivated exactly by the fact that sequences with
uniformly bounded energy Fε are sequentially precompact in that sense.

This notion of convergence is inspired by the one considered by X. Pellet, L. Scardia and C. I. Zeppieri
in [66] to deal with high-contrast Mumford–Shah energies. Unlike that contribution, aside from the role of
the differential constraint A , we require additionally that {εuε} converges to zero, so as to comply with the
delicate two-scale characterization in Proposition 4.1.

We also stress that, in the absence of growth conditions from below on the “soft” part of the energy,
the weak Lp-topology alone would not ensure convergence of minimizers. We refer to [25, Section 4] and
[17, Section 4] for a discussion on this topic.

For a general differential constraint A , our approach does not correspond to the ones in [17, 25]. If A

does not admit a of suitable “potential” B satisfying a Korn-type inequality (cf. Theorem 2.10 below), then
A -free maps and fields u of the form u = Bw are not interchangeable. Another caveat involves the choice of
the “soft” effective energy. Looking at the results in [25], one could expect that in our case theA -quasiconvex
envelope of f0 is to be retrieved in the Γ-limit. We recall that for a continuous function g : ℝN → ℝ with
p-growth the A -quasiconvex envelope of g is defined as

QA g(ξ) := inf{∫
Q

g(ξ + v(z))dz : v ∈ Lpper(ℝd;ℝN), ∫
Q

v(z)dz = 0, A v = 0 inW−1,p(𝕋d;ℝM)}.

The example below shows that QA f0 in not the correct limiting energy density.

Example 2.12. Let {f0,ε} satisfy hypotheses (H1)–(H5), let Ω󸀠 ⋐ Ω, and let D ⊂ D0 be open. In general, if
a family {wε} ⊂ Lp(Ω󸀠; Lpper(ℝd;ℝN)) satisfies

{wε} is p-equiintegrable,
wε ⇀ 0 weakly in Lp(Ω󸀠 × Q;ℝN),
Aywε = 0 inW−1,p(𝕋d;ℝM) for a.e. x ∈ Ω󸀠

we cannot conclude that for all ξ0 ∈ ℝN it holds

∫
Ω󸀠 ∫D QA f0(ξ0)dy dx ≤ lim inf

ε→0
∫
Ω󸀠 ∫D f0,ε(ξ0 + wε(x, y))dy dx, (2.14)

as the following counterexample proves.
For d = 2, N = 2 × 2 and p = 2, up to translations and dilations, wemay assume Ω󸀠 := (0, 1) × (0, 1) = Q.

We focus on the case A = curl, in which the A -quasiconvex envelope QA f of the function f coincides with
the well-know quasiconvex envelope Qf (see [36, Section 6.3]). Given λ > 0, as energy densities we set

f0,ε(ξ) = f0(ξ) = ψλ(ξ) − det(ξ)

for every ε > 0, where ψλ : ℝ2×2 → ℝ is a convex function such that

ψλ(ξ) =
{{
{{
{

0 if |ξ| < 2,

(
1
2 + λ)|ξ|

2 if |ξ| ≥ 3.

In this way, requirements (H1) and (H3)–(H5) are met, and

Qf0,ε = Qf0 = f0,

because f0,ε = f0 is quasiconvex.
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In order to disprove (2.14), we pick ξ0 = 0 and, for x = (x1, x2) ∈ (0, 1) × (0, 1) and y ∈ D, we define

a(x) :=
{{{
{{{
{

−𝕀 if x1 ∈ (0,
1
2],

𝕀 if x1 ∈ (
1
2 , 1),

and wε(x, y) := a(
x
ε )
+ ε𝕀,

where 𝕀 is the identity matrix in ℝ2×2 and a is extended by Q-periodicity. Then {wε} is p-equiintegrable and
wε⇀0 weakly in Lp(Ω󸀠;ℝ2×2). Besides, Aywε = curly wε = 0, because the sequence does not depend on y.

For such particular choices, we see that the left-hand side of (2.14) equals 0, while for the right-hand
side we find

lim
ε→0
∫
Ω󸀠 ∫D [ψλ(wε(x, y)) − det(wε(x, y))]dy dx = − limε→0 ∫Ω󸀠 ∫D det(wε(x, y))dy dx = −L 2(D) < 0.

3 Preliminaries

We gather in this section some preliminary definitions and results to be used later in the paper.

3.1 Measurable selection arguments

We recall here ameasurable selection criterion thatwewill invoke in the proof of Corollary 7.3. For a thorough
discussion on the topic we refer to the book by C. Castaing and M. Valadier [24].

Proposition 3.1 ([24, Theorem III.6]). Let S be a multifunction defined on the measurable space O and taking
values in the collection of nonempty complete subsets of the separable metric space X. If for all open O ⊂ X the
set {ω ∈ O : S(ω) ∩ O ̸= 0} is measurable, then S admits a measurable selection, that is, there exists a measur-
able function s : O → X such that s(x) ∈ S(x) for all x ∈ O .

3.2 A -free fields and two-scale limits

In this subsection we include some useful tools for the variational analysis of problems under differential
constraints.

We recall two results about (asymptotically)A -free fields. The operatorA is always assumed to be of the
form (2.1) and of constant rank.

Lemma 3.2 (A -free decomposition, [48, Lemma 2.15]). Let Ω ⊂ ℝd be an open, bounded domain, and let
p ∈ (1, +∞). Let {uk} ⊂ Lp(Ω;ℝN) be a bounded sequence such thatA uk → 0 strongly in W−1,p(Ω;ℝM). Then
there exist a subsequence {ujk } and a sequence {vk} ⊂ Lp(Ω;ℝN) such that the following holds:
(1) {vk} is bounded, A -free, and p-equiintegrable,
(2) ujk − vk → 0 strongly in Lq(Ω;ℝN) for every q ∈ [1, p).

Lemma 3.3 (A -free periodic extension, [45, Lemma 2.8]). Let D ⊂ Q be open, and let p ∈ (1, +∞). Let {uk} ⊂
Lp(D;ℝN)be a p-equiintegrable sequence such that uk⇀ 0weakly in Lp(D;ℝN)andA uk→ 0 inW−1,p(D;ℝM).
Then there exists an A -free sequence {vk} ⊂ L

p
per(ℝd;ℝN) which is p-equiintegrable in Q and satisfies

vk − uk → 0 strongly in Lp(D;ℝN),
vk → 0 strongly in Lp(Q \ D;ℝN),

∫
Q

vk(x, y)dy = 0, ‖vk‖Lp(Q;ℝN ) ≤ c(A , D)‖uk‖Lp(D;ℝN ) for all k ∈ ℕ.
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To perform our analysis, we need to track how the differential constraint behaves along sequences that con-
verge in the sense of Definition 2.5 above. In this respect, the notion of two-scale convergence [2, 65] will be
crucial:

Definition 3.4. We say that a sequence {uε} ⊂ Lp(Ω;ℝN) weakly two-scale converges in Lp to a function
u ∈ Lp(Ω; Lpper(ℝd;ℝN)) if for all v ∈ Lp

󸀠
(Ω; Cper(ℝd;ℝN)) it holds

lim
ε→0
∫
Ω

uε(x) ⋅ v(x,
x
ε )

dx = ∫
Ω

∫
Q

u(x, y) ⋅ v(x, y)dy dx.

In this case we write uε 2󳨀⇀ u.
We say that {uε} ⊂ Lp(Ω;ℝN) strongly two-scale converges in Lp to u ∈ Lp(Ω; Lpper(ℝd;ℝN)) if uε 2󳨀⇀ u in Lp

and ‖uε‖Lp(Ω;ℝN ) → ‖u‖Lp(Ω;Lp(Q;ℝN )). In this case we write uε 2󳨀→ u strongly in Lp.

For the sake of completeness, we record in the following lines the properties of two-scale convergence to be
exploited in this work; we refer to [2, 78] for further reading.

Lemma 3.5. Let {uε} ⊂ Lp(Ω;ℝN) be a sequence.
(1) If {uε} is weakly two-scale convergent, then it is bounded in Lp(Ω;ℝN); conversely, if {uε} is bounded in

Lp(Ω;ℝN), then, it possesses a subsequence which is weakly two-scale convergent.
(2) If uε 2󳨀⇀ u weakly two-scale in Lp, then uε ⇀ ∫Q u( ⋅ , y)dy weakly in L

p(Ω;ℝN).
(3) If uε 2󳨀⇀ u weakly two-scale in Lp and {vε} ⊂ Lp(Ω;ℝN) is another sequence with the property that vε 2󳨀→ v

strongly two-scale in Lp, then uεvε 2󳨀⇀ uv weakly two scale in Lp.
(4) If u ∈ Lp(Ω; Cper(ℝd;ℝN)) or u ∈ C(Ω̄; Lpper(ℝd;ℝN)), then the sequence {uε} defined as

uε(x) := u(x,
x
ε )

for a.e. x ∈ Ω

is p-equiintegrable and uε 2󳨀→ u strongly in Lp.

It is well known that two-scale convergence in Lp can be related to Lp convergence bymeans of the unfolding
operator.

Lemma 3.6. For ε > 0, let us define the unfolding operator Sε : Lp(Ω) → Lp(ℝd; Lpper(ℝd;ℝN)) as

Sεv(x, y) := ṽ(ε⌊
x
ε ⌋
+ εy),

where ṽ denotes the extension of v by 0 outsideΩ. Then if {uε} ⊂ Lp(Ω;ℝN) is a bounded sequence, the following
holds:
(1) uε 2󳨀⇀ u weakly two-scale in Lp if and only if Sεuε ⇀ u weakly in Lp(ℝd × Q;ℝN),
(2) uε 2󳨀→ u strongly two-scale in Lp if and only if Sεuε → u strongly in Lp(ℝd × Q;ℝN).
Moreover, if {uε} is p-equiintegrable, the sequence of unfoldings {Sεuε} is p-equiintegrable too in Lp(ℝd ×Q;ℝN).

We refer to [31, 32, 78, 79] for further properties of the unfolding operator.
A characterization of weak two-scale limits of A -free sequences was established by I. Fonseca and

S. Krömer.

Proposition 3.7 ([45, Theorem 1.2]). A function u ∈ Lp(Ω; Lpper(ℝd;ℝN)) is the weak two-scale limit of an
A -free sequence {uε} ⊂ Lp(Ω;ℝN) if and only if

Ax(∫
Q

u(x, y)dy) = 0 in W−1,p(Ω;ℝM),

Ayu(x, y) = 0 in W−1,p(𝕋d;ℝM) for a.e. x ∈ Ω.

As a last technical tool, we show that the unfolding of an A -free map is in turn A -free with respect to the
periodicity variable. We preliminarily introduce the set

Ω̂ε := ⋃
z∈Ẑε

ε(Q + z) with Ẑε := {z ∈ ℤd : ε(Q + z) ⊂ Ω}. (3.1)
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Note that Ẑε ⊂ Zε, where Zε is the collection of indices in (1.1).

Lemma 3.8. Let v ∈ Lp(Ω;ℝN) be such that A v = 0 in W−1,p(Ω;ℝM). Then, for every ε > 0, there holds

Ay(Sεv) = 0 in W−1,p(Q;ℝM) for a.e. x ∈ Ω̂ε . (3.2)

Moreover, if also v = 0 in Ω1,ε, then

Ay(Sεv) = 0 in W−1,p(𝕋d;ℝM) for a.e. x ∈ Ω̂ε .

Proof. Let η ∈ C∞c (Ω̂ε) and ψ ∈ W
1,p󸀠
0 (Q;ℝM). A change of variables yields

∫

Ω̂ε

∫
Q

(Sεv)(x, y) ⋅ η(x)A ∗ψ(y)dy dx = ∫
Ω̂ε

∫
Q

v(ε⌊ xε ⌋
+ εy) ⋅ η(x)A ∗ψ(y)dy dx

=
1
εd−1
∫

Ω̂ε

η(x) ∫
ε(Q+⌊ε−1x⌋) v(z) ⋅A

∗
z ψxε(z)dz dx, (3.3)

where
ψxε(z) := ψ(ε−1z − ⌊ε−1x⌋) for a.e. z ∈ ε(Q + ⌊ε−1x⌋).

Since ψ ∈ W1,p󸀠
0 (Q;ℝM), it follows that ψxε belongs to W

1,p󸀠
0 (ε(Q + ⌊ε−1x⌋);ℝM) and it can be regarded as an

element of W1,p󸀠
0 (Ω;ℝM) by extending it to 0 outside ε(Q + ⌊ε−1x⌋). In this step (3.1) needs to be used. The

conclusion follows now from (3.3), because v is A -free in Ω.
Assume further that v = 0 in Ω1,ε. By the definition of the unfolding operator, we have Sεv(x, y) = 0 for

all (x, y) ∈ Ω̂ε × D1, so that for any ψ ∈ W1,p󸀠
per (ℝd;ℝM)

∫
Q

Sεv(x, y) ⋅A ∗ψ(y)dy = ∫
D0

Sεv(x, y) ⋅A ∗ψ(y)dy for all x ∈ Ω̂ε .

Let now η ∈ C∞c (Q; [0, 1]) be a cut-off function which is constantly 1 on D0. From (3.2) we conclude that

∫
Q

Sεv(x, y) ⋅A ∗ψ(y)dy = ∫
D0

Sεv(x, y) ⋅A ∗(η(y)ψ(y))dy

= ∫
Q

Sεv(x, y) ⋅A ∗(η(y)ψ(y))dy = 0

for almost every x ∈ Ω̂ε.

3.3 Fourier analysis

The study of the class of admissible operators in Section 7 is grounded on the theory of Fourier multipliers.
For a comprehensive treatment of the matter, we refer to the monographs [51, 76]; here we limit ourselves to
a short recollection of useful properties.

We let S denote the Schwartz space of rapidly decreasing functions and for u ∈ S (ℝd;ℝN), we let

Fu(ω) := 1
(2π)d/2

∫

ℝd

e−iω⋅xu(x)dx (3.4)

be its Fourier transform. We also denote by F−1 the inverse transform and by Lin(ℝN ;ℝN) the space of linear
maps fromℝN toℝN .We recall that ameasurable functionm : ℝd → Lin(ℝN ;ℝN) is said to be an Lp-multiplier
if the linear operator Tm defined as

Tmu := F−1(m(Fu)) for u ∈ S (ℝd;ℝN)

can be extended to a bounded operator from Lp to Lp. Given a sufficiently smooth m, S. G. Mikhlin’s multi-
pliers theorem provides a condition for it to be a multiplier in terms of the decay of its derivatives. We firstly
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introduce some notation: when i is a d-dimensional multi-index, i.e., i := (i1, . . . , id) ∈ ℕd, we set |i| := ∑j ij
and

∂iu(x) :=
∂|i|u

∂i1x1 ⋅ ⋅ ⋅ ∂id xd
(x).

In the scalar case, the criterion reads:

Proposition 3.9 ([63, Theorem 2 in Appendix]). Let m : ℝd \ {0} → ℝ be a function of class Ck with k > d2 . If
there exists c ≥ 0 such that

|∂im(x)| ≤
c
|x||i|

whenever |i| ≤ k,

then m is an Lp-multiplier.

A helpful consequence of the previous result is:

Corollary 3.10. Let m : ℝd \ {0} → ℝ be a function of class Ck with k > d/2. If m is 0-homogeneous, then it is
an Lp-multiplier for all p ∈ (1, +∞).

Multipliers stand as basics examples of pseudo-differential operators. Their theory, in turn, can be used to
characterize Sobolev spaces as follows. Given k ∈ ℕ, we introduce for ω ∈ ℝd the symbol 𝕊[ω] := (1 + |ω|2) k2
and the associated pseudo-differential operator (I − ∆) k2 :

(I − ∆)
k
2 u := F−1(𝕊(Fu)).

We then say that a distribution u belongs toWk,p(ℝd) if

(I − ∆)
k
2 u ∈ Lp(ℝd)

andwe endow the spacewith the norm ‖u‖Wk,p(ℝd) := ‖(I − ∆)
k
2 u‖Lp(ℝd). It turns out that this definition ofWk,p

is equivalent to the one given in terms of weak derivatives and that the norms are comparable too. The same
approach shows that the dual spaceW−k,p󸀠 (ℝd) coincides with the space of distributions for which it holds

(I − ∆)−
k
2 u ∈ Lp󸀠 (ℝd)

and that the norms ‖u‖W−k,p󸀠 (ℝd) and ‖(I − ∆)− k2 u‖Lp󸀠 (ℝd) coincide. Here, we recall that p󸀠 := p
p−1 and (I − ∆)

− k2

is the pseudo-differential operator defined by the symbol (1 + |ω|2)− k2 .

4 Proof of Theorem 2.6

This section is devoted to the proof of Theorem2.6,which stands as our principal result about the asymptotics
of the energy functionals Fε in (2.8). For the moment being, we assume that the limiting behaviors of the
“soft” and “stiff” contributions are known, i.e., we suppose that Propositions 2.8 and 2.9 hold true. Their
proofs are dealt with in Sections 5 and 6 below. Our main task in the current section is then to show that
sequences with equibounded energies are precompact in a suitable sense and that the asymptotics of the
global energy Fε is determined by that of the functionals accounting for the “soft” and “stiff” parts. In this
respect, it is useful to regard the total energyFε(u) of u ∈ Lp(Ω;ℝN) as the sumofF0,ε(u) andF1,ε(u), which
were defined in (2.9) and (2.10).

The section is organized as follows. We first address the compactness result in Proposition 4.1, second
we show how to reduce our problem to the sub-problems regarding the “soft” and the “stiff” components,
then we prove the Γ-convergence statement in Theorem 2.6.

4.1 Compactness

The next proposition shows that sequences which are equibounded in energy have converging subsequences
with respect to the high-contrast of convergence introduced in Definition 2.5. Note that, for the result to hold,
neither boundary condition nor analogues of loading terms need to be taken into account.
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Since according to position (2.8) onlyA -free fields give rise to finite energy configurations, we can prove
here that high-contrast limits of A -free sequences inherit differential constraints.

Proposition 4.1 (High-contrast limits of A -free sequences). LetA be a constant rank differential operator of
the form (2.1). Let also {uε} ⊂ Lp(Ω;ℝN) be such that there exists c ≥ −aλL d(Ω) for which supε>0 Fε(uε) ≤ c.
Then the following statements hold:
(1) There exist a (non-relabeled) subsequence and two maps u0 ∈ Lp(Ω; Lpper(ℝd;ℝN)) and u1 ∈ Lp(Ω;ℝN)

such that {εχ0,εuε} converges to u0 weakly two-scale and that {χ1,εuε} converges to u1 weakly in Lp(Ω;ℝN).
Moreover, up to subsequences, {εuε} and {χ1,εuε} weakly two-scale converge in Lp, respectively, to u0 and
to a map v1 ∈ Lp(Ω; Lpper(ℝd;ℝN)) that satisfy

u0(x, y) = 0 if y ∈ D1 and ∫
Q

v1( ⋅ , y)dy = u1. (4.1)

(2) The following differential constraints are fulfilled:

Ax( ∫
D0

u0(x, y)dy) = 0 in W−1,p(Ω;ℝM), (4.2)

Ayu0(x, y) = 0 in W−1,p(𝕋d;ℝM) for a.e. x ∈ Ω, (4.3)
Ayv1(x, y) = 0 in W−1,p(D1;ℝM) for a.e. x ∈ Ω. (4.4)

(3) If A satisfies Assumption 2, setting ũε := EεA uε, there exists ũ ∈ Lp(Ω; L
p
per(ℝd;ℝN)) such that, up to sub-

sequences, {ũε} weakly two-scale converges to ũ in Lp, and there holds

v1(x, y) = χD1 (y)ũ(x, y) almost everywhere in Ω × Q, (4.5)

A u1 = −Ax( ∫
D0

ũ(x, y)dy) in W−1,p(Ω;ℝM), (4.6)

Ay(χ0ũ) = 0 in W−1,p(Q;ℝM) for a.e. x ∈ Ω. (4.7)

(4) If additionally A satisfies Assumption 1, then

A u1 = 0 in W−1,p(Ω;ℝM)

and ũε ⇀ u1 weakly in Lp(Ω;ℝN). In particular, up to subsequences, {uε} converges to u1 in the high-
contrast sense.

Proof. If Fε(uε) ≤ c, then F0,ε(uε) ≤ c and F1,ε(uε) ≤ c (cf. (2.9)–(2.10)). The growth assumptions in (H3)
yield

‖εχ0,εuε‖Lp(Ω;ℝN ) ≤ c, ‖χ1,εuε‖Lp(Ω;ℝN ) ≤ c. (4.8)

(1) By Lemma 3.5, since bounded sequences in Lp are weakly two-scale precompact, there exist three
maps u, u0, v1 ∈ Lp(Ω; Lpper(ℝd;ℝN)) such that, up to a (non-relabeled) subsequence,

εuε 2󳨀⇀ u, εχ0,εuε 2󳨀⇀ u0, χ1,εuε 2󳨀⇀ v1 weakly two-scale in Lp . (4.9)

For what concerns (4.1), we observe that, thanks to the relation between weak two-scale convergence and
weak Lp-convergence, we have

χ1,εuε ⇀ u1 := ∫
Q

v1( ⋅ , y)dy weakly in Lp(Ω;ℝN). (4.10)

Further, it holds that
χi,ε 2󳨀→ χi strongly two-scale in Lp , (4.11)

whence, by the first two convergences in (4.9), we find

u0(x, y) = χ0(y)u(x, y) almost everywhere in Ω × Q.

In particular, also the first equality in (4.1) is satisfied.
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By linearity, the previous considerations also entail that εχ1,εuε 2󳨀⇀ (1 − χ0)u weakly two-scale in Lp. On
the other hand, from (4.8) we infer that {εχ1,εuε}must actually converge to 0 strongly in Lp(Ω;ℝN) and, a for-
tiori, in the strong two-scale sense. Thus, (1 − χ0)u = 0, which implies that u(x, y) = 0 if y ∈ D1. We therefore
conclude that u = u0.

(2) SinceA uε = 0 in Ω for all ε > 0, Proposition 3.7 yields immediately (4.2) and (4.3). As for (4.4), given
any ψ ∈ W1,p󸀠

0 (D1;ℝM), we extend it to the wholeℝd by setting ψ = 0 in D0 and ψ(x + z) = ψ(x) for all x ∈ Q
and z ∈ ℤd. Fix a function η ∈ C1c (Ω). Since A uε = 0 in Ω for every ε > 0, denoting by𝔸∗ the symbol of A ∗

(see Section 2.2), we have

0 = ⟨A uε , εη( ⋅ )ψ(
⋅
ε)⟩W−1,p ,W1,p󸀠

0

= ∫
Ω

uε(x) ⋅ (ε𝔸∗[∇η(x)]ψ(
x
ε )
+ η(x)A ∗ψ( xε ))

dx

= ∫
Ω

χ1,ε(x)uε(x) ⋅ (ε𝔸∗[∇η(x)]ψ(
x
ε )
+ η(x)A ∗ψ( xε ))

dx,

where the latter equality is due to the choice of the support of ψ. Therefore, the third convergence in (4.9)
yields

∫
Ω

η(x)(∫
Q

v1(x, y) ⋅A ∗ψ(y)dy)dx = 0,

which in turn implies (4.4).
(3) For every ε > 0 let ũε denote the A -free extension of uε provided by Assumption 2. Owing to (4.8),

the sequence {ũε} is bounded in Lp(Ω;ℝN) and there exists ũ ∈ Lp(Ω; Lpper(ℝd;ℝN)) such that (up to subse-
quences)

ũε 2󳨀⇀ ũ weakly two-scale in Lp ,

Ax(∫
Q

ũ(x, y)dy) = 0 inW−1,p(Ω;ℝM). (4.12)

Since Assumption 2 grants that χ1,ε ũε = χ1,εuε almost everywhere in Ω, we infer (4.5) from (4.9) and (4.11).
Relationship (4.5) in turn rewrites as

A u1 = Ax(∫
Q

v1(x, y)dy) = Ax( ∫
D1

ũ(x, y)dy) = −Ax( ∫
D0

ũ(x, y)dy),

i.e., (4.6) is proved. Finally, to obtain (4.7), we combine the fact that ũε = χ1,εuε + χ0,ε ũε almost everywhere
in Ω with the assumption that A ũε = 0 for every ε > 0. Using again Proposition 3.7, as well as (4.4) and
(4.9)–(4.12), we complete the proof of the third statement.

(4) By (4.7) and Assumption 1, we deduce that

∫
D0

ũ(x, y)dy = 0 for almost every x ∈ Ω.

Then, by (4.5), A u1 = 0 in Ω. Besides, in view of its weak two-scale convergence, {ũε} converges weakly in
Lp(Ω;ℝN) to

∫
Q

ũ( ⋅ , y)dy = ∫
Q

χD1 (y)ũ( ⋅ , y)dy = ∫
Q

v1( ⋅ , y)dy = u1( ⋅ ),

wherewe used (4.5) and (4.1). This also shows that {uε} admits an extension on the “soft” part that converges
to u1 weakly in Lp. Therefore, to grant that there is a subsequence of {uε} that converges to u1 in the high-
contrast sense, we are only left to observe that εuε ⇀ ∫Q u0( ⋅ , y)dy and that such average vanishes because
of (4.1), (4.3), and Assumption 1. The proof is now concluded.

As already anticipated inRemark2.2,wenote that thepreservationof p-equiintegrability grantedbyAssump-
tion 2 is not needed to prove item (3) of the previous proposition. We will instead resort to it to establish
Proposition 4.4 below.
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4.2 Splitting

In the light of the of previous subsection, we know that those sequences which are equibounded in energy
are precompact with respect to the high-contrast convergence, and that their cluster points fulfill suitable dif-
ferential constraints. Following the approach of M. Cherdantsev and K. D. Cherednichenko [25], the next step
is to show that the asymptotic behavior of the energy along such sequences coincides with the sum of those
of the energies of two decoupled systems, one sitting on the “soft” inclusions, the other on the “stiff” matrix.

To favor intuition, consider a family {uε} ⊂ Lp(Ω;ℝN) such that supε>0 Fε(uε) ≤ c for some c ≥−aλL d(Ω),
and assume that the operator A is admissible in the sense of Definition 2.3. As Proposition 4.1 proves, the
growth condition (H3) on the energy densities entails ‖χ1,εuε‖Lp(Ω;ℝN ) ≤ c. Hence, by exploiting Assump-
tion 2, we retrieve the functions ũε := EεA uε ∈ Lp(Ω;ℝN) such that for all ε,
(1) χ1,ε ũε = χ1,εuε almost everywhere in Ω,
(2) ‖ũε‖Lp(Ω;ℝN ) ≤ c,
(3) A ũε = 0 in Ω,
(4) {ũε} is p-equiintegrable if so is {uε}.
Setting vε := uε − ũε, we rewrite

Fε(uε) = F0,ε(vε) +F1,ε(ũε) + Eε(uε),

where F0,ε and F1,ε are as in (2.9)–(2.10) and

Eε(uε) := ∫
Ω0,ε

[f0,ε(εuε) − f0,ε(εvε)]dx (4.13)

(notice that vε(x) = 0when x ∈ Ω1,ε). In the lemmabelowwe show that the errormade by substitutingFε(uε)
by the sumF0,ε(vε) +F1,ε(ũε), i.e., Eε(uε), is asymptotically negligible whenever high-contrast convergence
holds.

Lemma 4.2 (Splitting). LetA be a constant rank differential operator of the form (2.1). Let also u ∈ Lp(Ω;ℝN)
be the high-contrast limit of a family {uε} ⊂ Lp(Ω;ℝN). Explicitly, assume that εuε ⇀ 0 weakly in Lp(Ω;ℝN)
and that there is a family {ũε} ⊂ Lp(Ω;ℝN) with the properties that A ũε = 0 in W−1,p(Ω;ℝM), ũε ⇀ u weakly
in Lp(Ω;ℝN) and uε = ũε in Ω1,ε. If supε>0 Fε(uε) ≤ c for some c ≥ −aλ0L d(Ω), and if vε := uε − ũε, then the
following hold:

A u = 0 in W−1,p(Ω;ℝM),
vε = 0 in Ω1,ε ,

A vε = 0 in W−1,p(Ω;ℝM),
εvε ⇀ 0 weakly in Lp(Ω;ℝN),

and

lim inf
ε→0

F0,ε(vε) + lim inf
ε→0

F1,ε(ũε) ≤ lim inf
ε→0

Fε(uε), (4.14)

lim sup
ε→0

Fε(uε) ≤ lim sup
ε→0

F0,ε(vε) + lim sup
ε→0

F1,ε(ũε).

Proof. As a consequence of the fact that A ũε = 0 in Ω for all ε, also the weak limit of {ũε}, i.e., u, must be
A -free. As immediate consequences of the definition, we also find that vε = 0 in Ω1,ε and thatA vε = 0 in Ω.
Being {ũε} bounded in Lp(Ω;ℝN), we also deduce

εvε = ε(uε − ũε) ⇀ 0 weakly in Lp(Ω;ℝN).

Only the estimates involving the semilimits are now left to prove. It suffices to show that limε→0 Eε(uε) = 0,
with Eε as in (4.13). To this end, we observe that in view of (H4), for almost every x we have

|f0,ε(εuε) − f0,ε(εvε)| ≤ μ(1 + |εvε|p−1 + |εuε|p−1)|εũε|.

Hölder’s inequality yields |Eε(uε)| ≤ cε‖ũε‖Lp(Ω;ℝN ), and the conclusion is achieved by exploiting again the
boundedness of {ũε} in Lp(Ω;ℝN).
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We conclude this section by showing that, thanks to the A -free decomposition procedure in Lemma 3.2, we
can always reduce to the case in which the sequence {vε} on the left-hand side of (4.14) is p-equiintegrable.
This motivates the Γ-liminf inequality contained in Proposition 5.3. We premise a lemma.

Lemma 4.3. Let {f0,ε} and f1 satisfy hypotheses (H1), (H3), and (H4). Let also {uε}, {vε} ⊂ Lp(Ω;ℝN) be
bounded sequences such that uε − vε → 0 in measure, and that {vε} is p-equiintegrable. Then

lim inf
ε→0
∫

Ω0,ε

[f0,ε(uε) − f0,ε(vε)]dx ≥ 0, (4.15)

lim inf
ε→0
∫

Ω1,ε

[f1(
x
ε
, uε) − f1(

x
ε
, vε)]dx ≥ 0.

Proof. Despite the dependence of the energy density f1 on the oscillating variable, up to a different notational
realization, the “stiff” case is completely analogous to the “soft” one. For this reason, we detail the proof
of (4.15) only

We first note that (4.15) is left unchanged if we replace f0,ε with f0,ε − f0,ε(0), and hence we may assume
that f0,ε(0) = 0. Upon extraction of a (non-relabeled) subsequence, we may also suppose that the left-hand
side in (4.15) is a limit. In view of [47, Lemma 8.13], for every ε > 0, we can decompose the elements of such
subsequence as uε = uoε + ucε, where {uoε } (the “oscillating” part) is p-equiintegrable and {ucε} (the “concentrat-
ing” part) converges to zero in measure. If we let Rε := {x ∈ Ω : uoε ̸= uε}, we have that L d(Rε) → 0, whence,
by the current assumptions, {uoε − vε} is p-equiintegrable and converges to zero inmeasure. Thanks to Vitali’s
convergence theorem (see, e.g., [47, Theorem 2.24]), it follows that uoε − vε → 0 strongly Lp(Ω;ℝN), and, in
view of (H4), we deduce

lim
ε→0
∫

Ω0,ε

|f0,ε(uoε ) − f0,ε(vε)|dx = 0. (4.16)

By employing the definition of Rε, (H3), and (H4), we find the estimate
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω0,ε

f0,ε(uε)dx − ∫
Ω0,ε

[f0,ε(uoε ) + f0,ε(ucε)]dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Ω0,ε∩Rε

f0,ε(uoε + ucε)dx − ∫
Ω0,ε∩Rε

[f0,ε(uoε ) + f0,ε(ucε)]dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
Ω0,ε∩Rε

|f0,ε(uoε + ucε) − f0,ε(ucε)|dx + ∫
Ω0,ε∩Rε

|f0,ε(uoε )|dx

≤ μ ∫
Ω0,ε∩Rε

(1 + |uε|p−1 + |ucε|p−1)|uoε |dx + Λ ∫
Ω0,ε∩Rε

(1 + |uoε |p)dx.

Since {uoε } and {ucε} are bounded in Lp(Ω;ℝN) and {uoε } is p-equiintegrable, we infer that the last term tends
to zero as ε → 0. Therefore, we see that

lim
ε→0
∫

Ω0,ε

[f0,ε(uε) − f0,ε(vε)]dx = limε→0 ∫
Ω0,ε

[f0,ε(uoε ) + f0,ε(ucε) − f0,ε(vε)]dx

= lim
ε→0
∫

Ω0,ε∩Rε

f0,ε(ucε)dx.

≥ lim inf
ε→0

∫
Ω0,ε∩Rε

λ(−a + |ucε|p)dx

≥ 0,

where the second equality is a consequence of (4.16), the second to last inequality is due to (H3), and the
last one follows from L d(Rε) → 0.

The improved variant of Lemma 4.2 for the liminf inequality in (4.14) reads as follows.
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Proposition 4.4 (Refined splitting for the liminf). Suppose A is an admissible differential operator and let
u ∈ Lp(Ω;ℝN). Consider two sequences {uε}, {ũε} ⊂ Lp(Ω;ℝN) with the property that εuε ⇀ 0 weakly in
Lp(Ω;ℝN), A ũε = 0 in W−1,p(Ω;ℝM), ũε ⇀ u weakly in Lp(Ω;ℝN), and uε = ũε in Ω1,ε. If supε>0 Fε(uε) ≤ c
for some c ≥ −aλ0L d(Ω), then there exists {ṽε} ⊂ Lp(Ω;ℝN) such that the following hold:

ṽε = 0 in Ω1,ε ,
A ṽε = 0 in W−1,p(Ω;ℝM),
{εṽε} is p-equiintegrable,
εṽε ⇀ 0 weakly in Lp(Ω;ℝN), (4.17)
lim inf
ε→0

F0,ε(ṽε) + lim inf
ε→0

F1,ε(ũε) ≤ lim inf
ε→0

Fε(uε). (4.18)

Proof. The equiboundedness in energy entails that

‖εuε‖Lp(Ω;ℝN ) ≤ c and ‖χ1,εuε‖Lp(Ω;ℝN ) ≤ c. (4.19)

By Lemma 3.2, there exist a (not relabeled) subsequence of {uε} and a sequence {wε} ⊂ Lp(Ω;ℝN) such that
(1) {εwε} is bounded, A -free, and p-equiintegrable,
(2) ε(wε − uε) → 0 strongly in Lq(Ω;ℝN) for every q ∈ [1, p),
(3) εχ1,ε(wε − uε) → 0 strongly in Lp(Ω;ℝN).
Note that the last property is not mentioned explicitly in the statement of Lemma 3.2, but it is a byproduct of
the construction in its proof (see [48, Lemma 2.15]).

For every ε > 0, we define w̃ε := EεA wε, with EεA as in Assumption 2. We then set ṽε := wε − w̃ε. In view
of Assumption 2, we immediately obtain that ṽε vanishes on Ω1,ε, that it is A -free in Ω, and that {εṽε} is
p-equiintegrable. To prove (4.17), we consider the identity

εṽε = ε(wε − uε) − ε(w̃ε − uε).

Thanks to (2) above, ε(wε − uε) → 0 strongly in Lq(Ω;ℝN). Additionally, by Assumption 2,

ε‖w̃ε‖Lp(Ω;ℝN ) ≤ cε‖wε‖Lp(Ω1,ε;ℝN ) ≤ cε‖wε − uε‖Lp(Ω1,ε;ℝN ) + cε‖uε‖Lp(Ω1,ε;ℝN ) → 0,

the convergence to 0 following from (3) above and (4.19). In view of the assumptions on {uε} and of (2), (4.17)
is inferred.

To complete the proof of the corollary, it suffices now show that for q ∈ [1, p),

ε(ṽε − vε) → 0 strongly in Lq(Ω;ℝN), (4.20)

where vε := uε − ũε. Indeed, once this is proven, (4.18) is deduced from Lemma 4.2 and Lemma 4.3. To prove
(4.20), we notice that, by the definitions of vε and ṽε, as well as by Hölder’s inequality, for every q ∈ [1, p)
it holds

‖ε(ṽε − vε)‖Lq(Ω;ℝN ) ≤ ε‖wε − uε‖Lq(Ω;ℝN ) + cε‖EεA (wε − uε)‖Lp(Ω;ℝN ).

Then, in view of (2), of Assumption 2, and of (3), we deduce (4.20).

4.3 Γ-convergence

In this short subsection we tackle the proofs of Theorem 2.6 and Corollary 2.7.

Proof of Theorem 2.6. Statement (1), concerned with the high-contrast compactness of families with equi-
bounded energy, follows from Proposition 4.1.

Let now u ∈ U1 befixed and assume that there are two sequences {uε}, {ũε} ⊂ Lp(Ω;ℝN)with the property
that εuε ⇀ 0weakly in Lp(Ω;ℝN),A ũε = 0 inΩ, ũε ⇀ uweakly in Lp(Ω;ℝN), and uε = ũε in Ω1,ε. If the lower
limit of {Fε(uε)} is not finite, the estimate of point (2) holds trivially. Otherwise, we define vε := uε − ũε and,
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owing to Proposition 4.4, by applying Proposition 2.8 to {vε}, as well as Proposition 2.9 to {ũε}, we deduce

lim inf
ε→0

Fε(uε) ≥ lim inf
ε→0

F0,ε(uε) + lim inf
ε→0

F1,ε(uε)

= lim inf
ε→0

F0,ε(vε) + lim inf
ε→0

F1,ε(ũε)

≥ α0 +F1(u) =: F (u).

Finally, we turn to (3). For u ∈ U1, again in the light of Propositions 2.8 and 2.9, we can find two
sequences {vε}, {ũε} ⊂ U1 such that

vε = 0 in Ω1,ε ,
εvε ⇀ 0 weakly in Lp(Ω;ℝN),
ũε ⇀ u weakly in Lp(Ω;ℝN),

lim sup
ε→0

F0,ε(u0,ε) ≤ α0,

lim sup
ε→0

F1,ε(ũε) ≤ F1(u).

Then, setting uε := vε + ũε, by Lemma 4.2 we deduce the desired limsup inequality from the ones satisfied by
{F0,ε(vε)} and {F1,ε(ũε)}:

lim sup
ε→0

Fε(uε) ≤ lim sup
ε→0

F0,ε(uε) + lim sup
ε→0

F1,ε(uε)

= lim sup
ε→0

F0,ε(vε) + lim sup
ε→0

F1,ε(ũε)

≤ α0 +F1(u) =: F (u).

At this stage, the convergence of infima and of minimizers easily follows.

Proof of Corollary 2.7. The equicoercivity of the energies with respect to the high-contrast convergence and
the convergence result in Theorem 2.6 yield the conclusion by standard Γ-convergence arguments.

5 Asymptotics for the soft component

This section is devoted to the proof of Proposition 2.8. We address the asymptotic analysis of the energy
stored in the “soft” component of the system, that is, {F0,ε} in (2.9), and we prove that the limiting behavior
is encoded by the functional F0 in (2.11). We recall that F0 is finite only when u = 0 and in that case the
value of the functional equals the constant α0 given by

α0 := sup
Ω󸀠⋐Ω inf

u∈U0(Ω󸀠) ∫
Ω󸀠 ∫D0

f0(u(x, y))dy dx,

where the supremum is meant to run over all open sets that are compactly contained in Ω, and, for any open
Ω󸀠 ⊂ Ω, U0(Ω󸀠) is as in (2.4).

Remark 5.1 (On the constant α0). By the definition of U0(Ω󸀠) in (2.4), we see that

U0(Ω) ⊂ U0(Ω󸀠2) ⊂ U0(Ω󸀠1) whenever Ω󸀠1 ⊂ Ω󸀠2 ⊂ Ω. (5.1)

Since λ(−a + |ξ|p) ≤ f0(ξ) for every ξ ∈ ℝN , from (5.1) we deduce that

α0 ≤ inf
u∈U0
∫
Ω

∫
D0

f0(u(x, y))dy dx,

and, more generally, that

inf
u∈U0∈(Ω󸀠

1)
∫

Ω󸀠
1

∫
D0

f0(u(x, y))dy dx ≤ inf
u∈U0(Ω󸀠

2)
∫

Ω󸀠
2

∫
D0

f0(u(x, y))dy dx (5.2)
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when Ω󸀠1 ⊂ Ω󸀠2 ⊂ Ω. In particular, the supremum in the definition of α0 is not amaximum, in general. Indeed,
suppose that Ω󸀠1 ⋐ Ω achieves such supremum. Then we would get a contradiction whenever there exists
Ω󸀠2 ⋐ Ω containing Ω󸀠1 such that the inequality in (5.2) is strict.

We separate the discussion of the Γ-liminf and of the Γ-limsup inequalities.

5.1 Γ-liminf inequality

The proof of the Γ-liminf inequality relies on the compactness and splitting results of Section 4, on unfolding
techniques, as well as on the following intermediate statement.

Lemma 5.2. Let {f0,ε} satisfy (H1) and (H3)–(H5). Suppose that {wε} ⊂ Lp(Ω; Lpper(ℝd;ℝN)) is a p-equiinte-
grable family satisfying the following properties:

wε = 0 if y ∈ D1, (5.3)

and for all open Ω󸀠 ⋐ Ω there exists ε󸀠 := ε󸀠(Ω󸀠) such that

Aywε = 0 in W−1,p(𝕋d;ℝM) for a.e. x ∈ Ω󸀠 if ε < ε󸀠. (5.4)

Then it holds

α0 ≤ lim inf
ε→0
∫
Ω

∫
D0

f0,ε(wε(x, y))dy dx.

Proof. The proof is divided into two steps.

Step 1: A simplified setting. We start by establishing an inequality for the case in which the densities on the
right-hand side do not depend on ε (cf. [25, Lemma 20]), that is, we first prove that

α0 ≤ lim inf
ε→0
∫
Ω

∫
D0

f0(wε(x, y))dy dx. (5.5)

According to the definition of α0 and to Remark 5.1, for an arbitrary δ > 0, there is an open set Ω󸀠δ ⋐ Ω
such that dist(∂Ω, ∂Ω󸀠δ) < δ and

α0 ≤ inf
u∈U0(Ω󸀠

δ)
∫

Ω󸀠
δ

∫
D0

f0(u(x, y))dy dx + δ.

In view of (5.3) and (5.4), wε ∈ U0(Ω󸀠δ) for ε > 0 sufficiently small, whence

α0 ≤ lim inf
ε→0
∫

Ω󸀠
δ

∫
D0

f0(wε(x, y))dy dx + δ

= lim inf
ε→0
∫
Ω

∫
D0

f0(wε(x, y))dy dx − ∫
Ω\Ω󸀠

δ

∫
D0

f0(wε(x, y))dy dx + δ.

Thanks to the p-equiintegrability of {wε}, the conclusion (5.5) now follows by letting δ vanish.

Step 2: The general case. We adapt the argument in the proof of [37, Theorem 5.14], relying on the almost
everywhere convergence of {f0,ε} to f0, as well as on the p-Lipschitz continuity of these energy densities (see
(H4) and (H5)).

Fix δ > 0. By the p-equiintegrability of {wε} and by the p-growth assumptions on f0, there exists r > 0
such that

sup
ε>0

∫
{(x,y)∈Ω×D0 : |wε(x,y)|>r}

f0(wε(x, y))dx dy ≤ δ. (5.6)
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Besides, since f0,ε and f0 are p-Lipschitz, we find ρ > 0 such that

|f0(ξ) − f0(η)| + sup
ε>0
|f0,ε(ξ) − f0,ε(η)| ≤ δ for every ξ, η ∈ B(0, ρ). (5.7)

Let now ξ1, . . . , ξK ∈ B(0, r) be such that

B(0, r) ⊂
K
⋃
k=1

B(ξk , ρ). (5.8)

In view of (H5), for any such ξk there exist ε̄k > 0 such that |f0,ε(ξk) − f0(ξk)| ≤ δ if ε < ε̄k. By letting now
ε̄ := min{ε̄1, . . . , ε̄K}, it follows that for any k = 1, . . . , K,

|f0,ε(ξk) − f0(ξk)| ≤ δ if ε < ε̄. (5.9)

By (5.8), for every η ∈ B(0, r) there exists k ∈ {1, . . . , K} such that η ∈ B(ξk , ρ). For this particular k, the
combination of the triangle inequality, (5.7), and (5.9) yields

|f0,ε(η) − f0(η)| ≤ |f0,ε(η) − f0,ε(ξk)| + |f0,ε(ξk) − f0(ξk)| + |f0(η) − f0(ξk)| ≤ 3δ (5.10)

for every η ∈ B(0, r) and every ε < ε̄.
In view of (5.5) we deduce

α0 ≤ lim inf
ε→0
∫
Ω

∫
D0

f0(wε(x, y))dy dx

≤ lim inf
ε→0

∫
{(x,y)∈Ω×D0:|wε(x,y)|≤r}

f0(wε(x, y))dx dy + δ

≤ lim inf
ε→0
∫
Ω

∫
D0

f0,ε(wε(x, y))dy dx + 3δL 2d(Ω × D0) + δ,

where the first inequality is due to (5.6), and the second one to (5.10). The arbitrariness of δ > 0 yields the
conclusion.

We are now ready to tackle the Γ-liminf inequality for the “soft” contribution; the argument is comparable to
the one in [25, Lemma 21].

Proposition 5.3. Let {f0,ε}ε satisfy assumptions (H1) and (H3)–(H5), and let u ∈ Lp(Ω;ℝN). Then, for every
p-equiintegrable sequence {uε} ⊂ Lp(Ω;ℝN) such that uε = 0 onΩ1,ε,A uε = 0 in W−1,p(Ω;ℝM) for every ε > 0,
and εuε ⇀ u weakly in Lp(Ω;ℝN), we have

F0(u) ≤ lim inf
ε→0

F0,ε(uε).

Proof. If the lower limit of F0,ε(uε) is not finite, then there is nothing to prove. Otherwise, without loss of
generality, we focus on the case in which the lower limit ofF0,ε(uε) is finite, and we assume that it is a limit.
Then it follows by Proposition 4.1 and Assumption 1 that necessarily u = 0. Therefore, we are left to prove
that

α0 ≤ limε→0 ∫
Ω0,ε

f0,ε(εuε(x))dx,

where α0 is given by (2.6) and εuε ⇀ 0 weakly in Lp(Ω;ℝN).
We exhibit a formula for F0,ε(uε) that involves the unfolding operator introduced in Lemma 3.6. We let

ûε be the unfolded map of εuε:
ûε(x, y) := εSεuε(x, y),

whence
ûε(x, y) = 0 for almost every x ∈ Ω and y ∈ D1. (5.11)
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Also, since the unfolding procedure preserves p-equiintegrability, {ûε} ⊂ Lp(Ω × Q;ℝN) is p-equiintegrable.
Finally, Lemma 3.8 grants that

Ay ûε = 0 inW−1,p(𝕋d;ℝM) for a.e. x ∈ Ω̂ε ,

where Ω̂ε is as in (3.1). In particular, if Ω󸀠 ⊂ Ω is an open set such that the distance δ := dist(∂Ω󸀠, ∂Ω) is
strictly positive, it is clear that Ω󸀠 ⊂ Ω̂ε if√dε < δ. Thus, for all open Ω󸀠 ⋐ Ω

Ay ûε = 0 inW−1,p(𝕋d;ℝM) for a.e. x ∈ Ω󸀠 if ε < ε󸀠, (5.12)

where ε󸀠 > 0 is a suitable threshold depending on Ω󸀠.
By the definition of Ω0,ε (see (1.1)), we have

F0,ε(uε) = εd ∑
z∈Zε
∫
D0

f0,ε(εuε(ε(y + z)))dy.

Being z an integer-valued vector, it holds ûε(εz, y) = εuε(ε(y + z)) for every z ∈ Zε and y ∈ D0. Hence, we
obtain

F0,ε(uε) = εd ∑
z∈Zε
∫
D0

f0,ε(ûε(εz, y))dy

= ∑
z∈Zε
∫

ε(Q+z)

∫
D0

f0,ε(ûε(ε⌊
x
ε ⌋

, y))dy dx

≥ ∫

Ω̂ε

∫
D0

f0,ε(ûε(x, y))dy dx

because for all x ∈ ε(Q + z), ⌊ xε ⌋ = z. We can rewrite the last estimate as follows:

F0,ε(uε) ≥ ∫
Ω

∫
D0

f0,ε(ûε(x, y))dy dx − ∫
Ω\Ω̂ε

∫
D0

f0,ε(ûε(x, y))dy dx.

From this, owing to (5.11) and (5.12), we can invoke Lemma 5.2 to infer

F0,ε(uε) ≥ α0 − ∫
Ω\Ω̂ε

∫
D0

f0,ε(ûε(x, y))dy dx.

In view of the p-equiintegrability of {ûε}, the desired liminf inequality is now obtained by taking the limit
as ε → 0.

5.2 Γ-limsup inequality

We now turn to the Γ-limsup inequality for the energy functional associated to the “soft” portion of the
material. The optimality of the lower bound identified in Proposition 5.3 hinges upon the next proposition.

Proposition 5.4. Let {f0,ε} satisfy (H1) and (H3)–(H5), and let Ω󸀠 ⋐ Ω be open. Then, for all w ∈ U0(Ω󸀠), there
exists a family {uε} ⊂ Lp(Ω;ℝN) that satisfies the following:
(1) uε = 0 on Ω1,ε and uε is A -free in Ω for all ε > 0,
(2) εuε 2󳨀→ w󸀠 strongly two-scale in Lp, where w󸀠(x, y) := χΩ󸀠 (x)w(x, y),
(3) it holds that

lim sup
ε→0

F0,ε(uε) ≤ ∫
Ω󸀠 ∫D0

f0(w(x, y))dy dx.

We postpone the proof of Proposition 5.4 to the end of the section, and we discuss next how the Γ-limsup
inequality is deduced from it.
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Corollary 5.5. Let {f0,ε} satisfy hypotheses (H1) and (H3)–(H5), and let u ∈ Lp(Ω;ℝN). Then there exists a fam-
ily {uε} ⊂ Lp(Ω;ℝN) such that the following holds:
(1) uε = 0 on Ω1,ε and uε is A -free in Ω for all ε > 0,
(2) εuε ⇀ u weakly in Lp(Ω;ℝN),
(3) the upper limit inequality

lim sup
ε→0

F0,ε(uε) ≤ F0(u)

is satisfied.

Proof. Wefirst remark that if u ̸= 0, there is nothing to prove. Thus, we assume inwhat follows that u = 0 and
F0(u) = α0.

Fix now δ > 0 and Ω󸀠 ⋐ Ω. By the definition of α0, there exists a map wδ ∈ U0(Ω󸀠) such that

∫
Ω󸀠 ∫D0

f0(wδ(x, y))dy dx ≤ α0 + δ.

Proposition 5.4 yields a sequence {uε} such that
(1) uε = 0 on Ω1,ε and uε is A -free in Ω for all ε > 0,
(2) {εuε} converges strongly two-scale in Lp to χΩ󸀠 (x)wδ(x, y),
(3) the inequality

lim sup
ε→0

F0,ε(uε) ≤ ∫
Ω󸀠 ∫D0

f0(wδ(x, y))dy dx

is satisfied.
Lemma 3.5 and Assumption 1 entail that εuε ⇀ 0 weakly in Lp(Ω;ℝN). Besides, the last estimate and

the definition of wδ get
lim sup
ε→0

F0,ε(uε) ≤ α0 + δ.

The conclusion hence follows then by the arbitrariness of δ and by standard properties of Γ-convergence (see,
e.g., [14, Section 1.2]).

We now address the proof of Proposition 5.4.

Proof of Proposition 5.4. We construct a family {ũε} that strongly two-scale converges to

w󸀠(x, y) := χΩ󸀠 (x)w(x, y) in Lp ,

so that {uε}will be given by uε := ũεε . However, because of measurability issues, we cannot deal directly with
a general w ∈ U0(Ω󸀠). The argument is thus subdivided in three parts: firstly, we define {ũε} under some extra
regularity assumption on w; then, we prove the limsup inequality when w is regular; lastly, we recover the
general statement by means of an approximation argument.

Step 1: Construction of {ũε}when w is regular. In this step we assume that w possesses some extra regularity
in the x variable, namely we take w ∈ U0(Ω󸀠) ∩ Lpper(ℝd; C(Ω̄;ℝN)). We construct a sequence {ũε} of A -free
maps such that ũε = 0 on Ω1,ε for all ε > 0 and that ũε 2󳨀→ w󸀠 strongly two scale in Lp. Below, when we write
w(x, y), we consider the second entry y to be the periodic variable.

Recalling (1.1), we define

Ω̂󸀠ε := ⋃
z∈Ẑ󸀠ε ε(Q + z), Ẑ󸀠ε := {z ∈ ℤd : ε(Q + z) ⊂ Ω󸀠} ⊂ Zε ,

and, for ε > 0 and (x̄, ȳ) ∈ Ω × ℝd, we consider the averages of w( ⋅ , ȳ) on the cubes that compound Ω̂󸀠ε:

wε(x̄, ȳ) :=
{{{
{{{
{

−∫
ε(Q+z)

w(x, ȳ)dx if x̄ ∈ ε(Q + z) for some z ∈ Ẑ󸀠ε ,

0 for any other x̄ ∈ Ω.
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In this way, wε( ⋅ , y) is piecewise constant for all y ∈ Q and wε(x, ⋅ ) is Q-periodic for almost every x ∈ Ω. The
position

ũε(x) := wε(x,
x
ε )

for every x ∈ Ω,

defines a measurable function which vanishes on Ω1,ε, because w = 0 on Ω × D1.
We firstly check that {ũε} converges strongly two-scale in Lp to w󸀠(x, y) := χΩ󸀠 (x)w(x, y). To prove the

claim,we start by showing that {ũε} is bounded in Lp(Ω;ℝN). The properties of {wε} and a change of variables
grant that the following identities hold:

∫
Ω

|ũε(x)|p dx = ∫
Ω0,ε

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
wε(x,

x
ε )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dx

= ∑
z∈Zε
∫

ε(D0+z)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
wε(x,

x
ε )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dx

= ∑
z∈Zε

εd ∫
D0

|wε(ε(z + y), y)|p dy

= ∑
z∈Ẑ󸀠ε ε

d ∫
D0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−∫

ε(Q+z)

w(x, y)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p

dy.

From Jensen’s inequality we then deduce

∫
Ω

|ũε(x)|p dx ≤ ∑
z∈Ẑ󸀠ε ε

d ∫
D0

−∫
ε(Q+z)

|w(x, y)|p dx dy = ∫
D0

∫

Ω̂󸀠
ε

|w(x, y)|p dx dy. (5.13)

As for the convergence of the sequence {ũε}, in view of Lemma 3.5, formula (5.13) yields the existence of
a map w̃ ∈ Lp(Ω; Lpper(ℝd;ℝN)) such that ũε 2󳨀⇀ w̃ weakly two-scale in Lp. To identify the limit w̃, we consider
ϕ ∈ C(Ω̄; Cper(ℝd;ℝN)) and, by similar computations to the ones above, we find

∫
Ω

ũε(x) ⋅ ϕ(x,
x
ε )

dx = ∫
Ω0,ε

wε(x,
x
ε )
⋅ ϕ(x, xε )dx

= ∑
z∈Zε
∫

ε(D0+z)

wε(x,
x
ε )
⋅ ϕ(x, xε )dx

= εd ∑
z∈Zε
∫
D0

wε(ε(z + y), y) ⋅ ϕ(ε(z + y), y)dy

= ∑
z∈Ẑ󸀠ε ∫D0

∫
ε(Q+z)

w(x, y) ⋅ ϕ(ε(z + y), y)dx dy

= ∫

Ω̂󸀠
ε

∫
D0

w(x, y) ⋅ ϕ̃ε(x, y)dy dx,

where ϕ̃ε(x, y) := ϕ(ε(y + z), y) if x ∈ ε(Q + z) with z ∈ Ẑ󸀠ε. By the dominated convergence theorem, we infer

lim
ε→0
∫
Ω

ũε(x) ⋅ ϕ(x,
x
ε )

dx = ∫
Ω󸀠 ∫D0

w(x, y) ⋅ ϕ(x, y)dy dx,

that is, ũε 2󳨀⇀ w󸀠 weakly two-scale in Lp (recall that w(x, y) = 0 if y ∈ D1). In turn, the weak two-scale conver-
gence implies

‖w‖Lp(Ω󸀠;Lpper(ℝd;ℝN )) ≤ lim inf
ε→0
‖ũε‖Lp(Ω;ℝN ),

which, combined with (5.13), ensures that

lim
ε→0
‖ũε‖Lp(Ω;ℝN ) = ‖w‖Lp(Ω󸀠;Lpper(ℝd;ℝN )).

In viewof thedefinitionof strong two-scale convergence, cf. Definition3.4,we conclude that ũε 2󳨀→ w󸀠 strongly
two-scale in Lp.
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Finally, we show that {ũε} is A -free on Ω. To this end, we fix ψ ∈ W1,p󸀠
0 (Ω;ℝM) and, by repeating the

steps already seen above, we obtain

∫
Ω

ũε(x) ⋅A ∗ψ(x)dx = ∑
z∈Ẑ󸀠ε ∫ε(Q+z) ∫D0

w(x, y) ⋅A ∗ψ(ε(z + y))dy dx.

If η ∈ C∞c (Q; [0, 1]) is a cut-off function which equals 1 on D0, thanks to the fact that w(x, ⋅ ) vanishes on D1
and is A -free on 𝕋d for almost every x ∈ Ω̂󸀠ε, we conclude

∫
Ω

ũε(x) ⋅A ∗ψ(x)dx = ∑
z∈Ẑ󸀠ε ∫ε(Q+z) ∫D0

w(x, y) ⋅A ∗ψ(ε(z + y))dy dx

= ∑
z∈Ẑ󸀠ε ∫ε(Q+z) ∫D0

w(x, y) ⋅A ∗[η(y)ψ(ε(z + y))]dy dx

= ∑
z∈Ẑ󸀠ε ∫ε(Q+z) ∫Q w(x, y) ⋅A

∗[η(y)ψ(ε(z + y))]dy dx

= 0.

Step 2: Limsup inequality when w is regular. We have so far shown that, if w ∈ U0(Ω󸀠) ∩ Lpper(ℝd; C(Ω̄;ℝN))
and {ũε} is the sequence of Step 1, then

εuε = ũε 2󳨀→ w󸀠 strongly two-scale in Lp ,

where w󸀠(x, y) := χΩ󸀠 (x)w(x, y). Moreover, uε = on Ω0,ε and A uε = 0 on Ω for all ε > 0. Here, we prove the
inequality

lim sup
ε→0

F0,ε(uε) = lim sup
ε→0
∫

Ω0,ε

f0,ε(ũε(x))dx ≤ ∫
Ω󸀠 ∫D0

f0(w(x, y))dy dx. (5.14)

We preliminarily notice that, by construction, ũε vanishes outside the set Ω̂󸀠ε. Therefore, we have the
identities

F0,ε(uε) = ∫
Ω̂󸀠
ε

f0,ε(ũε(x))dx = εd ∑
z∈Ẑ󸀠ε ∫Q f0,ε(ũε(ε(y + z)))dy.

Since z ∈ ℤd, we have that ũε(ε(y + z)) = Sε ũε(εz, y), Sε being the unfolding operator. Therefore, by exploit-
ing the properties of Sε, the energy of ũε is rewritten as follows:

F0,ε(uε) = εd ∑
z∈Ẑ󸀠ε ∫Q f0,ε(Sε ũε(εz, y))dy

= ∑
z∈Ẑ󸀠ε ∫ε(Q+z) ∫D0

f0,ε(Sε ũε(ε⌊
x
ε ⌋

, y))dy dx

= ∫

Ω̂󸀠
ε

∫
D0

f0,ε(Sε ũε(x, y))dy dx

= ∫
Ω󸀠 ∫D0

f0,ε(Sε ũε(x, y))dy dx,

where the last identity is due to the fact that Sε ũε vanishes for x ∉ Ω̂󸀠ε.
In the light of the previous equalities, we have

F0,ε(uε) = ∫
Ω󸀠 ∫D0

f0,ε(Sε ũε(x, y))dy dx − ∫
Ω󸀠 ∫D0

f0,ε(w(x, y))dy dx + ∫
Ω󸀠 ∫D0

f0,ε(w(x, y))dy dx

− ∫
Ω󸀠 ∫D0

f0(w(x, y))dy dx + ∫
Ω󸀠 ∫D0

f0(w(x, y))dy dx.

Keeping inmindLemma3.5,weobserve thatSε ũε → w strongly in Lp(Ω󸀠 × D0;ℝN), and consequently, owing
to (H4) and (H5), the limits as ε → 0 of the first and of the second term on the right-hand side equal 0. We
thereby conclude that (5.14) holds.
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Step 3: Recovering the general statement. Let w ∈ U0(Ω󸀠). We first extend it to the whole space setting w = 0
for x ∈ ℝd \ Ω, and thenwemollify itwith respect to the variable x. This procedure ensures that w̃, the regular-
izationofw, belongs toU0(Ω󸀠) ∩ Lpper(ℝd; C(Ω̄;ℝN)) and it is close tow in Lp(Ω; Lpper(ℝd;ℝN)). Now, Steps1–2
yield a recovery sequence for w̃, and, bymeans of a diagonal argument and of the continuity of the right-hand
side of (5.14) in Lp, a recovery sequence for w satisfying all the desired requirements can be constructed.

On the whole, the results above form a proof of the Γ-convergence of the energies {F0.ε}.

Proof of Proposition 2.8. The fact thatF0 is a lower bound for the asymptotic behavior of the sequence {F0,ε}
is established in Proposition 5.3. The optimality of such lower bound is proven in Corollary 5.5.

6 Asymptotics for the stiff component

In this section, we characterize the limiting behavior of the family {F1,ε} in (2.10), which accounts for the
energy of the “stiff” component of the system, and we prove that {F1,ε} Γ-converges to the functional F1
in (2.12).We rely on the contribution by I. Fonseca and S. Krömer about homogenization ofmultiple integrals
under differential constraints:

Theorem 6.1 ([45, Theorem 1.1]). Let g : ℝd × ℝN → [0, +∞) be a Carathéodory function which is Q-periodic
with respect to its first argument. Assume that there exist c ≥ 0, Λ > 0, and p > 1 satisfying

−c ≤ g(y, ξ) ≤ Λ(1 + |ξ|p) for a.e. y ∈ ℝd and all ξ ∈ ℝN .

Then, for all u ∈ Lp(Ω;ℝN) such that A u = 0, the functional

Gε(u) := ∫
Ω

g( xε
, u(x))dx

Γ-converges with respect to the weak Lp-convergence to

Ghom(u) := ∫
Ω

ghom(u(x))dx,

where, for all ξ ∈ ℝN ,

ghom(ξ) := lim inf
k→+∞

inf{∫
Q

g(ky, ξ + v(y))dy : v ∈ Lpper(ℝd;ℝN), ∫
Q

v(z)dz = 0, A v = 0 in W−1,p(𝕋d;ℝM)}.

As a corollary of the theorem above, we derive the asymptotics of {F1,ε}.

Proof of Proposition 2.9. For ε > 0, we introduce the set

Ω̃1,ε := Ω ∩ ⋃
z∈ℤd

ε(D1 + z),

and we observe that Ω̃1,ε ⊂ Ω1,ε (recall (1.2)). We let

̃F1,ε(u) :=
{{{
{{{
{

∫

Ω̃1,ε

̃f1(
x
ε
, u)dx if u ∈ U1,

+∞ otherwise in Lp(Ω;ℝN),

with ̃f1 : ℝd × ℝN → [−aλ, +∞) defined as
̃f1(y, ξ) := f1(y, ξ) ∑

z∈ℤd
χD1+z(y),

where a and λ are the constants in (H3), and χD1+z is the characteristic function of the set D1 + z. When u is
A -free we can hence write

F1,ε(u) = ̃F1,ε(u) + ∫
Ω1,ε\Ω̃1,ε

f1(
x
ε
, u(x))dx. (6.1)
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We observe that Theorem 6.1 applies to ̃F1,ε, yielding

F1(u) = Γ − limε→0
̃F1,ε(u)

in the weak Lp-topology. As for the difference between F1,ε and ̃F1,ε, by (H3) one has

−aλL d(Ω1,ε \ Ω̃1,ε) ≤ ∫

Ω1,ε\Ω̃1,ε

f1(
x
ε
, u(x))dx ≤ Λ(L d(Ω1,ε \ Ω̃1,ε) + ∫

Ω1,ε\Ω̃1,ε

|u(x)|p dx).

Notice that the termL d(Ω1,ε \ Ω̃1,ε) is at most of order ε. Thus, the lower bound for {F1,ε} follows from (6.1)
and Theorem 6.1:

F1(u) ≤ lim inf
ε→0

F1,ε(uε)

for all u ∈ Lp(Ω;ℝN) such thatA u = 0 and allA -free sequences {uε} ⊂ Lp(Ω;ℝN) that converge to u weakly.
For what concerns the upper bound, let us fix u ∈ Lp(Ω;ℝN) in the kernel of A and consider a recovery
sequence {uε} for { ̃F1,ε} given by Theorem 6.1. Thanks to Lemma 3.2, we get a p-equiintegrable family
{vε} ⊂ Lp(Ω;ℝN) such that {uε − vε} converges to 0 strongly in Lq(Ω;ℝN) for all q ∈ [1, p). Therefore,

lim
ε→0
∫

Ω1,ε\Ω̃1,ε

|vε(x)|p dx = 0.

Let now {εn} be such that
lim sup
ε→0

̃F1,ε(vε) = lim
n→+∞

̃F1,εn (vεn ).

By Lemma 4.3, we obtain the desired upper limit inequality:

lim sup
ε→0

F1,ε(vε) = lim sup
ε→0

̃F1,ε(vε) = lim
n→+∞

̃F1,εn (vεn )

≤ lim
n→+∞

̃F1,εn (uεn ) ≤ lim sup
ε→0

̃F1,ε(uε) ≤ F1(u).

7 Admissible differential constraints

In what follows we deepen our analysis of constant rank operators. We investigate the existence of Sobolev
potentials for A -free maps and of extension operators on perforated domains. In particular, we prove Theo-
rems 2.10 and 2.11.

In contrast to the previous sections, here we take into account also differential operators of order
greater than 1: we treat the broader class of linear, k-th order, homogeneous differential operators with
constant coefficients. To fix the notation, given k, N,M ∈ ℕ \ {0}, we consider linear maps A(i) : ℝN → ℝM
for all d-dimensional multi-indices i with |i| = k and we focus on the operators whose action on a function
u : ℝN → ℝM is given by

A u := ∑
|i|=k

A(i)∂iu.

Recall that if i := (i1, . . . , id) ∈ ℕd is a multi-index, then

∂iu(x) :=
∂|i|u

∂i1x1 ⋅ ⋅ ⋅ ∂id xd
(x).

We keep in place the constant rank condition, which currently reads: there exists r ∈ ℕ such that the
rank of𝔸[ω] equals r for all ω ∈ ℝd \ {0}, where

𝔸[ω] := ∑
|i|=k

ωiA(i)

is the symbol of A and ωi = Πdj=1ω
ij
j if i = (i1, . . . , id) is a multi-index. Note that when k = 1, we recover the

setting of Section 2.2. As before, we say that a map u is A -free in Ω if A u = 0 inW−k,p(Ω;ℝM).
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7.1 Existence of potentials

This subsection is devoted to the proof of Theorem 2.10. Loosely speaking, our goal is to prove that, given an
operator A of constant rank, there exists a second differential operator B such that any A -free map u ∈ Lp
satisfies u = Bw for a suitable Sobolev function w. When such a relation holds, we will say for brevity that
w is a potential for u and that B is a potential for A . We are able to prove existence of potentials for those
functions that are A -free on a certain class of subsets ofℝd, which we introduce in the next definition.

Definition 7.1. LetA be a homogeneous operator of order k. An open set Ω ⊂ ℝd is anA -extension domain if
there exist EA : Lp(Ω;ℝN) → Lp(ℝd;ℝN) and c > 0 such that the following holds: for all u ∈ Lp(Ω;ℝN) such
that A u = 0 inW−k,p(Ω;ℝM), we have
(1) EA u = u a.e. in Ω,
(2) ‖EA u‖Lp(ℝd;ℝN ) ≤ c‖u‖Lp(Ω;ℝN ), and
(3) A (EA u) = 0 onℝd.

Analogous definitions concerning extensions of sequences that are (asymptotically) A -free are found in
[46, Definition 1.4] and [45, Lemma 2.8] (i.e., Lemma 3.3 above), while the reader is referred to Section 7.2
below for a more detailed discussion on extension problems. We also refer to [55] for a related study in the
stochastic setting. It is important to notice that the property of being an A -extension domain carries some
topological consequences.

Remark 7.2 (On the topology of A -extension domains). The requirements of Definition 7.1 may act as im-
plicit restrictions on the topology of the set Ω, according to the specific choice of A . Let us consider, for
instance, the case in which d = 3, A =curl, and Ω = ℝ3 \ ℝe3, {e1, e2, e3} being the canonical basis in ℝ3.
We assume by contradiction that Ω is an A -extension domain. Then, if for every x = (x1, x2, x3) ∈ Ω we let

u(x1, x2, x3) := (−
x2

x21 + x
2
2
, x1
x21 + x

2
2
, 0),

we find that curl u = 0 almost everywhere in Ω, whence curl (EA u) = 0 inℝ3, if EA is the extension operator
in Definition 7.1 forA = curl. This fact, in turn, yields a potential w such that EA u = ∇w inℝ3 and, from the
requirement that EA u = u on Ω, we conclude that u = ∇w on Ω. This leads to a contradiction, for the field u
is not conservative.

For the proof of Theorem 2.10 we rely heavily on some recent contributions by B. Raiță and coauthors, who
established existence of potentials for A -free smooth maps and Korn-type inequalities for constant rank
operators. Further related bibliographical comments are provided when we discuss Propositions 7.4 and 7.5
below. Before dealing with the proof, we pinpoint here that Theorem 2.10 constitutes a sufficient condition
for Assumption 1 to hold:

Corollary 7.3. Assume thatA is a first order operator satisfying the assumptions of Theorem 2.10 and that the
unit cube Q is anA -extension domain. Then, for any open set Ω󸀠 ⊂ Ω, the space U0(Ω󸀠) in (2.4) is characterized
as follows:

U0(Ω󸀠) = {u ∈ Lp(Ω; Lpper(ℝd;ℝN)) : u = 0 if y ∈ D1, Ayu = 0 in W−1,p(𝕋d;ℝM) for a.e. x ∈ Ω󸀠,

∫
Q

u(x, y)dy = 0 for a.e. x ∈ Ω󸀠}.

Proof. For the desired equality to hold, we just need to prove that

U0(Ω󸀠) ⊂ {u ∈ Lp(Ω; Lpper(ℝd;ℝN)) : u = 0 if y ∈ D1, Ayu = 0 inW−1,p(𝕋d;ℝM) for a.e. x ∈ Ω󸀠,

∫
Q

u(x, y)dy = 0 for a.e. x ∈ Ω󸀠}.
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Let us fix u ∈ U0(Ω󸀠). Theorem 2.10 grants that for a.e. x ∈ Ω󸀠 there exists wx ∈ Wℓ,pper (ℝd;ℝM) such that
u(x, ⋅) = Bywx a.e. in Q. To the aim of defining a measurable selection of the maps {wx}x∈Ω󸀠 , we exploit
Proposition 3.1.

We first observe that for every u ∈ Lp(Ω; Lpper(ℝd;ℝN)) and x ∈ Ω󸀠 the set

W(x) := {w ∈ Wℓ,pper (ℝd;ℝM) : Byw(y) = u(x, y) for a.e. y ∈ ℝd}

is either empty or a closed (and hence complete) subspace ofWℓ,pper (ℝd;ℝM). Besides,

x 󳨃→ u(x, ⋅ ) ∈ Lpper(ℝd;ℝN)

being measurable, then for every open set O ⊂ Wℓ,pper (ℝd;ℝM), the set

{x ∈ Ω󸀠 : W(x) ∩ O ̸= 0}

is measurable as well. It follows that the multifunction x 󳨃→ W(x) admits a measurable selection, which we
denote by w(x, ⋅ ).

Summing up, we recovered a measurable function w from Ω󸀠 to Wℓ,pper (ℝd;ℝM) with the property that
u = Byw for almost every x ∈ Ω󸀠 and y ∈ ℝd. We conclude that

∫
Q

u(x, y)dy = ∑
|i|=ℓ

B(i) ∫
Q

∂yiw(x, y)dy = 0,

where the latter inequality follows from the periodicity of w in its second variable.

We devote the remainder of the section to the proof of Theorem 2.10 and to the pertaining tools. We first
highlight that B. Raiță [69] has recently pointedout that the kernel of the symbol ofany constant rankoperator
coincideswith the image of the symbol of a suitable operatorB, and that the latter is actually a potential forA
when tools from Fourier analysis are applicable. Precisely, we have:

Proposition 7.4 ([69, Theorem 1 and Lemma 2]). Let A be a linear homogeneous differential operator on ℝd

with constant coefficients. ThenA is of constant rank if and only if there exists a linear homogeneous differential
operator B onℝd with constant coefficients such that

ker𝔸[ω] = im𝔹[ω] for all ω ∈ ℝd \ {0}, (7.1)

where𝔸 and 𝔹 are the symbols of A and B, respectively.
Moreover, suppose that A and B are, respectively, operators from ℝN to ℝM and from ℝM to ℝN . If (7.1)

holds, then, for all u ∈ S (ℝd;ℝN) such that A u = 0, there exists w ∈ S (ℝd;ℝM) such that u = Bw.

Observe that if the operator B satisfies (7.1), then it is in turn of constant rank; precisely, rank𝔹[ω] = N − r
if rank𝔸[ω] = r for all ω ∈ ℝd \ {0}. Proposition 7.4 builds a unified framework that encompasses some
well-studied special cases, such as the one of the curl and of the divergence. Results in the same spirit had
been previously obtained by J. Van Schaftingen [77, Proposition 4.2] for elliptic operators, which correspond
to the subclass of operators whose symbol is injective.

A second relevant finding related to constant rank operators was obtained by A. Guerra and B. Raiță [52],
who showed that this class is exactly the one in which a sort of Korn inequality holds. To state their result,
we need to introduce the projection ΠA associated with the operator A . For u ∈ S (ℝd;ℝN), it is defined as

ΠA u(x) := (F−1(ℙA Fu))(x), (7.2)

where F and F−1 are the Fourier transform and its inverse (see (3.4)), and the map

ℙA : ℝd \ {0} → Lin(ℝN ;ℝN)

associates to each ω ∈ ℝd \ {0} the orthogonal projection operator onto ker𝔸[ω]. Here and in the rest of the
paper, Lin(V;W) is the set of linear operators from the vector space V to the vector space W. We have the
following proposition.
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Proposition 7.5 (Korn-type inequality for constant rank operators [52]). Let p ∈ (1,∞) and let A be a linear,
k-th order, homogeneous differential operator with constant coefficients. ThenA is of constant rank if and only
if there exists c := c(d, p) such that

‖∇k(ϕ − ΠA ϕ)‖Lp(ℝd;ℝN×dk ) ≤ c‖A ϕ‖Lp(ℝd;ℝM) for all ϕ ∈ C∞c (ℝd;ℝN).

For future use, we remark that the conclusion remains valid when ϕ ∈ S (ℝd;ℝN), as the Fourier analysis on
which the proof is based is still viable in this case, or even when ϕ ∈ Wk,p(ℝd;ℝN), by approximation. The
sufficiency of the constant rank condition had been already observed in the literature, see for instance the
bibliography in [52] or the paper by D. Gustafson [54], where a proof for first order operators is given.

To the purpose of constructing Sobolev potentials forA -free fields, we first need to extend the projection
operator ΠA in (7.2) to nonsmooth maps. We invoke the following result by T. Kato [56], which we present
in a form due to F. Murat:

Lemma 7.6 ([64, Lemma 3.7]). Let A be a linear, k-th order, homogeneous differential operator with constant
coefficients and constant rank. Then the operator ΠA in (7.2) can be extended to a bounded linear operator
from Lp(ℝd;ℝN) to Lp(ℝd;ℝN).

In the proof of the lemma the constant rank assumption is fundamental. Indeed, it ensures that the map
ω 󳨃→ ℙA [ω] introduced above is analytic onℝd \ {0} (see [64]); this, in combination with the 0-homogeneity
of ℙA , allows the use of S. G. Mikhlin’s multipliers theorem (cf. Corollary 3.10).

Remark 7.7 (Self-adjointness of the projection operator). As a consequence of Parseval’s formula and of the
self-adjointness of ℙA , by density there holds

∫

ℝd

ΠA u ⋅ v dx = ∫
ℝd

u ⋅ ΠA v dx for all u, v ∈ Lp(ℝd;ℝN). (7.3)

We next clarify why ΠA is entitled to be named projection: Lemma 7.9 below shows that for an Lp-function
u one has thatA (ΠA u) = 0, and ΠA u = u ifA u = 0. We premise the instrumental notion ofMoore–Penrose
generalized inverse Λ† of a linear map Λ.

Lemma 7.8 (Properties of the generalized inverse [23, 52]). Given Λ ∈ Lin(ℝN ;ℝM), we let Λ† ∈ Lin(ℝM;ℝN)
be defined as

Λ† := (Λ⌊(ker Λ)⊥ )−1 ∘ ℙim Λ ,

where (ker Λ)⊥ = im Λ∗ is the orthogonal complement of the kernel of Λ and ℙim Λ is the orthogonal projection
on the image of Λ. Then the following hold:
(1) Λ† is the unique element in Lin(ℝM;ℝN) such that Λ† ∘ Λ = ℙim Λ∗ and Λ ∘ Λ† = ℙim Λ.
(2) Let𝔸 : O → Lin(ℝN ;ℝM) be a smooth map on the open set O ⊂ ℝd. If rank𝔸[ω] is constant for all ω ∈ O,

then the map O ∋ ω 󳨃→ (𝔸[ω])† is locally bounded and smooth.
(3) If A is a linear, k-th order, homogeneous differential operator with constant coefficients, then the map

ω 󳨃→ (𝔸[ω])† is (−k)-homogeneous.

We can now characterize the properties of the projection ΠA . Note that they are comparable to the ones pre-
sented by I. Fonseca and S. Müller [48, Lemma 2.14] for the periodic setting.We also refer to [60, Section 2.8]
for an alternative projection operator on the unit torus for which no null-average conditions are imposed.

Lemma 7.9. Let A be a linear, k-th order, homogeneous differential operator with constant coefficients and
constant rank. For every u ∈ Lp(ℝd;ℝN), there holds:
(1) For all ψ ∈ C1c (ℝd;ℝM), we have ΠA (A ∗ψ) = 0 and, as a consequence, A (ΠA u) = 0.
(2) If h = 0 and u ∈ Lp(ℝd;ℝN), or if h = 1, . . . , k − 1 and u ∈ Wh,p(ℝd;ℝN), there exists a positive constant

c := c(p, h) such that
‖∇h(u − ΠA u)‖Lp(ℝd;ℝN×dh ) ≤ c‖A u‖W−(k−h),p(ℝd;ℝN ). (7.4)

In particular, when A u = 0 inℝd, then ΠA u = u a.e.
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Proof. When u ∈ S (ℝd;ℝN), the facts that A (ΠA u) = 0 and ΠA u = u if A u = 0 are simple consequences
of (7.2). To extend these properties to the case of a nonsmooth u, we regard ψ ∈ C1c (Ω;ℝM) as a Schwartz
function on the whole space and we find

ΠA (A ∗ψ) = F−1(ℙA (𝔸∗Fψ)) = 0,

because the image of𝔸∗[ω] is orthogonal to ker𝔸[ω] for all ω ∈ ℝd. It follows by (7.3) that

∫

ℝd

ΠA u ⋅A ∗ψ dx = ∫
ℝd

u ⋅ ΠA A ∗ψ dx = 0

and statement (1) holds.
We now turn to point (2). We argue for h = 0 as the case h > 0 is analogous. We consider at first

u ∈ S (ℝd;ℝN) and we compute the Fourier transform of u − ΠA u. Setting û = Fu, we find

û[ω] − ℙA [ω]û[ω] = ℙim𝔸[ω]∗ û[ω] = 𝔸[ω]†(𝔸[ω]û[ω]) for all ω ∈ ℝd ,

where in the latter inequality we exploited statement (1) in Lemma 7.8.
Since 𝔸 is k-homogeneous and 𝔸† is (−k)-homogeneous, we infer by Corollary 3.10 that 𝔸†𝔸 is an

Lp-Fourier multiplier. Therefore, the operator T defined for u ∈ S (ℝd;ℝN) as Tu := F−1(û − ℙA û) can be
extended to a bounded linear operator from Lp(ℝd;ℝN) to Lp(ℝd;ℝN), which we still denote by T.

For every u ∈ S (ℝd;ℝN) we write

F(Tu)[ω] = 𝔸†[ω](F(A u)[ω])

= (1 + |ω|2)
k
2𝔸†[ω]((1 + |ω|2)−

k
2F(A u)[ω]),

whence, by the (−k)-homogeneity of A †, Mikhlin’s multipliers theorem yields

‖Tu‖Lp(Ω;ℝN ) ≤ c‖(I − ∆)−
k
2 (A u)‖Lp(Ω;ℝN ).

From the definition of T and the characterization ofW−k,p recalled in Section 3.3, inequality (7.4) follows for
u ∈ S (ℝd;ℝN). The general assertion is then obtained by density.

Eventually, we are able to establish the existence of potentials in a nonsmooth setting and prove the first
main result of this section. We will use the following variant of Poincaré–Wirtinger’s inequality, which can
be derived as a corollary of Rellich–Kondrachov’s theorem.

Lemma 7.10. Let Ω ⊂ ℝd be a bounded, connected, open set with Lipschitz boundary. There exists a constant
c > 0 such that for every u ∈ Wℓ,p(Ω;ℝN),

‖u − Π∇ℓu‖Lp(Ω;ℝN ) ≤ c‖∇ℓu‖Lp(Ω;ℝN×dℓ ), (7.5)

where Π∇ℓ is the projection on the kernel of the operator ∇ℓ.
Proof of Theorem 2.10. Let us fix u ∈ Lp(Ω;ℝN) satisfyingA u = 0 inW−k,p(Ω;ℝM). Sincewepostulate that Ω
is an A -extension domain, there exists an operator EA : Lp(Ω;ℝN) → Lp(ℝd;ℝN) as in Definition 7.1. In
particular, if we let ũ := EA u, then ũ is A -free onℝd.

As a first step, we approximate ũ bymaps in the image ofB. By the definition of the projection ΠA , there
exist a sequence {uk} ⊂ S (ℝd;ℝN) such that

uk → ũ and ũk := ΠA uk → ΠA ũ strongly in Lp(ℝd;ℝN).

By construction, the functions ũk belong toS (ℝd;ℝN) and, in view of Proposition 7.4, we recover a sequence
{wk} ⊂ S (ℝd;ℝN) such that ũk = Bwk. Therefore, recalling that ΠA ũ = ũ because ũ is A -free, we deduce

Bwk → ũ strongly in Lp(ℝd;ℝN). (7.6)

Next, we proceed by applying Proposition 7.5: since B has constant rank,

‖∇ℓ(wk − ΠBwk)‖Lp(ℝd;ℝM) ≤ c‖ũk‖Lp(ℝd;ℝN ),
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where ℓ is the order ofB. Note that the right-hand side is uniformly bounded in k because {ũk} is convergent
in Lp(Ω;ℝN) by (7.6). As a consequence, inequality (7.5) yields a function w ∈ Wℓ,p(Ω;ℝM) such that (up to
subsequences)

w̃k := wk − ΠBwk − Π∇ℓ (wk − ΠBwk) → w strongly in Lp(Ω;ℝM).

Since the functions wk are smooth, the equalityBwk = Bw̃k holds pointwise and we deduce from (7.6) that,
for all ϕ ∈ C∞c (Ω;ℝN),

∫
Ω

u(y) ⋅ ϕ(y)dy = lim
k→+∞
∫
Ω

w̃k ⋅B∗ϕ(y)dy = ∫
Ω

w(y) ⋅B∗ϕ(y)dy,

where B∗ is the adjoint of B. The conclusion is then achieved.

Remark 7.11. Let u ∈ Lp(Ω;ℝN) be an A -free map and let w ∈ Wℓ,p(Ω;ℝM) be a potential for u in the sense
of Theorem 2.10. Then there exist constants c0, c1 > 0 such that

1
c0
‖u‖Lp(Ω;ℝN ) ≤ ‖w‖Wℓ,p(Ω;ℝN ) ≤ c1‖u‖Lp(Ω;ℝN ). (7.7)

The first inequality easily follows from the identity u = Bw. Conversely, keeping in force the notations in the
proof of Theorem 2.10, we have

‖w̃k‖Wℓ,p(Ω;ℝM) ≤ c1‖ũk‖Lp(ℝd;ℝN ),
for a suitable c1 > 0, whence, by taking the limit k → +∞ and recalling requirement (2) in Definition 7.1, the
second estimate in (7.7) is achieved.

7.2 A -free extensions

The Γ-convergence analysis that we developed in Sections 4–6 is grounded on the splitting argument con-
tained in Lemma 4.2, which in turn requires Assumption 2. The latter is designed to tackle the periodically
perforated structure featured by our problem. As a preliminary step towards Theorem 2.11, we tackle the
simpler scenario in which the parameter ε is neglected. We establish the following:

Theorem 7.12 (Existence of A -free extensions). Let D, O ⊂ ℝd be open sets such that D is connected, O is
bounded, and ∂D ∩ Ō is a Lipschitz boundary. Let also A be a linear, k-th order, homogeneous differential
operatorwith constant coefficients and constant rank, and letB be a linear, ℓ-th order, homogeneous differential
operator with constant coefficients such that (7.1) holds. We further assume that
∙ for all A -free u ∈ Lp(D;ℝN) there exists w ∈ Wℓ,p(D;ℝM) satisfying u = Bw,
∙ there exist a projection operator on the subspace of B-free maps ΠB : Wℓ,p(D;ℝM) → Wℓ,p(D;ℝM) and

a constant c > 0 such that

‖∇ℓ(w − ΠBw)‖Lp(D;ℝN×dℓ ) ≤ c‖Bw‖Lp(D;ℝM) for all w ∈ Wℓ,p(D;ℝN). (7.8)

Then there exist a map
EA : Lp(D;ℝN) → Lp(O;ℝN)

and a constant c := c(d, p,A , D, O) such that, for all u ∈ Lp(D;ℝN) with A u = 0 in W−k,p(D ∩ O;ℝN),
(1) EA u = u a.e. in D ∩ O,
(2) ‖EA u‖Lp(O;ℝN ) ≤ c‖u‖Lp(D;ℝN ), and
(3) A (EA u) = 0 on O.

Here, the projection ΠB on the kernel of B has to be understood as an analogue of the one in (7.2)
and Lemma 7.6. The main difference is that ΠB acts on functions defined on a domain, and not on the
whole space.

Remark 7.13 (On Korn-type inequalities). After the first version of thismanuscriptwas completed, A. Arroyo-
Rabasa proved in the preprint [6] that inequalities of the form (2.13) (that is, (7.8) for every open bounded D)
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hold whenever B meets a suitable maximal rank requirement, which entails, in particular, that B has con-
stant rank. Therefore, ifA admits a potentialB in such class, the assumptions in Theorem 7.12 are satisfied.
An example of maximal rank operator is the divergence, see Example 7.20 below.

We will comment on the relationships between the previous theorem and the theory developed above at the
end of this section, see Remark 7.16. For themoment being, let us just highlight that the hypothesis concern-
ing existence of potentials for A -free fields on D enables us to recast the problem in terms of extension of
Sobolev maps. For the latter, an adaptation of well-established arguments yields the following:

Lemma 7.14 (cf. [1, Lemma 2.6]). Let D, O ⊂ ℝd be open sets. If D is connected, O is bounded, and ∂D ∩ Ō is
a Lipschitz boundary, there exist a bounded linear map

E : Wℓ,p(D;ℝN) → Wℓ,p(O;ℝN)

and a constant c := c(d, p, D, O) such that
(1) Eu = u a.e. in D ∩ O,
(2) ‖Eu‖Lp(O;ℝN ) ≤ c‖u‖Lp(D;ℝN ), and
(3) ‖∇ℓ(Eu)‖Lp(O;ℝN×dℓ ) ≤ c‖∇ℓu‖Lp(D;ℝN×dℓ ).
Proof. The proof follows the same lines of [1, Lemma 2.6]. Note that, in order to recover item (3) when ℓ > 1,
Poincaré’s inequality has to be replaced with (7.5).

We are now in a position to prove the first main result of this section.

Proof of Theorem 7.12. Let us fix u ∈ Lp(D;ℝN) such that A u = 0. The current assumptions grant that there
is a Sobolev potential w ∈ Wℓ,p(D;ℝM) for u, i.e., u = Bw, and that it satisfies

‖∇ℓ(w − ΠBw)‖Lp(D;ℝM×dℓ ) ≤ c‖u‖Lp(D;ℝN ). (7.9)

If E is the extension operator in Lemma 7.14, we set

EA u := B(E(w − ΠBw)).

By construction, then, EA u = u almost everywhere in D ∩ O. Additionally,A (EA u) = 0 onO by the definition
of A -free maps and (7.1).

To conclude, we need to show that ‖EA u‖Lp(O;ℝN ) ≤ c‖u‖Lp(D;ℝN ). By the definition of EA u, we have

‖EA u‖Lp(O;ℝN ) = ‖B(E(w − ΠBw))‖Lp(O;ℝN ) ≤ c‖∇ℓ(E(w − ΠBw))‖Lp(O;ℝM×dℓ ),
c being a constant depending on B (and hence on A ). Thanks to Lemma 7.14, we obtain a bound in terms
of the potential of u:

‖EA u‖Lp(O;ℝN ) ≤ c‖∇ℓ(w − ΠBw)‖Lp(D;ℝM×dℓ )
for some c := c(d, p,A , D, O). The conclusion is achieved by combining the above inequality with (7.9).

Arguing as in the proof of Theorem 7.12, we ground the study about extensions from perforated domains on
the corresponding result for Sobolev functions. When the perforations are detached from the boundary, the
following holds:

Proposition 7.15 (cf. [25, Lemma 8] and references therein). Let Ω1,ε be as in position (1.2). Then there exist
a positive constant c := c(d, p, D) independent of ε and Ω, as well as a sequence of operators {Eε}, with
Eε : Wℓ,p(Ω1,ε;ℝN) → Wℓ,p(Ω;ℝN), such that
(1) Eεu = u a.e. in Ω1,ε,
(2) ‖Eεu‖Lp(Ω;ℝN ) ≤ c‖u‖Lp(Ω1,ε;ℝN ),
(3) ‖∇ℓ(Eεu)‖Lp(Ω;ℝN×dℓ ) ≤ c‖∇ℓu‖Lp(Ω1,ε;ℝN×dℓ ), and
(4) if {uε} ⊂ Lp(Ω;ℝN) is bounded and {∇ℓuε} is p-equiintegrable, then {∇ℓ(Eεuε)} is p-equiintegrable as well.

The proposition may be proved by adapting the strategy in the seminal work by E. Acerbi, V. Chiadò Piat,
G. Dal Maso and D. Percivale [1]. Their result addresses only the case ℓ = 1, and the analogue of (4) is not
mentioned; we omit nonetheless the proof in the case ℓ > 1, which is a natural adaptation of [1, proof of
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Theorem 2.1]. As for point (4), it is a mere consequence of the construction of Eε: it suffices to note that
reflections, dilations, and patching by partitions of unity preserve p-equiintegrability.

Thanks to the previous result, we obtain that Assumption 2 is fulfilled by an operator A as soon as it
admits a potential for which a Korn-type inequality holds. Note that it is fundamental that we start from
fields u which are A -free in the whole set Ω: in principle, the existence of a potential would be false if we
worked with maps that are A -free just on the perforated set Ω1,ε, cf. Remark 7.2.

Proof of Theorem 2.11. Let u ∈ Lp(Ω;ℝN) be an A -free map and let w ∈ Wℓ,p(Ω;ℝM) be its potential. In the
same spirit of Theorem 7.12, we set

EεA u := B(Eε(w − ΠBw)),

where Eε is the extension operator in Proposition 7.15. As in the proof of Theorem 7.12, it easy to check
that (1) and (3) in Assumption 2 hold. We now turn to item (2), that is,

‖EεA u‖Lp(Ω;ℝN ) ≤ c‖u‖Lp(Ω1,ε;ℝN ) for all A -free u ∈ Lp(Ω;ℝN).

By the definition of Ω0,ε in (1.1), there exists an open set Ω󸀠 ⊂ Ω with Lipschitz boundary such that
Ω0,ε ⊂ Ω󸀠 and that δ := dist(∂Ω󸀠, ∂Ω) > 0. In particular, recalling (3.1), Ω󸀠 ⊂ Ω̂ε if √dε < δ, and {Ω̂ε , Ω \ Ω̄󸀠}
is an open cover of Ω. We observe that

Eεw = w a.e. in Ω \ Ω̄󸀠 ⊂ Ω1,ε ,

whence, by the definition on EεA ,

‖EεA u‖Lp(Ω\Ω󸀠;ℝN ) = ‖u‖Lp(Ω\Ω󸀠;ℝN ) ≤ ‖u‖Lp(Ω1,ε;ℝN ) (7.10)

For what concerns the contribution on Ω̂ε, if we let

Ω̂1,ε := ⋃
z∈Ẑε

ε(D1 + z) with Ẑε := {z ∈ ℤd : ε(Q + z) ⊂ Ω},

we have

‖EεA u‖Lp(Ω̂ε;ℝN ) ≤ c‖∇
ℓ(Eε(w − ΠBw))‖Lp(Ω̂ε;ℝM×dℓ ) ≤ c‖∇ℓ(w − ΠBw)‖Lp(Ω̂1,ε;ℝM×dℓ ).

The second inequality is a consequence of the construction of Eε, which is obtained by patching together the
extension operators from each “stiff” unit ε(D1 + z) to the cell ε(Q + z). Thanks to the definition of Ω̂1,ε we
can further bound the last quantity from above by invoking Korn’s inequality

‖∇ℓ(w − ΠBw)‖Lp(D1;ℝM×dℓ ) ≤ c‖Bw‖Lp(D1;ℝN ),

which holds by assumption. We obtain

‖EεA u‖Lp(Ω̂ε;ℝN ) ≤ c‖u‖Lp(Ω̂1,ε;ℝN ) ≤ c‖u‖Lp(Ω1,ε;ℝN ).

On the whole, the last estimate and (7.10) yield

‖EεA u‖Lp(Ω;ℝN ) ≤ ‖E
ε
A u‖Lp(Ω̂ε;ℝN ) + ‖E

ε
A u‖Lp(Ω\Ω󸀠;ℝN ) ≤ c‖u‖Lp(Ω1,ε;ℝN ).

Eventually, we turn to (4). For any ε > 0, let wε be the potential of uε. We fix η > 0 arbitrarily and we let
E ⊂ Ω be a Lebesgue measurable set. As a first step, we prove that there exists m > 0 such that L d(E) < m
implies

‖∇ℓ(wε − ΠBwε)‖
p
Lp(E;ℝM×dℓ ) < η.

Since {uε} is p-equiintegrable, there exists m̃ > 0 with the property that ‖uε‖Lp(F;ℝN ) < η whenever
L d(F) < 2m̃. Thanks to the outer regularity of the Lebesgue measure, we can select a finite union of open
hyperrectanglesU ⊃ E such thatL d(U) < L d(E) + m̃. Thus, if we setm := m̃ andwe assume thatL d(E) < m,
thanks to (2.13) we deduce

‖∇ℓ(wε − ΠBwε)‖
p
Lp(E;ℝM×dℓ ) ≤ ‖∇ℓ(wε − ΠBwε)‖

p
Lp(U;ℝM×dℓ ) ≤ c‖uε‖pLp(U;ℝN ) < cη,

where the last inequality is a consequence of the p-equiintegrability of {uε}.
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In conclusion, we infer the p-equiintegrability of {EεA uε} from the one of {∇ℓ(wε − ΠBwε)}. According to
the definition of EεA u, we have

‖EεA uε‖Lp(E;ℝN ) = ‖B(E
ε(wε − ΠBwε))‖Lp(E;ℝN ) ≤ c‖∇ℓ(Eε(wε − ΠBwε))‖Lp(E;ℝM×dℓ ),

whence, owing to point (4) in Proposition 7.15,

‖EεA uε‖Lp(E;ℝN ) < η

if L d(E) is sufficiently small, as desired.

In light of our analysis, existence of potentials and of extension operators turn out to be almost equivalent;
a key role in this respect is played by (7.8). We elaborate on this point in the next remark.

Remark 7.16 (Relations between existence of potentials and of extension operators). Here, we compare the
main results of the current section.

We let the operator A be as above, notably we assume that it has constant rank. Thanks to Theo-
rem 2.10, we know that if D ⊂ ℝd is a bounded, connected, open set with Lipschitz boundary which is also
an A -extension domain in the sense of Definition 7.1, then A -free maps on D admit potentials. In short, for
the class of operators under consideration and for sufficiently “nice” open sets D, it holds

D is an A -extension domain 󳨐⇒ existence of potentials for A -free fields on D. (7.11)

Conversely, if D ⊂ ℝd is an open bounded set with Lipschitz boundary such that all A -free fields on D
admit Sobolev potentials through the operator B and if for the latter (7.8) holds, then D is an A -extension
domain. Indeed, by a slight adaptation of the proof, a variant of Theorem 7.12 for the case O = ℝd can be
established. Schematically, again for sufficiently “nice” open sets D, we have

existence of potentials for A -free fields on D
Korn-type inequality for B on D

} 󳨐⇒ D is an A -extension domain.

All in all, we see that, given a constant rank operator A and a bounded, connected, open set with
Lipschitz boundary D, the existence of Sobolev potentials for A -free maps on D and the existence of an
A -free extension operator from D to ℝd are nearly equivalent. More specifically, they would actually be
equivalent as soon as we knew that the generalized Korn inequality (7.8) holds when D is a “nice” open set
and B is a constant rank operator. In conclusion, we believe that investigations about the validity of (7.8)
constitute a very interesting line of research.

We conclude with a parade of examples.

Example 7.17 (Curl). For the choice A = curl, we have (classically) d = N = M = 3 and

curl u =
3
∑
i=1
A(i) ∂u

∂xi
,

with

A(1) := (
0 0 0
0 0 −1
0 1 0

) , A(2) := (
0 0 1
0 0 0
−1 0 0

) , A(3) := (
0 −1 0
1 0 0
0 0 0

) .

The symbol of curl is then

𝔸[ω] = (
0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

)

and rank𝔸[ω] = 2 for all ω ∈ ℝd \ {0}.
It is easy to check that Assumption 1 holds. Besides, when Ω is simply connected, in view of Proposi-

tion 7.15 all the conditions in Assumption 2 are fulfilled too.
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Example 7.18 (Operators associated with higher-order gradients). Let Ω be simply connected. Then, for any
k ∈ ℕ \ {0}, a constant rankdifferential operatorA canbe constructed such thatA u = 0 if andonly if u = ∇kw
for a suitable w [48]. Then, similarly to the previous example, for such an operator A Assumptions 1 and 2
are consequences, respectively, of a simple check and of Proposition 7.15.

Example 7.19 (The curl curl operator). Let d = M = N = 3 and, for all i, j = 1, 2, 3, let E(i,j) be the matrix
whose entries all 0, but for the one in position (i, j), which equals 1. We consider the operator A = curl curl,
defined as

curl curl u :=
3
∑
i,j=1

A(i,j) ∂
2u

∂xj∂xi
,

where
A(i,i) = −E(i+1,i+1) − E(i+2,i+2)

(the indices are computed modulo 3) and
A(i,j) = E(i,j).

The symbol of this operator is

𝔸[ω] = (
−ω2

2 − ω
2
3 ω1ω2 ω1ω3

ω1ω2 −ω2
1 − ω

2
3 ω2ω3

ω1ω3 ω3ω3 −ω2
1 − ω

2
2

)

and rank𝔸[ω] = 2 for all ω ∈ ℝd \ {0}.
When Ω ⊂ ℝ3 is a bounded and simply connected domainwith Lipschitz boundary, we have thatA u = 0

if and only if u = Bw for a suitable potentialw, whereB is the symmetric gradientBw := 1
2 (∇w + (∇w)

t). As a
corollary of a recent result by F. Cagnetti, A. Chambolle, M. Perugini and L. Scardia [19, Theorem 1.1], every
such Ω is a curl curl-extension domain, whence Assumption 1 is satisfied. The classical Korn’s inequality
grants also that Assumption 2 holds.

Example 7.20 (Divergence). Let us choose A = div, div being the standard divergence operator on ℝd. Then
N = d, M = 1, and

div u =
d
∑
i=1
eti ⋅

∂u
∂xi

,

where, for i = 1, . . . , d, ei is the i-th element of the canonical basis ofℝd and eti is its transpose. The symbol
of div is

𝔸[ω] =
d
∑
i=1
ωieti ,

thus rank𝔸[ω] = 1 for all ω ∈ ℝd \ {0}. For what concerns Assumption 1 and the existence of extension
operators, we resort to a result by T. Kato, M. Mitrea, G. Ponce andM. Taylor, which we present in a simplified
setting:

Proposition 7.21 (Extensions and potentials for divergence-free vector fields [57]). LetΩ ⊂ ℝd beabounded
and simply connected set with Lipschitz boundary. Then the following holds:
(1) Ω is a div-extension domain in the sense of Definition 7.1.
(2) For every u ∈ Lp(Ω;ℝd) such that div u = 0 in Ω, there exists w ∈ W1,p(Ω;Antisym(d × d)) satisfying

u = Divw := ∑
i,j

∂wi,j
∂xj

ei in Ω,

whereAntisym(d × d) is the space of d × d antisymmetricmatrices. Besides, w canbe selected in suchaway
that the map u 󳨃→ w from Lp(Ω;ℝd) to W1,p(Ω;ℝd) is linear and bounded.

It is interesting to notice that the authors of [57] derive item (2) from (1), that is, they prove an implication of
the form (7.11).

It is proved in [6, Section 4.1] that Div satisfies (2.13). Hence, Theorem 7.12 holds for A = div and
Assumption 2 is fulfilled too.
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