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We propose a sharp-interface model for a hyperelastic
material consisting of two phases. In this model, phase
interfaces are treated in the deformed configuration,
resulting in a fully Eulerian interfacial energy. In
order to penalize large curvature of the interface,
we include a geometric term featuring a curvature
varifold. Equilibrium solutions are proved to exist via
minimization. We then use this model in an Eulerian
topology optimization problem that incorporates a
curvature penalization.

This article is part of the theme issue ‘Foundational
issues, analysis and geometry in continuum
mechanics’.

1. Introduction
In the field of elasticity, it is commonly assumed
that experimentally observed patterns in materials
correspond to the minimization of a suitable phase-
dependent energy. Indeed, some materials have multiple
phases, and the optimal energetic configuration is often
achieved by creating spatial microstructures composed
of these phases. These microstructures feature their own
unique size, shape and distribution (such as grains,
precipitates, dendrites, spherulites, lamellae or pores).
The phases can be distinguished from each other by
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their various crystalline, semicrystalline or amorphous properties, which can be experimentally
identified through microscopy techniques.

To fully understand the behaviour of a material, it is necessary to characterize the
relation between the macroscopic properties and the underlying phenomena occurring at the
microstructural scale. To shed light on the multi-scale nature of this phenomenon is paramount
for optimizing material performance and developing new materials with tailored properties.

A prominent example of materials with microstructure are shape memory alloys, showing
a highly symmetric crystallographic variant called austenite, preferred at high temperatures, as
well as different low-symmetry variants called martensites, favoured at low temperatures. These
alloys, including NiTi, CuAlNi or InTh, are widely used in various technological applications,
as discussed in [1]. The mixing of these different phases leads to the formation of complex
microstructures, which ultimately govern the rich thermomechanical response of the material.

In the continuum theory, the total stored energy of the system usually consists of bulk
and interfacial energy contributions. Neglecting the interfacial energy generically leads to a
minimization problem that has no solution due to the formation of spatially finer and finer
oscillations of the deformation gradient among the various phases. If spatial phase changes are
penalized by the interfacial energy, an optimal material layout is reached by balancing energy
contributions rising from the bulk and the interface, under the effect of external loading.

Different models have been considered taking into account interfacial energy in various
forms. This includes strain gradients [2,3] but also gradients of nonlinear null Lagrangians
of the deformation [4]. Curved interfaces in solids are thoroughly studied in [5] following
previous research on interface-bulk elastic interactions [6]. Curved twin boundaries in lead
orthovanadate are observed in [7], see also [8] for discussions on grain boundary shapes or
[9] for curvature-dependent interfacial energies in nanomaterials. Recently, Šilhavý introduced
in [10] a notion of interface polyconvexity and proved it sufficient to ensure the existence of
minimizers for the corresponding static problem. In particular, in this model the perimeters of
interfaces in the reference and deformed configurations, as well as the deformations of lines in the
referential interfaces, are penalized. A more explicit characterization of interface polyconvexity
can be found in [11,12], discussing the case of materials with more than two phases as well.
Again, let us mention that the mathematical treatment of multi-phase materials without surface-
energy penalization typically leads to ill-posed problems where the existence of a solution is not
necessarily guaranteed, and some relaxation is needed, cf. [13]. This, however, would challenge
orientation preservation of the involved deformations, and consequently, also injectivity may be
lost [14].

In this article, we consider a material with two phases, separated by a sharp interface. Note,
however, that our model can be extended to describe more phases similarly as in [15], see remark
4.2. To incorporate the penalization of large interface curvatures, we describe the interface in terms
of a curvature varifold, a measure-theoretic generalization of classical surfaces with a notion
of curvature and with good compactness properties [16–18]. Mathematical models involving
varifolds have been used to describe bending-resistant interfaces in a wide range of applications,
for instance in the modelling of cracks [19–21], biological membranes [22–24] or anisotropic phase
transitions [25].

The state of the elastic body is characterized by the deformation y of the reference configuration
Ω ⊂ R

3, the phase field φ and a curvature varifold V describing the phase interface. The
equilibrium state minimizes the energy E, consisting of the elastic bulk energy and the energy of
the phase interface. If the varifold V and the phase interface correspond to a smoothly embedded
surface M ⊂ R

3 with second fundamental form II, our energy typically looks as follows

E(y, φ, V) =
∫
Ω

(
(1 − φ ◦ y)W0(∇y) + φ ◦ yW1(∇y)

)
dX + H2(M) +

∫
M

|II|p dH2, (1.1)

see §3b for the general definition and all necessary details.
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The main result of this work is the proof of the existence of minimizers with the phase field
and the varifold defined in the deformed configuration, i.e. in the Eulerian setting. In order to find
a good framework for the direct method in the Calculus of Variations, two important challenges
need to be met: Firstly, a suitable coupling needs to be imposed to identify the varifold with the
phase field, see Definition 3.1. Secondly, the Eulerian setting implies that both φ and V are defined
in the deformed configuration y(Ω), which itself is subject to minimization. Once compactness
is achieved, the existence of minimizers follows from the closedness of the coupling condition
together with the lower semicontinuity of the energy via the usual (poly-)convexity assumptions.
Note that, if no curvature term was present in the energy no varifold V would be needed and the
existence of minimizers would follow from the theory in [11].

Moreover, we adapt the variational theory to study a related problem in topology
optimization, taking into account the curvature of the design material surface. We also provide a
corresponding referential formulation that might be computationally more feasible.

This article is organized as follows. In §2, we introduce basic notions and notation on functions
of bounded variation and varifolds. Our model is presented in §3 and the existence of a solution
is proved in §4. This allows us to settle a problem of topology optimization in the Eulerian
coordinates and to establish the existence of an optimal topological design in §5.

2. Notation and preliminaries

(a) Piecewise constant functions of bounded variation
Let U ⊂ R

3 be open. By BV(U) we denote the class of functions of bounded variation and by SBV(U)
the class of special functions of bounded variation, see [26]. We set

SBV(U; {0, 1}) := {φ ∈ SBV(U) : φ(x) ∈ {0, 1} for a.e. x ∈ U}.
Its elements are piecewise constant functions in the sense of [26, Def. 4.21], restricted to only
assuming values in {0, 1}. The weak derivative of φ ∈ SBV(U; {0, 1}) is the R

3-valued Radon
measure

Dφ = νφ(H2 �Jφ) ∈M(U; R3).

Here, H2 is the two-dimensional Hausdorff measure, Jφ ⊂ U is the approximate jump set, which
is countably H2-rectifiable, and νφ : Jφ → S

2 is the unit normal vector. The total variation norm of
Dφ is given by

|Dφ|(U) =H2(Jφ). (2.1)

By definition, functions φ ∈ SBV(U; {0, 1}) are characteristic functions of some E ⊂ U of finite
perimeter, i.e. φ = 1E : U → R with

1E(x) :=
{

1, x ∈ E

0, otherwise.

In particular, Jφ coincides with the reduced boundary of E up to a H2-null set, νφ points in the
interior of E and |Dφ|(U) is the perimeter of E.

For the convenience of the reader, we recall the compactness theorem for piecewise constant
functions that follows from Ambrosio et al. [26, Thm. 3.23, Thm. 4.25].

Theorem 2.1 (Compactness of piecewise constant SBV-functions). Let U ⊂ R
3 be an open,

bounded Lipschitz domain. Let (φn)n∈N ⊂ SBV(U) be piecewise constant functions, satisfying

sup
n∈N

(||φn||L∞(U) + H2(Jφn )) < ∞.

Then there exists a piecewise constant function φ ∈ SBV(U) such that after passing to a subsequence, we
have φn → φ in L1(U) and Dφn ⇀∗ Dφ in M(U; R3) as n → ∞.
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(b) Oriented curvature varifolds
We briefly introduce the relevant definitions for varifolds, restricting to two-varifolds in the
open set U ⊂ R

3. Let G2,3 denote the Grassmannian, i.e. the set of all two-dimensional linear
subspaces of R

3, which we describe by their orthogonal projection matrices P ∈ R
3×3. We identify

the oriented Grassmannian with the two-sphere S
2 by representing an oriented two-dimensional

subspace by its unit normal.
Following [16], an oriented two-varifold in U is a (non-negative) Radon measure

V ∈M(U × S
2).

The mass of V is the Radon measure μV ∈M(U) given by

μV(B) = V(B × S
2) for all Borel sets B ⊂ U.

By Riesz’ Representation Theorem, e.g. [18], V is defined through its action on continuous
functions with compact support, given by

〈V, u〉 =
∫

U×S2
u(x, ν) dV(x, ν) for all u ∈ C0

c (U × S
2).

Pushforward of V by the covering map q : U × S
2 → U × G2,3, q(x, ν) = (x, I3×3 − ν ⊗ ν) gives the

(unoriented) two-varifold q�V ∈M(U × G2,3), namely,

〈q�V, v〉 =
∫

U×G2,3

v(x, P) d(q�V)(x, P) =
∫

U×S2
v(q(x, ν)) dV(x, ν)

for all v ∈ C0
c (U × G2,3). Moreover, to every oriented two-varifold V we can associate a two-current

TV ∈D2(U) by

〈TV , ω〉 =
∫

U×S2
〈�ν, ω(x)〉 dV(x, ν)

for all ω ∈ C∞
c (U; Λ2(R3)), the smooth, compactly supported two-forms in U. Here, �ν ∈ Λ2(R3)

stands for the simple two-vector associated with ν ∈ S
2 through the Hodge star operator �. The

boundary of TV is the one-current ∂TV ∈D1(U), which is given by

〈∂TV , η〉 = 〈TV , dη〉
for all one-forms η ∈ C∞

c (U; Λ1(R3)), where dη denotes the exterior derivative of η.
An oriented integral two-varifold is a varifold V ∈M(U × S

2) given by

〈V, u〉 =
∫

M
(u(x, νM(x))θ+(x) + u(x, −νM(x))θ−(x)) dH2(x)

for all u ∈ C0
c (U × S

2) and for which we will also write

V(x, ν) = (H2 �M)(x) ⊗ (θ+(x)δνM(x)(ν) + θ−(x)δ−νM(x)(ν)). (2.2)

Here, M ⊂ U is a countably H2-rectifiable set, the orientation νM ∈ L1
loc,H2 (M; S2) selects one of the

two unit normals to the approximate tangent plane TxM at H2-a.e. x ∈ M, and the corresponding
multiplicities θ± ∈ L1

loc,H2 (M) are integer-valued, i.e. θ±(x) ∈ N for H2-a.e. x ∈ M. The class of
oriented integral two-varifolds in U is denoted by IVo

2(U).
The unoriented varifold associated with V is the integral two-varifold given by

〈q�V, v〉 =
∫

M
v(x, TxM)(θ+(x) + θ−(x)) dH2(x)

for all v ∈ C0
c (U × G2,3). The class of (unoriented) integral two-varifolds in U is denoted by IV2(U).

The current associated with V is the integral two-current given by

〈TV , ω〉 =
∫

M
〈�νM(x), ω(x)〉(θ+(x) − θ−(x)) dH2(x)

for all ω ∈ C∞
c (U; Λ2(R3)).

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 N

ov
em

be
r 

20
23

 



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220366

...............................................................

A curvature two-varifold (in the sense of Hutchinson et al. [16], i.e. without boundary measure
[17]), denoted by V ∈ CV2(U), is an integral varifold V ∈ IV2(U) such that there exist generalized
curvature function AV = (AV

ijk)3
i,j,k=1 ∈ L1

loc,V(U × G2,3; R3×3×3) satisfying

∫
U×G2,3

3∑
j=1

(
Pij∂jϕ +

3∑
k=1

(∂Pjkϕ)AV
ijk + AV

jij ϕ
)

dV = 0

for all ϕ ∈ C1
c (U × G2,3) and 1 ≤ i ≤ 3. An oriented curvature two-varifold, denoted by V ∈ CVo

2(U), is
an oriented integral varifold V ∈ IVo

2(U) whose unoriented counterpart q�V is a curvature varifold,
i.e.

CVo
2(U) = {V ∈ IVo

2(U) : q�V ∈ CV2(U)}.

We conclude with a compactness theorem for oriented curvature varifolds without boundary, still
restricting to two-varifolds in U ⊂ R

3. The result is a combination of the compactness theorem [16,
Thm. 3.1] for oriented integral varifolds and [17, Thm. 6.1] for curvature varifolds.

Theorem 2.2 (Compactness of oriented curvature varifolds without boundary). Let p > 1 and
(Vn)n∈N ⊂ CVo

2(U) satisfy ∂TVn = 0 for all n ∈ N and

sup
n∈N

(μVn (U) + ||Aq�Vn ||p
Lp

q�Vn (U×G2,3)
) < ∞.

Then there exists V ∈ CVo
2(U) such that after passing to a subsequence, Vn ⇀∗ V in M(U × S

2) and

q�Vn ⇀∗ q�V, Aq�Vn

ijk q�Vn ⇀∗ Aq�V
ijk q�V in M(U × G2,3) for all 1 ≤ i, j, k ≤ 3.

Here, the pth power of the Lp-norm of the curvature function of V ∈ CVo
2(U) is

||Aq�V||p
Lp

q�V(U×G2,3)
=

∫
U×G2,3

|Aq�V(x, P)|p d(q�V)(x, P)

with Frobenius norm |Aq�V| =
√∑3

i,j,k=1(Aq�V
ijk )2. In particular, if V ∈ CVo

2(U) corresponds to a

smoothly embedded closed oriented surface M ⊂ U and has multiplicities θ+ + θ− ≡ 1, cf. (2.2),
then μV(U) = ∫

M(θ+ + θ−) dH2 =H2(M) and the Frobenius norms of the curvature function
A = Aq�V of M and of its second fundamental form II are related by |A|2 = 2|II|2.

3. Model

(a) States
Let Ω ⊂ R

3 be an open, bounded Lipschitz domain, which describes the reference configuration
of an elastic body. The state of the body is characterized by the deformation y, the phase field (or
phase indicator) φ and the oriented curvature varifold V corresponding to the phase interfaces. The
deformation is a homeomorphism

y : Ω → y(Ω) ⊂ R
3,

mapping points in X ∈ Ω to points x = y(X) ∈ y(Ω). We describe the interfaces in the Eulerian
setting, that is, both φ and V are defined on the current configuration y(Ω) of the body, namely

φ ∈ SBV(y(Ω); {0, 1}) and V ∈ CVo
2(y(Ω)).

Since y is a homeomorphism, y(Ω) ⊂ R
3 is an open set.

A crucial ingredient of the model is that we introduce a coupling relating the phase φ and the
varifold V in the following sense.
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Definition 3.1 (Coupling). Let U ⊂ R
3 be open and consider the linear map

Q : C0
c (U; R3) → C0

c (U × S
2) with (QY)(x, ν) := Y(x) · ν.

An oriented varifold V ∈M(U × S
2) and a phase field φ ∈ SBV(U; {0, 1}) are called coupled in U if

Dφ = Q′V, i.e. if for all Y ∈ C0
c (U; R3) we have

〈Dφ, Y〉 =
∫

Jφ
Y · νφ dH2 =

∫
U×S2

Y(x) · ν dV(x, ν) = 〈V, QY〉 = 〈Q′V, Y〉. (3.1)

Here, Q′ denotes the Banach space adjoint and we use the dualities C0
c (U; R3)′ =M(U; R3) and

C0
c (U × S

2)′ =M(U × S
2), respectively.

Definition 3.2 (Admissible set). We say that a triple (y, φ, V) is admissible, in short,

(y, φ, V) ∈A,

if the following conditions are satisfied.

(i) y ∈ W1,r(Ω ; R3) is a homeomorphism, r > 3;
(ii) φ ∈ SBV(y(Ω); {0, 1});

(iii) V ∈ CVo
2(y(Ω)) and has no boundary, i.e. ∂TV = 0;

(iv) V is coupled to φ in y(Ω) in the sense of definition 3.1.

Condition (3.2) is enforced by assuming that y ∈ W1,r(Ω ; R3) satisfies det ∇y > 0 a.e. in Ω , that
it fulfils the Ciarlet–Nečas condition [27], i.e.

∫
Ω

det ∇y(x) dx ≤L3(y(Ω)), (3.2)

and that the distortion |∇y|3/ det ∇y ∈ Lr−1(Ω). Namely, non-negativity of the Jacobian
determinant together with (3.2) makes y injective almost everywhere in Ω . Controlling the
distortion in Lr−1(Ω) ensures that y is an open map; cf. [28, Thm. 3.24, p. 43]. This together with
almost everywhere injectivity implies that y is homeomorphic in Ω .

Lemma 3.3 (Properties of admissible triples). Let (y, φ, V) ∈A. Then we have

(i) Jφ ⊂ spt μV;
(ii) Jφ and spt μV are countably H2-rectifiable of class 2, i.e. up to a set of H2-measure zero, they can

be covered by a countable union of embedded, two-dimensional C2-submanifolds of R
3.

Proof. If we take a test vector field Y ∈ C0
c (y(Ω); R3) with Y ≡ 0 on spt μV , the coupling (3.1)

implies ∫
Jφ

Y · νφ dH2 =
∫

y(Ω)×S2
Y(x) · ν︸ ︷︷ ︸
≤|Y(x)|

dV(x, ν) ≤
∫

y(Ω)
|Y| dμV = 0, (3.3)

and (3.3) follows. For (3.3), note that Aq�V ∈ L1
loc,q�V(y(Ω) × G2,3) implies that μV has locally

bounded first variation with generalized mean curvature in L1
loc,μV

(y(Ω)), and consequently the
statement follows from [29, Theorem 1]. �

Remark 3.4. The coupling (3.2), i.e. Dφ = Q′V in y(Ω), does not imply that the multiplicity of
V must be one, in particular, it does not imply V(x, ν) = (H2 �Jφ)(x) ⊗ δνφ (x)(ν), cf. (2.2). Moreover,
there may in general be multiple different varifolds coupled with a fixed phase φ. The reason for
this is that Q is not surjective: If u ∈ C0

c (y(Ω) × S
2) satisfies u(x0, ±ν) = 1 for some x0 ∈ y(Ω), ν ∈ S

2,
there is no representation u = QY for Y ∈ C0

c (y(Ω); R3).
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(b) Energies
Equilibrium configurations of the body are admissible states (y, φ, V) ∈A that minimize the
energy

E(y, φ, V) := Ebulk(y, φ) + Eint(y, V), (3.4)

which consists of the bulk energy

Ebulk(y, φ) :=
∫
Ω

(
(1 − (φ ◦ y)(X)) W0(∇y(X)) + (φ ◦ y)(X) W1(∇y(X))

)
dX

and the interface energy

Eint(y, V) :=
∫

y(Ω)×G2,3

Ψ (Aq�V(x, P))d(q�V)(x, P). (3.5)

Here, Wi : R
3×3 → R is the elastic energy density of phase i (i = 0, 1), and Ψ : R

3×3×3 → R is the
interface energy density. We assume that there exist cbulk > 0 and s > 0 such that

Wi(F)

⎧⎪⎪⎨
⎪⎪⎩

≥cbulk

⎛
⎝|F|r +

(
|F|3

det F

)r−1

+ (det F)−s

⎞
⎠ if det F > 0

=+∞ if det F ≤ 0,

(3.6)

where r > 3 is the same as in definition 3.2. Moreover, we assume that Wi is polyconvex [30], i.e.
that there exists a convex function hi : R

19 → R such that Wi(F) = hi(F, Cof F, det F) for all F ∈ R
3×3

with det F > 0 and i = 0, 1. It is easily seen that F �→ (|F|3/ det F)r−1 is polyconvex in the set of
matrices with positive determinants if r > 3. Therefore, the right-hand side of (3.6) can serve as an
example of a polyconvex stored energy density.

In the interfacial energy, we assume that Ψ : R
3×3×3 → R is a convex function satisfying

Ψ (A) ≥ cint(1 + |A|p) for all A ∈ R
3×3×3 (3.7)

for some p > 1 and cint > 0. Integrating (3.7), we find that the interface energy controls both the
curvature and the mass of the varifold, since

Eint(y, V) ≥ cint

(
μV(y(Ω)) +

∫
y(Ω)×G2,3

|Aq�V|pd(q�V)
)

. (3.8)

4. Existence of equilibrium states
Let E be given by (3.4) and A as in definition 3.2. Then, the following result holds.

Theorem 4.1 (Existence). There exists a minimizer of E on A.

Proof. We observe that (y, φ, V) = (id, 1, 0) ∈A and E(id, 1, 0) = ∫
Ω W1(I3×3) dX < ∞, which is a

consequence of W1(I3×3) < ∞ and |Ω| < ∞. In particular, infA E < ∞.
Let (yn, φn, Vn)n∈N ⊂A be a minimizing sequence for E. Without loss of generality, we may

assume
∫

Ω yn dX = 0 and
E(yn, φn, Vn) ≤ K for all n ∈ N. (4.1)

In particular, by (3.6), we have det ∇yn > 0 a.e. in Ω and (yn)n∈N ⊂ W1,r(Ω ; R3) is bounded. Thus,
after passing to a subsequence, we may assume yn ⇀ y in W1,r(Ω ; R3) and also

yn → y in C0(Ω̄ ; R3) as n → ∞. (4.2)

Moreover, the weak convergence of (yn)n∈N, the sequential weak continuity of y �→ det ∇y :
W1,r(Ω ; R3) → Lr/3(Ω), and of y �→ Cof ∇y : W1,r(Ω ; R3) → Lr/2(Ω ; R3×3) yield

∇yn ⇀ ∇y in Lr(Ω ; R3×3) as n → ∞, (4.3)

det ∇yn ⇀ det ∇y in Lr/3(Ω) as n → ∞ (4.4)

and Cof ∇yn ⇀ Cof ∇y in Lr/2(Ω ; R3×3) as n → ∞. (4.5)
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The convergence in (4.2) allows us to pass to the limit in the right-hand side of (3.2) while the left-
hand side passes to the limit due to the sequential weak continuity of y �→ det ∇y: W1,r(Ω ; R3) →
Lr/3(Ω). Moreover, (4.3) and (4.4), together with polyconvexity of F �→ (|F|3/ det F)r−1, imply that

lim inf
n→∞

∫
Ω

|∇yn|3(r−1)

(det ∇yn)r−1 dX ≥
∫
Ω

|∇y|3(r−1)

(det ∇y)r−1 dX,

i.e. the distortion of the limit deformation also belongs to Lr−1(Ω), in particular, it implies that y
is also a homeomorphism.

Given a strictly decreasing zero-sequence (ε�)�∈N ⊂ (0, 1), let (U�)�∈N denote a sequence of
open, bounded Lipschitz domains such that

{x ∈ y(Ω) : dist(x, ∂y(Ω)) > ε�} ⊂ U� ⊂ ⊂y(Ω) (4.6)

and which, upon extracting a subsequence, is increasing, i.e. U�1 ⊂ U�2 whenever �1 < �2. By (4.2),
one easily shows that U� for � ∈ N fixed is contained in the image set yn(Ω), namely,

U� ⊂ yn(Ω) whenever n ≥ n(�) ∈ N is large enough. (4.7)

Compactness: Firstly, we examine the sequence of varifolds. For � ∈ N and n ≥ n(�), consider
the restriction

V�
n := Vn �(U� × S

2). (4.8)

By testing the definitions of curvature varifolds and current boundaries with test functions
supported in U� × S

2 and U�, one verifies that

V�
n ∈ CVo

2(U�), Aq�V�
n = Aq�Vn �(U� × S

2) and ∂TV�
n
= 0 in U�. (4.9)

The coercivity assumption (3.7) implies that

cint

(
μV�

n
(U�) +

∫
U�×G2,3

|Aq�V�
n |p d(q�V�

n)
)

≤ Eint(yn, Vn) ≤ K. (4.10)

After passing to a subsequence, it thus follows from theorem 2.2 that there exist V� ∈ CVo
2(U�)

such that V�
n ⇀∗ V� in M(U� × S

2) and q�V�
n ⇀∗ q�V�, Aq�V�

n
ijk q�V�

n ⇀∗ Aq�V�

ijk q�V� in M(U� × G2,3)

for 1 ≤ i, j, k ≤ 3. In particular, it follows ∂TV� = 0 in U�.
Similarly, we find that

φ�
n := φn|U� ∈ SBV(U�; {0, 1}) with Dφ�

n = Dφn �U�. (4.11)

By (2.1) and since Jφ�
n
⊂ spt μV�

n
by Lemma 3.3, it follows that

H2(Jφ�
n
) = |Dφ�

n|(U�) ≤ μV�
n
(yn(Ω)) ≤ K. (4.12)

Moreover, ||φ�
n||L∞(U�) < ∞ uniformly as well, because φ�

n ∈ SBV(U�; {0, 1}) and U� ⊂ y(Ω̄) is
bounded. Consequently, from theorem 2.1 it follows that after passing to a subsequence, we have
φ�

n → φ� in L1(U�) as n → ∞ with also φ� ∈ {0, 1} a.e. and Dφ�
n ⇀∗ Dφ� in M(U�; R3).

It is not difficult to see that the above limits are local, i.e. if � < �′, then we have

V� = V�′ �(U� × S
2) and φ� = φ�′ |U� . (4.13)

Now, choosing an appropriate diagonal sequence, we thus may assume V�
n ⇀∗ V� as n → ∞ for

all � ∈ N, and we obtain a limit varifold V ∈ CVo
2(y(Ω)) by setting

〈V, u〉 = 〈V�, u〉 = lim
n→∞〈V�

n, u〉 (4.14)

for any u ∈ C0
c (y(Ω) × S

2) and any � ∈ N such that spt u ⊂ U�. Similarly, we define φ ∈
L1(y(Ω); {0, 1}) by the condition

φ|U� = φ�
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for all � ∈ N. By (4.13) above, V and φ are well-defined. Moreover, we have that φ ∈
SBV(y(Ω); {0, 1}) since by (4.12) and (2.1) we have

|Dφ|(y(Ω)) ≤ sup
�∈N

lim inf
n→∞ |Dφ�

n|(U�) = sup
�∈N

lim inf
n→∞ H2(Jφ�

n
) ≤ K. (4.15)

To see that V is coupled to φ, fix any Y ∈ C0
c (y(Ω); R3). Taking � ∈ N sufficiently large, we have

that spt Y ⊂ U�, and consequently

〈Dφ, Y〉 = 〈Dφ�, Y〉 = lim
n→∞〈Dφ�

n, Y〉 = lim
n→∞〈Dφn, Y〉 (4.16)

= lim
n→∞〈Vn, QY〉 = lim

n→∞〈V�
n, QY〉 = 〈V�, QY〉 = 〈V, QY〉, (4.17)

using that Vn and φn are coupled in yn(Ω).
Lower semicontinuity: For the interface part of the energy, by convexity of Ψ and [16, Theorem

5.3.2], for every � ∈ N we have∫
U�×G2,3

Ψ
(
Aq�V�)

d(q�V�) ≤ lim inf
n→∞

∫
U�×G2,3

Ψ
(
Aq�V�

n
)

d(q�V�
n). (4.18)

Sending � → ∞, monotone convergence implies

Eint(y, V) =
∫

y(Ω)×G2,3

Ψ
(
Aq�V)d(q�V) ≤ lim inf

n→∞

∫
yn(Ω)×G2,3

Ψ
(
Aq�Vn

)
d(q�Vn) (4.19)

= lim inf
n→∞ Eint(yn, Vn). (4.20)

We now turn to the bulk term. From the above construction of U� it follows that

φn → φ in L1(U�), (4.21)

for all � ∈ N. We now find that∫
yn(Ω)∩y(Ω)

|φn(x) − φ(x)| dx ≤
∫

U�

|φn(x) − φ(x)| dx + |y(Ω) \ U�|, (4.22)

so that, by sending first n → ∞ and then � → ∞, by (4.2) we conclude that

lim
n→∞ ||φn − φ||L1(yn(Ω)∩y(Ω)) = 0. (4.23)

By the energy bound and the coercivity assumptions (3.6), we find that the yn have uniformly
Lr−1-bounded distortion, r − 1 > 2, and consequently the assumptions of [11, Lemma 5.3] are
satisfied. This yields that

φn ◦ yn → φ ◦ y in L1(Ω). (4.24)

The last limit passage, polyconvexity of the bulk energy densities, weak convergence of minors
(4.3)–(4.5), and the lower semicontinuity result of Eisen [31], imply that

Ebulk(y, φ) ≤ lim inf
n→∞ Ebulk(yn, φn). (4.25)

Consequently, a minimizer of E in A exists. �

Remark 4.2 (Multiple phases). Although the model above deals only with two phases, an
extension to a general multi-phase material is possible in a similar way as in [32], or [10,12]. More
precisely, one can describe the case of m ∈ N distinct phases by redefining

E(y, φ, V) =
m∑

i=1

(∫
Ω

(φi ◦ y)Wi(∇y) dX + ci Eint(y, Vi)
)

.

Here, the phase descriptor φ = (φ1, . . . , φm) takes values in {0, 1}m , i.e. φ : y(Ω) → {0, 1}m,
and the components φi (i = 1, . . . , m) describe the local proportion of the different phases. In
particular, φ is constrained to the set of pure phases {φ = (φ1, . . . , φm) ∈ {0, 1}m : φ1 + · · · + φm = 1}.
Correspondingly, the vector of varifolds V = (V1, . . . , Vm) collects m varifolds, such that Vi is
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coupled to φi in y(Ω), i = 1, . . . , m. The energy densities Wi are all assumed to be coercive as in
(3.6) and the constants ci are assumed to be positive. Indeed, the latter positivity turns out to be
necessary for lower semicontinuity, see [33] for details.

5. Topology optimization
In this section, we build on the above theory and tackle a problem in topology optimization
[34,35]. With respect to more classical settings, the novelty is twofold here. Firstly, in line with this
note’s general approach, the problem’s description is fully Eulerian, which naturally corresponds
to the large-deformation setting. Secondly, the curvature of the material interface is taken into
account. The penalization of the curvature of the boundary of the body, in addition to its surface
area, fits well into applicative situations where sharp edges should be avoided. Indeed, in many
mechanical applications sharp edges, especially reentrant edges, may be subject to strong stresses
and are often the onset of plasticization and damage.

Given a deformation y : Ω → R
3 of an open, bounded Lipschitz domain Ω ⊂ R

3, we interpret
the image set y(Ω) as an a priori unknown design domain. This has to be understood as a container,
to be partially occupied by an elastic solid, whose actual shape is the subject of the optimization
procedure. We reinterpret the phase indicator φ : y(Ω) → {0, 1} as a descriptor of the optimal
shape. More precisely, the deformed state of the body to be identified corresponds to the subset of
y(Ω) where φ ≡ 1. On the contrary, the subset of y(Ω) where φ ≡ 0 is interpreted as the deformed
state of a very compliant Ersatz material, which is still assumed to be elastic. As is customary in
topology optimization, in order to avoid trivial solutions, we prescribe the total mass by imposing

∫
Ω

φ ◦ y dX = ηL3(Ω) (5.1)

for a fixed parameter η ∈ (0, 1).
As the deformation y is a priori unknown, for mathematical convenience, the scalar field φ is

defined from here on the whole space R
3 without changing notation. We will refer to such a field

φ : R
3 → {0, 1} as Eulerian material distribution in the following.

Given an Eulerian material distribution φ, we start by solving the equilibrium problem with
some appropriate boundary conditions in the referential configuration. More precisely, we let ∂Ω

be decomposed into ΓD, ΓN ⊂ ∂Ω , which are assumed to be open (in the topology of ∂Ω) with
ΓD ∩ ΓN = ∅, Γ D ∪ Γ N = ∂Ω (closure taken in the topology of ∂Ω), and H2(ΓD) > 0. The body is
assumed to be clamped on ΓD and the set of admissible deformations reads

Y = {y ∈ W1,r(Ω ; R3) : y is a homeomorphism, y = id on ΓD}.
In addition, a traction g ∈ L1(ΓN ; R3) is exerted at the boundary part ΓN and the material is
subjected to a force with given force density f ∈ L1(Ω ; R3). Force and traction could also be
assumed to be formulated in Eulerian coordinates, as well.

For all η ∈ (0, 1) fixed, the set of equilibria related with φ is defined as

Y(φ) = arg min
{

Ebulk(y, φ) −
∫
Ω

(φ ◦ y)f · y dX −
∫
ΓN

g · y dH2 :

y ∈Y is such that (5.1) holds
}

. (5.2)

By following the arguments from the proof of theorem 4.1, one readily checks that Y(φ) is
not empty, provided φ is such that the constraint (5.1) is satisfied by some y ∈Y . To this aim,
we will assume that the identity is admissible in (5.1), i.e.

∫
Ω φ dX = ηL3(Ω). For such φ, even if

non-empty, Y(φ) may not be a singleton, for equilibrium deformations could be not unique.
Our goal is to minimize the compliance

C(y, φ) =
∫
Ω

(φ ◦ y)f · y dX +
∫
ΓN

g · y dH2,
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which is a measure of the elastic energy stored by the deformed piece at equilibrium. In order to
describe the curvature of the Eulerian interface, we augment the description of the material by
an oriented curvature varifold, which we relate to φ as in §3. Recalling A from definition 3.2, the
topology optimization problem reads

min
{

C(y, φ) + Eint(y, V) : φ ∈ L∞(R3), ||φ||∞ ≤ 1,
∫
Ω

φ dX = ηL3(Ω)

y ∈Y(φ), (y, φ|y(Ω), V) ∈A
}

. (5.3)

The main result of this section is the following.

Theorem 5.1 (Topology optimization). Problem (5.5) admits a solution.

Proof. Let us first check that the infimum in (5.5) is not ∞. To this aim, we construct an
admissible triplet in the domain of the functional. Let φ0 = 1H ∈ SBV(R3; {0, 1}), where H ⊂ R

3 is a
half-space with L3(Ω ∩ H) = ηL3(Ω). Call P0 = ∂H ⊂ R

3 and let N0 ∈ S
2 be the unit normal vector

to P0 pointing towards the interior of H. Moreover, let V0 ∈ CVo
2(R3) be as in (2.2) with M = P0,

νM(x) = N0, θ+(x) = 1 and θ−(x) = 0 for x ∈ M. This entails in particular that V0 and φ0 are coupled
in R

3. Now, y0 = id and φ0 satisfy the constraint (5.1), so by the discussion after (5.3), the set Y(φ0)
is not empty. Let now y∗ ∈Y(φ0) be given. We readily check that (y∗, φ0|y∗(Ω), V0 �(y∗(Ω) × S

2)) ∈
A. Moreover, as P0 being a plane implies Aq�V0 ≡ 0, we have that

C(y∗, φ0|y∗(Ω)) + Eint(y∗, V0 �(y∗(Ω) × S
2))

= C(y∗, φ0|y∗(Ω)) + Ψ (0)H2(P0 ∩ y∗(Ω)) < ∞,

since y∗ ∈ W1,r(Ω ; R3), r > 3, implies that y∗(Ω) is bounded.
Let (yn, φn, Vn) be an infimizing sequence for problem (5.5). By comparing with the identity in

(5.3), we observe that Y(φn) is bounded in W1,r(Ω ; R3), independently of n ∈ N. We may argue as
in the proof of theorem 4.1 to conclude that, after passing to a not relabelled subsequence, there
exist φ ∈ L∞(R3), y ∈Y and V ∈ CVo

2(y(Ω)) with (y, φ|y(Ω), V) ∈A such that in particular

yn → y in C0(Ω̄ ; R3). (5.4)

φn ⇀∗ φ in L∞(R3), φn → φ in L1
loc(y(Ω)) (5.5)

φn ◦ yn → φ ◦ y in L1(Ω), (5.6)

and, we have by lower semicontinuity and (5.5) that ||φ||∞ ≤ lim infn→∞ ||φn||∞ ≤ 1, as well as

Ebulk(y, φ) ≤ lim inf
n→∞ Ebulk(yn, φn) (5.7)

and
Eint(y, V) ≤ lim inf

n→∞ Eint(yn, Vn). (5.8)

Equation (5.4) and (5.6) also imply

C(y, φ) = lim
n→∞ C(yn, φn). (5.9)

As the mass constraint (5.1) passes to the limit under (5.6), from (5.4), (5.6) and (5.7) we get that
y ∈Y(φ). Hence, owing to inequality (5.8) and the convergence (5.9) we conclude that (y, φ, V)
solves the topology optimization problem (5.3). �

Remark 5.2 (Worst-case-scenario-compliance). Given the Eulerian material distribution φ, the
set Y(φ) may contain more than one equilibrium, for uniqueness may genuinely fail [36]. In order
to tackle this indeterminacy, one could consider solving a topology optimization problem (5.5)
where the compliance C(y, φ) is replaced by the worst-case-scenario compliance

Cmax(φ) = max
y∈Y(φ)

C(y, φ).

Note that Cmax(φ) can be proved to be well-defined, as soon as Y(φ) is not empty.
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To treat the worst-case-scenario-compliance case, however, one needs to require some stability
of the set C(φ) ⊂Y(φ) given by those equilibria y ∈Y(φ) realizing the maximum, namely, such that
C(y, φ) = Cmax(φ). A condition that would ensure the validity of an existence result in the spirit of
theorem 5.1 would be

∀φn, φ ∈ L∞(Ω), ||φn||∞, ||φ||∞ ≤ 1, φn → φ in L1(Ω), ∀y ∈ C(φ),

∃ yn ∈Y(φn) : C(y, φ) ≤ lim inf
n→∞ C(yn, φn).

The latter entails the existence of a recovery sequence for each equilibrium y ∈ C(φ). In particular,
it is trivially satisfied in case the set of equilibria Y(φ) is a singleton, i.e. in case of uniqueness.
Even in the case of non-uniqueness, the above condition holds if C(y, φ) takes the same value
for all y ∈Y(φ). This is for instance the classical case of buckling of a rod under longitudinal
compression.

Remark 5.3 (A referential formulation). The fully Eulerian setting above can be
computationally challenging. One could resort to a more classical referential setting by identifying
the optimized body via ϕ : Ω → {0, 1} defined on the fixed reference configuration, while still
retaining the penalization of the curvature of the referential boundary of the body, in addition
to its referential surface area. In this setting, the volume constraint (5.1) can be simplified to
||ϕ||1 = ηL3(Ω) for some given η ∈ (0, 1). The set of equilibrium deformations related with ϕ is
defined as

Y(ϕ) = arg miny∈Y

{∫
Ω

(
(1−ϕ)W0(∇y) + ϕW1(∇y)

)
dX

−
∫
Ω

ϕf · y dX −
∫
ΓN

g · y dH2
}

, (5.10)

which can be readily checked to be not empty. By defining the referential compliance as

Cref(y, ϕ) =
∫
Ω

ϕf · y dX +
∫
ΓN

g · y dH2,

the referential topology optimization problem reads

min
{

Cref(y, ϕ) +
∫
Ω×G2,3

Ψ (Aq�V) d (q�V) : ϕ ∈ SBV(Ω ; {0, 1}), ||ϕ||1 = ηL3(Ω),

y ∈Y(ϕ), V ∈ CVo
2(Ω), ∂TV = 0, ϕ and V are coupled in Ω

}
. (5.11)

Note that the varifold V is now defined in the fixed set Ω × S
2, and we are using the same notation

of §2b. By arguing along the lines above, one can prove that the referential topology optimization
problem (5.11) admits a solution.
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