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ABSTRACT. We investigate the problem of dimension reduction for plates in nonlinear magnetoelasticity.
The model features a mixed Eulerian-Lagrangian formulation, as magnetizations are defined on the
deformed set in the actual space. We consider low-energy configurations by rescaling the elastic energy
according to the linearized von Karman regime. First, we identify a reduced model by computing the
I-limit of the magnetoelastic energy, as the thickness of the plate goes to zero. This extends a previous
result obtained by the first author in the incompressible case to the compressible one. Then, we introduce
applied loads given by mechanical forces and external magnetic fields and we prove that sequences of
almost minimizers of the total energy converge to minimizers of the corresponding energy in the reduced
model. Subsequently, we study quasistatic evolutions driven by time-dependent applied loads and a rate-
independent dissipation. We prove that energetic solutions for the bulk model converge to energetic
solutions for the reduced model and we establish a similar result for solutions of the approximate
incremental minimization problem. Both these results provide a further justification of the reduced
model in the spirit of the evolutionary I'-convergence.

1. INTRODUCTION

Magnetoelasticity concerns the interaction between magnetic fields and deformable solids [12, 20, 44].
Indeed, it is known that magnetic materials can change their strain upon the application magnetic
fields and this behaviour is termed magnetostriction. Conversely, it is possible to modify the magnetic
response of such materials by means of mechanical loads. Both these phenomena are of great interest
in engineering since they constitute the basic operating principle of many technological devices such as
sensors and actuators.

Internally, magnetic materials are subdivided into regions of uniform magnetization called magnetic
domains [31]. This structure originates from the competition of two effects: the magnetocrystalline
anisotropy, that is, the existence of preferred magnetization directions, called easy axes, determined by
the underlying crystal lattice; and the long-range interactions between magnetic dipoles which favor
configurations with divergence-free magnetization throughout the specimen. When a magnetic field is
applied, a reorganization of the domain structure is observed: the boundaries between these domains
shift and the domains themselves rotate. This is mainly due to the more favourable orientation of certain
easy axes with respect to the direction of the external field [34]. As a result, these movements produce a
macroscopic strain and, in turn, lead to the deformation of the specimen.

According to the variational theory of Brown [12], the magnetoelastic energy is a function of deformations
and magnetizations, and equilibrium states correspond to minima of the energy functional. The model
contemplates finite strains. Therefore, while deformations are defined on the reference configuration
(Lagrangian), magnetizations are defined on the deformed set in the actual space (Eulerian).

Apart form magnetoelasticity [5, 11, 36], mixed Eulerian-Lagrangian formulations appear also in other
contexts, such as the theory of liquid crystals [4, 30], phase transitions [28, 51] and finite plasticity [33, 52].
From the mathematical point of view, the analysis of such models is very challenging. Indeed, several
standard techniques are no longer available in this setting, so that novel strategies are required. For
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these reasons, in recent years, mixed Eulerian-Lagrangian variational problems got the attention of the
mathematical community.

Rigorously derived lower-dimensional models of continuum mechanics play an important role in appli-
cations because they preserve the main features of the bulk model but they are usually simpler from
the computational point of view [40, 41]. Fundamental results obtained in [24, 25] have initiated a
remarkable progress in this area and have established the prominent role of I'-convergence [7] in the
validation of reduced models for thin structures. For micromagnetics, among others, important results
have been achieved in [13, 26]. However, in the case of magnetoelasticity, few rigorous results are avail-
able. Two-dimensional models were first derived in [35] for Kirchhoff-Love plates starting from linearized
magnetoelasticity, and then in [16] for non-simple materials in the fully nonlinear membrane regime. In
the first case, rate-independent evolutions were also studied.

In this contribution, we derive a reduced model for plates in the linearized von Karman regime starting
from nonlinear magnetoelasticity. Our results develop the investigations initiated in [8] for incompressible
materials to various extents. We consider compressible materials and we make more realistic assumptions
on the elastic energy density. Also, we include applied loads given by mechanical forces and external
magnetic fields. Unlike [8], our analysis covers both the static the quasistatic setting. In the first case, we
employ I'-convergence techniques to study the asymptotic behaviour of minimizers of the magnetoelastic
energy, as the thickness of the plate goes to zero. In the latter one, we investigate the dimension reduction
in the framework of evolutionary I'-convergence [46].

Let h > 0 denote the thickness of a thin magnetoelastic plate € := S x hI C R3, where S C R?
represents the section and I := (—1/2,1/2). Deformations are maps ¢: ) — R3 while magnetizations
are given by maps m: ¢(Q;,) — R3. Deformations are assumed to be injective and orientation-preserving
in order to exclude the interpenetration of matter, and satisfy clamped boundary conditions [37]. Also,
for sufficiently low constant temperature, deformations and magnetizations are subject to the magnetic
saturation constraint [12, 32, 49] which, up to normalization, reads

|m o ¢|det Ve =1 in Q.

The magnetoelastic energy per unit volume is accounted by the functional

1 1 , 1 ,
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This consists of three contributions: the elastic energy, which is rescaled by A?t! with 5 > 6 and depends
on the elastic density W},; the exchange energy, that penalizes spatial changes of magnetizations; and
the magnetostatic energy, which involves the stray field potential 1, : R?* — R3 given by a solution of
Maxwell equations:

At = div (X (0,)m) in R3.

In particular, we specify the structure of the elastic energy density W}, in (1.1), which is assumed to take
the form

Wi(F, ) = & ((I + epA(det F) @ A(det F))1F> : (1.2)

where ® is a frame indifferent energy density satisfying physical growth conditions and ¢; ~ h%/2 is a
positive parameter. Similar expressions, with the nematic director in place of the magnetization, are
widely accepted in the context of liquid crystals [19] and we refer to [2] for a specific example in the
case of plates. Expression of the elastic energy that are formally analogous to the one in (1.2) have
already been considered in the dimension reduction of prestrained materials [38, 39] and heterogeneous
multilayers [17, 50].

Assuming that ® is minimized at the identity, formula (1.2) induces the competition of deformation
gradient and magnetization in the minimization of the elastic energy which characterizes magnetostrictive
effects. Therefore, the constitutive assumption in (1.2) makes this setting more realistic compared with
the one in [8], where the elastic energy is minimized at the identity independently on the magnetization.
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Our main results are contained in Theorem 3.1 and Theorem 3.13 for the static setting, and in Theorem
4.3 and Theorem 4.9 for the quasistatic setting. The enunciation of these results requires the specification
of the setting and the introduction of a considerable amount of notation. Therefore, we limit ourselves
to briefly describe them and we postpone the precise statements to Sections 3 and 4.

In Theorem 3.1, we compute the I-limit of the magnetoelastic energy in (1.1), as h — 0%. This is
computed with respect to the convergence of the averaged displacements [25], and of the composition
of magnetizations with deformations. The limiting energy that we obtain is purely Lagrangian and is
naturally given by integrals on the section S. The elastic term in the reduced model is obtained by
the linearization of ® at the identity similarly to [25]. In contrast with [8], this term exhibits a strong
coupling between elastic and magnetic variables in agreement with models of linearized magnetoelasticity
[18]. Also, as in [13, 26], the magnetostatic term simplifies substantially in the reduced model.

In Theorem 3.13, we consider applied loads given by mechanical forces and external magnetic fields,
all dependent on the thickness of the plate. In particular, the energy contribution determined by the
external magnetic field, usually called Zeeman energy, is of Eulerian type. The total energy is given
by the difference between the magnetoelastic energy and the work of applied loads. Having prescribed
the asymptotic behaviour of the applied loads, we prove that sequence of almost minimizers of the total
energy converge, as h — 0%, to minimizers of the corresponding energy functional in the reduced model.
Because of the rescaling of the elastic energy, the analysis in quite involved since the coercivity of the
total energy functional is not immediate.

In the quasistatic setting we adopt the framework of rate-independent processes with the notion of
energetic solution [45]. We consider time-dependent applied loads and we introduce the dissipation
distance

((¢,m)7($,m)) s l/ Im o ¢det Vop — it o pdet V| dX.
h Qp

Our results in the quasistatic setting are in the spirit of evolutionary I'-convergence [46]. The first one,
namely Theorem 4.3, states the convergence energetic solutions for the bulk model to energetic solutions
of the reduced model, as h — 0F. Here, the existence of energetic solutions for the bulk model is part
of the assumptions, while the existence for the reduced model follows as a byproduct. However, our
setting is compatible with the existence of energetic solutions for the bulk model in the sense that, under
additional assumption on the density ®, this can be ensured. We refer to Remark 4.4 for more details.

Subsequently, we present a variant of the previous convergence result. For every h > 0, we consider the
approximate incremental minimization problem [46], a relaxed version of incremental minimization prob-
lem that has been introduced in order to cope with the possible lack of minimizers of energy functionals.
Indeed, this approximate problem always admits solutions. In Theorem 4.9, we show that, given a se-
quence of partitions of the time interval whose size vanish together with some tolerances, as h — 0T, the
piecewise-constant interpolants corresponding to solutions of the approximate incremental minimization
problems for suitably well prepared initial data converge, as h — 0%, to an energetic solution of the
reduced model.

We emphasize that all the results in this paper are achieved without resorting on any regularization of
the energy. However, our argument to prove the compactness of magnetizations works only under some
restriction on the scalings. Precisely, the scaling of the elastic energy in (1.1) has to satisfy the condition
B > 6V p, where p > 3 is the integrability exponent of deformations, while the linearized von Karman
regime corresponds to S > 4. Note that the restriction p > 3 is merely technical. Indeed, although some
techniques to tackle the case p > 2 have been developed in the literature [5], these are not sufficient for
our arguments which rely on explicit estimates on the rate of convergence of the deformation towards the
identity.

The paper is structured as follows. In Section 2, we introduce the mathematical model and we list all the
assumptions. In Section 3, we address the static setting: Theorem 3.1 and Theorem 3.13 are stated and
proved in Subsection 3.1 and Subsection 3.2, respectively. Finally, Section 4 is devoted to the quasistatic
setting. Theorem 4.3 and Theorem 4.9 are presented in Subsections 4.2 and Subsection 4.3, respectively.
We conclude with Subsection 4.4 by briefly mentioning an alternative choice for the dissipation distance.
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Notation. For scalars a,b € R, we use the notation a A b := min{a, b} and a V b := max{a,b}. Given
a=(a,a?,a®)T € R3 weseta’ = (a',a?)" € R2. The null vector in R? is denoted by 0, so that 0’ is the
null vector in R?. The same notation applies also to space variables, and V' and (V’)? denote the gradient
and the Hessian with respect to the first two variables, respectively. Given A = (A;);ill%% € R3*3, we
set A" = (A;);lezz € R?*2, The null matrix and the identity matrix in R3*3 are denoted by O and I,
thus O and I" are the corresponding matrices in R?*2. The tensor product of a,b € R? is given by
a®bc R3>*3 where (a ® b); = a't’ for every 4,7 € {1,2,3}. The identity map on R? is denoted by id.
We denote general points in the physical (unscaled) space, in the reference space and in the actual space
by X, x and &, respectively. Accordingly, the integration with respect to the three-dimensional Lebesgue
measure will be denoted by dX, de and d§, respectively. The integration with respect to the one and
the two-dimensional Hausdorff measure in the reference space will be denoted by dl and da, respectively.
We denote by x4 the characteristic function of a set A C RY, where N € {1,2,3}. We will use standard
notation for Lebesgue, Sobolev and Bochner spaces, and for spaces of functions of bounded variation.
Given S C R? open and an embedded submanifold M C RM™, where M € N, we denote by W14(S; M),
where 1 < g < oo, the set of maps 7 € W14(S;RM) such that n(x’) € M for almost every &’ € S. In
the following, M will be either the unit sphere S C R? or the special orthogonal group SO(3) C R3*3.
Finally, the topological degree of a map y € C°(Q;R3), where Q C R? is open and bounded, on € at
¢ € R?\ y(09Q) will be denoted by deg(y, 2, &).

We make use of the Landau symbols ‘o’ and ‘O’. When referred to vectors or matrices, these are to be
understood with respect to the maximum of their components. We will adopt the common convention of
denoting by C,Cy,Cs ... positive constants that can change from line to line. We will identify functions
defined on the plane with functions defined on the three-dimensional space that are independent on the
third variable. In general, we will think at the parameter h > 0 as varying along a sequence even if
this is not mentioned. The particular sequence of thicknesses considered will be specified only in a few
circumstances, when this is particularly important for the understanding.

2. BASIC SETTING

In this section we describe the general setting of the paper. First, in Subsection 2.1, we introduce the
mechanical model and we list all the assumptions. Then, in Subsection 2.2, we perform a standard change
of variables in order to work on a fixed domain.

2.1. The static model. Let Q; := S x hl represent a thin magnetoelastic plate in its reference config-
uration. The section S C R? is a bounded connected Lipschitz domain, while the parameter h > 0 gives
the thickness of the plate and I :== (—1/2,1/2).
The plate experiences elastic deformations given by maps ¢ € WHP(Q,; R3) for some fixed p > 3. By
the Morrey embedding, any such map admits a continuous representative with whom it is systematically
identified. Every deformation ¢ is required to be orientation-preserving, namely to satisfy the constraint
det V¢ > 0 almost everywhere in €25, and to be almost everywhere injective. This means that there
exists a set X C €, with #3(X) = 0 such that ®lo,\x is injective. Recall that any such map ¢ has
both Lusin properties (N) and (N~1), that is, Z3(¢(X)) = 0 for every X C €, with #3(X) = 0 and
L3(p 1 (Y)) = 0 for every Y C R? with £3(Y) = 0. Also, the area formula and the change-of-variable
formula hold for such a map [43]. We impose clamped boundary conditions by requiring each deformation
@ to satisfy

¢ =1id on 0S x hl. (2.1)

Given a deformation ¢, we define the corresponding deformed configuration as QZ’ = () \ P(0Q).
This set is open [11, Lemma 2.1] and we have .Z3(¢(Q4) \ Qf) = 0 thanks the Lusin property (N).
Magnetizations are then defined as maps m € W1’2(Qf; R3) subject to the saturation constraint:

|mo ¢|det Vp =1 a.e. in Q. (2.2)
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Neglecting the material parameters, the energy corresponding to a deformation ¢ € W1P(Q,;R3) and a
magnetization m € W12 (Qf, R?), is given by

Gu(p,m) = hlﬁ/Q, Wi(Vp,mo ¢) dX+/Q¢ |Vm|2d§+%/RS |Vehp |* dE. (2.3)

The first term in (2.3) represents the elastic energy and it is rescaled according to the linearized von
Karmaén regime [25]. Precisely, we assume
B >6Vp.

Note that, by the Lusin property (N~!), the composition m o ¢ is measurable and its equivalence class
does not depend on the choice of the representative of m.

The elastic energy density Wy : X — [0, +00), where we set
X={(F,A) e RY*xR*: (det F)|A| =1},

is continuous and takes the form

Wi,(F, ) = @ (Lp((det F)A)"'F) (2.4)
for some function ®: R3** — [0, +00). In (2.4), we define Ly: S? — R3*® by setting
Ly(z)=1+cpz® z, (2.5)
where ¢, > 0. Regarding the asymptotic behaviour of (cj), we assume the existence of the limit
o
co = hligl-F 7}1,/8/2 >0 (26)
A direct computation shows that
det Lp(z) =1+¢y (2.7)
for every z € S%. In particular, the matrix L (z) is invertible and its inverse is given by
_ Ch
L t=1- . 2.8
n(2) T ®z (2.8)

The function ® is assumed to have the following properties:

(i) Normalization:

®(I) = 0 = min @, (2.9)
(ii) Frame indifference:
VR e SO(3), VEERY®, O(RE) = ®(E), (2.10)
(iii) Growth: there exist Cy,C1,Cy > 0 and a > 1 such that
VE e RS, &(E) > Cydist*(E; SO(3)) v dist?(E; SO(3)), (2.11)
and
VE cRY? B(E) > G _ Cs (2.12)
t ~ (detE)e ’ '
(iv) Regularity:
® is continuous and of class C? in a neighborhood of SO(3), (2.13)
Given (2.8), we have
VRe SO3),VzeS? Ly(Rz)'=RLy(z)"'R". (2.14)

This, together with (2.10), yields the frame-indifference of W},, namely
VR e SOB3),V(F,A) X, Wp(RF,R\) =W,(F,X\). (2.15)
From (2.9) and (2.15), we realize that the function W}, is minimized on the set
{(RF,R\): Re SO(3), (F,A\) €X, F=Lp((det F)\)}.
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By (2.11), the map ® has global p-growth and quadratic growth close to SO(3). In particular, there exist
C4,Cs > 0 such that, for ¢ € {2, p}, there holds

VEeRY?, &(E)>C|E|? - Co.
The specific form of the growth condition of ® with respect to the determinant in (2.12) is assumed just
for simplicity. Actually, because of the rescaling of the elastic energy, we could also assume a = 1. More
generally, assumption (2.12) can be replaced by the requirement

VE e RY?, &(E) > y(det E),

where 7y: (0,400) — [0, +00] is Borel-measurable and satisfies

1) =0 = min~, lim hy(h) = 4oc.
7(1) min vy Jim hy(h) = +o0

Assumptions (2.9) and (2.13) justify the second-order Taylor expansion of ® close to the identity. Pre-
cisely, we have the following:

1
VEeR: |E|«1, ®I+E)= 5Q(E) + w(E). (2.16)

The quadratic form @ is defined by Q(E) := D?*®(I)(E, E), while w(E) = o(|E|?), as |E| — 07. Note
that @ is positive semidefinite and, in turn, convex by (2.9). Additionally, exploiting (2.11) and (2.16),
by arguing as in [47, p. 927] one shows that @ is positive definite on symmetric matrices, that is, there
exists C' > 0 such that

VE e R Q(E) = Q(symE) > Clsym E|*. (2.17)
The last two terms in (2.3) are of Eulerian type. The second one is the exchange energy, while the third
one is the magnetostatic energy. This last term involves the stray field potential ¥, : R? — R? which is
a weak solution of the magnetostatic Maxwell equation:

Ay, = div (xgem) in R®. (2.18)
h
It is proved that weak solutions of (2.18) exist and are unique up to additive constants [5, Proposition
8.8]. Therefore, the magnetostatic energy is well defined.

We mention that the magnetostatic term usually comprises other terms such as the anisotropy energy
[34] that here, for simplicity, we are neglecting,.

2.2. Change of variables and rescaling. For h > 0, we introduce the rescaling map 7;, defined by
wh(x) = ((2') 7, has) " for every x € R3. Set Q=S x I. Given any ¢ € W1P(Q,; R?), we consider the
map y = ¢ omplg € WHP(Q;R3). In view of (2.1), this map satisfies

y =mp on 05 x I. (2.19)

Also, given the set Q¥ := y(Q) \ y(99), there holds QY = Qf and, in view of (2.2), each magnetization
m € WH2(Q¥; R3) satisfies
moy|det Vy = h a.e. in . (2.20)
Therefore, we define the class of admissible states as
Oy = {(y,m) sy € WHP(Q;R?), det Vy > 0 a.e., y a.e. injective, y = ), on 95 x I,

(2.21)
me W1,2(Qy;R3)’ |moy|det Vy = h a.e. in Q}

Recalling (2.3) and applying the change-of-variable formula, we obtain
1 1 1 1
e = — [ Wi(Vhpy, de + — Vm/|*d —/Vm2d,
pCno.m) = oz [ Wigmoy)de+ 1 [ (vmPaes g [ VP ag

where the scaled gradient is defined as V) = (V',h7103). Hence, we define the energy functional
Ep: Qp — [0,+00) by setting

1 1 1
@)= g5 [ WiViwmoydat g [ wmPdgr g [ VenPae 222)
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where g = (y,m). We denote the three terms on the right-hand side by Ef!(q), Es*°(q) and E;"**(q),
respectively. Given (2.18), the function 9, in (2.22) is a weak solution of the equation

Atppy, = div (yovm) in R3.
More explicitly, this means that vy, € V12(R3) and satisfies

V€ VEA(R?), / Vipm - Vi d€ = / xavm - Vi dE. (2.23)
R3 R3
Here, we adopt the same notation in [48, Subsection 2.7.3] and we set
VI2(R?) = {p € LL.(R?) : Vyp € L*(R*;R?)}. (2.24)

In particular, testing (2.23) with ¢ = v, and applying the Holder inequality, we obtain
VY|l L2®ere) < [ Xoum|p2(rs;rs).- (2.25)

Remark 2.1 (Invariance with respect to rigid motions). The functional Ej, is invariant with
respect to rigid motions. Let ¢ = (y,m) € Qj and let T be a rigid motion of the form T'(§) = Q&€ + ¢
for every & € R, where Q € SO(3) and ¢ € R3. If we set ¢ = (y,m) € Q) with y = T oy and
m = Qm o T~ ', then there holds Ej(q) = Ex(q). Indeed, by (2.15), EfN(q) = Efl(q) and, by the
change-of-variable formula, E7*°(q) = E;*°(q). Moreover, if ¢y, is a stray field potential corresponding

to g, then we check that ¢, o T™! is a stray field potential corresponding to g. Clearly, this yields
E,"(q) = E;"(q).

Remark 2.2 (Existence of minimizers for the bulk model). In the present work, we do not deal
with the problem of the existence of minimizers and we do not even specify the topology on Qp. We just
mention that, without further assumptions on the elastic energy density W, the functional Ej, in (2.22)
does not necessarily attain its infimum. However, if the function ® in (2.4) satisfies feasible polyconvexity
assumptions, then the existence of minimizers of Ej can be proved [9].

3. STATIC SETTING

In this section we study the asymptotic behaviour of the energy Ej, in (2.22), as h — 07, in the static
case. First, in Subsection 3.1, we compute the I-limit the sequence (FE). Then, in Subsection 3.2, we
consider applied loads and we prove that sequences of almost minimizers of the total energy converge to
minimizers of the corresponding energy in the reduced model.

3.1. Static I'-convergence. We introduce some notation that is going to be employed in the rest of
the paper. For h > 0 and ¢ = (y,m) € Qp, we define the (scaled) horizontal and vertical averaged
displacements and the (scaled) first moment, respectively

uh(Q): S — R27 Vh(q) S _>R7 Wh(q) S — RS)

by setting
1
Un(q)(z') = e /1 (v'(2',23) — &) das,
1
Vula)(@) = iy [ o) da,

Wi(q) (') = # /II:’) (y(a', x3) — wp(a', x3)) das,

for every &’ € S. Furthermore, we define
Mpu(q): Q@ — R3, Nu(q): Q — R3*3, Zn(q): Q = S?,
by setting

Mh(q) = (XQym) O Th, (31)
Nu(q) = (xavyVm) o mp,
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Zn(q) = moydet Vyy. (3.3)

We stress that the map Zj(q) is sphere-valued as a consequence of (2.20).
Recall the quadratic form @ in (2.16). As in [25], the reduced quadratic form is defined by

Qred(X) = min {Q <<(0%;—|— %’) +c®es+e3® C) :ce Rg} (3.4)

for every ¥ € R?*2, The positive definiteness and the convexity of Q,cq follow from that of Q. Moreover,
from (2.17), we deduce that Q,eq is also positive definite on symmetric matrices, namely, there exists
C > 0 such that

VE e R Qred(T) = Qrea(symX) > Clsym 2. (3.5)
Set
Qo == Wy (S;R?) x W2 (S) x Wh2(8;S?). (3.6)
The T-limit of the functionals (E}) in (2.22), as h — 07, is given by Ey: Qp — [0, +00) defined as

Ep (QO /Qred Symv/ _COC ®C dx + & /Qred U x’

+ [ 1vep e+ 5 [ ¢ an,

where g, = (u,v,{). We denote the sum of the first two terms on the right-hand side by E§'(g,) and
the last two terms on the right-hand side by E§*¢(q,) and Ej*%(q,), respectively. Note that the limiting
functional Ejy is purely Lagrangian and that it trivially admits minimizers.

(3.7)

Our first main result claims the I-convergence of (E}) to Ey, as h — 0T, and the equi-coercivity of the
sequence (E},).

Theorem 3.1 (Static I'-convergence). Assume p > 3 and 8 > 6V p. Suppose that the elastic energy
density Wy, has the form in (2.4), where the function ® satisfies (2.9)—(2.13).

(i) (Compactness and lower bound). Let (q,,) with q;, = (y, mn) € Qn be such that

sup En(q,) < C. (3.8)
h>0

Then, there exists gy = (u,v,{) € Qg such that, up to subsequences, the following convergences
hold, as h — 07

wp = Up(q,)— w in WH2(S;R?), (3.9)
v = Vi(g,)— v in WH2(S), (3.10)
zp = Zn(q,)— ¢ in L' R?). (3.11)

Moreover, the following inequality holds:
Eo(qy) < liminf Ey(qp,). (3.12)
h—0+

-~

(i) (Optimality of the lower bound). For every q, = (u,v,{) € Qp, there exists (q;) with q,, € Qp,
such that the following convergences hold, as h — 07 :

Uy, = Un(g,)— a in WH2(S;R?),

B = V(@)= © in W(S),

2 = Zn(q,,)— € in L' (4 R?).
Moreover, the following equality holds:

-~

E(@,5,C) = lim_Ej(@,)- (3.13)
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Note that Theorem 3.1 is not a proper I'-convergence statement in the sense of the abstract definition
[7] since the functionals Ej and Ey are defined on different spaces. However, Theorem 3.1 can be
reformulated as a rigorous I'-convergence statement similarly to [8, Corollary 3.4].

Remark 3.2 (More general boundary conditions). More general Dirichlet boundary conditions,
like the ones in [37], can be considered in Theorem 3.1. Precisely, let w € W2°°(S;R?) and 7 € W3°(9).
For h > 0, let the deformation g, € W1>°(Q;R?) be defined as

_ , -
G, == 7 + hP/? (g) + pP/21 (?}) — WP, (VO“> :

If ' C 0S is given by a finite union of closed connected subsets of 95 with nonempty interior in the
relative topology, then Theorem 3.1 still holds true if we replace the boundary condition in (2.19) with

y=y,onl xI.
Accordingly, the limiting class Qg in (3.6) needs to be replaced by the set
{(u,v,¢) € WH2(S;R?) x W*(S) x WH?(9;S?): u=mwonT,v=v0onT, Vo=VvonT}.

The main changes concern the construction of recovery sequences, as we need to approximate the limiting
averaged displacements w and v with regular maps satisfying the boundary conditions above. This is
achieved by employing [24, Proposition A.2], which requires the above mentioned regularity of I'. For
more details, we refer to [10].

The remainder of the subsection is devoted to the proof of Theorem 3.1.

3.1.1. Compactness. For future reference, we start by collecting some preliminary compactness results
which we present in a more self-contained form. The compactness of deformations is proved by adapting
the techniques in [25] to our setting. A fundamental tool in these arguments is the celebrated rigidity
estimate [24, Theorem 3.1]. For convenience, given h > 0 and y € W1P(; R?), we set

Ru(y) = /Qdis‘LQ(Vhy; SO(3)) Vv dist?(Vy; SO(3)) de. (3.14)

We will use the following slight modification of [25, Theorem 6] which was given in [8, Lemma 4.1].

Lemma 3.3 (Approximation by rotations). Lety € WP (Q;R3). For every h > 0, set 1, :== Ry (y)
and Fj, .= Vyy. Suppose that r;,/h? — 0, as h — 0F. Then, for h < 1, there exist R, € W1P(S;SO(3))
and Q,, € SO(3) such that, for q € {2,p}, the following estimates hold:

1 —11
||Fh - Rh”Lq(Q;RBXS) S CV’I"h/q7 ||v/Rh||L‘I(S;]R3><3><3) S Ch 1Th/q,
11 —11
| Ry — QpllLa(smsxsy < Ch 17,h/q, | Fr— QpllLamrsxsy < Ch lTh/q-
The next proposition provides a simple reformulation of the compactness results in [25]. Henceforth, g
denotes projection map defined by mo(x) == ((z')",0)" for every € R3.

Proposition 3.4 (Compactness of deformations). Let (y,) C W12(Q;R3) and let (e) C R with
en, > 0 be such that e, /h? — 0, as h — 0F. Set r, == Ru(y,) and suppose that ry, < Cey, for every

h> 0. Also, set Fj, = VirY,;, and suppose that there exists (Rp,) € WE2(S: SO(3)) such that, for every
h > 0, the following estimates hold:

Hﬁh - ﬁhHL’z(Q;Rsxa) S C\/T’h, ||v/ﬁh||L2(S;R3X3X3) S Chilyﬂ’h
H-/Rh — I||L2(S;R3><3) < Cch! Th, ||Fh — IHLQ(S;R3X3) < Oh_ly/'rh.

Also, for every h > 0, assume the following:
either g, — 7, has null average over Q or y, =, on S x I. (3.15)

Define tp: S = R?, Ty: S — R and wy,: S — R3 by setting

~

h? 1 N
up(z') = o A \/—67 /I (y'h(zc'wg) — ') dxs,
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=N h
on(@) = Ven
1

wy () = \/1671 /ng (Gp (2, x3) — mp (2, 33)) das,

/ G2/, vs) das,
I

for every ' € S. Then, the following estimates hold:

~ Th Th Th
2(5r2) < C —+ — A , 3.16
lwn|lwr2(smey < < o + o h2\/a) (3.16)
~ Th
[UnllL2(sraxsy < C o (3.17)

~ T
|Wh || L2 (s:rex3) < Cy/ i. (3.18)

Moreover, there exist u € WH2(S;R?) and © € W22(S) such that, up to subsequences, the following
convergences hold, as h — 0%

up— u in WH2(S;R?), (3.19)
Op— 0 in WH2(S), (3.20)
~ 1 Vo . 1,2/ q. o3

Wh— 35 ( 0 ) in WH2(S;R?). (3.21)

Proof. The convergences in (3.19)—(3.21) have been proved in [25, Lemma 1] and [25, Corollary 1]. Also
the estimates in (3.16)—(3.18) are implicitly established in these results. Note that assumption (3.15) is
needed in order to apply Poincaré and Korn inequalities. Indeed, if 3, — 7, has null average over 2, then
the same property holds for 4, and oy, while, if y, = 7, on 95, then 4, and v, satisfy homogeneous
Dirichlet boundary conditions. ([l

In the next result, we show how the clamped boundary conditions can be exploited to establish the
convergence of the sequence of constant rotations provided by Lemma 3.3 towards the identity matrix.
The arguments are adapted from [37].

Lemma 3.5 (Clamped boundary conditions). Let (y;,) C Wh2(Q;R3) and let (e) C R with e, > 0
be such that e, /h? — 0, as h — 0%. Set rj, == Ry(y,) and suppose that r;, < Cey, for every h > 0. Also,
set Fy, == Vpy,, and suppose that there exist (R,) C W12(S;80(3)) and (Q,) C SO(3) such that, for
every h > 0, the following estimates hold:

|1F'y — Rh||L2(Q;]R3X3) < Cy/ry, ”v/Rh”L2(S;]R3><3X3) < Ch_lm, (3.22)
||Rh — Qh||L2(S;R3><3) < Ch~t Th, HFh — QhHLZ(S;RSXS) < Chil\/a. (3.23)

Additionally, suppose that y;, = 7 on 05 x I for every h > 0. Then, for h < 1, there holds
Q) —I| < O—\/}Th. (3.24)
Moreover, denoting by ¢, € R® the average of Q;yh — 7y, over S, there holds

len| < C@. (3.25)

Proof. We first prove (3.24). Define g, = Q, y, — ci with ¢, € R3 chosen so that g, — 7, has null
average over Q). Set F, == V¥, and Ry, = Q; Ry,. Assumptions (3.22)(3.23) immediately yield

”Fh B Eh”Lz(Q;Rgxg) < O\/ﬁ’ ||V/RILHL2(S;R3><3XS) < Ch™1 Th,
| By, = Il p2(sipaxsy < Ch™t/r, | Fp, — I 12(s:msxs) < Ch™ /T
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Define @y,: S — R2, 7y, : S — R and wy,: S — R3 by setting

ap(x') = <Z§ N \/1671> /1 (¥ (@', 25) — x') das,

_ h _
op(x') = \/a/ly,?(:c’,xg)dxg,

1
(T — dza.
\/67/]903(3/;1 ™) das

Applying Proposition 3.4 to y;, = y;,, and then the trace inequality, we obtain the estimates

~ Th TR Th

s r2y < C — 4+ —= A=, 3.26
Inllizosime < (v en | en h%@) (3.26)

~ Th
' <Cy/— 3.27
lOnll L2 as) < e’ ( )

~ T
|whllL2osrs) < Cy i- (3.28)

Analogously, define uy,: S — R2, v;, : S — R and wy,: S — R? by setting

up(x') = (Z A \/1?}1) /I(y'h(m',xg) —x') drs,

h
vp(x') = \/a/ly,f(a:’,xg)dxg,

wy (') =

wy(2) = \/167 /ng (y, — mp) das.

In view of the clamped boundary condition satisfied by y,,, there hold

up, = 0" on 08, v, =0 on 98, wp, = 0 on OS. (3.29)
For simplicity, set dj, == Q,cn. Then
h726h V \/auh _ h726h Vv ﬁﬁh
( hil\/a’uh - (Qh _I) 770+Qh h*l\/agh + dp, (3-30)
h -
Verwn, = —(Qp — Ies + /e, Q, wy,. (3.31)
12
From (3.31), given (3.28)—(3.29), we obtain
En - T
(@1~ Des] < OV [l zaqass < O (3.32)
In turn, we also have
T
(Qy — Des| < C—\/}:h. (3.33)

Looking at the first two components of (3.30), we estimate
e ~ VEh |~
Qp, — Iz + d}, || L2(05m2) < C (h—; v \/eh) [z 0sm2) + €= lonll 2 os)

\/Then T NG
§C< 2 +\/ﬁ+§ SCT.

Here, in the last inequality, we exploited the two conditions r;, < Cey, and e, /h? — 0, as h — 0.

/ z'dl =0
as

Q) — "]+ Idy| < " (3.35)

(3.34)

Up to translations, we can assume that

In this case, (3.34) yields
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Combining (3.32)—(3.33) with (3.35), we establish (3.24).

Similarly, looking at the third component of (3.30) and exploiting (3.26)—(3.27), (3.29) and (3.33), we
estimate

.
431 < 0 (S v v ) il aosize + OV [l eqas) + CI@T — Desl < 0¥ (3.36)
Thus, (3.25) follows from (3.35)—(3.36). O

To identify the limiting strain, we employ the following result given by [25, Lemma 2].

Lemma 3.6 (Identification of the limiting strain). Let (y,) C WY2(Q;R?) and let (e,) C R with
en > 0 be such tha ep /h? — 0, as h — 07. Set rj, == Ry (y,,) and suppose that r, < Cey, for every h > 0.
Also, set F, = VY, and suppose that there exists (ﬁh) C WhH2(8;50(3)) such that, for every h > 0,
the following estimate holds:

||i7h — ﬁh||L2(Q;]R3X3) < C\/’I“h.
Define uy,: S — R? and U : S — R by setting

h2
up(z') = \ﬁ/ Uy (@', 23) — @) das,

p(x') = \/a/lﬂ,f’(a:’,xg) dxs,

for every ®' € S, and assume that there exist u € W1H2(S;R?) and v € W22(S) such that the following
convergences hold:

uy, — u in WH2(S;R?), Op — 0 in WH2(S).
Then, there exists G € L (4 R3*3) such that

~ ~T ~ ~
G, = R, F), —I) — G in L*(Q;R3*3).
h ﬁ< nFn—1) ( )

Furthermore, there exists Se L2(Q;R?*2) such that, for almost every x € ), there holds
G (x',23) = S(x) — (V')*5(x)x3.
Eventually, if en/h* — 0, as h — 0T, then sym S = symV'a.

The compactness of magnetizations is established by refining the techniques introduced in [8, Proposition
4.3]. We will use the following notation. Given n > 0, we set S7 := {&’ € S : dist(z’;05) < n} and
S=m .= {z’ € R?: dist(z; S) < n}. Moreover, for [ > 0, we set )/ := S" x I and ;7 := S~ x 1. Recall
the notation in (3.1)—(3.3).

Proposition 3.7 (Compactness of magnetizations). Let (q,) with q,, = (Y, mn) € Qn be such
that

iup {Eh q,) +E(q,)} <C. (3.37)

Suppose that there exists a > 1 such tZat, for every h > 0, there holds
1Un — mhllco@rsy < Ch, (3.38)
1Fn = Il poopey < CP/P7Y, (3.39)

Then, there em'stz € Wt2(S;$?) and x € L*(R3;R3) such that, up to subsequences, the following
convergences hold, as h — 0% :

fiy, = Mu(@y)— xa in L*(R%R¥), (3.40)
Ny, = Ni(@,)— xa(V/CIX) in L*(R*R¥), (3.41)
mp oG, — C in L' (4 R?), (3.42)

Zp = Zn(G,)— C in L' (Q; R3*3). (3.43)
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Proof. For convenience of the reader, the proof is subdivided into three steps.

Step 1 (Approximation of the deformed configuration). The estimate (3.38) entails the following
two statements:

Vi >0,Y0<9 <1, 3h(n9)>0: Y0<h<h(nd), QF, c Q¥ (3.44)

Vn>0,Y¢>1, 3h(n,€) >0: YO <h<h(nl), Q¥ c Q" (3.45)
To see (3.44), fix n > 0 and 0 < ¥ < 1. Let £ € Q. As a > 1, there exists h(n,9) > 0 such that for
every h < h(n, ) there holds
dist(&;09,) >n A (1 —39)h/2 > Ch®
so that, by (3.38), we obtain
[Yn — 7alloo@rey < dist(§;002,) = dist(&; 7, (092)).

By the stability property of the topological degree [21, Theorem 2.3, Claim (1)], this entails € ¢ y, (99)
and deg(y,,Q, &) = deg(mp,Q,€) = 1. Then, by the solvability property of the topological degree [21,
Theorem 2.1], we deduce & € Q¥». As € € Q) was arbitrary, this proves (3.44).

To see (3.45), fix p > 0 and £ > 1. Again, as @ > 1, there exists h(n, £) > 0 such that for every h < h(n, £)
there holds

dist(Qs;09,,") > n A (0 —1)h/2 > Ch™.
Thus, by (3.38), we have
Q¥ C Qp + B(0,Ch%) C Q.
Similarly to (3.44), we also have the following:
VO<m<n Vo< <y <1, Hﬁ(n,no,ﬁ,ﬁo) >0:

- " (3.46)
VO <h< h(777770»19»190)a Qgh - yh(Qg%)

Step 2 (Identification of the limiting magnetization). Employing the notation in (2.8) and (3.3),
we set Fj, := Vg, and By, := L,(Z,(q),)) " Fj. Thanks to (2.7) and (2.12), we have

1 1
— de = (1 +c _a/ —= da
/Q (det Vipyy,)e ( 2 Q (det Ep)e
<(1+cp)™® {/ ®(E),) dx + c}
Q

< (1 +cn) “{ME @, +C} <C,

where in the last line we used (2.6), (2.12) and (3.37). As a > 1, we infer that (1/det Dyy,,) is equi-
integrable by the de la Vallée-Poussin Criterion [22, Theorem 2.29].

Let n > 0and 0 < ¥ < 1. By (3.44), for h < h(n,9), the composition Zh =m0 mplqy is well defined
as a map in W1’2(Qg; R?). Then, employing the change-of-variable formula, we estimate

~ /\ 1 P
| @kae= [ mnomPaz= [ P
Qn Q7 h Jan

9 Yh

1 _ 1 SN -
< 7/ || dé < 7/ |m 0 g,|* det Vy,, dee (3.48)
h Q@h h QO

1
—~ o~ (2 ~
= moy,|“det Viy de/i/\ de,
/sz| nl 4 o det Vypy,

where in the last line we exploited the magnetic saturation constraint

[y 0 Yy | det Viyy, = 1 ace. in Q. (3.49)

(3.47)

Thus, by (3.47), the sequence (¢;,) is bounded in L*(Q);R3).
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From (3.37) and (3.44), employing again the change-of-variable formula, we obtain

I,

~ |2 Y 1 —
VhCh‘ dm:/]|tho7rh|2d:c:E/) |V, |? dé
@ Pon (3.50)
1 - oxC /s
< | g = Epe@) <
QYh

Therefore (¢;,) is bounded in Wh2(Q7;R3), so that there exists Cewh 2(Q1;R3) such that, up to
subsequences, ¢, — ¢ in WH2(Q};R3). Also, by (3.50), there exists a map X € LZ(QZ, R3) such that, up
to subsequences, h™ agch — x in L?();R3), as h — 0. This yields 93¢ = 0, so that ¢ € Wb 2(8M:R3).

In principle, both the subsequences and the weak limits C and x X depend on the parameters n and 9.
However, by means of a diagonal argument, we can assume that Ce WlOC (S;R3) and x € L (4 R3),
and that, for a not relabeled subsequence, the following holds:

Vn>0,¥0<d <1, C,—Cin WH(QLR?) and ae. in ), h'85¢, — x in L2(Q};R?).  (3.51)

Here, we exploited the Sobolev embedding, which is applicable since €} is a Lipschitz domain, at least
for n < 1 and 1 — ¥ <« 1. Note that the sequences in (3.51) are defined only for h <« 11 depending on 7
and 9. In view of (3.47)-(3.48) and (3.51), by lower semicontinuity, for every 7 > 0 and 0 < 9 < 1, there
holds

19/ )2 da’ = / I¢?da < liminf/ 1€, 2 de < C. (3.52)
sn Q7 h—=0t Jon

Similarly, by (3.50) and (3.51), for every n > 0 and 0 < ¥ < 1, there holds

o[ VePdes [ [xPde= [ VEPde [ RPda
Sm Qp Qy Qy
—~ |2

glzrgérif/mg thh‘ de < C.

Letting 7 — 0% and 9 — 1~ in (3.52)~(3.53), we deduce that ¢ € Wh2(S;R3) and X € L2(Q;R3).

Set p;, == Mp(q,) and N, =N, (g@,,)- Note that these two maps are defined on the whole space for
every h > 0. We claim that (fi;,) is bounded in L?(R3;R3). To see this, exploiting (3.49) and applying
the change-of-variable formula, we compute

~ _ 1 _
/ \Mh|2dm:/ . |mh°77h|2dm:E/A [m,|* dg
R3 ;1 (QYn) Qn
1 N . . N
= ﬁ/ |my, 0 y,|? det Vg, de = / |my, 0 y,|? det V3, do (3.54)
Q Q

o~ 1
= de= | ————d=.
/sz‘mhoyh| v /Qdetvhyh v

Then, the claim follows from (3.47). We deduce the existence of g € L?(R®;R3) such that, up to
subsequences, f;, — @ in L*(R%;R?). However, by (3.44)—(3.45), there holds Xa=1(Qun) — Xo almost

(3.53)

everywhere which, together with (3.51), yields p;, — XQZ almost everywhere in R3, as h — 07. Also, by
(3.45), the maps i, are supported in a common compact set containing {2 for h < 1, so that g, — XQZ in
L'(R3;R?) by the Vitali Convergence Theorem. Thus, fi = YC and this establishes the weak convergence
n (3.40).

To prove (3.41), we observe that

1 _ . <
E*(q,) = [V, dg = |VmpP o, da = |IN,|? de, (3.55)
h Qn w1 (Qn) R3

where we employed the change-of-variable formula. In view of (3.37), this shows the boundedness of
(Np) in L2(R3; R3*3). To check (3.41), let ® € L?(R3;R3*3) and set N = xo(V'¢|X). Given > 0 and
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0 < ¥ <1, we write

/ (Nh—ﬁ):{)dm:/
R3 Q)

The first integral on the right-hand side of (3.56) goes to zero, as h — 0T. Indeed, by (3.44), for every
h < h(n, ), we have

/Qg (Nh—ﬁ)@dm:/ﬂ

where the right-hand side goes to zero, as h — 0%, by (3.51). The second integral on the right-hand

side of (3.56) goes as well to zero, as h — 0". Indeed, by (3.45) and by the boundedness of (ﬁh) in
L2(R?;R3*3), for every £ > 1 and for every h < h(n, ), there holds

/RS\Q:; (Nh - ﬁ) P de /Qz"’\ﬂ;’; (Nh — N) - P dx

As the right-hand side can be made arbitrarily small by properly choosing 7, ¥ and ¢ according to ®
only, this establishes (3.41).

Step 3 (Convergence of compositions). We now prove (3.42). Recall that (1/det V,y,) is equi-
integrable thanks to (3.47). Thus, in view of (3.49), so is (my,0y,,). For this reason, in order to prove the
claim, it is sufficient to show that, for every n > 0 and 0 < ¥ < 1, we have my, oy, — ¢ in L'(Q];R3).

Fix n > 0 and 0 < 9 < 1. Recall (3.44) and consider h < h(n,). We have
[ o g ~E e < [ g~ Glfdes [ (6 - da. (357)

mn
9 9 919

(N, —N): ®dz + / (N, —N): &da. (3.56)
R3\Q)

) (vmh oy — (V’Z\i)) L ®dx = /Q (thh - (V'Z|>2)) L ®dz,

S O H®‘ |L2(Q;77\QZ;R3X3)-

By (3.51), up to subsequences, the second integral on the right-hand side of (3.57) goes to zero, as
h — 0T. Thus, we focus on the first one and we show that, up to subsequences, it goes as well to zero,
as h — 0%,

Let ¢ > 0 be arbitrary. Let also 0 < 11 <7 and 0 < 9 < ¥; < 1. Observe that, for h < h(n;,9;), the
sequence (C,) is equi-integrable on Q3 by (3.51). Therefore, there exists d(71,71,¢) > 0 such that the
following property holds:

VA C Qy measurable : L3(A) < 5(n1, V1, ¢), sup / [mn 0 G, — Cp| da < €. (3.58)
h<h(n,01) /A
Set Ag,h = @gl(Qgh). Let my < 1o <n and 9 < Y9 < 91 be such that
LR N\QY) < (i, V1,6). (3.59)
By (3.46), for every h < 7L(77,770,19,190), we have Ag’h C QZ‘; and we write
[ mneg -Glde= [ g -Gldet [ g -lde. (360)
Qy QgﬂAg’h Qg\Ag’h

We focus on the second integral on the right-hand side of the previous equation. For convenience, set
op = det Vg, — 1. Thus, o, — 0 in L}(Q) by (3.39) since 8 > p > 3. Using the change-of-variable
formula, we compute

L2,) = LEGa(AL,) = / det VG, dz = h(A3,) + h /A onda.
9,h

A n
Then
LA, = L) / o da,
A n
so that
220 \ Ay ) < 22 \Aj,) = L2 - ‘zz(Ag)h) = 22(Q)) — L)) + /An oy, de.

9, h
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Here, we exploited the inclusion Ag’h - Qg?] This yields

lim sup Z2(Q) \ A} ) < L2(U \ 25) < 6, 91,¢),

h—0t

where we used (3.59). Therefore, from (3.58), we obtain

lim sup/ w0 Gy, — Cpl < e (3.61)
h—0+ JQm\AT ,

To estimate the first integral on the right-hand side of (3.60), we proceed as follows. Without loss of
generality, we can assume that Q7 is a Lipschitz domain. In this case, the map ¢, € W'?(Q5;S?) admits
an extension Zj, € W12(R3;R3), possibly dependent on ¢ and ¥, which satisfies

1 Znl[wrzmsrs)y < C0,0) [[Chllwrz@rirs)-
In particular, recalling (3.50), we have

||VEh||L2(]R3;]R3X3) < 0(77719) (/

Q"

IEth:ch/ IVEhIde> < C(n,9). (3.62)
19 Qy

Define M), .= Zj o 7, '. By construction, J\/th\ﬂgh = Mmy|qy, and, by (3.62) and the change-of-variable
formula, there holds

— R - 1 R )
/ ‘VMh|2d£:/ |VhZhOﬂh1|2d€§7/ ‘Vzhoﬂ'h1|2d£
R3 R3 h R3

C(n,v)

. (3.63)
. Z2de < =207
h/RsW nlde < —

Let A > 0. By the Lusin-type property of Sobolev maps [1], there exists a measurable set F) ; C R3 such
that Mp|F, , is Lipschitz continuous with constant C'A > 0, that is

VEEE Py, |My(€) — My(€) < OXE — €. (3.64)

Moreover, thanks to (3.63), the measure of the complement of the set F} j, is controlled as follows

a2 ag < S0 (3.65)

3 (M3
L3R\ Fyp) o

w )|
Sv/ -

A S92 /2)
where we used (3.63).
Going back to the first integral on the right-hand side of (3.57), setting

Xon = Un (Fn), Yan =75, (F\n),

we split it as

/ |mho@h_Ch‘dm:/ |mh0@h—ch‘dm
QAT , (QNAT IN(Xx1nNYan) (3.66)
+ i oG — Sl o
(QyNAG INXA RNYAR)
For the first integral on the right-hand side of (3.66), note that, for every @ € (2} “Ag,h) N(XanNYan),

both g, (x) and 7, (x) belong to Q), N F) . Thus, by (3.38) and (3.64), we have

/ ‘/”ﬁhogh_zh|dw:/ ‘Mhogh_Mhoﬂ'HdIE
(Q5045,)N(XN ROV n) (QgNAG )N(XARNYA, 1) (3.67)
<CA |§/\h - ﬂh”co(ﬁ;Rg) < CAh®.

For the second integral on the right-hand side of (3.66), observe that
(5 N A )\ (Xn NYan) C (25 \ Xan) U5\ Yan)- (3.68)
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By the change-of-variable formula, there holds

LXGA )\ Fap) = L2G0(Q0\ Xa ) = / AtV
Xan

=hL*(Q)\ Xan) + h/ op de.
QI\Xx
From this, recalling (3.65), we obtain
1 ~ C(n,9
LU\ Xon) = L LG\ E)+ [ ondes m.9) | [ onde o)
h QN Xan A*h QN Xan

Instead, applying the change-of-variable formula and exploiting (3.65), we estimate

_ 1 C(n,9
32(9?9\5//\,}1) = XQ(Whl(Qgh\F/\,h)) = ED?Q(Qgh\F/\JL) < %

Now, recalling that o > 1, we choose A = h~? for some 1 < b < . In this case, the bound in (3.67) yields

(3.70)

lim 7727, 0 Gy, — Gyl dz = 0. (3.71)
h=0% J(@InAT )N(Xa nNYan)

Also, from (3.68)—(3.70), we obtain

lim 33«9179 N Ag h) \ (XanNYyr)) =0,

h—0t ?
which, by (3.58), entails

limsup/ [mn 0 Gy, — Cp| dz < e. (3.72)
h—0+ J(QFNAF O\(Xx,rNYAR)
Therefore, combining (3.61) and (3.71)—(3.72), we obtain
limsup/ [mn 0 G, — Cp| do < 2e.
h—0t+t JQ7

Since £ > 0 is arbitrary, this shows that the first integral on the right-hand side of (3.57) goes to zero, as
h—07.

Step 4 (Improved convergences). We are left to prove the strong convergences in (3.40) and (3.43),
and that |¢| = 1 almost everywhere in 5. By (3.39), since 3 > p, there holds F, — I in LP(£2;R3*3).
Thus, up to subsequences, we have det F n — 1 almost everywhere. By (3.42), up to subsequences, we also
have my, oy, — ¢ almost everywhere. Taking into account (3.49), this gives (3.43) by the dominated
convergence theorem. From (3.49), passing to the limit, as h — 07, we deduce that |a = 1 almost
everywhere in Q. Equivalently, ¢ € W12(S;S?). Finally, passing to the limit, as h — 0%, in (3.54) , we
obtain

Jim [l g = 22@) = [ g e
Since we already proved the weak convergence, this proves the strong convergence in (3.40). (|
The compactness properties of sequences of admissible states with equi-bounded energy deduced from
the previous results are summarized in the next proposition.
Proposition 3.8 (Compactness). Let (q,) with g, = (y;, mp) € Qp be such that
sup {E a,) + E) (g, } <C. (3.73)

Then, there exist q, = (u,v,{) € Qg and x € L?*(R3;R3) such that, up to subsequences, the following
convergences hold, as h — 0%

wy, = Uy (q,)— u in WH2(S;R?), (3.74)
v = Vi(g,)— v in WH2(S), (3.75)
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!
wy, = Wh(q;,)— 7%2 ( VO” ) in WH2(S;R3), (3.76)
Wy, = Mp(q,)— xaf in L*(R3R?), (3.77)
Ny, = Niu(gp,)— xa (V'¢Ix) in L*(R*R*?), (3.78)
my, oy, — ¢ in L' (Q;R?), (3.79)
zp = Zn(q,)— ¢ in LY (O RY). (3.80)

Additionally, there exist (Ry) C WH2(S;S0(3)) and G € L?(Q;R3*3) such that, setting Fy, = Vpy,,,
we have

R,— I in L*(Q;R**3), (3.81)
G =h"P2R]F, —I)— G in L*(Q;R>*?), (3.82)

and, for almost every x € ), there holds
G’ (x) = symV'u(z’) — (V') v(z')) 3. (3.83)

Proof. Recall (2.4)—(2.8). For simplicity, we set
Fh = Vhyh, Lh = Lh()\h (det Fh)), Eh = L;lF}L.
First, recalling (2.5)—(2.6), we write
dist(F'; SO(3)) < |Fp — BEp| + dist(Bp; SO(3)) < |Lp — I||E,| + dist(Ep; SO(3))

i
)

< ChP/2|E,| + dist(En; SO(3)) < C (W? + dist(En; 50(3))) .
Thus, for ¢ € {2,p}, we have
/ dist?(F; SO(3))da < C (h</3/2>q + / distq(Eh;SO(S))dac) :
Q Q

Recalling (2.11) and adopting the notation in (3.14), this shows that
Ri(y,) < Ch° (Efl(g,) +1). (3.84)

Thus, setting 4, == Rp(y},), from (3.73) we obtain the bound r, < Ch®.

By applying Lemma 3.3, we find (R;,) € W1P(S;S0(3)) and (Q,) C SO(3) such that the following
estimates hold for ¢ € {2, p}:

|Fy — Rh||L<I(Q;R3><3) < Cr}l/q, Hv/RhHLq(S;R3X3X3) < ChilT’}lL/q, (3.85)
IR — Qpllpo(smsxsy < Chlr)/% ||[Fy — Qpllpa(smsxsy < Ch=lr)/%. (3.86)

Then, thanks to Lemma 3.5, we obtain the estimate
Q) —I| < C\/TTTL7
which, together with (3.86), yields
IRy — I|| pagsimsxsy < Chr/% || Fy = I||pa(smaxsy < Ch™ 1/ (3.87)

At this point, we apply Proposition 3.4 to § = y,, with e, = h”, so that (3.74)(3.76) are proved.

Now, given the assumption 8 > 6 V p, we have §/2 -1 > 0and 8/p—1 > 0. Let 0 < s < 1 and let
2 < ¢4 < p be such that 1/g; = s/2+ (1 — s)/p. By the interpolation inequality [27, Proposition 1.1.14]
and the second estimate in (3.87), there holds

|Fp, —I||pa (r3x3) < |Fp, — I||SL2(Q;RSXS)||1~7h - I||1LZFQ;RSXB) < Ch*s, (3.88)
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where we set s == s(8/2—1) + (1 — s)(8/p — 1). We choose s in order to have

qs > 3, ag > 1. (3.89)
Note that these two conditions are equivalent to
2(p — 2(2p —
8<7(}7 3), 8>7(p B),
3p—2) Bp—2)

respectively. Therefore, as

22p—pB) _2(p—3)

Blp—2) 3(p-2)
if and only if § > 6, such a value 0 < s < 1 always exists. Hence, from (3.88), by applying the Poincaré
inequality and the Morrey embedding, we obtain the following estimate:

lyn — mnllco@mrs) < Ch. (3.90)

Note that, here, we implicitly exploited the first condition in (3.89). Therefore, given (3.87) and (3.90),
claims (3.77)—(3.80) follow at once by applying Proposition 3.7 to q;, = gy,
Eventually, we note that (3.81) immediately follows from the first estimate in (3.87), while (3.82)—(3.83)

are established by applying Lemma 3.6 to ¥, = y,, with e;, = h” taking into account the first estimate
in (3.85) and (3.74)—(3.75). O

Remark 3.9 (Norm of the averaged displacements). With the notation employed in the proof of
Proposition 3.8, by (3.84), we have
Th
hB
Hence, by applying Proposition 3.4 to ¥, = y,, with e;, = h? taking into account (3.85) and (3.87), we
obtain the following estimates for h < 1:

Wﬂwwm%SCcmﬂ%Hl)

mquasc(zwmm+0,

< C(Eqy) +1).

|WHW%%%SC<EW%HJ)

The first estimate is justified by the fact that 75, /h* — 0, as h — 0%, so that, for h < 1, there holds
T _ VT [T [T
RB/2+2 T p2 h8 =\ B8’

3.1.2. Lower bound. We now move to the the proof of the lower bound. For convenience, we highlight
the results regarding the continuity of the magnetostatic energy. This has already been proved in [8,
Proposition 4.7] by adapting the results in [13, 26]. For convenience of the reader, we briefly sketch the
proof and we refer to the first paper for details. Recall the notation in (2.24) and (3.3).

Proposition 3.10 (Continuity of the magnetostatic energy). Let (g,) with g, = (g, mp) € Qp.
Suppose that there exists ¢ € W2(S;S?) such that the following convergence holds, as h — 0% :

By, = Mu(@,) — xof in L*(R%;R?). (3.91)

Then, the following equality holds:

1
lim E"®(q,) = 312da’. 3.92
Jim 57%@,) = 5 [ P do (392)
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Proof. Denote by {b\h € V12(R?) a stray field potential corresponding to ;. Thus, we have the following:

Vo e VI2(R?), / V$h~V¢d£:/ Xeyon T - Vo dE. (3.93)
R3 R3

By (2.25), there holds
[Vl L2 ®3rs) < [Xqon Mkl 2R3 R3)-
Taking the square at both sides and applying the change-of-variable formula, we estimate

[ vanPag< [ xammnPde= [ flomtde=n [ | de (394
R3 R3 R3 R3
Define pp, == @h om, € VH2(R3). From (3.94), using again the change-of-variable formula, we estimate

R ~ 1 ~ ~
[ widipae= [ VaPemde—y [ (VaPaes [ P
R3 R3 R3 R3

As the right-hand side is uniformly bounded in view (3.91), we deduce that (Vjpp) is bounded in
L?(R3;R3). From this, we deduce two facts. First, there exists ¥ € L?(R3) such that, up to subsequences,
03pn/h — X in L*(R3) and, in turn, d3py — 0 in L?(R?), as h — 0F. Second, exploiting the Hilbert
space structure of the quotient V1:2(R3)/R, we infer the existence of p € V12(R?) such that, up to
subsequences, there holds Vp, — Vp in L*(R3;R3), as h — 07. These two facts together imply that
03p = 0 almost everywhere which, as Vp € L?(R3;R3), yields V/p = 0 almost everywhere.
Now, testing (3.93) with ¢ = @h and applying the change-of-variable formula, we write
mag /-~ 1 —~ - 1 ~ ~
E;(q),) = */ Xaan My - VP d§ = */ wy, - Vppn de

2h R3 2 R3

1 — ~ 1 3 O3Dh
= Vpnda + - da.

2/Rsﬂh Ph 513+2/RSNh L OF

Then, recalling (3.91) and passing to the limit, we obtain

1 —~
lim E™€(g,) = - 3vde. 3.95
Jim Ei@,) = 5 [ O Rde (395)

Thus, if we show that ¥ = yo( > almost everywhere in R3, then (3.92) follows from (3.95). To check this,
we go back to (3.93). Using once more the change-of-variable formula, we deduce that p;, satisfies the
following:

Vo e V), [ VimVipds— [ B Viede
R3 R3

Multiplying by h and then passing to the limit, as h — 07, we obtain
veevit®), [ (R-xal?) dupde =0,
R3

Given the arbitrariness of ¢, this entails that the function ¥ — XQZ3 does not depend on the third variable.
However, as this function belongs to L?(R?), we necessarily have ¥ — xo(® = 0 almost everywhere. [

The next result asserts the existence of a lower bound and, for future reference, it is presented in a more
self-contained form.

Proposition 3.11 (Lower bound). Let (§,) with G, = (G, mn) € Qn. Set Fj, := V1 3,. Suppose
that there exist (Ry,) C WH2(S; SO(3)) and also G € L2(Q;R3*3) and g, = (G, 0,¢) € Qo such that, as
h — 0%, there hold

Ry, — I in L'(S;R3*3), (3.96)

G =h %2R, F) — I) = G in L2(QR?), (3.97)

and, for almost every x € ), we have
~1

G’ (z) = symV'a(a') + (V)*5(2')) 3. (3.98)
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Moreover, suppose that there exists X € L*(R3;R3) such that the following convergences hold, as h — 0F:

fiy, = My (@)~ xa in L*(R*R?), (3.99)
Np = Na(@,)— xa(V'¢IR) in LA(R%R¥), (3.100)
2= Zu(@n)— € in L' R). (3.101)
Then, the following inequality holds:

Eo(qy) < h}ggﬁ En(qp). (3.102)

Proof. 1t is sufficient to prove the following:
E§(do) < liminf E31(gy), (3.103)
E§*(q,) < hm 1nf E;*°(q,,)- (3.104)

Indeed, thanks to (3.99), the limit in (3.92) holds by Proposition 3.10. Thus, combining (3.103)—(3.104)
with (3.92), we obtain (3.102).

Recalling (3.55), claim (3.104) follows immediately from (3.100). Indeed, by lower semicontinuity, we
have

liminf/ |ﬁh|2dx2/ \V’Z|2dx+/ |>2|2da:z/|v’a2dx'.

h—0t R3 Q Q S

We thus focus on (3. 103) This is proved similarly to (25, Corollary 2]. Recall (2.4)—(2.8). For simplicity,
set A == my, o gpand Ly, = Ly, (R Z,). By (3.96) and (3.101), recalling (2.6) and (2.20), we have

Kn=h 211, )= cl®Cin L'(QR¥3). (3.105)
Define Aj, = {|Gp| < h=?/4}, so that, by (3.97), x4, — 1 in L*(Q2). Note that, on Ay, there holds
L, R, Py =I+hP2(Gh — Kn) + O(h*/4), (3.106)

1 ~T ~
Recalling (2.16), for h < 1 we have |L,, Rh Fj,—I| < 1on Aj. Then, exploiting (2.15) and (3.106), we
write

~ o~ AT~ ~Tx ~—1~T ~ ~—1~T ~
/Wh(Fh,)\h)de/Wh(RhFh,Rh)\h)dOSZ/CI)(Lh RhFh)de/XAhq)(Lh RhFh)dSE
Q Q Q Q

- / xa, @ (I+ 172G~ K) + 0(°7Y)) da
Q

hB ~ —~
=5 [ @ (xan(Gn — Kn) + 00/ d
2 Ja
+/ xanw (W2(G — Kp) + O(0*14)) da.
0
Thus
1 ~ —~
Eil(an) = 5 / Q (XAh(SymGh - Kp)+ O(h?’ﬁ/‘l)) d
! o (3.107)
+ ﬁ/ XA, W (hﬁ/Q(sym G, —K,)+ O(h3B/4)) dex.

To provide a lower bound for the first 1ntegral on the right-hand side of (3. 107) we exploit the convexity
of Q. By (3.97) and (3.105), we have ya, G, — G in L2(Q;R3*3) and ya, K — coC®C in L1 (Q;R3*3),
as h — 0%. Thus, by lower semicontinuity, we get

lim inf / Q (xA,L (G — Kp) + O(hw/‘*)) dr > [ QG -cl®()da
Q Q

h—0t

N ~ o~
> / Qred(G - COC & C )dx
Q
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where the last inequality is justified by the definition of Qyeq in (3.4). Given (3.98), this proves (3.103)
once we show that the second integral on the right-hand side of (3.107) goes to zero, as h — 07. To
prove this, for every s > 0, we set
F
w(s) := sup { TI(;‘|2)| : FeR¥ |F| < s} .
By definition, the function @ is decreasing and satisfies w(s) — 0, as s — 07. Then, recalling the
definition of Ay, we have

1
B QXAh

w <h5/2(6:h ~Kp)+ 0(h3ﬂ/4))‘ de

~ — 2
(W72(G, — Kn) + O(h1)

< / XA, & (hﬂ/2|éh K|+ 0(h3ﬂ/4)) de
Q h?
N — 2
< E(O(h5/4))/ ‘Gh K+ O(hﬁ/‘*)( de,
Q
where the right-hand side goes to zero, as h — 0. (I

3.1.3. Optimality of the lower bound. The following result ensures the existence of recovery sequences.

Proposition 3.12 (Recovery sequences). Let g, = (u,7, ¢) € Qy. Then, there exists () with
q;, = (y,,, mp) € Qp such that the following convergences hold, as h — 0%

uy = Uy, (g,)— a in WH2(S;R3), (3.108)

O = Vu(q,)— 0 in WH2(9), (3.109)
1 )

wy, = Wi(q,)— I3 ( VOU ) in WhH2(S;R?), (3.110)

fiy, = My (@,)— xal in L*(R%R?), (
N = Nu(@)— xa(V'[0) in L2(R% R>), (
oG, — C in L' (4R, (3.113
Zn = Zn(q))— € in L' (Q;R3*3). (
Moreover, the following equality holds:
Ey(@) = lim En(@,) (3.115)

Proof. For convenience of the reader, the proof is subdivided into three steps.

Step 1 (Construction of the recovery sequence). First, we additionally assume that u € C2(S;RR?),
v € C3(S) and cec! (S;S?). Let a,be C2(S;R?). Deformations of the recovery sequence are con-
structed according to the classical ansatz for the linearized von Kdrmén regime [25]. Thus, for every
h > 0, we define

~ / 175 ~
gy, =75 + B2 (’5) + hPI21 (%) — 1Py (V()”) + 20P/2 g + WP,

Observe that g, € C?(€;R?) and there holds
1Gh — 7l cops) < CRPP71 (3.116)

‘We compute

u / 0 275 /
Bro—ron (VBN e (O |2V s, (VDT ]0
()" ] 0 Vo)t |0 )" |0 (3.117)

+ 202G ® e5 + 2hP/% 15 b ® eg + O(KP/2T1),
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so that we immediately deduce
1En = Tl gogims sy < CH727 (3.118)

Recall the identity (I+F) " (I+F) = I+2sym F+F'F for every F € R®*3. Thanks to the assumption

B > 6, we have
~ \ T ~ ~ ~
\/ (Fh) Fu=1I+h%(A+ a3 B)+ OB/, (3.119)

symV'u o’ ~ ~
+a®est+e3Ra,

—‘» +b®Res+e3®Db.

Using the identity det(I + F) =1+ trF + tr (cof F') + det F for every F € R3*3, we obtain
det F, =1+ O(hP/?),  V(det F},) = O(hP/?). (3.120)

where

D;)

)

This ensures that

1/2 < det F), < 3/2 in Q, (3.121)
at least for h < 1. In particular, by the inverse function theorem, ¥, is a local diffeomorphism of class
C? with Vg, = (Vg,,) L og; " in QU
We claim that the map ¥y, is injective. To see this, we argue as in [14, Theorem 5.5-1, Claim (b)]. Fix
x, T € Q with © # Z. By [14, Exercise 1.9], there exists a finite number of distinct points &1, ..., &, € Q
with ; = « and @,, = @ such that each segment connecting &; to T;11 is entirely contained in Q and
S |®ig1 — ;| < Clz — &| for some constant C' > 0 depending on Q only. Then, applying the mean
value theorem in combination with (3.118), we estimate

m

Yn(@) =45 (@) — (ma(2) — 70 (2))] < ZI Yp(@it1) = 7 (@ir1)) — (Yn(@i) — 70 (T0))]

m
< VG — Vnllogponsy O [Fiss - 3
i=1
< ChP* e — 3| < OWP/ 7 2 my(x) — 7 (T)].
Since 8 > 4, for h < 1, we obtain
Yn(®) =Y (@) = (mn(®) — 70 (@))] < [mn(@) — 70 (2)].
As mp(x) # 7w, (Z), we necessarily have Y, (x) # Y, (Z), which proves the claim.

By the invariance of domain theorem, the map ¥, is a homeomorphism. Hence, we actually have @,:1 €
C?(Q¥»;R3). Moreover, setting I}, := V7, there holds

LV =00V ow = (Vi 1) = (Fuom!) =Fy oy’ (3122
From (3.117), by computing the inverse of ﬁ’h using Neumann series, we obtain
F, =I+0M/?*Y, (3.123)
which, in view of (3.122), yields
IV lloo @ms) < C (3.124)
Now, define miy, : Q¥» — R3 by setting
e CoT

det Vg, 0 Up -
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Observe that my, € WH2(Q¥»; R3) thanks to the regularity of g, ' and to (3.121). Moreover, there holds
M, 0 G, det V4, = € in €, so that @, == (G, 74) € Q.

The convergences in (3.109)—(3.110) follow by direct computation, while (3.114) is trivial. From (3.121)
and (3.123), we also have

~ _ 1 _
det Fj, — 1 in C°(Q), —— —1in C(Q), (3.125)

det F'n

and .
V(det F) — 0 in C°(Q; R?), F, — Iin C°(Q;R3*3). (3.126)

Thus (3.113) follows.
We prove (3.111). We have

Cogy'om,

th)detﬁ‘h o@fbl oy

First, as 8 > 4, from (3.116) we establish (3.44)—(3.45) by arguing as in Step 1 of the proof of Proposition
3.7. Let x € R3\ (Q, so that x € R*\ Q," for some n > 0 and ¢ > 1. Then, (3.45) entails that
x € R3\ m, 1 (Q¥n) for h < h(n, ). Instead, let z € Q and let n > 0 and 0 < ¥ < 1 be such that = € Q.
By (3.44), we have @ € 7}, 1 (Q¥)for h < h(n,9) and, in turn, =, = g, ' (7,(x)) € Q. From (3.116), we
see that

ﬁh = X-,rgl(

1~ . 1, .. _
H’"hl °Yp — 7'dHCO(ﬁ;JR3) < Ellyh - 7"h||00(§;R3) < CniiP2,

Let € > 0 be arbitrary. For h < 1, the right-hand side of the previous equation is smaller than ¢, so that
~1 1~ _ ~ .
|z — g, (mn(®))| = |7, Gn(@n) — 2| < [l7, " 0 Yy — id || coqms) < &

This shows that g, ' (7, () — @, as h — 0F. Since ¢ is continuous and (3.125) holds, we deduce that

[, — @ almost everywhere in R3, where fi = vol. As (@) is uniformly bounded and, for h < 1,
supported in a compact set containing £ by (3.45), the convergence in (3.111) follows by applying the
dominated convergence theorem.

To prove (3.112), first we compute

v, — V€U oy V(det Fyog, )
det Fp o3, " (det Fj 05, 1)2

Since E is a function of the plane variable only, there holds E = E omhlq. Thus
S~ ~ o ~ o o ~ -1
V(Coyhl) =V((om, Oyhl) =V(om, oyhlIthhl = VCOythh Oyhl?

where, in the last line, we used (3.122). Also, we have
—~ T —~ —~ ~—1
(V(det Fjo @;1)) = V(det Fy) oG, 'V, " = V(det F) o g;, ' I;'F), o9y, ",

where we employed again (3.122). Thus

P o P . | = ~—1lp—17"
e :VCoyh F, oy, _Coyh V(det Fp)oy, I, F)

T~
oYy
vmh d L — — —— . h
et F'p, 0y, (det Fp, oy, ")

)

so that

~ ~-1 ___
V(oy, omp F, oy, om,

ﬁh = —1,0% =
Xoei(@7) det Fp, oy, ' omy,

= 1 = ~—1 1l ~—1
Coyy ompV(det Fy)oy, ompl, F, oy, om,
(det Fp oG, ' omp)?

- Xﬂ;l(lel)

With arguments similar to the ones previously employed, exploiting the continuity of V' Z’ together with
(3.44)—(3.45), (3.120)—(3.121) and (3.125)—(3.126), we show that N, — N almost everywhere, where
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N = XQ(V'Z\O). As both maps are bounded and supported in a compact set containing 2, claim (3.112)
follows by applying the dominated convergence theorem.

Step 2 (Attainment of the lower bound). We now compute the limit of the magnetoelastic energy
along the recovery sequence. Recalling (3.55) and Proposition 3.10, from (3.111)—(3.112) we obtain

lim EO(@,) = E@),  lim ES(@,) = BS@) (3.127)

We show the convergence of the elastic energy. By the polar decomposition theorem, there exists (I?’h) C

~

_ ~ —~ ~ 1/2
C1(8; SO(3)) such that F), = Py, (F,L F,,,) . Thanks to (3.118)-(3.119), passing to the limit, as i —

P = ~T
07T, in the previous identity, we see that Py — I uniformly in . For convenience, set Ly, := Ly (P}, z3).
By (2.6) and (2.8), there holds

Kn=h?2I-L, )= cl®Cin LR, (3.128)
Recalling (2.10) and (2.14), we write
~ =~ . ~ 1~ AT \1/2
Wh(Fm)\h) =0 (Lh(zh)ith) =0 (Lh(zh) 1l)h (FhFh) >
~T. T N 1/2 1 T N1/2
Sy (Ph Ln(Z1) 1Py (Fh Fh) ) S <Lh (Fh Fh) ) .
Thus, given (2.8), we have
1 (T \1/2 2 (% 7 B B/2+1
L, (Fh Fh) — I+ 1 (A K+ J;gB) +O(RP/2H), (3.130)
Using (2.16) and (3.129)—(3.130), we compute
1 a1l T~ N\ 1/2
Efl(q)) = / o (L, (Fh Fh) da
e /g
1 o~ ~
- 7/ Q(A—Kh—i—:ch—i—O(h)) de
2 Ja
1 o~ ~
— B/2 _ B8/2+1
+ 73 /Qw (h (A Kh—i—:ch) +0(h )) de.
Then, thanks to (3.128), applying the dominated convergence theorem, we obtain
~ 1 -~ = = =
lim+ ENG,) = 5/ QA —co¢®C+23B)de (3.131)
Q
Therefore, combining (3.127) and (3.131), we have
hm En(qg,) /Q — ol ®C)dw + —/ Q(B d:c+/ \V'E|2d:c’—|—/ IC3)% da.
s s
Step 3 (Diagonal argument). To conclude the proof, we employ a standard diagonal argument. By

the definition of Qreq in (3.4), there exist a,B: S — R3 such that
Qrea(sym Vi —¢'0¢) =QA-C®(),  Qual(V)*) =Q(B), (3.132)
where we set
A (symV’ﬁ 0

R B ((v/)zﬁ 0/
)" |o

+a®es;+e3®a, B =
) 3+ e3 ) |0

In particular, thanks to (2.17), we have @,b € L2(S;R3). Let (@;) C C2(S;R?), (3;) C C3(S) and
(@;), (bj) C C%(S;R?) be such that the following convergences hold, as j — oco:

u; — uin WH2(S;R?),  9; — 0 in W22(9), (3.133)
a; — a in L*(S;R?), b, — b in L*(S;R%). (3.134)

> +b®Re;+e3®b.
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If we set

~ (symV'ﬁj o’
j =

~ V)2 | O

>+aj®€3+63®aj, B; = — (O/)T O>+bj®63+€3®bj,

then, by (3.133)—(3.134), we immediately have
A; - Ain L2(S;R**3),  B; - B in L*(S;R>*?), (3.135)
as j — oco. Also, thanks to [29, Theorem 2.1], there exists a sequence (Ej) C C1(S;$?) such that
¢; — ¢ in WH(S;R?), (3.136)
as j — oo, and, in turn, there holds
¢;®¢ = Colin LHS; R, (3.137)
as j — oo.

By Step 1, for every fixed j € N, there exists a sequence (Zjﬁf)) with ijgl) (fjgj),mﬁf)) € Qp, such that
the following convergences hold, as h — 07:

ﬁ;bj) = Un(q EL))—> u; in WH2(S;R3); (3.138)
A(J) =V (g" g — ; in W22(S); (3.139)
. . 1 / P

17755) =Wh(@)) = —33 (VO ) in WH2(S;R?), (3.140)

= Mu(G?)— XQC in L*(R3;R?), (

= N (@)= xa(V'¢;10) in L2(R%RP*?), (
(J) o y(j)—> ¢;in L L RY), (3.143

20 = 2,(@7)— ¢, in LY R). (

Moreover, we also have

Jlim F,(g ) /Q — el ®C; dm+24/Q1§

2 2
+/S|v’cj| dm'—|—§/s|cj| da’.

In view of (3.133)7(3.145) we select a subsequence (f;) such that, setting g, = (yy,,, mn,) € Qn, with

Yp, = ygf and my,; = mglj), the convergences in (3.108)—(3.114) hold for h = h;, as j — 0o, as well as

(3.145)

—~ ~ 1 ~
Jim, Bl (d,,) /Q (A—C¢®()de +—/Q da:’—i—/ |V'C|2dm’+§/ IC32da’.  (3.146)
S S

As the right-hand side of (3.146) equals E§!(q,) by (3.132), this establishes (3.115) for the subsequence
indexed by (h;). O

At this point, our first main result has been basically proved.

Proof of Theorem 3.1. Since claim (ii) has already been proved in Proposition 3.12, we only have to
show claim (i). Suppose (3.8). By applying Proposition 3.8, we find g, = (u,v,{) € Qo such that,
up to subsequences, the convergences in (3.74)—(3.82) as well as (3.83) hold true. In particular, this
shows (3.9)—(3.11). Then, given (3.77)—(3.78), (3.80) and (3.81)—(3.83), by Proposition 3.11, we establish
(3.12). O
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3.2. Convergence of almost minimizers. Henceforth, we consider applied loads determined by body
forces and by external magnetic fields. For simplicity, applied surface forces are not considered but
these can be easily included in the analysis. According to the assumption of dead loads, the work of
mechanical forces is described by a Lagrangian term. Conversely, the energy contribution corresponding
to the external magnetic field, usually called Zeeman energy, is of Eulerian type.

Given h > 0, let f, € L?(S;R?), g, € L*(S) and hj, € L?(R3;R3) represent a horizontal force, a
vertical force and an external magnetic field, respectively. The work of applied loads is determined by
the functional Ly : Qp — R defined by

— 1 / / 1 3 1
@)= 5 [ St =) dot o5 [ gtaos g [ mmag,
where ¢ = (y, m). Thus, the total energy Fy: Qp — R reads

Fi(q) = En(q) — Ln(q), (3.147)

where we recall (2.22). Regarding the asymptotic behaviour of the applied loads, we assume that there
exist f, € L?(S;R?), go € L?(S) and hy € L?(R?;R?) such that the following convergences hold, as
h—0F:

h=B/2f, —~ f,in L?(S;R?), (3.148)
hP/2" g, gy in L%(S), (3.149)
hy, o w— xrho in L?(R3; R3). (3.150)

We stress that the limiting magnetic field h is a priori assumed not to depend on the variable zs.

The limiting total energy Fj: Qo — R is defined as

Fy(ao) = Eo(ao) — Lo(qo)- (3.151)
Here, the functional Ly: Q¢ — R is given by

Lo(q,) ::/Sfo-udsc’-i—/Sgo1}dalc/4—/Sh0-Cdalr:’7

where g, = (u, v, ), and we recall (3.7). Observe that the limiting total energy is purely Lagrangian.
Our second main result claims that sequences of almost minimizers of (F},) in (3.147) converge, as h — 0,
to minimizers of the energy Fy in (3.151).

Theorem 3.13 (Convergence of almost minimizers). Assume p > 3 and 8 > 6V p. Suppose that
the elastic energy density Wy, has the form in (2.4), where the function ® satisfies (2.9)—(2.13), and that
the applied loads satisfy (3.148)-(3.150). Let (q;,) with q;, = (yp,, mp) € Qp, for every h > 0 be such that

li F —inf Fp, » = 0. 3.152
S {Fita) gt (3:152)

Then, there exist q, = (u,v,¢) € Qq such that, up to subsequences, the following convergences hold, as
h—07:

up = Uy (g,)— u in WH2(S;R?), (3.153)
v = Vi(q,)— v in WH2(S), (3.154)
zn = Zn(q,)— ¢ in L' (4 R?). (3.155)

Moreover, q, € Qqp is a minimizer of Fy in Qp.

We mention that the weak convergence in (3.153) can be improved to strong convergence by arguing as
in [25, Subsection 7.2]. Also, more general boundary conditions as in Remark 3.2 can be imposed.

Remark 3.14 (Existence of minimizers for the reduced model). The existence of minimizer of
Fy in Qg is a consequence of Theorem 3.13. However, under our assumptions, this can be established
directly. First, note that the functional Fy is lower semicontinuous with respect to the product weak
topology in view of the convexity of Qreq.- Thus, in order to apply the Direct Method, one only has to
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show that the functional Fj is coercive on Qq. This is done by exploiting the positive definiteness of Qeq
on symmetric matrices in (3.5) and applying Korn and Poincaré inequalities in view of the homogeneous
boundary conditions in (3.6).

The major difficulty in proving Theorem 3.13 is to deduce the equi-boundedness of the elastic energy
starting from the equi-boundedness of the total energy. This is accomplished by arguing by contradiction,
similarly to [37, Theorem 4].

Lemma 3.15 (Energy scaling). Let M > 0 and let (q;,) with q;, € Qp, for every h > 0 be such that

sup Fy(q,) < M. (3.156)
h>0

Then, there exist C(M) > 0 and h > 0, where the former does not depend on (q;,), such that

sup Ej(q,) < C(M). (3.157)
h<h

Proof. We introduce some further notation. Given h > 0 and ¢ = (y, m) € Q;, we set

In(q) = /QWh(Vhy,mo y) dez, (3.158)

Jh(q):Ih(q)f/ﬂfh’(y’fw’)dwr/ﬂghy?’dm

For convenience of the reader, the proof is subdivided into three steps.

Step 1 (Preliminary estimates). First, we check that
Ii(ay) < COMAP. (3.150)
Let g, = (y;,, my,) and, for simplicity, set
Fn:=Vy,, Xv=myoy,, Ly=L,Ap(detFy)), Ej:=L,"F.
As in (3.84), for every h > 0, we have
= Ru(y,) < Ch’ + In(ay), (3.160)
which yields

<C (Hdist(Fh; SO(?)))”LQ(Q) + 1)
<C(Vrnt+1)

<C (\/Ih(qh) n 1) .

Then, using the Poincaré inequality with trace term, we obtain

1l 2 (oimaxs)

lyn — 7wl z2ms) < CIFR — T p2imoxay < C (| Fnllpe@moxe + 1) < C (\/Ih(qh) n 1) . (3.161)

Given (3.148) and (3.161), applying the Holder inequality, we estimate

1
’W/th'(y%m,)dm

1
< h*@||fh||L2(S;R2) Y3, — [ L2(ir2)

C
7375 [19h = @202 (3.162)

< 7 (Vi +1).
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Similarly, exploiting (3.149), we obtain

1 1
’}LB /Qgh -y de| < 75||9h||L2 ) 193l z2 ()

c
7=t (i = hasllao) +1) (3.163)

C
< 121 (\/ In(gy) + 1) .
Set p;, = Mp(qp,). Recalling (3.150) and using the change-of-variable formula, we estimate
1
7/ hh MMy dﬁ‘ = /
h Jaun R

< lhn o mnll 2 rere) a2 (re;Re)

< (VInay) +1).

hpomp - pyde
3

(3.164)

Indeed, as in (3.47)—(3.54), there holds

1
2da = / / I 1).
L = [ i <0 | oinan < Clna) +1)
The combination of (3.162)—(3.164) yields

Ln(an)] < 2575 (V@) +1). (3.165)

so that, applying the Young inequality, we obtain

/
Fr(qy) = hﬁfh q) hB/Z <m+l) > hﬂ In(qy) — %
This entails (3.159) thanks to (3.156). From (3.160), we immediately get
rn < C(M)hP/2, (3.166)
Also, we obtain
Tn(ay) < C(M)AP, (3.167)

since

hPIn(an) < Fulay) + 7
QYh

By - d€ < M+ C (VIn(ay) +1) < C(M),
thanks to (3.156), (3.159) and (3.164).
Step 2 (Improved estimates). We claim that I},(q,,) is actually of order h®. By contradiction, suppose

that .
lim sup hﬁI r(gp) = +oo. (3.168)

h—0t

Note that 75, /h? — 0, as h — 0% by (3.166) since 8 > 4. By means of Lemma 3.3, we find (Ry,) C
Whr(S;S0(3)) and (Q),) C SO(3) such that the following estimates hold:

| Fr — Rh||L2(Q;R3><3) < Cy/ry, ||v,Rh||L2(S;R3><3><3) <Ch!
HRh _QhHL2(S;R3X3) < Ch~t Th, ||Fh_QhHL2(SZ;]R3X3) < Ch~t
Let e, = In(qy,). Given (3.168), up to subsequence, we have

hB
lim — =0, (3.169)
h—0t €ep
which, together with (3.160), yields
limsup - < 1. (3.170)
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Also, applying Lemma 3.5, we deduce

Q) — 1| SC\/TE-
Now, define Uj,: S — R? and V},: S — R by setting

h? 1
Un@) = N /I (Wh(@',23) — @) das,

h
Vi(z') = \/a/ly%(az',xg)dxg.

As the sequence (rp/ep) is bounded because of (3.170), Proposition 3.4 entails that (Uj) and (V},) are
bounded in W12(S;R?) and W2(S), respectively, for h < 1. Hence, taking into account (3.148)—(3.149)
and (3.169), we compute

1
li 7 3
hg& {eh / Fu( ) d + / IhYn dcc}

hB/2 hB/2
— lim {(hﬂ/QQ\/\/a)/hﬁ/2fh~Uhdm’+\/a/hﬁ/21gh Vhdaz’} -
S S

This, in turn, gives

1= lim —Ih(qh)

h—0t ep
1
=1 In( — e + — B d
ﬁﬁ{ nlan) + - /fh x)m+wlﬁwhw}
lim o) tm 2 =g
A, <, In(an) < O(M) lim, 2 =0,

where in the two lines we explmted (3.167) and (3.169). This provides a contradiction and, in turn, we
necessarily have

L :=limsup —

ms hﬂ In(qy) < +o0. (3.171)
—

Step 3 (Bound on the constant). Clearly, the constant L > 0 in (3.171) depends on the sequence
(g;,). We claim that
L<C(M) (3.172)

for some constant C(M) > 0 depending on M but not on (q;,). First, observe that, in view of (3.160)

and (3.171), there hold
. Th Th

1 — < C+1L lim — =0. 3.173
msup s SO Ll (3.173)

Set uy, = Uy(q,)and vy, == Vi(q,). By applying Proposition 3.4 to §,, = y, with e; = h#, we deduce
the two estimates:

Th Tt
lunllwiz(srey < C (;L/B; + hf3/2L+2> , (3.174)

S
a7 (3.175)

Then, recalling (3.148)7(3.149) and (3.167) and employing the Holder inequality, we estimate

1
(qh) e Jh(qh) /:S'hfﬁ/th cup dx’ + /:S' hfﬁ/Qflgh oy, da’

A h
< C(M) + C (Jlunll2(sirz) + llvnllL2(s)) -

Exploiting (3.174)—(3.175), we take the superior limit, as h — 07, at both sides of the previous inequality
with the aid of (3.171) and (3.173). This yields

L<CO(M)+CVL,
which entails (3.172) by applying the Young inequality.

lvnllwizsy < C5rm
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Therefore, in view of (3.171), we have proved that
In(gy) < C(M)R?

for h < 1 depending on (g;). At this point, from (3.165), we infer Ly (g;) < C(M) and, recalling (3.156),
also (3.157). O

We are now ready to prove our second main result.

Proof of Theorem 3.13. Given h > 0, let ny: Q) — S? be constantly equal to some fixed e € S2. In this
case q;, = (mwp,np) € Q. We claim that Fy(g,) < C and, in turn, infg, Fj, < C. To see this, using
(2.16), we compute

el (— 1 hﬁ/2
Eh(qh)_hﬂ/g(p<11+hﬁ/26®e>dw

1 1 1 1872
_Q/QQ<HWe®e>dw+hﬁ/Qw<1+We®e>dw§C.

Denote by v, the stray field potential corresponding to g,,. By (2.25) and the change-of-variable formula,
we have

@) = 3 [ VTPE<H2Y @) = 25S),

Thus, Ep(g,) < C. Moreover, by (3.150) and the change-of-variable formula, there holds

i
“ | hy-ede
hla,

Therefore, the claim is proved.

At this point, (3.152) yields the bound sup,~ Fr(g,) < C. Then, by Lemma 3.15, there holds
supp«1 En(g,) < C. Thanks to Proposition 3.8, we find g, = (u,v,{) € Qp and x € L*(R*R?)
such that (3.74)—(3.83) hold true. In particular, this shows (3.153)—(3.155).

Given (3.77)—(3.80) and (3.81)—(3.83), we apply Proposition 3.11 to g;, = g;, and we conclude that

[Ln(@,)| =

:/ |hho77h|dwSCHthﬂ'h”Lz(RS;R?') SC
Q

E <liminf E

0(qo) < liminf Bn(gs,),

while exploiting (3.74)—(3.75) and (3.77), and applying the change-of-variable formula, we see that
Lo(qo) = hli%h Ln(ap)-

These two facts together clearly entail

Fo(qo) < liminf Fy,(q,). (3.176)
h—0+t

Now, let g, = (u,7, Z) € Qp. By Proposition 3.12, there exists (g;) with g, € Qj such that (3.108)—
(3.109), (3.111) and (3.115) hold true. Hence, we have

Fildg) = lim_ Fi@,). (3.177)
Eventually, combining (3.152) with (3.176) and (3.177), we obtain
F < liminf F; < liminf F}(g;) = Fo(q,)-
0(qo) < liminf Fy(qy) < liminf Fy(q,) = Fo(qo)

Since g is arbitrary, this shows that g, is a minimizer of Fj on Q. ([

4. QUASISTATIC SETTING

In this last section, we study the variational model under quasistatic evolution in presence of dissipative
effects. The evolution is driven by time-dependent applied loads and our framework is the theory of
rate-independent systems [45].
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4.1. The quasistatic model. We start by describing the setting. Let T' > 0 be the time horizon. Given
h >0, let

f, € WHH0,T; L2(S;R?)), g, € WHH0,T; L2(S)), hy, € WHH0,T; L*(R3; R?)),

represent a time-dependent horizontal force, vertical force and external magnetic field, respectively. With-
out loss of generality, we assume that all these functions are absolutely continuous in time. The corre-
sponding functional L : [0,T] x Qp — R is defined by

1
— 3 _— .
n(t, q) =5 / ) (y —2')dx + 7B / gn(t) y° de + h o hp(t) - mdg,
where ¢ = (y, m), and the total energy Fp: [0,T] x Qp — R reads
fh(ta q) = Eh(q) - Eh(t7 q) (41)

Using the notation introduced in (3.3), we define the dissipation distance Dy : Qp x Qp — [0, 4+00) by
setting

Dn(a,3) = /Q 124(q) — 2(@)] de. (4.2)

Thus, the energy dissipated along an evolution g: [0,7] — Qj within the time interval [r, s] C [0,T] is
given by

N
Varp, (q; [r, s]) == sup {ZDh(q(ﬂ')» g(t=1): L= (¢°,..., V) partition of [r, s]} .
i=1
By partition of the time interval [r, s] C [0, T] we mean any finite ordered set IT = (t°,¢!,... V) C [r, 5]V

with 7 =10 < t! < ... <tV = 5. Also, the size of the partition is given by
ITI| := max{t' —¢'~':i=1,...,N}.

For the reduced model, we also have an evolution driven by time-dependent applied loads. Precisely, we
assume that there exist

fo € WHH0, T3 L*(S;R?)),  go € WHH(0,T5L(S)),  ho € WHH(0, T L*(R* R?)),

such that, as h — 07, the following convergences hold:

hPI2f, — fo in WHL(0,T; L?(S; R?)), (4.3)
h=P2"1 g, — go in WH(0, T L%(S)), (4.4)
hy, o wp— xrho in WH(0, T; L2(R3; R3)). (4.5)

~

Also here, we assume that the functions f,, go and hg are all absolutely continuous in time. In (4.5),
we trivially set hy, o 7y, (t) == hy(t) oy, for every t € [0,T]. This gives a map in W11(0,T; L?(R?; R3))
whose time derivative is given by hy, o 7, (t) == hy,(t) o ), for every t € (0,T). Note that the limiting
magnetic field h is a priori assumed to be independent on the vertical space variable.

We define the functional Lg: [0,T] x Qp — R by setting

Loltia) = [ folt)-ude' + [ golt)vda’+ [ hat)- ¢ e
s s s
where g, = (u, v, ), so that the limiting total energy Fo: [0, 7] x Qp — R reads

Fo(t,q0) = Eo(qo) — Lo(t,qp)- (4.6)
The dissipation distance Dy: Qg X Qp — [0, +00) for the reduced model is defined as

Do(dy, do) = /S ¢ — &lda, (4.7)



A REDUCED MODEL FOR PLATES IN NONLINEAR MAGNETOELASTICITY 33

where g, = (u,v,¢) and g, = (u, v C) Therefore, the energy dissipated by an evolution g, : [0,7] — Qo,
where q,(t) = (u(t),v(t),(t)), within the time interval [r,s] C [0,T] is given by
N
Varp, (qg; [, s]) := sup {Z Do(qo(t'), qo(t™1)) : TT = (t°,..., ") partition of [r, s]} .

=1

In the theory of rate-independent systems, one defines energetic solutions as time evolutions satisfying
two requirements: a global stability condition and an energy-dissipation balance [45, Definition 2.1.2].
We recall below the definition for both the bulk model and the reduced model.

Definition 4.1 (Energetic solution of the bulk quasistatic model). A function g;: [0,7] — O
is termed an energetic solution of the bulk quasistatic model at thickness h > 0 if the function ¢ —
0y Fn(t,qp(t)) belongs to L(0,T) and, for every t € [0, T], the following two conditions are satisfied:

(i) Bulk global stability at thickness h:

Vg, € Qn,  Fnlt qn(t)) < Fu(t,qn) + Drlgn(t), qn); (4.8)
(ii) Bulk energy-dissipation balance at thickness h:

Fn(t qn(t)) + Varp, (g5 [0,t]) = Fr(0, g, (0)) + /0 O Fn (T, qp, (7)) dr. (4.9)

Definition 4.2 (Energetic solution of the reduced quasistatic model). A function q,: [0,7] — Qo
is termed an energetic solution of the reduced quasistatic model if the function t — 9;Fy(t, g, (t)) belongs
to L1(0,T) and, for every t € [0, T], the following two conditions are satisfied:

(i) Reduced global stability:
Vg, € Qo,  Folt,qo(t)) < Folt,do) + Dolqo(t), do); (4.10)

(ii) Reduced energy-dissipation balance:
Fo(t,qo(t)) + Varp, (qo; [0, t]) = Fo(0, g0 (0 / O Fo(T,q0(7))dT (4.11)

The main results of the section are Theorem 4.3 and Theorem 4.9 which represent the counterparts
of Theorem 3.1 and Theorem 3.13 in the quasistatic setting. These will be presented in the next two
subsections.

4.2. Evolutionary I'-convergence. Our third main result states the evolutionary I'-convergence of the
sequence (Fy) to the functional Fy, as h — 0F. More explicitly, we prove that sequences of energetic
solutions of the bulk model converge to energetic solutions of the reduced model.

Theorem 4.3 (Evolutionary I'-convergence). Let (q%) with ¢% = (y%,m%) € Q. Suppose that, for
every h > 0, the following condition is satisfied:

Va, € Qn Ful0,qD) < Fa0.y) + Dalaldy). (412)

Also, assume the existence of ¢) = (u°,v 0¢0 ) € Qq such that the following convergences hold, as h — 07 :
u) = Up(qh)— u’ in WH2(S;R?), (4.13)

vy = Wh(gqh)— v° in WH2(S), (4.14)

29 = Z,(¢))— ¢ in LY (Q;R?), (4.15)

)

Let (q;,) with q;,: [0,T] — Qp an energetic solution of the bulk quasistatic model at thickness h > 0.

Then, there exists a function q0 [0,T] — Qo with q(t) = (u(t),v(t),{(t)) for every t € [0,T) satisfying
the initial condition qo(0) = q which is an energetic solution of the reduced quasistatic model. Moreover,
up to subsequences, the following convergences hold, as h — 0% :

Vte[0,T], zun(t) = Zn(q,(t))— ¢(t) in L' (Q;R?), (4.17)
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Vvt e [0,T), Varp,(g;[0,t])— Varp,(qo;[0,t]), (4.18)
Vte[0,T], Fult,qu(t))— Folt,qo(t)), (4.19)
0 Fn (- q,)— 0:Fo(-,qo) in L*(0,T). (4.20)

In particular, the function q, is measurable and bounded. Also, the function t — ((t) belongs to
BV([0,T]; L*(Q;R?)), while the function t — Fo(t,qo(t)) belongs to BV ([0,T)).

In the previous theorem, the measurability of g, is meant with respect to the Borel sigma-algebra of the
space Wol’2(S;]R2) X WO2’2(S) x W12(S;R3) equipped with the weak product topology. Similarly, the
boundedness of the map g, is understood as the one of the function

te Jlut) lwresrey + o) lwzz(s) + 1€ [wr2(sirs)-

Remark 4.4 (Existence of energetic solutions for the bulk model). We stress that Theorem 4.3
is just a convergence result: the existence of energetic solutions of the bulk quasistatic model is part of
the assumptions. However, our setting is compatible with the existence of energetic solutions. Indeed, as
in Remark 2.2, if the function ® in (2.4) satisfies a feasible polyconvexity assumption, then the existence
of energetic solution for the bulk model can be established [9].

Remark 4.5 (Time-dependent boundary conditions). So far, we are not able to treat time-
dependent Dirichlet boundary conditions in the proof of Theorem 4.9. Indeed, given the Eulerian char-
acter of some of the energy terms, the approach developed in [23, Section 4] seems not to be applicable in
our setting. However, time-dependent boundary conditions like the ones in Remark 3.2 can be enforced
in a relaxed form as we will briefly discuss.

Let w € Whi(0,T; Wh*°(S;R?)) and v € WhH1(0,T; W22°(S9)). For every h > 0, we define the time-
dependent deformation g, € W(0,T; W1 (Q;R?)) by setting

Yu(t) =, + 1/ (“é”) + pP/21 (;2;)) _ B2, (V’g(t)) _

Let I' C 8S be measurable with respect to the one-dimensional Hausdorff measure with #!(T") > 0. For
every h > 0, the boundary condition

Vte[0,T], y=gp{t)onT xTI
on admissible deformations is imposed in a relaxed form by augmenting the energy Fj by the term
(@)= o [ W -whOlda+ s [P gl 0]da
’ hb/2 I'xI g hh/2=1 I'xI g 7

where g = (y, m). Of course, in this case, we remove the clamped boundary conditions from the definition
of Qp in (2.21). The scalings are chosen in such a way that the corresponding term in the reduced model,
which has to be added to Fy, is given by

(t,q0) — lu —au(t) + z3(V'v — V'5(t))| da +/ lv —o(t)|dl,
IxI r

where g, = (u,v,¢). This latter term imposes in a relaxed form the following limiting boundary condi-
tions:

Vte[0,T], uw=wu(t)onl, v=75(t)onl, Vv=V'70(t)onTl.

Clearly, Lemma 3.5 must be suitably modified. Note that, contrary to Remark 3.2, no particular assump-
tion on I is required in this case.

The rest of the subsection is devoted to the proof of Theorem 4.3. We begin with some preliminary
results. The first one constitutes the analogue of Lemma 3.15 for the quasistatic setting.

Lemma 4.6 (Energy scaling). Let M > 0 and let (q,,) with q,,: [0,T] = Qp for every h > 0 satisfy

sup sup Fn(t,q,(t)) < M. (4.21)
h>0 ¢€[0,T)
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Then, there exist C(M) > 0 and h > 0, where the former does not depend on (q;,), such that

sup sup Ep(qy(t)) < C(M). (4.22)
h<h te[0,T]

Proof. The proof of Lemma 4.6 works like the one of Lemma 3.15. In this case, we consider

Th = sup Rp(y(t)), en = sup In(q,(t)),
te[0,T] te[0,T]

where q;,(t) = (y,(t), mp(t)). Here, we employ the notation in (3.14) and (3.158). Then, we follow the

same strategy of Lemma 3.15. O

The second preliminary result shows that the sequence of functionals (F},) satisfy suitable controls with
respect to time. These represent one of the main assumptions of the theory of evolutionary I'-convergence
for rate-independent processes [46]. For convenience, we denote by Z C (0,7") the complement of the set
of times at which all the functions f;,, g» and hj, for every h > 0 as well as the functions f, go and hg
are differentiable. Thus, there holds #*(Z) = 0.

Lemma 4.7 (Time-control of the total energy). Let M > 0. Then, there exist two constants
C(M), L(M) > 0 such that, defining kj, € L*(0,T) for every h > 0 by setting

kp(t) = C(M) (h75/2||fh(t)||L2(S;R2)+h75/271||9'h(t)||L2(s)+||hh o ﬂh(t)||L2(R3;R3)) ,

we have that, for every (q,,) with q; € QO satisfying

sup Fy(q;,) < M, (4.23)
h>0

there exists h > 0 such that the following estimates hold for every h < h:
Ve (0,T)\ 2, |0:Fn(t,qy)l < () (Falt, qp) + L(M)), (4.24)
Vs,t € [0,T), Funlt,qy) + L(M) < (Fu(s,qy,) + L(M)) el Kr®=Kn() (4.25)
Vi€ (0,T)\ Z,V¥s € [0,T], [0:Fn(t,d@n)| < rn(t) (Fuls, @) + L(M)) elFnO=Kr (L, (4.26)
In the previous estimates, for every h > 0, we define K, € AC([0,T]) by setting

Kh(t) = ‘/Ot Kh(T) dr.

In particular, the constant L(M) > 0 satisfies

inf inf Fu(t,g,) > —L(M). 4.27
dnf dnf n(t,qp) > —L(M) (4.27)

Eventually, defining ko € L*(0,T) and Ko € AC([0,T]) as
Ko(t) = C(M) <||fo(t)||L2(s;R2) + 190l £2(s) + ||X1h0(t)HL2(R3;R3)> )
t
Ko(t) = / Iio(’]’) d’T,
0

there hold:

kp— Ko in L1(0,T), (4.28)
Kp— Ko uniformly in [0,T). (4.29)

We stress that, in the previous statement, h depends on (g),) while the constants C(M) and L(M) depend
only on M.
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Proof. First of all, (4.28)—(4.29) come directly from (4.3)—(4.5). By (4.23) and Remark 3.9, setting
up, = Up(q,) and Uy, == V3,(q},), we have

2oy + [9nllwas) < C(M) ( B (@) + 1) . (4.30)

Let g, = (y,,, mp,) and set @, = Mp(q,,). Recalling (2.7), (2.12) and (3.54), we estimate

1 1
7. 12 = _— < —_— < BEel q 1
/Rs [ de /Q det Vg, S C/Q et Vg 5 =€ (WEL @) 1)

il s, < C (\/E,il(ah) n 1) . (4.31)

Using (4.30)—(4.31) and the Holder inequality, we control the work of applied loads. For ¢ € (0,T) \ Z,
we have

|Ln(t, qh|<‘/h 5/2fh( - Uy dx’

so that

/h BI2=1 g (8) Dy, dae’

< CO) ([anllwrasis + [Fallwoacs) + Bl seeas) < CO1) ( B (@) + 1) .

/ hy, o wh(t) - fiy, da
RS

Here, we exploited the uniform boundedness of (h=?/2f,), (h=?/2"1g;) and (hj, o 7},) with respect to
time which follows from (4.3)—(4.5) by the Morrey embedding. Then, using the Young inequality, we
obtain

Fult,dn) > En(@n) — 1La(t.@0)| > En(@r) — C(M) ( B @) + 1) > O(M)En(@,) — L(M), (4.32)

for some constants C (M), L(M) > 0.

Now, for convenience, set

Ru(t) = PPN F ()2 (sm2) + h P2 | gn (@)l 2cs) + [P o 70h (8] 2 s o) -
Making use of the Holder inequality together with (4.30)—(4.31), we estimate

/Sh—ﬁ”fh(t) ay, dx'| + /Sh_ﬁ/z_lgh(t) oy dee’| 4 /RS hy, 0wy (t) - iy, dx
< Fn(t) ([anllwre(spzy + [0nllwrzs) + (8l @srs))
< cOnm (yE@) +1).

Combining this with (4.32), we obtain

|0:Fn(t:@p)| < C(M)RA(E) (Fa(t,gp) + L(M)),

which proves (4.24). Note that (4.27) holds in view of (4.32). From (4.24), we deduce (4.25) thanks to
the Gronwall inequality. Eventually, (4.26) follows. O

‘atfh(t7/q\h>| S

We now proceed with the proof of Theorem 4.3.

Proof of Theorem 4.3. We rigorously follow the scheme in [46]. Therefore, the proof is subdivided into
six steps.

Step 1 (A priori estimates). Let h > 0 and ¢ € [0,T]. Let g, € Qp be defined as in the proof of
Theorem 3.13. Testing (4.8) with g, = §j,, we obtain

]:h(taqh(t)) < ]:h(tvah> + Dh(qh(t)’qh)' (433)

As the applied loads are uniformly bounded with respect to h > 0 and ¢ € [0, T] thanks to (4.3)—(4.5) and
the Morrey embedding, we check that the first term on the right-hand side of (4.33) is uniformly bounded
with respect to both h > 0 and ¢t € [0, T] by arguing as in the proof of Theorem 3.13. The second term on
the right-hand side of (4.33) is also uniformly bounded with respect to h > 0 and t € [0, T] because both
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q),(t) and g, satisfy the magnetic saturation constrain. Therefore, we deduce (4.21) for some M > 0
and, by applying Lemma 4.6, also (4.22) for some h > 0.

Applying Lemma 4.7 to g, = q,(T), we see that

}11<1f Fn(T,q,(T)) > —L(M). (4.34)
and, for h < h, there holds
Vte (0,T)\ Z, |0:Fn(t,qn(t)) < kn(t) (Fu(t,q,(t)) + L(M)). (4.35)
By (4.9), we have
Varp, (¢,,;[0,71]) = ]'—h(O,‘Ih) Fn(T, q, (T / nFn (7, qp(7))dr. (4.36)

The first term on the right-hand side of (4.36) is uniformly bounded by (4.16) and so is the second one
because of (4.34). Additionally, thanks to (4.35), we estimate

|10z ar < [ wu) (Falran(m) + L) < Odr
’ ° (4.37)
SU{+LU@)GKWU—1)§C@LT%

where in the last line we used (4.21) and the uniform boundedness of (K}) which comes from (4.29).
Therefore, we obtained the following a priori estimate:

sup sup Fn(t,qp(t)) + sup Varp, (g,;[0,7]) < C(M). (4.38)
h>0 0<t<T h<h

For every h > 0, we define f,: [0,T] — R by setting f,(¢t) := Fr(t, q,,(t)). In view of the previous estimate,
we already know that (f;,) is uniformly bounded. We claim that this sequence has also uniformly bounded
total variation. Observe that, by (4.9), for every s,t¢ € [0,T] with s < ¢, there holds

Fiult, an(t)) + Varp, (ay; [5,1]) = Fi(s, an(s / O Fn (7. qy (7)) dr.

Let II = (¢°,...,t") be a partition of [0 T]. In this case, we estimate

N
ST AlE) — fult ) ZVarDh (ans [, +Z/ 9T (r. 0, (7)) dr
=1

= Varp, (g,;[0,T]) + /0 |0: Fn (T, qy(7))] dT.

As the right-hand side is uniformly by (4.37)—(4.38), given the arbitrariness of II, we deduce
sup Var (f;[0,7]) < C(M). (4.39)
h<1

Step 2 (Compactness). For every h > 0, set
Hp = U {G, € O : Fu(t,d,) < M}, Kn={2n(qy): g, € Hn}-
0<t<T
Then, define
He=JMn, K=JKn
h>0 h>0
Observe that, by Lemma 4.6, every sequence (q,) C H satisfies

sup sup En(q,) < C(M).
h<1l 0<t<T

Therefore, by Proposition 3.8, the sequence (Zp), where 2z, = Z,(q,) for every h > 0, is compact in
L'(Q;R3). This shows that K is a compact subset of L({;R3?).
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Now, in view of (4.21), the sequence (q;) takes values in H. For convenience, for every h > 0, we define

Zh: [O7T] - Ll(Q;RS)y 6h: [O7T] - [0,+OO),
by setting

zn(t) = Zn(qn(t)), On(t) = Varp,(gy;[0,t]).
By (4.38)—(4.39), the sequence (f;,) is uniformly bounded in BV ([0,77]). By construction, (z;) takes
values in K while, by (4.38), it has uniformly bounded variation. Eventually, by definition, each map dy,
is increasing and the sequence (dp,) is uniformly bounded by (4.38). At this point, we apply the Helly
compactness theorem [42, Theorem 3.2]. This yields the existence of three maps

F10,T] = [0,400), 2:[0,T) = LYY R?),  6:[0,T] = [0, +00),

with f € BV([0,T]), 2 € BV(0,T; L*(;R?)) and § increasing, such that, up to subsequences, the
following convergences hold:

Ve [0,T], fut) — f(t), (4.40)
YVt e [0,T), =zn(t)— z(t) in L*(Q;R3), (4.41)
Vi e[0,T], 6n(t) — 8(t). (4.42)

To construct the candidate solution gy: [0,7] — Qg of the reduced model we proceed as follows. For
every h > 0, define the functions

wp: [0,T) — WH2(S;R?),  vp: [0,T] = WH2(S), wp: [0,T] — WH2(S;R?),

wy: [0,T] — LA(R%R3), Ny [0,T] — L*(R3R3*3).
by setting
up(t) =Un(qn(t), vat) =Vilay(t)), walt) :=Wi(q,(t)),
pi(t) = Mn(qn(t)), Nn(t) = Ni(a(t))-

Recalling (4.22), by Proposition 3.8, we have that

sup sup {[lun(t)l|lwr2(smz) + |va(®)llwrzcs) + [wn®)lwresms)

h<h t€[0,T]
(4.43)

+sup sup {[|py (t)] L2 @ems) + [N w ()| 2 (rsrexs) } < C(M).
h<h t€[0,T]

Now, define X as the set of all quintuplets
(@, 0, @, fi, N) € WE2(S;R?) x WE2(8) x Wh2(S;R?) x L2(R%R?) x L2(R3; R¥*?)
with
sup { [@llwa sz + [Dllwiacs) + 1@ lwr o) + Bl + [Nz | < COD,

where C (M) > 0 is the same constant in (4.43). The space X is endowed with the product weak topology,
which makes it a complete and separable metric space. For every h > 0, we define the set-valued map
Sp: [0, T] = P(X) by setting Sp(t) :== {sn(t)}, where

Sh(t) = (uh(t)v vh(t)a wh(t)a /J'h(t)v Nh(t)) :

In view of (4.43), this map takes indeed values in X. Consider S: [0,T] — P(X) with S(¢) defined as
the set of all limit points of the sequence (sp(t)) in X. By definition, this is a closed subset of X" for
every ¢ € [0,7], while the map S is measurable thanks to [3, Theorem 8.2.5]. From (4.43), by weak
compactness, we deduce that the set S(¢) is nonempty for every ¢ € [0, T]. Therefore, by the measurable
selection theorem [3, Theorem 8.1.3], there exists a measurable map s: [0,7] — X with s(t) € S(¢) for
every t € [0,T]. For any such ¢, let s(t) = (w(t),v(t), w(t), u(t), N(t)). By definition of S(t), there
exists a subsequence (hy), possibly depending on ¢, with hy — 0, as k — oo, such that the following
convergences hold, as k — co:

up, (H)— u(t) in WH?(S;R?), (4.44)
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vp, (£)— v(t) in WH2(S), (4.45)
wp, (H)— w(t) in WH2(S;R?), (4.46)
tn, ()= p(t) in L*(R%R), (4.47)
Ny, (H)— N(t) in L*(R3;R3*3). (4.48)

Applying Proposition 3.8 to the sequence (g, (t)) and appealing to the Urysohn property, we deduce

several facts. First of all,
1 V()

so that v € W2"*(S). Second, there exist ¢(t) € W2(S;S?) and x(t) € L*(R?; R?) such that

u(t) = xaC(t), N(t) =xa (V{H)Ix(®)). (4.49)
Third, we have
zn, (1) = C(t) in L' (4 R?), (4.50)
which, together with (4.41), entails
z(t) = ¢(b). (4.51)
Eventually, Proposition 3.8 ensures the existence of (Ry(t)) C WP(S;S0(3)) and G(t) € L?(Q;R3*3)
such that, setting F'(t) := Vyy,,(t), we have

Ry, (t)— I in L*(Q;R**?), (4.52)
Gu(t) = h=P/2 (Ry(t) T Fy(t) — I)— G(t) in L*(Q;R3?), (4.53)

and, for almost every x € §2, there holds
G’ (t,x) = symV'u(t,x') — (V)?v(t,x'))xs. (4.54)

From the measurability of the map ¢t — Vaw(t) from [0,7] to L*(R3*3), we infer the measurability
of v as a map from [0,7] to W22(S). Similarly, from the measurability of u and N, we deduce the
measurability of ¢t — ((t) as a map from [0,7] to W2(S;R3). Hence, defining q,: [0,7] — Qo by
setting gy (t) == (u(t),v(t),¢(t)), this map results to be measurable. Also, given (4.43)—(4.48), by lower
semicontinuity, we see that map g, is bounded.

For every h > 0, let Py: (0,7) — R be defined by setting Py (t) := 0:F(t,q,(t)). By Definition 4.1,
Py, € LY0,T) . Thanks to (4.21) and (4.35), for every t € (0,7) \ Z, we have

|Pn(8)] < kn(t) (Fu(t, g (t) + L(M)) < C(M)rp(t). (4.55)

In view of the previous inequality, the equi-integrability of (), which comes from (4.28) by the Vitali

convergence theorem, implies the one of (Py,). Thus, by the Dunford-Pettis theorem [22, Theorem 2.54],
there exists P € L'(0,T) such that, up to subsequences, we have

P, — Pin L'(0,T). (4.56)

Define P: (0,T) — R by setting
P(t) == limsup Py (t).

h—0+
Exploiting (4.28) and(4.55), we check that P € L*(0,T). Also, by the reverse Fatou lemma [53, Corollary
5.35], we see that P < P almost everywhere in (0, 7).

Define Py: (0,T) — R by setting Py(t) = 0rFo(t, qy(t)). We claim that P = P, almost everywhere in
(0,T). Recalling (4.3)—(4.5), for almost every ¢t € (0,T) \ Z, we have

h=B2 g (t)— Fo(t) in L2(S;R?),
h=P/2 1 g (1) — go(t) in L2(S),
hp, o 70, ()= xrho(t) in L2(R3;R3),
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and

Pt) == 5z [ 110 wh0) =) do = o5 [ (a0 de’ =5 [ i) (o) dg

‘/ B2 (1) - wn(t) da’ / WP (@) on(t) da’ = | By o ma(t) - py(t) de
S S

R3
Without loss of generality, we can assume that the subsequence (hy) in (4.44)—-(4.48) additionally satisfies

Py, (t) — P(t), as k — oo. Thus, taking the limit along the subsequence (hy), as k — oo, at both sides
of the previous identity, we obtain

/ Folt) - u(t)dz — /S Go(t) v(t) dz’ — /S ho(t) - ¢(t) Az’

As the right-hand side of the previous equation coincides with Py(t) for almost every ¢ € (0,7) \ Z, this
proves the claim.

Step 3 (Reduced stability). Fix ¢ € [0,7] and consider the subsequence (hy) in (4.44)—(4.48). Let
q, = (u,v, E) € Qp and let (q;,) be the sequence provided by Proposition 3.12. For every k € N, the
global stability condition (4.8) gives

]:hk (t’ dp, (t)) < ]:hk (t7 ahk) + th (Qhk (t)> /q\hk) (457)
For the left-hand side, in view of (4.3)—(4.5), (4.44)—(4.45) and (4.47)—(4.54), we obtain
Folt,ao(1)) < limint Fi (1, 4y, (1)) = F(0) (4.58)

Here, we applied Proposition 3.11 and we also exploited (4.40). For the right-hand side, given (4.3)—(4.5),
(3.108)—(3.109), (3.115) and (3.111)—(3.112), there holds

khm fhk (t7ahk) = fO(tvaO)v
—00
while (3.114), (4.41) and (4.51) yield
khanolo th (Qh;C (t)a ahk) = DO(qO (t)a ;1\0)
Therefore, taking the inferior limit, as k — oo, in (4.57), we obtain

Fo(t,qo(t)) < Fo(t,do) + Do(qo(t), go)-

As @, is arbitrary, this proves (4.10) for ¢ fixed.

Step 4 (Upper reduced energy-dissipation inequality). Fix ¢t € [0, 7] and let (hx) be the sequence
n (4.44)-(4.48). By (4.9), for every k € N, there holds

t
Fin (t,qn, (£)) + Varp, (q,,:[0,1]) = Fr, (0. q3,) +/ Py (1) dr. (4.59)
0
For the left-hand side, we recall (4.58). Also, (4.41)—(4.42) and (4.51) entail
Varp, (qg; [0,1]) < lim inf Varp, (gy,:[0,t]) = d(t). (4.60)

For the right-hand side, we have (4.16). Also, given (4.56), there holds

¢
lim / b, (7 dT—/ P(T)dTS/ Py(7)dr,
k—o0 0

where we employed the inequality P < Py almost everywhere in (0,7T). Therefore, taking the inferior
limit, as k — oo, in (4.59), we obtain

Folt, qo(t)) + Varm, (a0: 0,1]) < F(8) +5(2)
< Fol0,q3) + / P(r)dr < Fo(0,q0) + / Po(r) dr,

which is the upper reduced energy-dissipation inequality for fixed ¢ € [0, T].

(4.61)
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Step 5 (Lower reduced energy-dissipation inequality). We claim that, for every ¢ € [0, 7], there
holds

Fo(t, qo(t)) + Varp, (qo; [0,t]) > Fo(0, qg) +/O nFo(T,q0(7)) dr.

Thanks to (4.10), the claims follows by applying [45, Proposition 2.1.2.3].

Step 6 (Improved convergences). We are left to prove (4.18)—(4.20). First, in view of (4.11) and
(4.61), we have f(t) + 0(t) = Fo(t,qo(t)) + Varp,(qo;[0,t]) for every t € [0,T]. Recalling (4.58) and
(4.60), this entails f(t) = Fo(t,qq(t)) and 6(t) = Varp,(qg;[0,t]), so that (4.18)—(4.19) are proved.
Finally, (4.11) and (4.61) yield P = Py almost everywhere on (0,7"). Thus, (4.20) follows by applying
[23, Lemma 3.5]. O

4.3. Convergence of solutions of the approximate incremental minimization problem. In order
to state our fourth main result, we introduce the approximate incremental minimization problem. This
is a relaxed version of the incremental minimization problem that has been introduced in order to cope
with the possible lack of energy minimizers [47]. This is exactly our situation since, without further
assumptions, minimizers of the total energy do to necessarily exist, see Remark 4.4.

Definition 4.8 (Approximate incremental minimization problem). Given h > 0, let Il =
(9, ... ,thNh') be a partition of [0,77], let a, > 0 and let ¢¥ € Q). The approximate incremental mini-
mization problem (AIMP) determined by IIj, with tolerance vy, and initial datum ¢9 reads as follows:
for every i € {1,..., Ny}, find ¢}, € Q), such that

Fu(th.q,) + Dl " ah) < (6, — i Dow + iélif {Fnti,,) +Dulg; ")} (4.62)

Our fourth main result claims that, for a sequence of partitions whose sizes vanish jointly with the
thickness of the plate together with a sequence of tolerances, solutions of the approximate incremental
minimization problem, or better their piecewise-constant interpolants, converge to energetic solutions for
the reduced model.

Theorem 4.9 (Convergence of solutions of the AIMP). Assume p > 3 and § > 6V p. Suppose
that the elastic energy density Wy, has the form in (2.4), where the function ® satisfies (2.9)-(2.13)
and that the applied loads satisfy (4.3)—(4.5). Let (I1,) be a sequence of partitions of [0,T] such that
III,| — 0, as h — 0T, and let (ap) C R with ap > 0 be such that o, — 0, as h — 07. Let (q2)
with g5 = (Y%, mY) € Qy, for every h > 0 be such that (4.12) holds. Moreover, assume that there exist
qd = (u°0°,¢% € Qo such that the convergences in (4.13)(4.16) hold true, as h — 0. For every
h > 0, consider a solution of the AIMP determined by I, with tolerance oy, and initial datum g and
denote by qy,: [0, T] — Qp, its right-continuous piecewise-constant interpolant.

Then, there exists a measurable function qy: [0,T] = Qo with q,(t) = (u(t), v(t),{(t)) for every t € [0,T]
satisfying the initial condition q,(0) = q§ which is an energetic solution of the reduced quasistatic model.
Moreover, up to subsequences, the convergences in (4.17)—(4.20) hold true, as h — 0%. In particular, the
function q, is measurable and bounded. Also, the map t — ((t) belongs to BV ([0, T]; L* (Q; R3*3)) while
the map t — Fo(t,qy(t)) belongs to BV ([0, T]).

We mention that also Theorem 4.9 can be adapted by imposing time-dependent boundary conditions as
in Remark 4.5.

Remark 4.10 (Existence of energetic solutions for the reduced model). As a byproduct of
Theorem 4.3, we obtain the existence of energetic solutions for the reduced quasistatic model. However,
under our assumptions, this can be established directly. Indeed, the limiting total energy JF( satisfies
suitable compactness properties in view of the coercivity of Qreq noted in (3.5) and the dissipation distance
Dy is continuous on the sublevels of Fy, so that the existence of energetic solutions for the reduced model
can be proved following the usual scheme [45, Theorem 2.1.6].

We move towards the proof of Theorem 4.9. We begin with a preliminary result concerning solutions of
the AIMP.
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Proposition 4.11 (Solutions of the AIMP). Let (II,) be a sequence of partitions of [0,T] and let
(an) C R with ap, > 0 for every h > 0 be bounded. Also, let (q)) with ¢ € Qy, for every h > 0 be such
that

sup 74 (0, q5) < C. (4.63)
h>0

For every h > 0, let I, = (9, ... ,thN") and let (g}, . .. ,q}lyh) be a solution of the AIMP determined by
I}, with tolerance oy, and initial datum q%. Then, there exists M > 0 such that

sup  sup fh(tfw QZ) <M. (4.64)
h>0i€{0,...,Nn}

Moreover, for every h < 1 andi € {1,..., Ny}, the following estimates hold:
V@), € Qn Fulth,qi) < (th, =t an + Fr(th, @) + Dulah, @n), (4.65)
th

Finth:ah) + Dulay, ' qn) < (t, =t Don + Fu(ty @y, )+ [ 0 Fn(r gy ) dr, (4.66)

i
ty,

Fu(th.@h) + LIM) + > Dul(q) ' q}) < (Fr(0,g5) + L(M) + tia) e (th) (4.67)
j=1

Eventually, if q°) satisfies (4.12) for h < 1, then, for every i € {1,..., Ny}, there holds
\Fu(th. i) — Fu(ty ' ah ) + Dulal, an)| < (8, — %) an

o . (4.68)
F(Fnlt ) 1) (R )

where we set t;l =0.
Proof. Let h > 0 and i € {1,...,N,}. For simplicity, we set a} = (t} —ti ')ay. Given (4.62), for every
q), € Qp, we have
fh( ?wq;z) < a;:L + fh( éwah) + Dh(q;.flﬁh) - ,Dh(qzijlvq}'z)
< a;ll + ]:h(t;wah) + Dh(‘];w&h%
where, in the last line, we employed the triangle inequality. This shows (4.65).

We check (4.66). For simplicity, set fi = F,(t},q}) and d, = Dy(q} ', gq}).From (4.62), by applying
the fundamental theorem of calculus, we obtain

fi—ftd, <af — fi7+ Fulth g Y
= aj, + Fulth g h) — Fulty g )

(4.69)

4 (4.70)
. h )
=aj + / O Fn (T, q}b_l) dr,
it

which gives (4.66).

Testing (4.65) with g, = @, where the latter is defined as in the proof of Theorem 3.13, we have
Fu(th: @h) < o + Futh, @n) + Du(ah, @n)-

Exploiting the uniform boundedness of the applied loads with respect to time, which follows from (4.3)—

(4.5) by the Morrey embedding, with computations analogous to the one in the proof of Theorem 3.13

we check that the right-hand side of the previous inequality is uniformly bounded with respect to A > 0

and i € {0,...,N,}. Here, we also take advantage of (4.63) and of the boundedness of (ay,). Therefore,

(4.64) is proved.

Now, for the sake of clarity, we specify the sequence (h,) such that h, — 0T, as n — oo, in place of

h > 0. Thus, (q,lm, ceey th:") is a solution of the AIMP determined by 1I;, with tolerance oy, and initial

datum qgn for every n € N. By applying Lemma 3.15 with (g,) given by the sequence

0 1 Npy 00 1 Nh 0 1 Nh,,
thatha"'athlaqh27qh27'"7qh227"'7qhnaqhna"'aqhn PR
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we deduce the existence of m € N such that

sup sup By, (q),) < C(M). (4.71)
n>ni€{0,1,...,Np,, }

Here, we exploit once more the uniform boundedness of the applied loads. Moreover, by Lemma, 4.7, for
every n > @ and for every i € {0,1,..., Ny, }, the following estimates hold:

Vte (0,T)\Z, |0:Fn,(t.q),)| < kn, (&) (Fn, (&, dh,) + L(M))

Vst € 0.7, Fi,(t.qp,) + LOM) < (Fa,(s.q3,) + L)) el O Fn 1,
vt € (05 T) \ Z7 Vs € [OvT]a ‘8tfhn (ta qZ,L)| < Khp (t) (]:hn(sv qzn) + L(M)) elKh"(t)_Kh"(s)l-

Henceforth, for simplicity, we go back to writing h as a subscript without specifying the sequence of
thicknesses and we set h := hs. Accordingly, for every h < h and i € {0,1,..., Ny}, we have:

Vte (0,T)\Z, [0:Fn(t,qp)| < kn(t) (Falt,qi,) + L(M)), (4.72)
Vs,t € [0,T],  Fult,qh) + L(M) < (Fu(s,qj) + L(M)) el KnO=Kn()]] (4.73)
Yt € (0,T)\ Z, Vs € [0,T), |0 Fn(t,qp)| < wn(t) (Fuls, q},) + L(M)) elErO=Kn()l, (4.74)

Going back to proof of (4.67), let h < h and i € {1,...,N,}. For convenience, set K = Kp(t)).
Combining (4.66) with (4.74), we compute

o th :
fh<fitd <o+ £+ [ aFrna ar
h
o _ th i1
<ah+ i (T LOD) [ e g
t;z_l

= oh S+ (L) (T )

= al, — L(M) + (fi ' + L(M)) SR
Thus
S+ L(M) < afy + (£ + L)) M50
from which, by induction, we obtain

FLALOM) < [ L)+ e Mhad | e (4.75)

j=1
Here, we set f := F,,(0,q%). From (4.66), using (4.74), we estimate

ot |
fu=f7 Hdy <o+ | OnFu(rg ) dr

t,

. th 4.76
<oh+ (i +20n) [ (4.76)
h
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Then, summing (4.76), with j in place of i, for j € {1,...,i} and employing (4.75), with j — 1 in place
of i, we obtain

Fi+ S0+ LOD) < 14 LM + 3 ad 4 (0 + L) (99K 1)
= j=1 j=1

j=1
< Zai + (f) 4 L(M))eSn + Z (eKh — eK’Jiil) Zaﬁ
j=1 j=1 k=1

which yields (4.67).
Finally, we prove (4.68). Testing (4.65) for i — 1 if i > 1 or (4.12) if i = 1 both with g, = g%, we have
RS el R )+

Here, in the second case, we set af) := 0. From this, employing the Fundamental Theorem of Calculus
and (4.74), we compute

= = di < opT = (Fulth @) = Fulty ' an))

i
th

= O‘ﬁ:l . O Fn (T, qZ) dr
£
| f | (4.77)
<aft + (4 L0D) [ (e 0 ar
t,
<ot (f L) (MR 1)
Combining (4.76)—(4.77), we obtain (4.68). .

We now present the proof of our fourth main result.

Proof of Theorem 4.9. Again, the proof follows the well established scheme in [46] and it is subdivided
into six steps.

Step 1 (A priori estimates). For every h > 0, let (g}, ..., q;lv”) € Q,ﬂvh be the solution of the AIMP
determined by II; = (t%, e ,thNh) with tolerance ay > 0 and initial datum q% € Qp. We introduce the

piecewise-constant interpolant gy, : [0,7] — Qp, by setting

(1) = qﬁfl if tﬁ;l <t < ti for somei€ {1,..., Ny},
It = thh ift="T.

Let t € [0,7]. Given h > 0, let i € {1,...,N},} be such that ;' <t < ti. By definition, we have

1—1
a,(t) =g, Varp,(g,:[0.1)) = Dulg} ", q)) (4.78)
j=1
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Thus, using (4.67) and (4.73), we infer

o i—1 ] )
Falt @y (t) + L(M) + Varp, (a4: 0,1]) < (Fu(ty ' ap ") + LM))e™ =K G0 L 37D (g1 )

j=1
i—1 ) ) .
< | P an )+ LD+ Dilay " ap) | O
j=1
<

(Fn(0,q%) + L(M) + ti ) (eKh(t) _ 1)

< (Ful0,q}) + L(M) + Tay,) (54 1),
Since the sequences (F5(0,qY)), (o) and (K, (T)) are all bounded, we obtain the estimate

sup sup Fi(t,qy(t)) + sup Varp, (gy; [0, T]) < C(M, T). (4.79)
h>01t€[0,T] h>0

For every h > 0, define f5: [0,7] — R and z,: [0,7] — L'(Q;R3) by setting fu(t) == Fu(t, q,(t)) and
zn(t) = Zr(q,(t)). From (4.79), we immediately get

sup sup f(t) 4+ sup Varpiqrs)(2s;[0,7]) < C. (4.80)
h>0t€[0,T] h>0

We now establish a uniform bound for the total variation of f,. For simplicity, for every h > 0 and
i€{l,...,Np}, set

Fo=Fulti,ai), dp=Dulgy " ar),  Kj=Kn(ti), o= (t, —t; Hon.

Also, for convenience of notation, we set ¢, ' := 0. First, denote by [f4]* the jump of f, at time t}.
Exploiting the continuity of ¢ — Fy,(t, qﬁfl) and employing (4.68) and (4.73), we compute

' = i, {506 1~ )} =

i (Falthoah) - Falt, - 5.}
— i L (E(H gy F (L g < | f— fid th
= |fn h (Fn( ndp ) h(th »dp, DI <Ifn I | +

t

i piel i—1 t K (r)—Kit (4.81)
<Ufi— BN +L<M>)/ ()RR

i—1
th

) |0¢ Fn (T, ‘I?l” dr

. . 7 i—1
<1 = S (M 4 L)) (5457 - 1)
<di+a" 4 al +2(M + L(M)) (eKiFKi’l - 1) .

Second, for t € (t?;l,t’,'l), we have fp,(t) = ]-'h(t,qﬁfl) and, in turn, fh(t) = &g}'h(t,qﬁfl). Making once
more use of (4.73), we compute

ti—l

h
ti

h

ti—l

. h .
fuldr = [ F gl dr
t;l
ti71 L
< U L0n) [ e 0 (452
i

< (M + L(M)) (eKi*Ki‘l - 1) .
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Thus, combining (4.81)—(4.82), we obtain

N
Var(f:[0.T) = {Hfhm - / ()] dT}

i=1 h

< % { L tap +al !t +3(M + L(M)) (eK;—K;;l _ 1)} (4.83)
i=1

< Varp, (gy;[0,T]) + 2T, + 3(M + L(M)) (eKh(T) — 1) ,

where in the last line we computed

Ny, Ny, Np,

% i—1 i—1 3 i—1 % i—1
E (eKh_Kh — 1) = E e_Kh (eKh — eKh ) S E (eKh — eKh, ) = eK’L(T) — 1
i=1 i=1 i=1

Thus, recalling the boundedness of («y) and (Kx(T)), where the latter follows from (4.29), the inequality
(4.83) together with (4.79) gives

sup Var(fr;[0,T]) < C(M,T). (4.84)
h>0

Step 2 (Compactness). For every h > 0, define §;,: [0, 7] — [0, +00) and the functions

wp: [0,T) — WH2(S;R?),  vp: [0,T] = WH2(S), wp: [0,T] — WH2(S;R?),
wy: [0,T] — LA(R%R3), Ny:[0,T] — L*(R3;R3*3).

as in in Step 2 of the proof of Theorem 4.3. Exploiting the a priori estimates (4.79), (4.80) and (4.84),
with the aid of the Helly compactness theorem [42, Theorem 3.2], we establish the existence of functions
f € BV([0,T]), = € BV([0,T); L*(;R?)) and §: [0,7] — [0, +0oc) such that, up to subsequences, the
convergences in (4.40)—(4.42) hold true. Moreover, employing the measurable selection theorem, we
identify a function g,: [0,T] — Qo with qu(t) = (u(t),v(t),{(t)) which is measurable and bounded.
This function is characterized by the property that, for every t € [0, T], there exists a subsequence (h),
possibly depending on ¢, such that (4.44)—(4.45) hold true and also

pn, ()= xa€(t) in L*(R%RY),

N (t)= xa(V'¢H)|x (1) in L2(R*R*?),
for some x: [0,T] — L?(R3; R?) measurable and bounded. Then, for every h > 0, we define P, : (0,T) —
R as in Step 2 of the proof of Theorem 4.3 and, with the same arguments, we prove that (4.56) holds
true for some P € L'(0,T). Furthermore, defining Py: (0,7) — R and P: (0,7) — R as in Step 2 of the
proof of Theorem 4.3, we show that P < Pand P = Py almost everywhere in (0, 7).
Step 3 (Reduced stability). In view of (4.65), for every h > 0, there holds

Vit €, V@) € Qny,  Fr(tn, qi(tn)) < Uplan + Fr(tn, g,) + Dr(qy(tn), qr)- (4.85)

Define 73,: [0,7] — II,, by setting 7,(t) == {s € I, : s < t}. Since |II,| — 0, as h — 0", we have
Th(t) = t, as h — 0%. Fix ¢t € [0,7] and let (hy) be the subsequence such that (4.44)—(4.48) hold. By
definition, we have g, (t) = q;, (T, (t)). Let gy € Qo and let (g;,) a corresponding recovery sequence
given by Proposition 3.12. By (4.85), there holds

‘Fhk (Thk (t)a dp, (t)) < ‘Hhk | Qp,, + ‘Fhk (Thk (t)r ahk) + th (qhk (t)a ahk) (486)

We focus on the left-hand side. First, arguing as in Step 3 of the proof of Theorem 4.3, we obtain

Folt,ao(t)) < liminf Fo, (1, a5, (1) = £(0): (487)
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Second, applying the fundamental theorem of calculus and employing (4.74) and (4.79), we estimate

t

[ Fn(t, @5, (8) = Fr(7a(t), gn(ma(t)))] g/(t)|atfh(Tth(Th(t)))|dT

< (Fulmn(t), gn(1a(t))) + L(M)) / (t) K (7)eKr (M =En(mn(®) qr (4.88)

= (M + L(M)) (eKh(t)*Kh(Th,(t)) _ 1) )

Thanks to the equi-integrability of (k), which follows from (4.28), the right-hand side of the previous
equations goes to zero, as k — oo. Hence, combining (4.87)—(4.88), we obtain

Fot, ap()) < liminf Fi (7, (1), an, (6)) = (1) (489)

Similarly for the right-hand side of (4.86), by arguing as in Step 3 of the proof of Theorem 4.3 and
exploiting the continuity of the applied loads with respect to time, we compute

Folt.@0) + Do(aol0). o) = Jim {Fi (71, (0).d,) + Do 4, ().} (4.90)
Thus, in view of (4.89)—(4.90), taking the inferior limit, as k — oo, at both sides of (4.86), we obtain
Folt.a0(t)) < limint Fy, (7, (1), 4, (0)
< liminf { M| @ + Fny (Thi (1), @, ) + Dy (@, (8): @, )
= Fo(t, o) + Do(qo(t), do);

which proves (4.10) for ¢ fixed.
Step 4 (Upper energy-dissipation inequality). We prove the following:

vt e [0,1], Fo(hqo(t))+Varoo(qo;[0,t])Sfo(O,q8)+/O nFo(T,q0(7)) dr. (4.91)

First, fix ¢ € [0,7]. Given h > 0, let 7,(t) = ¢} where i € {1,..., Ny} and recall (4.78). Summing the
inequality (4.66), with j in place of ¢, for j € {1,...,i — 1} we obtain:

Th(t)
Fr(th(t), g, (1h(t))) + Varp, (¢,,; [0, 7 (1)]) < 7 (t)an + Fn(0,q5) + /0 O Fn(T,qn(7))dr.  (4.92)

By definition
Varp, (gy; [0,]) = Varp, (qy,; [0, 7 (t)])-
Thus, (4.88) and (4.92) yield
Fu(t, gy (1)) + Varp, (g5; [0, 1)) < Fa(7a(t), g1, (a(t))) + Varp, (g; [0, 7 (t)])
+ (M + L(M)) (eKh(t)—Kh(Th,(t)) — 1)

REAC (4.93)
< ma()an + Fa(0, @) + / Py(r)dr
0

+ (M + L(M)) (eKh(t)*Kh,(Th(t)) _ 1) )

Now, let (hy) be the subsequence such that (4.44)—(4.48) hold. For the first term on the left-hand side,
we have (4.87). For the second one, by lower semicontinuity, (4.41) entails

Varp, (qq; [0,t]) = Varpiqrs)(2;[0,1]) < hkm inf Varp1 rs)(2n,; [0,1])
—00

= lim inf Varp, (g, ;[0,t]) = d(1).
k—o0 k k
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Thus, taking the inferior limit along the subsequence (hy) , as k — oo, at both sides of (4.93), we obtain
Folt,qo(t)) + Varp, (qo; [0,¢]) < f(t) + ()

t
S}'O(O,qg)—i-/ P(r)dr
0

t
< Fo(0,q9) +/ Po(r)dr.
0

This proves (4.91).

Step 5 (Lower energy-dissipation inequality). As in Step 5 of the proof of Theorem 4.3, the lower
energy-dissipation inequality is deduced from the reduced stability (4.10) by applying [45, Proposition
2.1.2.3].

Step 6 (Improved estimates). To check (4.19)-(4.18), we identify the functions f and V in (4.40)-
(4.41) by arguing as in Step 6 of the proof of Theorem 4.3. Eventually, to show (4.20), we check that
P = Py almost everywhere in (0,7 again by arguing as in Step 6 of the proof of Theorem 4.3. O

4.4. Alternative dissipation. We conclude the section by mentioning an alternative notion of dissipa-
tion proposed in [11]. In the same paper, it has been observed that the dissipation distance in (4.2) allows
for the dissipation of energy by means of composition with rigid motions. Although this possibility is
discouraged by energy minimization, this fact is certainly questionable from the modeling point of view.

This observation motivates the introduction of an alternative dissipative variable. Let A > 0 and let
g = (y,m) € Qj be an admissible state. Similarly to (3.3), we define

Zi(q) = (adjVyy)m oy, (4.94)

where the adjugate matrix simply denotes the transpose of the cofactor matrix. The quantity in (4.94)
constitutes a flux-preserving pull-back of the magnetization m to the reference space and has the appre-
ciable feature of being frame indifferent [11].

In view of (2.20), up to assuming a > p/(p — 2) in (2.12), we have Zj,(q) € L*(;R?) for every q € Qy,
with Ej(q) < +00. Therefore, we can define the alternative dissipation distance Dj,: Qp x Qp — [0, +00)
by setting

Bu(a.) = [ |Zila) - (@) do. (495)

Standing the more restrictive growth condition in (2.12), it can be shown that the distance Dy, is lower
semicontinuous with respect to the natural topology on Qp, see [9, 11]. However, the existence of energetic
solutions for the bulk model is out-of-reach in this framework. This can be achieved by means of a suitable
regularization of the energy in the spirit of gradient polyconvexity [6]. We refer to [11] for more details.

Nevertheless, one might aim to prove convergence results analogous to Theorem 4.3 and Theorem 4.9
in this alternative setting. In this case, a substantial obstacle is the absence of a priori bounds on the
dissipation distance in (4.95). Such bounds are crucial in order to be able to establish the compactness
of the sequence (g;,) in Theorem 4.3 and Theorem 4.9.

A practicable way to overcome this issue is to enforce some uniform bound on the dissipative variable
into the definition of the class of admissible states in a form of a locking constraint [6]. This is what is
substantially done, in a more implicit way, in [15] and [47] for the problem of dimension reduction and
linearization in finite plasticity, respectively. Alternatively, one can replace the distance in (4.95) with
the function Dy : On x Q) — [0, 4+00) given by

Dula.d) = |

Q

Zile)  Zn(@
1Zn(@)l  |Z2n(q)]
This distance is not lower semicontinuous with respect to the natural topology on Q. However, in both

cases, convergence results analogous to Theorem 4.3 and Theorem 4.9 can be established by having ﬁh
in place of Dy, without introducing any regularization.




A REDUCED MODEL FOR PLATES IN NONLINEAR MAGNETOELASTICITY 49

ACKNOWLEDGEMENTS

The authors are grateful to Elisa Davoli for helpful discussions during the preparation of this paper. The
first author thanks also Maria Giovanna Mora for useful comments about the modeling of the elastic
energy and for suggesting him the use of the interpolation inequality. This work has been supported
by the Austrian Science Fund (FWF) and the GACR through the grant 14052-N32/19-29646L and by
the Federal Ministry of Education, Science and Research of Austria (BMBWTF) through the OeAD-WTZ
project CZ04/2019 and MSMT CR projects 8J19AT013 and its successor 8J22AT017.

(1]
2]

(3]
(4]

(5]
(6]

(30]
31]
(32]

REFERENCES

E. Acerbi, N. Fusco, An approximation lemma for WP functions, in Material Instability in Continuum Mechanics
and Related Mathematical Problems, ed. J. M. Ball, Oxford Sc. Pubbl., Oxford, 1988.

V. Agostiniani, A. De Simone, Rigorous derivation of active plate models for thin sheets of nematic elastomers, Math.
Mech. Solids 25 (2017), 1804-1830.

J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkauser, Boston, 1990.

M. Barchiesi, A. De Simone, Frank energy for nematic elastometers: a nonlinear model, ESAIM Control Optim. Calc.
Var. 21 (2015), 372-377.

M. Barchiesi, D. Henao, C. Mora-Corral, Local invertibility in Sobolev spaces with applications to nematic elastomers
and magnetoelasticity, Arch. Ration. Mech. Anal. 224 (2017), 743-816.

B. Benesovd, M. Kruzik, A. Schlémerkemper, A note on locking materials and gradient polyconvexity, Math. Mod.
Meth. Appl. Sci. 28 (2018), 2367—-2401.

A. Braides, I'-convergence for beginners, Oxford University Press, New York, 2002.

M. Bresciani, Linearized von Kérmén theory for incompressible magnetoelastic plates, Math. Mod. Meth. Appl. Sci.
31 (2021), 1987-2037.

M. Bresciani, Quasistatic evolution in magnetoelasticity under subcritical coercivity assumptions, preprint
arXiv:2203.08744.

M. Bresciani, Existence results and dimension reduction problems in large-strain magnetoelasticity, Ph.D. Thesis,
University of Vienna, 2022.

M. Bresciani, E. Davoli, M. Kruzik, Existence results in large-strain magnetoelasticity, to appear in Ann. Inst. H.
Poincaré Anal. Non Linéaire, preprint arXiv:2103.12621.

W.F. Brown, Magnetoelastic Interactions, Springer, New York, 1966.

G. Carbou, Thin layers in micromagnetism, Math. Models Methods Appl. Sci. 9 (2001), 1529-1546.

P. G. Ciarlet, Mathematical Elasticity I. Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988.

E. Davoli, Quasistatic evolution models for thin plates arising as low energy I'-limits of finite plasticity, Math. Mod.
Meth. Appl. Sci. 24 (2014), 2085-—2153.

E. Davoli, M. Kruzik, P. Piovano, U. Stefanelli, Magnetoelastic thin films at large strains, Cont. Mech. Thermodyn.
33 (2021), 327-341.

M. de Benito Delgado, B. Schmidt, A hierarchy of multilayered plate models, ESAIM Control Optim. Calc. Var. 27
(2021), Article no. S16.

A. DeSimone, R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids 50 (2002), 283-320.

] A. De Simone, L. Teresi, Elastic energies for nematic elastomers, Fur. Phys. J. E 29 (2009), 191-204.
| L. Dorfmann, R.W. Ogden, Nonlinear Theory of Electroelastic and Magnetoelastic Interactions, Springer, New York,

2014.

] I. Fonseca, W. Gangbo, Degree Theory in Analysis and Applications, Oxford University Press, New York, 1995.

I. Fonseca, G. Leoni, Modern Methods in the Calculus of Variations: LP spaces, Springer, New York, 2007.

G. Francfort, A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic
energies, J. Reine Angew. Math. 595 (2004), 55-91.

G. Friesecke, R. D. James, S. Miiller, A theorem on geometric rigidity and the derivation of nonlinear plate theory
from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), 1461-1506.

G. Friesecke, R. D. James, S. Miiller, A hierarchy of plate models derived from nonlinear elasticity by Gamma conver-
gence, Arch. Ration. Mech. Anal. 180 (2006), 183-236.

G. Gioia, R. D. James, Micromagnetics of very thin films, Proc. Roy. Soc. Lond. Sect. A 453 (1997), 213-223.

L. Grafakos, Classical Fourier Analysis, Springer, New York, 2014.

D. Grandi, M. Kruzik, E. Mainini, U. Stefanelli, A phase-field approach to Eulerian interfacial energies, Arch. Ration.
Mech. Anal. 234 (2019), 351-373.

P. Hajtasz, Sobolev Mappings between Manifolds and Metric Spaces, in Sobolev Spaces in Mathematics I. Sobolev Type
Inequalities, ed. V. Maz’ya, Springer, New York, 2009.

D. Henao, B. Stroffolini, Orlicz-Sobolev nematic elastomers, Nonlinear Anal. 194 (2020), 111513.

A. Hubert, R. Schéfer, Magnetic domains. The analysis of magnetic microstructures, Springer, New York, 1998.

R. D. James, D. Kinderlehrer, Theory of magnetostriction with applications to TbyDy,_,Fea, Philos. Mag. B. 68
(1993), 237—274.



50

33]
34]
[35]
[36]
37]
38]

39]

[50]

[51]
[52]

[53]

M. BRESCIANI AND M. KRUZIK

M. Kruzik, D. Melching, U. Stefanelli, Quasistatic evolution for dislocation-free plasticity, ESAIM Control Optim.
Calc. Var. 26 (2020), Article no. 123.

M. Kruzik, A. Prohl, A, Recent developments in modeling, analysis and numerics of ferromagnetism, SIAM Rev. 48
(2006), 439--483.

M. Kruzik, U. Stefanelli, C. Zanini, Quasistatic evolution of magnetoelastic plates via dimension reduction, Discrete
Contin. Dyn. Syst. 35 (2015), 2615-2623.

M. Kruzik, U. Stefanelli, J. Zeman, Existence results for incompressible magnetoelasticity, Discrete Contin. Dyn. Syst.
35 (2015), 5999-6013.

M. Lecumberry, S. Miiller, Stability of slender bodies under Compression and validity of the von Karman theory, Arch.
Ration. Mech. Anal. 193 (2009), 255-310.

M. Lewicka, L. Mahadevan, M. Pakzad, Models for elastic shells with incompatible strains, Proc. Roy. Soc. A 470
(2014), 20130604.

M. Lewicka, L. Mahadevan, M. Pakzad, The Féppl-von Kdrmén equations for plates with incompatible strains, Proc.
Roy. Soc. A 467 (2011), 402-426.

J. Liakhova, M. Luskin, T. Zhang, Computational modeling of ferromagnetic shape memory thin films, Ferroelectrics
342 (2006), 7382.

M. Luskin, T. Zhang, Numerical analysis of a model for ferromagnetic shape memory thin films, Comput. Methods
Appl. Mech. Eng. 196 (2007), 37—40.

A. Mainik, A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. 22 (2005), 73-99.
M. Marcus, V. J. Mizel, Transformations by functions in Sobolev spaces and lower semicontinuity for parametric
variational problems, Bull. Am. Math. Soc. 79 (1973), 790-795.

] G. A. Maugin, Continuum mechanics of electromagnetic solids, North Holland, Amsterdam, 1988.
] A. Mielke, T. Roubicek, Rate-independent Systems. Theory and Application, Springer, New York, 2015.

A. Mielke, T. Roubicek, U. Stefanelli, I'-limits and relaxations for rate-independent evolutionary problems, Calc. Var.
31 (2008), 387-416.

A. Mielke , U. Stefanelli, Linearized plasticity is the evolutionary I'-limit of finite-plasticity, J. Eur. Math. Soc. 15
(2013), 923-948.

J. Necas, Direct Methods in the Theory of Elliptic Equations, Springer-Verlag, Berlin Heidelberg, 2012.

P. Rybka, M. Luskin, Existence of energy minimizers for magnetostrictive materials, STAM J. Math. Anal. 36 (2005),
2004-2019.

B. Schmidt, Plate theory for stressed heterogeneous multilayers of finite bending energy, J. Math. Pures Appl. 88
(2007), 107-122.

M. Silhavy, Equilibrium of phases with interfacial energy: a variational approach, J. Elast. 105 (2011), 271-303.

U. Stefanelli, Existence for dislocation-free finite plasticity, ESAIM Control Optim. Calc. Var 25(2019), Article no.
21.

R. L. Wheeden, A. Zygmund, Measure and Integral. An Introduction to Real Analysis, Marcel Dekker, New York,
1977.

(M. Bresciani) INSTITUTE OF ANALYSIS AND SCIENTIFIC COMPUTING, TECHNISCHE UNIVERSITAT WIEN, WIEDNER HAUPT-
STRASSE 8-10, 1040 VIENNA, AUSTRIA. EMAIL: marco.bresciani@asc.tuwien.ac.at.

(M. Kruzik) INSTITUTE OF INFORMATION THEORY AND AUTOMATION, CZECH ACADEMY OF SCIENCES, POD VODARENSKOU
VEZ 4, 182 00 PRAGUE, CzECHIA AND FACULTY OF CIVIL ENGINEERING, CzZECH TECHNICAL UNIVERSITY, THAKUROVA 7,
166 29 PRAGUE, CZECHIA. EMAIL: kruzikQutia.cas.cz.


mailto:marco.bresciani@asc.tuwien.ac.at
mailto: kruzik@utia.cas.cz

	1. Introduction
	Notation

	2. Basic setting
	2.1. The static model
	2.2. Change of variables and rescaling

	3. Static setting
	3.1. gamma-convergence
	3.2. Convergence of almost minimizers

	4. Quasistatic setting
	4.1. The quasistatic model
	4.2. gamma-convergence
	4.3. Convergence of solutions of the approximate incremental minimization problem
	4.4. Alternative dissipation

	Acknowledgements
	References

