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1. Introduction

Analysis of Lipschitzian stability of set-valued mappings is one of the most impor-
tant parts of modern variational analysis. Above all, the notions of the Aubin and
the calmness property play a central role both in parameter-dependent equilibria
(especially in presence of unknown parameters) and in qualification conditions of
generalized differential calculus. But also the so-called isolated calmness and (the
existence of) single-valued Lipschitzian localization have a great importance, e.g., in
connection with Newton-type methods for nonsmooth problems.
There are various pointwise characterizations of the above mentioned stability no-
tions in terms of generalized derivatives as, e.g., the Mordukhovich or the Levy-
Rockafellar criteria.
Recently, in connection with the so-called SCD (subspace containing derivatives)
mappings and the associated SCD semismooth∗ Newton method in [6], the authors
derived for such mappings a characterization of the strong metric subregularity on
a neighborhood which amounts ([3, Theorem 3I.2]) to the isolated calmness on a
neighborhood of their inverses.
ISSN 0944-6532 / $ 2.50 © Heldermann Verlag
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Both these properties differ from their counterparts at a point rather substantially
and one obtains thus a useful amendment to the available arsenal of regularity
and stability properties. In [6], one finds both a characterization of the strong
metric subregularity on a neighborhood for general mappings and special mappings
having SCD and semismooth∗ properties. These characterizations of strong metric
subregularity, however, were presented in [6] only for mappings between spaces of the
same dimension. So, in order to derive workable criteria for the isolated calmness
around a reference point for, say, a class of implicitly given multifunctions, the
basic framework has to be extended. This extension, along with the corresponding
stability results, is the aim of the present paper.
The plan of the paper is as follows. In the next section one finds a necessary back-
ground from variational analysis which is used throughout the whole paper. Section
3 contains the basic elements of the theory of SCD mappings between spaces of
different dimensions. In this development one uses the corresponding part of [6] as
a template. In Section 4 several calculus rules are derived which are needed in the
proofs of the stability results presented in Section 5. The main statement (Theorem
5.1) provides us with two types of conditions ensuring that the implicit multifunc-
tion, defined via the inclusion

0 ∈ H(x, y)

possesses the isolated calmness property on a neighborhood of the given reference
point. One of these conditions is based on the so-called outer limiting graphical
derivative and works for general mappings, whereas the other one is tailored to
semismooth∗ SCD mappings and is available in a primal and a dual form. To il-
lustrate the nature of these conditions, we use a class of parameterized generalized
equations (GEs). In case of variational inequalities with polyhedral constraint sets,
we work out these conditions to an efficient form expressed in terms of faces of
the critical cone to the constraint set. For semismooth∗ SCD mappings, it appears
that the specialized condition is easier to verify than the general one. In addition,
we present in Section 5 another condition expressed in terms of the limiting (Mor-
dukhovich) coderivative which ensures that the respective implicit mapping has both
the Aubin and the isolated calmness property around the reference point.
The following notation is employed. Given a linear subspace L ⊆ Rn, L⊥ denotes
its orthogonal complement and, for a closed cone K with vertex at the origin, K◦

signifies its (negative) polar. Given a multifunction F , gphF := {(x, y)
∣∣ y ∈ F (x)}

stands for its graph. For an element u ∈ Rn, ‖u‖ denotes its Euclidean norm and
Bδ(u) denotes the closed ball around u with radius δ. The closed unit ball in Rn is
denoted by BRn . In a product space we use the norm ‖(u, v)‖ :=

√
‖u‖2 + ‖v‖2.

Given an m × n matrix A, we employ the operator norm ‖A‖ with respect to the
Euclidean norm and we denote the range of A by rge A. Given a set Ω ⊂ Rs, we
define the distance of a point x to Ω by dΩ(x) := dist(x,Ω) := inf{ ‖y − x‖

∣∣ y ∈ Ω }
and the indicator function is denoted by δΩ. Finally, x

Ω→x̄ denotes convergence
within the set Ω. When a mapping F : Rn → Rm is differentiable at x, we denote
by ∇F (x) its Jacobian.
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2. Background from variational analysis

Throughout the whole paper, we will frequently use the following basic notions of
modern variational analysis. All the sets under consideration are supposed to be
locally closed around the points in question without further mentioning.

Definition 2.1. Let A be a set in Rs and let x̄ ∈ A. Then
(i) The tangent (contingent, Bouligand) cone to A at x̄ is given by

TA(x̄) := Lim sup
t↓0

A− x̄

t
,

the paratingent cone to A at x̄ is given by

T P
A (x̄) := Lim sup

x
A→x̄
t↓0

A− x

t

and the outer limiting tangent cone to A at x̄ is defined as

T ♯
A(x̄) := Lim sup

x
A→x̄

TA(x) = Lim sup
x

A→x̄

(
Lim sup

t↓0

A− x

t

)
. (1)

(ii) The set N̂A(x̄) :=
(
TA(x̄)

)◦
is the regular (Fréchet) normal cone to A at x̄, and

NA(x̄) := Lim sup
A

x→x̄

N̂A(x)

is the limiting (Mordukhovich) normal cone to A at x̄.

In this definition ”Lim sup” stands for the Painlevé-Kuratowski outer (upper) set
limit, see, e.g.,[1]. The outer limiting tangent cone T ♯

A(x̄) was very recently defined
in [6] and it is always contained in the paratingent cone T P

A (x̄). All the other objects
from variational geometry are well-known and can be found in standard textbooks,
see, e.g., [15].
If A is convex, then N̂A(x̄) = NA(x̄) amounts to the classical normal cone in the
sense of convex analysis and we will write NA(x̄).
The above listed cones enable us to describe the local behavior of set-valued maps
via various generalized derivatives. All the set-valued mappings under consideration
are supposed to have locally closed graph around the points in question.

Definition 2.2. Consider a multifunction F : Rn ⇒ Rm and let (x̄, ȳ) ∈ gphF .
(i) The multifunction DF (x̄, ȳ) : Rn ⇒ Rm given by gphDF (x̄, ȳ) = TgphF (x̄, ȳ)

is called the graphical derivative of F at (x̄, ȳ).
(ii) The outer limiting graphical derivative of F at (x̄, ȳ) is the multifunction

D♯F (x̄, ȳ) : Rn ⇒ Rm given by

gphD♯F (x̄, ȳ) = T ♯
gphF (x̄, ȳ).

(iii) The multifunctionD∗F (x̄, ȳ) : Rn ⇒ Rm given by gphD∗F (x̄, ȳ) = T P
gphF (x̄, ȳ)

is called the strict (paratingent) derivative of F at (x̄, ȳ).
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(iv) The multifunction D̂∗F (x̄, ȳ) : Rm ⇒ Rn defined by

gph D̂∗F (x̄, ȳ) = {(y∗, x∗)
∣∣ (x∗,−y∗) ∈ N̂gphF (x̄, ȳ)}

is called the regular (Fréchet) coderivative of F at (x̄, ȳ).

(v) The multifunction D∗F (x̄, ȳ) : Rm ⇒ Rn, defined by

gphD∗F (x̄, ȳ) = {(y∗, x∗)
∣∣ (x∗,−y∗) ∈ NgphF (x̄, ȳ)}

is called the limiting (Mordukhovich) coderivative of F at (x̄, ȳ).

The outer limiting graphical derivative has been introduced by the authors in [6].
If F is single-valued, we can omit the second argument and writeDF (x), D̂∗F (x), . . .

instead of DF
(
x, F (x)

)
, D̂∗F

(
x, F (x)

)
, . . .. However, be aware that when consid-

ering limiting objects at x where F is not continuous, it is not enough to consider
only sequences xk → x but we must work with sequences

(
xk, F (xk)

)
→

(
x, F (x)

)
.

Definition 2.3. Let U ⊂ Rn be open and consider a mapping F : U → Rm. The
B-Jacobian of F at x ∈ U is defined as

∇F (x) :=

{
A

∣∣∣∣∣ ∃xk → x : F is Fréchet differen-
tiable at xk and A = lim

k→∞
∇F (xk)

}
. (2)

Recall that the Clarke Generalized Jacobian is given by co∇F (x), i.e., the convex
hull of the B-Jacobian.
There exists the following relation between the B-Jacobian and the limiting coderiva-
tive of a single-valued mapping F , which states that every element from the B-
Jacobian defines a certain subspace contained in the graph of the coderivative.

Proposition 2.4. ([6, Proposition 2.4]) Let U ⊂ Rn be open and let F : U → Rm

be a mapping. Let F be continuous at x ∈ U and let A ∈ ∇F (x). Then

(y∗, ATy∗) ∈ gphD∗F (x) ∀y∗ ∈ Rm.

If the mapping F : U → Rm is Lipschitz continuous, then by Rademacher’s Theorem
F is differentiable almost everywhere in U and ‖∇F (x)‖ is bounded there by the
Lipschitz constant of F . Thus ∇F (x̄) 6= ∅ for Lipschitz continuous mappings F .
Let us now recall the following regularity notions.

Definition 2.5. Consider a mapping F : Rn ⇒ Rm and let (x̄, ȳ) ∈ gphF . Then
(i) F is said to be metrically subregular at (x̄, ȳ) if there exists κ ≥ 0 along with

some neighborhood U of x̄ such that

dist(x, F−1(ȳ)) ≤ κ dist(ȳ, F (x)) ∀x ∈ U. (3)

(ii) F is said to be strongly metrically subregular at (x̄, ȳ) if there is κ ≥ 0 together
with some neighborhood U of x̄ such that

‖x− x̄‖ ≤ κ dist(ȳ, F (x)) ∀x ∈ U. (4)
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(iii) F is said to be metrically regular around (x̄, ȳ) if there is κ ≥ 0 together with
neighborhoods U of x̄ and V of ȳ such that

dist(x, F−1(y)) ≤ κ dist(y, F (x)) ∀(x, y) ∈ U × V. (5)

Note that condition (4) implies that F−1(ȳ) ∩ U = {x̄}.
Related with these regularity properties are the following Lipschitzian properties.

Definition 2.6. Let S : Rm ⇒ Rn be a mapping and let (ȳ, x̄) ∈ gphS. Then
(i) S is calm at (ȳ, x̄) if there exists κ ≥ 0 along with a neighborhood U of x̄ such

that
S(y) ∩ U ⊂ S(ȳ) + κ‖y − ȳ‖BRn ∀y ∈ Rm.

(ii) S has the isolated calmness property at (ȳ, x̄) if there exists κ ≥ 0 along with
a neighborhood U of x̄ such that

S(y) ∩ U ⊂ {x̄}+ κ‖y − ȳ‖BRn ∀y ∈ Rm. (6)

(iii) S has the Aubin property around (ȳ, x̄) if there is some constant κ ≥ 0 along
with neighborhoods V of ȳ and U of x̄ such that

S(y) ∩ U ⊂ S(y′) + κ‖y − y′‖BRn ∀y, y′ ∈ V.

Now the condition (6) defining isolated calmness ensures that S(ȳ) ∩ U = {x̄}.
It is well-known, see, e.g., [3], that the property of (strong) metric subregularity for
F at (x̄, ȳ) with constant κ is equivalent with the property of (isolated) calmness for
F−1 at (ȳ, x̄) with constant κ. Further, F is metrically regular around (x̄, ȳ) with
constant κ if and only if F−1 has the Aubin property around (ȳ, x̄) with constant κ.
The properties of metric regularity and strong metric subregularity are stable under
Lipschitzian and calm perturbations, respectively, cf. [3]. Further note that the
property of metric regularity holds around all points belonging to the graph of F
sufficiently close to the reference point, whereas the property of (strong) metric
subregularity is guaranteed to hold only at the reference point. This leads to the
following definition.

Definition 2.7. (i) We say that the mapping F : Rn ⇒ Rm is (strongly) metri-
cally subregular around (x̄, ȳ) ∈ gphF if there is κ ≥ 0 and a neighborhood
W of (x̄, ȳ) such that F is (strongly) metrically subregular with constant κ at
every point (x, y) ∈ gphF ∩W .
In this case we will also speak about (strong) metric subregularity on a neigh-
borhood.

(ii) We say that the mapping S : Rm ⇒ Rn is called (isolatedly) calm around
(ȳ, x̄) ∈ gphS if there is some constant κ ≥ 0 along with some neighborhood
W of (ȳ, x̄) such that S is isolatedly calm with constant κ at every point
(y, x) ∈ gphS ∩W .
In this case we will also speak about (isolated) calmness on a neighborhood.

The notion of (strong) metric subregularity on a neighborhood was introduced in
[6, Definition 2.8]. Due to the relation between (strong) metric subregularity of F
and (isolated) calmness of F−1 we immediately obtain the following result.
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Lemma 2.8. Let F : Rn ⇒ Rm be a mapping and let (x̄, ȳ) ∈ gphF . Then F is
(strongly) metrically subregular around (x̄, ȳ) if and only if F−1 is isolatedly calm
around (ȳ, x̄).

Note that every polyhedral multifunction, i.e., a mapping whose graph is the union of
finitely many convex polyhedral sets, is both metrically subregular and calm around
every point of its graph by Robinson’s result [13]. In this paper, we will restrict our
investigations to the properties of strong metric subregularity and isolated calmness
on a neighborhood. Let us first have a closer look on Definition 2.7.
The mapping F : Rn ⇒ Rm is strongly metrically subregular around (x̄, ȳ) ∈ gphF
if and only if there is some κ ≥ 0 together with some neighborhood W of (x̄, ȳ) such
that for every (x, y) ∈ gphF ∩W there is some neighborhood Uxy of x with

dist(x′, F−1(y)) ≤ κdist(y, F (x′)) ∀x′ ∈ Uxy.

Note that the neighborhoods Uxy depends both on x amd y and can be arbitrarily
small.
Similarly, the mapping S : Rm ⇒ Rn is isolatedly calm around (ȳ, x̄) ∈ gphS if and
only if there is some κ ≥ 0 together with some neighborhood W of (ȳ, x̄) such that
for every (y, x) ∈ gphS ∩W there is some neighborhood Uyx of x with

S(y′) ∩ Uyx ⊂ {x}+ κ‖y′ − y‖BRn ∀y′ ∈ Rm.

In this paper we will use the following point-based characterizations of the above
regularity properties.

Theorem 2.9. Consider a mapping F : Rn ⇒ Rm and let (x̄, ȳ) ∈ gphF . Then
(i) (Levy-Rockafellar criterion, see, e.g., [3, Theorem 4.1]) F is strongly metrically

subregular at (x̄, ȳ) if and only if

0 ∈ DF (x̄, ȳ)(u) ⇒ u = 0. (7)

(ii) (Mordukhovich criterion, see, e.g., [11, Theorem 3.3]) F is metrically regular
around (x̄, ȳ) if and only if

0 ∈ D∗F (x̄, ȳ)(y∗) ⇒ y∗ = 0. (8)

(iii) F is strongly metrically subregular around (x̄, ȳ) if and only if

0 ∈ D♯F (x̄, ȳ)(u) ⇒ u = 0. (9)

The characterization (iii) of strong metric subregularity on a neighborhood was
shown in [6, Theorem 6.1] for the special case m = n. But a close inspection of
the proof of [6, Theorem 6.1] shows that it can be used without any modification to
show the general case as well.
Next we introduce the semismooth∗ sets and mappings.

Definition 2.10. (i) A set A ⊆ Rs is called semismooth∗ at a point x̄ ∈ A if for
every ϵ > 0 there is some δ > 0 such that

|〈x∗, x− x̄〉| ≤ ϵ‖x− x̄‖‖x∗‖
holds for all x ∈ A ∩ Bδ(x̄) and all x∗ ∈ N̂A(x).
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(ii) A set-valued mapping F : Rn ⇒ Rm is called semismooth∗ at a point
(x̄, ȳ) ∈ gphF , if gphF is semismooth∗ at (x̄, ȳ), i.e., for every ϵ > 0 there is
some δ > 0 such that

|〈x∗, x− x̄〉 − 〈y∗, y − ȳ〉| ≤ ϵ‖(x, y)− (x̄, ȳ)‖‖(x∗, y∗)‖

holds for all (x, y) ∈ gphF ∩ Bδ(x̄, ȳ) and all (y∗, x∗) ∈ gph D̂∗F (x, y).

Note that the above definitions of semismooth∗ sets and multifunctions are not the
same as the ones introduced in [5], but by [5, Proposition 3.2, Corollary 3.3] they
are equivalent.
The class of semismooth* sets and mappings is rather broad.

Proposition 2.11. (i) Any closed convex set A ⊂ Rs is semismooth∗ at each x̄∈A.
(ii) Assume that we are given closed sets Ai ⊂ Rs, i = 1, . . . p, and a point

x̄ ∈ A :=
⋃p

i=1Ai. If the sets Ai, i ∈ Ī := {j
∣∣ x̄ ∈ Aj}, are semismooth∗ at x̄,

then so is the set A.
(iii) Every closed subanalytic set A is semismooth∗ at each x̄ ∈ A.

The first two statements of this proposition can be found in [5, Propsition 3.4,
Proposition 3.5], whereas the last statement follows from [9, Theorem 2].
We now state a sufficient condition for the semismooth∗ property of sets with con-
straint structure.

Proposition 2.12. Let A = {x ∈ Rs
∣∣Φ(x) ∈ D}, where Φ : Rs → Rp is contin-

uously differentiable and D ⊂ Rp is a closed set. Given x̄ ∈ A, assume that the
mapping x 7→ F (x) := Φ(x) −D is metrically subregular at (x̄, 0) and assume that
D is semismooth∗ at Φ(x̄). Then A is semismooth∗ at x̄.

Proof. By metric subregularity of F there exists a real κ > 0 together with some
open neighborhood U such that (3) holds. It follows that for every x ∈ A ∩ U
the mapping F is metrically subregular with constant κ at (x, 0) and thus, by [7,
Theorem 3] there holds

NA(x) ⊂ {∇Φ(x)Ty∗
∣∣ y∗ ∈ ND

(
Φ(x)

)
∩ κ‖x∗‖BRp}, x ∈ A ∩ U.

Since D is semismooth∗ at Φ(x̄), by [5, Proposition 3.2] there is some radius ρ > 0
such that

|〈y∗, d− Φ(x̄)〉| ≤ ϵ

2Lκ
‖d− Φ(x̄)‖‖y∗‖ ∀d ∈ D ∩ Bρ

(
Φ(x̄)

)
∀y∗ ∈ ND(d),

where L denotes the Lipschitz constant of Φ on some ball Bδ(x̄) ⊂ U . Next choose
0 < δ̄ < min{δ, ρ/L} such that

‖Φ(x̄)− Φ(x)−∇Φ(x)(x̄− x)‖ ≤ ϵ

2κ
‖x− x̄‖, x ∈ Bδ̄(x̄),

and consider x ∈ A∩Bδ̄(x̄) and x∗ ∈ NA(x) together with y∗ ∈ ND

(
Φ(x)

)
satisfying

‖y∗‖ ≤ κ‖x∗‖ and x∗ = ∇Φ(x)Ty∗. Then
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|〈x∗, x− x̄〉| = |〈y∗,∇Φ(x)(x− x̄)〉|
≤ |〈y∗,Φ(x)− Φ(x̄)〉|+ |〈y∗,Φ(x̄)− Φ(x)−∇Φ(x)(x− x̄)〉|

≤ ϵ

2Lκ
‖Φ(x)− Φ(x̄)‖‖y∗‖+ ‖y∗‖‖Φ(x̄)− Φ(x)−∇Φ(x)(x̄− x)‖

≤ ϵ

2Lκ
L‖x− x̄‖κ‖x∗‖+ ϵ

2κ
κ‖x∗‖‖x− x̄‖ = ϵ‖x− x̄‖‖x∗‖,

verifying that A is semismooth∗ at x̄.

In case of single-valued Lipschitzian mappings the semismooth∗ property is equiva-
lent with the semismooth property introduced by Gowda [8], which is weaker than
the one in [12].

3. Preliminaries

This section is composed from two parts. The first one, Section 3.1, contains a
generalization of the basic facts about the SCD mappings from [6, Section 3] to mul-
tifunctions between different finite-dimensional spaces. Section 3.2 is then devoted
to the important notion of SCD regularity, playing a crucial role in the subsequent
development.

3.1. SCD mappings

Let us denote by Znm the metric space of all n-dimensional subspaces of Rn+m

equipped with the metric

dZnm(L1, L2) := ‖P1 − P2‖, (10)

where Pi is the symmetric (n+m)×(n+m) matrix representing the orthogonal pro-
jection onto Li, i = 1, 2. Throughout the whole paper we make use of the following
relationships.

Lemma 3.1. (i) Let Ak be a sequence of (n+m)×(n+l) full-column-rank matrices
converging to a full-column-rank matrix A and let Lk ∈ Znl be a sequence of
subspaces converging to L ∈ Znl. Then lim

k→∞
dZnm(AkLk, AL) = 0.

(ii) The metric space Znm is (sequentially) compact.

The above statements can be proved in the same way as their counterparts in [6,
Lemma 3.1(iii),(iv)] and therefore the proofs are omitted.
To be consistent with the notation in [6] we will write Zn instead of Znn.
With each L ∈ Znm one can associate its adjoint subspace L∗ defined by

L∗ := {(−v∗, u∗) ∈ Rm × Rn
∣∣ (u∗, v∗) ∈ L⊥}. (11)

Since dimL⊥ = m, it follows that L∗ ∈ Zmn (i.e., its dimension is m). It is easy to
see that

L∗ = SnmL
⊥, where Snm =

(
0 −Im
In 0

)
, (12)

yielding (L∗)⊥ = {z
∣∣ST

nmz ∈ (L⊥)⊥ = L}.
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Hence we obtain
(L∗)∗ = {(−u, v) ∈ Rn × Rm

∣∣ (v, u) ∈ (L∗)⊥}

= {(−u, v) ∈ Rn × Rm
∣∣ST

nm(v, u) = (u,−v) ∈ L} = −L = L. (13)
Further, if we denote by PL∗ , PL⊥ and PL the symmetric (n+m)× (n+m) matrices
representing the orthogonal projections onto L∗, L⊥ and L, respectively, then we
have PL⊥ = In+m − PL and, since Snm is orthogonal,

PL∗ = SnmPL⊥ST
nm = In+m − SnmPLS

T
nm.

We conclude that for any two subspaces L1, L2 ∈ Znm there holds
dZmn(L

∗
1, L

∗
2) = ‖In+m − SnmPL1S

T
nm − (In+m − SnmPL2S

T
nm)‖

= ‖PL1 − PL2‖ = dZnm(L1, L2)

and thus the mapping L → L∗ is an isometry between Znm and Zmn. In what
follows, the symbol L∗ signifies both the adjoint subspace to some L ∈ Znm as well
as an arbitrary subspace from Zmn. This double role, however, cannot lead to a
confusion. Consider now a mapping F : Rn ⇒ Rm.

Definition 3.2. We say that F is graphically smooth of dimension n at (x̄, ȳ) if
TgphF (x̄, ȳ) ∈ Znm. By OF we denote the subset of gphF , where F is graphically
smooth of dimension n.

Clearly, for (x, y) ∈ OF and L = TgphF (x, y) = gphDF (x, y) we have the relations
L⊥ = N̂gphF (x, y) and L∗ = gph D̂∗F (x, y).

As a next step we introduce the four derivative-like mappings ŜF : Rn×Rm ⇒ Znm,
Ŝ∗F :Rn ×Rm ⇒ Zmn, SF :Rn ×Rm ⇒ Znm and S∗F :Rn ×Rm ⇒ Zmn defined by

ŜF (x, y) :=

{
gphDF (x, y) if (x, y) ∈ OF

∅ otherwise,

Ŝ∗F (x, y) :=

{
gph D̂∗F (x, y) if (x, y) ∈ OF

∅ otherwise,

SF (x, y) := Lim sup
gphF

(u,v)→(x,y)

ŜF (u, v) =

{
L ∈ Znm

∣∣∣∣∣ ∃(xk, yk)
OF→ (x, y) such that

lim dZnm

(
L, gphDF (xk, yk)

)
= 0

}
,

and

S∗F (x, y) := Lim sup
gphF

(u,v)→(x,y)

Ŝ∗F (u, v) =

L∗∈Zmn

∣∣∣∣∣∣ ∃(xk, yk)
OF→ (x, y) such that

lim dZmn

(
L∗, gph D̂∗F (xk, yk)

)
=0

.

Both SF and S∗F constitute generalized derivatives of F whose elements, by virtue
of the above definitions, are subspaces of the graphs of the outer limiting graphical
derivative and the limiting coderivative:

L ⊂ gphD♯F (x, y) ⊂ gphD∗F (x, y) ∀L ∈ SF (x, y), (14)
L∗ ⊂ gphD∗F (x, y) ∀L∗ ∈ S∗F (x, y). (15)
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In what follows SF will be called SC (subspace containing) limiting graphical deriva-
tive and S∗F will be termed SC limiting coderivative at (x, y).
Due to the isometry L → L∗ we obtain a useful relationship between SF (x̄, ȳ) and
S∗F (x̄, ȳ). It holds, namely, that

S∗F (x̄, ȳ) = {L∗ ∣∣L ∈ SF (x̄, ȳ)} and SF (x̄, ȳ) = {L
∣∣L∗ ∈ S∗F (x̄, ȳ)}, (16)

which enables us together with (12) a simple conversion of the statements in terms
of L ∈ SF (x̄, ȳ) to statements in terms of L∗ ∈ S∗F (x̄, ȳ) and vice versa.
On the basis of S∗F (x̄, ȳ) we may now introduce the following notion playing a
crucial role in the sequel.

Definition 3.3. A mapping F : Rn ⇒ Rm is said to have the SCD property at
(x̄, ȳ) ∈ gphF , provided S∗F (x̄, ȳ) 6= ∅. F is termed an SCD mapping if it has the
SCD property at all points of gphF .

By virtue of (16), the SCD property at (x̄, ȳ) is obviously equivalent with the con-
dition SF (x̄, ȳ) 6= ∅.
Since we consider convergence in the compact metric space Znm, by using similar
arguments as in the proof of [6, Lemma 3.6], we readily obtain the following result.

Lemma 3.4. A mapping F : Rn ⇒ Rm has the SCD property at (x, y) ∈ gphF if
and only if (x, y) ∈ clOF . Further, F is an SCD mapping if and only if we have
clOF = cl gphF , i.e., F is graphically smooth of dimension n at the points of a
dense subset of its graph.

The derivatives SF and S∗F can be considered as a generalization of the B-Jacobian
to multifunctions. In case of single-valued continuous mappings one has the following
relationship.

Lemma 3.5. Let U ⊂ Rn be open and let f : U → Rm be continuous. Then for
every x ∈ U there holds

Sf(x) := S
(
x, f(x)

)
⊇ {rge (I, A)

∣∣A ∈ ∇f(x)}, (17)
S∗f(x) := S∗(x, f(x)) ⊇ {rge (I, AT )

∣∣A ∈ ∇f(x)}. (18)

If f is Lipschitz continuous near x, these inclusions hold with equality and f has the
SCD property around x.

Proof. We can carry over the proof of [6, Lemma 3.11] with marginal modifications.

3.2. SCD regularity
For m = n we recall the following weakening of metric regularity tailored to SCD
mappings.

Definition 3.6. ([6, Definition 4.1]) A mapping F : Rn ⇒ Rn is called SCD regular
around (x̄, ȳ), provided it has the SCD property on a neighborhood of (x̄, ȳ) and for
all L∗ ∈ S∗F (x̄, ȳ) one has the implication

(v∗, 0) ∈ L∗ ⇒ v∗ = 0. (19)
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It is easy to see, cf. [6, Lemma 4.5], that implication (19) is equivalent with the
requirement that

(u, 0) ∈ L ⇒ u = 0 for all L ∈ SF (x̄, ȳ). (20)

Further we observe that SCD regularity persists on a neighborhood of (x̄, ȳ), cf.
[6, Proposition 4.8], and, taking into account (15) and the Mordukhovich criterion,
condition (19) is implied by the (classical) metric regularity of F around (x̄, ȳ).
The main vehicle in our stability analysis of SCD mappings in Section 5 are the
following statements taken over from [6, Theorem 6.2, Corollary 6.4].

Theorem 3.7. Assume that F : Rn ⇒ Rn is a SCD regular mapping around a point
(x̄, ȳ) ∈ gphF . Then there is a neighborhood U of (x̄, ȳ) such that F is strongly
metrically subregular at each point of gphF ∩ U at which F is semismooth∗.

Corollary 3.8. Assume that F : Rn ⇒ Rn is semismooth∗ and has the SCD property
around (x̄, ȳ) ∈ gphF . Then F is strongly metrically subregular around (x̄, ȳ) if and
only if F is SCD regular around (x̄, ȳ).

Conversely, thanks to Theorem 2.9(iii) and (14), strong metric subregularity around
(x̄, ȳ) implies the SCD regularity at (x̄, ȳ) even in absence of the semismooth∗ prop-
erty. Since by virtue of [3, Theorem 3H.3] F is strongly metrically subregular at
(x̄, ȳ) if and only if F−1 is isolatedly calm at (ȳ, x̄), Corollary 3.8 thus provides us
with a workable characterization of isolated calmness of inverses to SCD mappings
having the semismooth∗ property.
Under the semismooth∗ and the SCD property, let us now compare Corollary 3.8
with the characterization of strong metric subregularity on a neighborhood provided
by Theorem 2.9(iii). To this aim we write down relation (9) equivalently in the form

(u, 0) ∈ gphD♯F (x̄, ȳ) ⇒ u = 0. (21)

By taking into account (14) and (20), we see that we need not to check (21) for
the whole graph of D♯F (x̄, ȳ), but only for the part which is given by the subspaces
contained in SF (x̄, ȳ). It seems that for the analysis of strong metric subregularity
and isolated calmness on a neighborhood of semismooth∗ SCD mappings the outer
limiting graphical derivative is much too large and contains useless parts. Moreover,
it seems that the outer limiting graphical derivative is much harder to compute than
the SC limiting graphical derivative.
Because of the mentioned relationship between the metric regularity and SCD reg-
ularity and Theorem 3.7 we arrive finally at the following corollary.

Corollary 3.9. Assume that an SCD mapping F : Rn ⇒ Rn is metrically regular
and semismooth∗ around (x̄, ȳ). Then F−1 not only has the Aubin property around
(ȳ, x̄), but it is also isolatedly calm around (ȳ, x̄).

4. Calculus
In this section we present some calculus rules for SCD mappings which can be useful
in various situations.
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Consider a mapping F : Rn ⇒ Rm defined by

gphF = {(x, y) ∈ Rn × Rm
∣∣Φ(x, y) ∈ gphQ}, (22)

where Φ : Rn × Rm → Rl × Rm is a continuously differentiable function and Q :
Rl ⇒ Rm is a closed-graph mapping.

Theorem 4.1. Assume that (x̄, ȳ) ∈ gphF , Q has the SCD property at Φ(x̄, ȳ) and
the (l + m) × (n + m) matrix ∇Φ(x̄, ȳ) has full row rank l + m. Then F has the
SCD property at (x̄, ȳ),

SF (x̄, ȳ) = {L ∈ Znm

∣∣∇Φ(x̄, ȳ)L ∈ SQ
(
Φ(x̄, ȳ)

)
} (23)

and

S∗F (x̄, ȳ) = {L∗∈Zmn

∣∣L∗=Snm∇Φ(x̄, ȳ)TST
lmM

∗ with M∗∈S∗Q
(
Φ(x̄, ȳ)

)
}, (24)

where the matrices Snm and Slm are given by (12).

Proof. Since ∇Φ(x̄, ȳ) is surjective, the mapping Φ is metrically regular around(
(x̄, ȳ),Φ(x̄, ȳ)

)
, cf. [15, Example 9.44]. Moreover, there is an open neighborhood

W of (x̄, ȳ) such that ∇Φ(x, y) is surjective for all (x, y) ∈ W and W̃ = Φ(W) is
open. By virtue of [15, Exercise 6.7] it holds that

TgphF (x, y) = {w ∈ Rn × Rm
∣∣∇Φ(x, y)w ∈ TgphQ

(
Φ(x, y)

)
} (25)

for all (x, y) ∈ gphF ∩W . We now claim that

OQ ∩ W̃ = {Φ(x, y)
∣∣ (x, y) ∈ OF ∩W}. (26)

Indeed, consider (x, y) ∈ OF ∩ W and take two tangents q1, q2 ∈ TgphQ

(
Φ(x, y)

)
.

Since ∇Φ(x, y) is surjective, there exist wi, i = 1, 2, with ∇Φ(x, y)wi = qi implying
wi ∈ TgphF (x, y) by (25). Since TgphF (x, y) is a subspace, we have

α1w1 + α2w2 ∈ TgphF (x, y) ∀α1, α2 ∈ R
and consequently ∇Φ(x, y)(α1w1 + α2w2) = α1q1 + α2q2 ∈ TgphQ

(
Φ(x, y)

)
.

Hence TgphQ

(
Φ(x, y)

)
is a subspace. From (x, y) ∈ OF we deduce that the dimension

of the subspace TgphF (x, y) is n. On the other hand, by (25) together with the
surjectivity of ∇Φ(x, y), the dimension of TgphF (x, y) equals to the dimension of the
subspace TgphQ

(
Φ(x, y)

)
plus (n+m)− (k +m), the dimension of the nullspace of

∇Φ(x, y).
Hence, the dimension of TgphQ

(
Φ(x, y)

)
is k and Φ(x, y) ∈ OQ ∩ W̃ is verified.

Next, consider z ∈ OQ ∩ W̃ . Then we can find (x, y) ∈ W such that z = Φ(x, y)
and using similar arguments as above, we can show that TgphF (x, y) is a subspace
of dimension n implying (x, y) ∈ (x, y) ∈ OF ∩W . Hence our claim (26) holds true.
Since Q has the SCD property at Φ(x̄, ȳ), we have SQ

(
Φ(x̄, ȳ)

)
6= ∅.

Consider M ∈ SQ
(
Φ(x̄, ȳ)

)
together with a sequence zk

OQ−→Φ(x̄, ȳ) such that we
have Mk := TgphQ(zk)

Zlm−→M . For every k sufficiently large we can find (xk, yk) ∈ W
with zk = Φ(xk, yk) and, due to the metric regularity of Φ, (xk, yk) → (x̄, ȳ).
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Further, M⊥
k converges in Zml to M⊥. Let Lk := TgphF (xk, yk) = ∇Φ(xk, yk)

−1Mk,
where∇Φ(xk, yk)

−1 denotes the inverse of the linear mapping induced by∇Φ(xk, yk).
By our claim (26) we have that Lk ∈ Znm and, since L⊥

k = ∇Φ(xk, yk)
TM⊥

k by [14,
Corollary 16.3.2], L∗

k = Snm∇Φ(xk, yk)
TM⊥

k converges to
L∗ := Snm∇Φ(x̄, ȳ)TM⊥ = Snm∇Φ(x̄, ȳ)TST

lmM
∗

by Lemma 3.1(i). On the other hand, since ∇Φ(x̄, ȳ)TM⊥ =
(
∇Φ(x̄, ȳ)−1M)⊥, we

obtain L = ∇Φ(x̄, ȳ)−1M . These arguments show the inclusion ”⊃” in (23) and
(24).
In order to show the reverse inclusion, consider L ∈ SF (x̄, ȳ) together with sequences

(xk, yk)
OF−→(x̄, ȳ) and Lk := TgphF (xk, yk)

Znm−→L.
Following (25) and (26) together with the surjectivity of ∇Φ(xk, yk), we obtain that
Mk := ∇Φ(xk, yk)Lk = TgphQ

(
Φ(xk, yk)

)
∈ Zlm. The metric space Zlm is compact

and thus, after possibly passing to a subsequence, we may assume that Mk converges
in Zlm to someM ∈ SQ

(
Φ(x̄, ȳ)

)
. Utilizing the same arguments as before, we obtain

that the sequence
L∗
k = Snm∇Φ(xk, yk)

TST
lmM

∗
k

converges to L∗ = Snm∇Φ(x̄, ȳ)TST
lmM

∗ and L = ∇Φ(x̄, ȳ)−1M . This completes the
proof.

As a first consequence of this theorem we derive that graphically Lipschitzian map-
pings have the SCD property.

Definition 4.2. (cf.[15, Definition 9.66]) A mapping F : Rn ⇒ Rm is graphically
Lipschitzian of dimension d at (x̄, ȳ) ∈ gphF if there is an open neighborhood W
of (x̄, ȳ) and a one-to-one mapping Φ from W onto an open subset of Rn+m with
Φ and Φ−1 continuously differentiable, such that Φ(gphF ∩ W ) is the graph of a
Lipschitz continuous mapping f : U → Rn+m−d, where U is an open set in Rd.

Many mappings F : Rn ⇒ Rn, important in applications, are graphically Lischitzian
of dimension n. As an example we mention the subdifferential mapping of prox-
regular and subdifferentially continuous functions f : Rn → R, cf. [15, Proposition
13.46].

Corollary 4.3. Assume that F : Rn ⇒ Rm is graphically Lipschitzian of dimension
n at (x̄, ȳ) ∈ gphF . Then F has the SCD property at (x̄, ȳ).

Proof. Let Φ, W , U and f be defined as in Definition 4.2 and observe that we have
gphF ∩W = {(x, y)

∣∣Φ(x, y) ∈ gphQ}, where

Q(u) :=

{f(u)} if u ∈ U,

∅ else.

By Lemma 3.5, Q has the SCD property at
(
ū, f(ū)

)
:= Φ(x̄, ȳ) and the statement

follows from Theorem 4.1.

Let us now provide a calculus rule for the outer limiting tangent cone.
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Proposition 4.4. Let Φ : Rn → Rm be continuously differentiable, let A ⊂ Rm be
a closed set and consider C := {x ∈ Rn

∣∣Φ(x) ∈ A}.
Then for any x̄ ∈ C there holds

T ♯
C(x̄) ⊂ {u

∣∣∇Φ(x̄)u ∈ T ♯
A

(
Φ(x̄)

)
}. (27)

If ∇Φ(x̄) has full row rank m then this inclusion holds with equality.

Proof. By [15, Theorem 6.31], for any x ∈ C there holds the inclusion

TC(x) ⊂ {u
∣∣∇Φ(x)u ∈ TA

(
Φ(x)

)
}. (28)

Consider u ∈ T ♯
C(x̄) together with sequences (xk, uk)

gphTC−→ (x̄, u). Then

(Φ(xk),∇Φ(xk)uk) → (Φ(x̄),∇Φ(x̄)u)

and ∇Φ(xk)uk ∈ TA

(
Φ(xk)

)
verifying ∇Φ(x̄)u ∈ T ♯

A

(
Φ(x̄)

)
. This proves (27). Now

assume that ∇Φ(x̄) has full row rank. Then Φ is metrically regular with some
constant κ around

(
x̄,Φ(x̄)

)
, see, e.g., [15, Example 9.44]. In addition, we can find

a neighborhood U of x̄ such that ∇Φ(x) has full row rank for every x ∈ U and we
conclude from [15, Exercise 6.7] that inclusion (28) holds with equality for every
x ∈ U .
Consider v ∈ T ♯

A

(
Φ(x̄)

)
together with sequences (yk, vk)

gphTA−→ (Φ(x̄), v).
By metric regularity of Φ, for every k sufficiently large we can find xk ∈ Φ−1(yk)
with ‖xk − x̄‖ ≤ κ‖yk − Φ(x̄)‖ so that xk → x̄ and xk ∈ U . Consider u ∈ Rn with
∇Φ(x̄)u = v. For the pseudo-inverse ∇Φ(x̄)† := ∇Φ(x̄)T

(
∇Φ(x̄)∇Φ(x̄)T

)−1 there
holds

u = ∇Φ(x̄)†v +
(
I −∇Φ(x̄)†∇Φ(x̄)

)
u.

Since the pseudo-inverses ∇Φ(xk)
† converge to ∇Φ(x̄)†, we conclude that the se-

quence
uk := ∇Φ(xk)

†vk +
(
I −∇Φ(xk)

†∇Φ(xk)
)
u

converges to u. Further, since ∇Φ(xk)uk = vk ∈ TA

(
Φ(xk)

)
, we have uk ∈ TC(xk)

and u ∈ T ♯
C(x̄) follows. This justifies the inclusion T ♯

C(x̄) ⊃ {u
∣∣∇Φ(x̄)u ∈ T ♯

A

(
Φ(x̄)

)
}

and the proof of the proposition is complete.

The next calculus rule is essential for the main stability result presented in Section
5. Let us consider the situation when F : Rn ⇒ Rl × Rk is given via

F (x) :=

(
G(x)
H(x)

)
(29)

where G : Rn → Rl is a C1 function and H : Rn ⇒ Rk has a closed graph.

Proposition 4.5. Consider (x̄, z̄) ∈ gphH. Then for the mapping F given by (29)
one has:
(i) T ♯

gphF

(
x̄, (G(x̄), z̄)

)
=

{(
u, (∇G(x̄)u,w)

) ∣∣ (u,w) ∈ T ♯
gphH(x̄, z̄)}. (30)

(ii) If H is semismooth∗ at (x̄, z̄), then F is semismooth∗ at
(
x̄, (G(x̄), z̄)

)
.
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(iii) Assume that H has the SCD property at (x̄, z̄). Then F has the SCD property
at

(
x̄, (G(x̄), z̄)

)
and one has that

SF
(
x̄, (G(x̄), z̄)

)
=

{{(
u, (∇G(x̄)u,w)

) ∣∣ (u,w)∈M
} ∣∣∣M ∈ SH(x̄, z̄)

}
, (31)

S∗F
(
x̄, (G(x̄), z̄)

)
= (32)

=
{
{
(
(q∗, w∗),∇G(x̄)T q∗ + u∗) ∣∣ q∗ ∈ Rl, (w∗, u∗) ∈ M∗}

∣∣∣M∗ ∈ S∗H(x̄, z̄)
}
.

Proof. Let H̃ : Rn ⇒ Rl × Rk be given by H̃(x) = {0} ×H(x). Then
gphF = {(x, p, z)

∣∣Φ(x, p, z) ∈ gph H̃},

where Φ : Rn × Rl × Rk → Rn × Rl × Rk is given by Φ(x, p, z) = (x, p − G(x), z)T .
Note that for every triple (x, p, z) the following Jacobian is nonsingular:

∇Φ(x, p, z) =

 In 0 0
−∇G(x) Il 0

0 0 Ik

 .

Ad (i): Obviously we have T ♯

gph H̃

(
x̄, (0, z̄)

)
= {

(
u, (0, w)

) ∣∣ (u,w) ∈ T ♯
gphH(x̄, z̄)}.

Thus we obtain from Proposition 4.4, yielding (30):

T ♯
gphF

(
x̄, (G(x̄), z̄)

)
=

{(
u, (q, w)

) ∣∣∣∇Φ(x̄, G(x̄), z̄)(u, q, w) ∈ T ♯

gph H̃
(x̄, 0, z̄)

}
=

{(
u, (q, w)

) ∣∣ (u,w) ∈ T ♯
gphH(x̄, z̄), q −∇G(x̄)u = 0}.

Ad (ii): Since H is semismooth∗ at (x̄, z̄), H̃ is semismooth∗ at
(
x̄, (0, z̄)

)
. Surjec-

tivity of ∇Φ(x̄, G(x̄), z̄) ensures that the mapping Φ(·)−gph H̃ is metrically regular
around

(
x̄, (G(x̄), z̄)

)
, cf. [15, Example 9.44] and therefore metrically subregular as

well. Now the claimed statement follows from Proposition 2.12.
Ad (iii): It is easy to see that H̃ has the SCD property at

(
x̄, (0, z̄)

)
with

SH̃
(
x̄, (0, z̄)

)
=

{
{
(
u, (0, w)

) ∣∣ (u,w) ∈ M}
∣∣∣M ∈ SH(x̄, z̄)

}
,

S∗H̃
(
x̄, (0, z̄)

)
=

{
{
(
(q∗, w∗), u∗) ∣∣ q∗ ∈ Rl, (w∗, u∗) ∈ M∗}

∣∣∣M∗ ∈ S∗H(x̄, z̄)
}
.

Next we can apply Theorem 4.1 to obtain
SF

(
x̄, (G(x̄), z̄)

)
= {∇Φ(x̄, G(x̄), z̄)−1M̃

∣∣ M̃ ∈ SH̃
(
x̄, (0, z̄)

)
},

S∗F
(
x̄, (G(x̄), z̄)

)
= {Sn(l+k)∇Φ(x̄, G(x̄), z̄)TST

n(l+k)M̃
∗ ∣∣ M̃∗ ∈ S∗H̃

(
x̄, (0, z̄)

)
}.

Straightforward calculations yield that

∇Φ(x̄, G(x̄), z̄)−1 =

 In 0 0
∇G(x̄) Il 0

0 0 Ik

 ,

Sn(l+k)∇Φ(x̄, G(x̄), z̄)TST
n(l+k) =

 Il 0 0
0 Ik 0

∇G(x̄)T 0 In


and the formulas (31), (32) follow.
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5. Isolated calmness on a neighborhood of implicit multifunctions

We consider now a multifunction H : Rl × Rk ⇒ Rk with closed graph and a point(
(x̄, ȳ), z̄

)
∈ gphH. Then the relation

gphΣ = H−1(z̄) (33)

defines the so-called implicit multifunction Σ : Rl ⇒ Rk. Our aim is now to ensure
a certain stability property of Σ around (x̄, ȳ) by imposing suitable assumptions on
H around (x̄, ȳ, z̄). Usually one puts z̄ = 0 so that

gphΣ = {(x, y)
∣∣ 0 ∈ H(x, y)}. (34)

It is easy to see that any stability property of Σ around (x̄, ȳ) is inherited by the
same stability property of the inverse to the “extended” mapping F : Rl+k ⇒ Rl+k

given by
F (x, y) =

(
x

H(x, y)

)
(35)

around
(
(x̄, ȳ), (x̄, 0)

)
. In fact, in this way, e.g., the classical Implicit Function

Theorem or the Clarke Implicit Function Theorem have been proved. Alternatively,
one can combine a suitable characterization of the examined property in terms of
a generalized derivative with the available calculus, as shown, e.g., in [10, Section
4.3] or [4, Section 4] in case of the Aubin property. In our approach we will use the
mapping (35) along with Theorem 2.9(iii) and Corollary 3.8.

Theorem 5.1. Consider the inclusion 0 ∈ H(x, y) and a point
(
(x̄, ȳ), 0

)
∈ gphH.

Then any of the following two conditions ensures the isolated calmness property of
the respective implicit solution map Σ around (x̄, ȳ).
(i) 0 ∈ D♯H

(
(x̄, ȳ), 0

)
(0, v) ⇒ v = 0. (36)

(ii) The mapping H has both the SCD property and the semismooth∗ property
around

(
(x̄, ȳ), 0

)
and either the implication(

(0, v), 0
)
∈ L ⇒ v = 0 (37)

holds for all L ∈ SH
(
(x̄, ȳ), 0

)
, or, equivalently, the implication(

w∗, (u∗, 0)
)
∈ L∗ ⇒ w∗ = 0, u∗ = 0 (38)

holds for all L∗ ∈ S∗H
(
(x̄, ȳ), 0

)
.

Proof. In the first case we conclude from Proposition 4.5(i) that the mapping F
given by (35) fulfills

D♯F
(
(x̄, ȳ), (x̄, 0)

)
(u, v) = {(u,w)

∣∣w ∈ D♯H
(
(x̄, ȳ), 0

)
(u, v)}.

Thus it follows from Theorem 2.9(iii) that condition (36) is equivalent with strong
metric subregularity of F around

(
(x̄, ȳ), (x̄, 0)

)
and the claimed isolated calmness

of Σ around (x̄, ȳ) follows.
In the second case, note that by Proposition 4.5(ii), (iii) the mapping F has the
SCD property around

(
(x̄, ȳ), (x̄, 0)

)
and is semismooth∗ around

(
(x̄, ȳ), (x̄, 0)

)
.
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Further we have

SF
(
(x̄, ȳ), (x̄, 0)

)
=

{
{
(
(u, v), (u,w)

) ∣∣ ((u, v), w) ∈ L}
∣∣∣L ∈ SH

(
(x̄, ȳ), 0

)}
,

S∗F
(
(x̄, ȳ), (x̄, 0)

)
=

=
{
{
(
(q∗, w∗), (q∗ + u∗, v∗)

) ∣∣ q∗∈Rl,
(
w∗, (u∗, v∗)

)
∈L∗}

∣∣∣L∗∈S∗H
(
(x̄, ȳ), 0

)}
.

Implications (20) and (19) now yield conditions (37), (38) which, by Corollary 3.8,
are equivalent with the strong metric subregularity of F around

(
(x̄, ȳ), (x̄, 0)

)
. The

proof is complete.

Theorem 5.1 can well be applied to parameterized GEs. To this aim consider the
case when H : Rl × Rk ⇒ Rk is given via

H(x, y) := f(x, y) +Q(x, y), (39)

where x ∈ Rl is the perturbation parameter, y ∈ Rk is the decision variable, f :
Rl × Rk → Rk is continuously differentiable and Q : Rl × Rk ⇒ Rk has a closed
graph.
Proposition 5.2. Consider the reference point (x̄, ȳ) ∈ H−1(0) and assume that
one of the following conditions hold true:

(i) 0 ∈ ∇yf(x, y)v +D♯Q
(
(x̄, ȳ),−f(x̄, ȳ)

)
(0, v) ⇒ v = 0. (40)

(ii) Q has the SCD property around
(
(x̄, ȳ),−f(x̄, ȳ)

)
and is semismooth∗ on a

neighborhood of
(
(x̄, ȳ),−f(x̄, ȳ)

)
and either one of the implications holds true:(

(0, v),−∇yf(x̄, ȳ)v
)
∈M ⇒ v = 0 for all M ∈SQ

(
(x̄, ȳ),−f(x̄, ȳ)

)
(41)

and, for all M∗ ∈ S∗Q
(
(x̄, ȳ),−f(x̄, ȳ)

)
(
w∗, (u∗,−∇yf(x̄, ȳ)

Tw∗)
)
∈ M∗ ⇒ w∗ = 0, u∗ = 0. (42)

Then the respective solution mapping Σ : Rl ⇒ Rk is isolatedly calm around (x̄, ȳ).

Proof. Clearly we have gphH = {
(
(x, y), z

)
∈Rl × Rk × Rk

∣∣Φ((x, y), z)∈gphQ}
with Φ

(
(x, y), z

)
=

(
(x, y), z − f(x, y)

)T so that we can apply Proposition 4.4 and
Theorem 4.1 to obtain

T ♯
gphH

(
(x̄, ȳ), 0

)
= ∇Φ

(
(x̄, ȳ), 0

)−1
T ♯
gphQ

(
Φ
(
(x̄, ȳ), 0

))
,

SH
(
(x̄, ȳ), 0

)
= ∇Φ

(
(x̄, ȳ), 0

)−1SQ
(
Φ
(
(x̄, ȳ), 0

))
,

S∗H
(
(x̄, ȳ), 0

)
=

{
L∗ ∈ Zk(l+k)

∣∣∣∣∣ L∗ = S(l+k)k∇Φ
(
(x̄, ȳ), 0

)T
ST
(l+k)kM

∗

with M∗ ∈ S∗Q
(
Φ
(
(x̄, ȳ), 0

))
}
.

Straightforward calculations yield

∇Φ
(
(x̄, ȳ), 0

)−1
=

(
Il+k 0

∇f(x̄, ȳ) Ik

)
,
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and S(l+k)k∇Φ
(
(x̄, ȳ), 0

)T
ST
(l+k)k =

(
Ik 0

∇f(x̄, ȳ)T Il+k

)
and we arrive at the formulas

D♯H
(
(x̄, ȳ), 0

)
(u, v) =

= {∇xf(x̄, ȳ)u+∇yf(x̄, ȳ)v + w
∣∣w ∈ D♯Q

(
(x̄, ȳ),−f(x̄, ȳ)

)
(u, v)},

SH
(
(x̄, ȳ), 0

)
=

{
{
(
(u, v),∇xf(x̄, ȳ)u+∇yf(x̄, ȳ)v + w

)∣∣ ((u, v), w) ∈ M}
∣∣∣M ∈ SQ

(
(x̄, ȳ),−f(x̄, ȳ)

)}
and

S∗H
(
(x̄, ȳ), 0

)
=

{{(
w∗, (∇xf(x̄, ȳ)

Tw∗ + u∗,∇yf(x̄, ȳ)
Tw∗ + v∗)

)∣∣ (w∗, (u∗, v∗)) ∈ M∗} ∣∣∣M∗ ∈ S∗Q
(
(x̄, ȳ),−f(x̄, ȳ)

)}
.

Conditions (36), (37), (38) thus read

u = 0, ∇xf(x̄, ȳ)u+∇yf(x̄, ȳ)v + w = 0

w ∈ D♯Q
(
(x̄, ȳ),−f(x̄, ȳ)

)
(u, v)

}
⇒ v = 0,

u = 0, ∇xf(x̄, ȳ)u+∇yf(x̄, ȳ)v + w = 0(
(u, v), w

)
∈ M

}
⇒ v = 0

for all M ∈ SQ
(
(x̄, ȳ),−f(x̄, ȳ)

)
,

∇yf(x̄, ȳ)
Tw∗ + v∗ = 0(

w∗, (u∗, v∗)
)
∈ M∗

}
⇒ w∗ = 0,∇xf(x̄, ȳ)

Tw∗ + u∗ = 0

for all M∗ ∈ S∗Q
(
(x̄, ȳ),−f(x̄, ȳ)

)
, which are equivalent to (40), (41) and (42),

respectively. This completes the proof.

Recall that for SCD mappings Q having the semismooth∗ property any of the three
conditions (40), (41) and (42) is equivalent to the strong metric subregularity on a
neighborhood of the mapping F given by (35) and thus the conditions (40), (41)
and (42) are equivalent. Whereas (42) is a dual formulation of (41), conditions
(40) and (41) might look quite different. Let us shed some light on this issue by
the following application of Proposition 5.2 to parameterized variational inequalities
with polyhedral constraint sets.
Consider the GE

0 ∈ H(x, y) := f(x, y) +ND

(
g(x, y)

)
, (43)

where f, g : Rl × Rk → Rk are continuously differentiable and D ⊂ Rk is a convex
polyhedral set, and let 0 ∈ H(x̄, ȳ). In what follows we denote by

KD(d, d
∗) := TD(d) ∩ [d∗]⊥, (d, d∗) ∈ gphND

the critical cone to D at d for d∗.
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Our further development makes use of the following statements.

Proposition 5.3. Let D ⊂ Rk be a convex polyhedral set. Then the normal cone
mapping ND(·) is an SCD mapping, which is semismooth∗ at every point of its graph.
Further, for every point (d, d∗) ∈ gphND there holds

SND(d, d
∗) = S∗ND(d, d

∗) = {(F− F)× (F− F)⊥
∣∣F is face of KD(d, d

∗)}, (44)

and the outer limiting tangent cone T ♯
gphND

(d, d∗) is the union of all sets gphNF1−F2,
where F1,F2 are closed faces of KD(d, d

∗) with F2 ⊂ F1.

Proof. Since the normal cone mapping ND is the subdifferential mapping of the
convex lsc function δD, it is an SCD mapping by [6, Corollary 3.28]. Further, since
gphND is the union of finitely many convex polyhedral sets, ND is semismooth∗

at every point of its graph by Proposition 2.11. Formula (44) can be found in [6,
Example 3.29] and there remains to show the representation of T ♯

gphND
(d, d∗).

For any (d′, d′∗) ∈ gphND we have TgphND
= gphNKD(d′,d′∗), cf. [3, Lemma 2E4].

Further, by the Critical Superface Lemma [3, Lemma 4H.2], for every sufficiently
small neighborhood W of (d, d∗) the collection of all critical cones KD(d

′, d′∗),
(d′, d′∗) ∈ gphND ∩W coincides with the collection of the so-called critical super-
faces F1 − F2, where F1,F2 are faces of the critical cone KD(d, d

∗) with F2 ⊂ F1.
Now consider a quadruple

(
(d, d∗), (e, e∗)

)
satisfying (e, e∗)∈T ♯

gphND
(d, d∗) together

with sequences
(
(dk, d

∗
k), (ek, e

∗
k)
)
→

(
(d, d∗), (e, e∗)

)
with (ek, e

∗
k) ∈ TgphND

(dk, d
∗
k).

Since the convex polyhedral set D has only finitely many faces, after possibly pass-
ing to a subsequence we can assume that there are two faces F1,F2 of KD(d, d

∗) with
F2 ⊂ F1 such that KD(dk, d

∗
k) = F1 − F2 for all k. Thus,

(ek, e
∗
k) ∈ TgphND

(dk, d
∗
k) = gphNKD(dk,d

∗
k)
= gphNF1−F2

for all k and (e, e∗) ∈ gphNF1−F2 follows. Conversely, let F2 ⊂ F1 be two faces of
KD(d, d

∗) and let (e, e∗) ∈ gphNF1−F2 . Then there exists some sequence

(dk, d
∗
k)

gphND−→ (d, d∗) with KD(dk, d
∗
k) = F1 − F2 ∀k

so that (e, e∗) ∈ gphNF1−F2 = TgphND
(dk, d

∗
k) ∀k implying (e, e∗) ∈ T ♯

gphND
(d, d∗).

The statement has been established.

Proposition 5.4. In the setting of (43), assume that g(x̄, ȳ) ∈ D and the Jacobian
∇g(x̄, ȳ) has full row rank k. Then the mapping Q(x, y) : Rl × Rk ⇒ Rk given by
Q(x, y) = ND

(
g(x, y)

)
has the SCD property around

(
(x̄, ȳ), d∗

)
and is semismooth∗

around
(
(x̄, ȳ), d∗

)
for every d∗ ∈ ND

(
g(x̄, ȳ)

)
. Further one has

SQ
(
(x̄, ȳ), d∗

)
=

{
{
(
(u, v), e∗

) ∣∣ (∇g(x̄, ȳ)(u, v)
e∗

)
∈ (F− F)× (F− F)⊥}∣∣∣F is face of KD(g(x̄, ȳ), d

∗)

}
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and

T ♯
gphQ

(
(x̄, ȳ), d∗

)
=

(
(u, v), e∗

) ∣∣∣∣∣∣∣
(
∇g(x̄, ȳ)(u, v)

e∗

)
∈gphNF1−F2 for faces

F1,F2 of KD(g(x̄, ȳ), d
∗) with F2 ⊂ F1

 . (45)

Proof. Obviously

gphQ = {
(
(x, y), d∗

) ∣∣Φ(x, y, d∗) := (
g(x, y)
d∗

)
∈ gphND}.

The full-rank assumption imposed on ∇g(x̄, ȳ) ensures that ∇g(x, y) has full row
rank for all (x, y) belonging to some neighborhood U of (x̄, ȳ) and it follows that
∇Φ(x, y, d∗) has full row rank for all (x, y, d∗) ∈ U×Rk. Hence, by Theorem 4.1, for
any (x, y, d∗) ∈ gphQ∩U ×Rk the mapping Q has the SCD property at

(
(x, y), d∗

)
and, together with (44),

SQ
(
(x, y), d∗

)
=

{
{
(
(u, v), e∗

) ∣∣ (∇g(x, y)(u, v)
e∗

)
∈ (F− F)× (F− F)⊥}∣∣∣F is face of KD(g(x, y), d

∗)

}
.

Further, the mapping (x, y, d∗) ⇒ Φ(x, y, d∗)− gphND is metrically regular around
the point

(
(x, y, d∗), (0, 0)

)
by [15, Example 9.44] and consequently also metrically

subregular. This allows us to invoke Proposition 2.12 in order to guarantee the
semismooth∗ property of Q at

(
(x, y), d∗

)
. Finally, formula (45) follows from Propo-

sition 4.4 and Lemma 5.3.

Taking into account our above considerations about the equivalence of (40), (41)
and the strong metric subregularity of F on a neighborhood for semismooth∗ SCD
mappings Q, we arrive at the following result.

Proposition 5.5. In the setting of (43), assume that
(
(x̄, ȳ), 0

)
∈ gphH and that

the Jacobian ∇g(x̄, ȳ) has full row rank k. Then the following statements are equiv-
alent.
(i) The mapping F : Rl × Rk ⇒ Rl × Rk given by

F (x, y) =

(
x

f(x, y) +ND

(
g(x, y)

))
is strongly metrically subregular around

(
(x̄, ȳ), (x̄, 0)

)
.

(ii) The implication

∇yg(x̄, ȳ)v ∈ F− F
−∇yf(x̄, ȳ)v ∈ (F− F)⊥

}
⇒ v = 0 (46)

holds for every face F of the critical cone KD

(
g(x̄, ȳ),−f(x̄, ȳ)

)
.



H.Gfrerer, J.V.Outrata / On the Isolated Calmness Property ... 1021

(iii) The implication

∇yg(x̄, ȳ)v ∈ F1 − F2

−∇yf(x̄, ȳ)v ∈ (F1 − F2)
◦

〈∇yg(x̄, ȳ)v,−∇yf(x̄, ȳ)v〉 = 0

 ⇒ v = 0 (47)

holds for every pair F1,F2 of faces of the critical cone KD

(
g(x̄, ȳ),−f(x̄, ȳ)

)
with F2 ⊂ F1.

This result is quite surprising since the implications in (ii) are only a proper subset
of those in (iii) with F1 = F2 and it is by no means evident why the remaining
implications in (iii) with F2 6= F1 are superfluous. These considerations demonstrate
that for testing the strong metric subregularity on a neighborhood of semismooth*
SCD mappings the approach via (46) may require less effort in comparison with (47)
based on the outer limiting graphical derivative.
Concerning the isolated calmness of the solution map Σ related to (43), we arrive
at the following result.

Proposition 5.6. In the setting of (43), let 0 ∈ H(x̄, ȳ). If the implication (46)
holds for every face F of the critical cone KD

(
g(x̄, ȳ),−f(x̄, ȳ)

)
, then the respective

solution mapping Σ : Rl ⇒ Rk is isolatedly calm around (x̄, ȳ).

Proof. If ∇g(x̄, ȳ) has full row rank, the assertion follows from Proposition 5.5.
If the Jacobian ∇g(x̄, ȳ) does not possess full row rank, we simply consider the
generalized equation

0 ∈ H̃
(
(x, p), y

)
= f̃

(
(x, p), y

)
+ND

(
g̃
(
(x, p), y

))
where f̃ , g̃ : Rl × Rk × Rk → Rk are given by

f̃
(
(x, p), y

)
= f(x, y), g̃

(
(x, p), y

)
= g(x, y)− p.

Since the Jacobian ∇g̃
(
(x, p), y

)
has full row rank and ∇yg̃

(
(x, p), y

)
= ∇yg(x, y),

∇yf̃
(
(x, p), y

)
= ∇yf(x, y) for all (x, p, y), we can conclude that the respective

solution mapping Σ̃ : Rl×Rk → Rl is isolatedly calm around
(
(x̄, 0), ȳ

)
and, together

with the observation that Σ(x) = Σ̃(x, 0) ∀x ∈ Rl, the isolated calmness of Σ around
(x̄, ȳ) follows.

Let us illustrate the above conditions via a simple academic example.

Example 5.7. Let l = k = 1 and consider the parameterized GE (43), where
f(x, y) = −y, g(x, y) = y − x and D = R+. With (x̄, ȳ) = (0, 0) we observe that all
the assumptions of Proposition 5.6 are fulfilled,

KD

(
g(x̄, ȳ),−f(x̄, ȳ)

)
= TD

(
g(x̄, ȳ)

)
= R+,
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and one has to consider the faces F1 = R+, F2 = {0}. We have thus to check the
validity of the implications(

v
v

)
∈ (F1 − F1)× (F1 − F1)

⊥ = R× {0} ⇒ v = 0(
v
v

)
∈ (F2 − F2)× (F2 − F2)

⊥ = {0} × R ⇒ v = 0,

which are evidently fulfilled. Consequently the respective solution mapping Σ is
isolatedly calm around (0, 0). This conclusion is correct because, as one can easily
compute,

Σ(x) =

{
{0} ∪ {x} if x ≤ 0,
∅ otherwise.

Note that Σ does not have the Aubin property around (0, 0).

Finally, let us compare condition (38) with a standard criterion for the Aubin prop-
erty of Σ around the reference point. On the basis of the theory from [10, Chapter
4] one obtains the following result.

Proposition 5.8. Consider the inclusion 0∈H(x, y) and assume that the implication

(u∗, 0) ∈ D∗H
(
(x̄, ȳ), 0

)
(w∗) ⇒ w∗ = 0, u∗ = 0 (48)

holds true. Then Σ has the Aubin property around (x̄, ȳ).

Note that the condition (48) ensures both a qualification condition needed to com-
pute the coderivative of Σ and the satisfaction of the Mordukhovich criterion
D∗Σ(x̄, ȳ)(0) = {0}. Since L∗ ⊂ gphD∗H(x̄, ȳ, 0) ∀L∗ ∈ SH

(
(x̄, ȳ), 0

)
, it follows

that for H being SCD and semismooth∗ around (x̄, ȳ) condition (48) implies not
only the Aubin property but also the isolated calmness of Σ around (x̄, ȳ). This is
an important fact emphasizing the importance of the SCD and semismooth∗ prop-
erty in stability issues. Observe that the conjunction of the Aubin and the isolated
calmness property represents a new useful stability notion, where the isolated calm-
ness specifies the nature of Lipschitzian behavior and the Aubin property ensures
the non-emptiness of a localization.
Of course, to ensure in the setting of Proposition 5.5 the conjunction of the Aubin
property and the isolated calmness property around a point, we can use also condi-
tion (46) along with some specific non-restrictive criterion for the Aubin property,
see, e.g. [4, Theorem 4.4].

6. Conclusion

As explained in Corolary 4.3, graphically Lipschitzian mappings of dimension n
are SCD mappings for which both SC limiting derivatives can be computed. For
GEs with such multi-valued parts thus the respective conditions (41) and (42) can
be used in a large number of parameterized GEs corresponding, e.g., to variational
inequalities of the 2nd kind, hemivariational inequalities or implicit complementarity
problems.
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In [6] one finds also a relationship between SCD and strong metric regularity. This
indicates that in some cases the SC limiting derivatives could be used also to ensure
that an implicitly defined mapping has a single-valued and Lipschitzian localization
around the reference point. This task we postpone to a future research.
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