
Set-Valued and Variational Analysis
https://doi.org/10.1007/s11228-022-00651-2

On the Application of the SCD Semismooth* Newton
Method to Variational Inequalities of the Second Kind

Helmut Gfrerer1 · Jiřı́ V. Outrata2,3 · Jan Valdman2,4

Received: 15 December 2021 / Accepted: 3 November 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
The paper starts with a description of SCD (subspace containing derivative) mappings and
the SCD semismooth∗ Newton method for the solution of general inclusions. This method
is then applied to a class of variational inequalities of the second kind. As a result, one
obtains an implementable algorithm which exhibits locally superlinear convergence. There-
after we suggest several globally convergent hybrid algorithms in which one combines the
SCD semismooth∗ Newton method with selected splitting algorithms for the solution of
monotone variational inequalities. Finally, we demonstrate the efficiency of one of these
methods via a Cournot-Nash equilibrium, modeled as a variational inequality of the second
kind, where one admits really large numbers of players (firms) and produced commodities.

Keywords Newton method · Semismoothness∗ · Superlinear convergence ·
Global convergence · Generalized equation · Coderivatives

Mathematics Subject Classification (2010) 65K10 · 65K15 · 90C33

� Helmut Gfrerer
helmut.gfrerer@jku.at

Jiřı́ V. Outrata
outrata@utia.cas.cz

Jan Valdman
jan.valdman@utia.cas.cz

1 Institute of Computational Mathematics, Johannes Kepler University Linz, A-4040 Linz, Austria
2 Institute of Information Theory and Automation, Czech Academy of Sciences, 18208 Prague,

Czech Republic
3 Centre for Informatics and Applied Optimization, Federation University of Australia, POB 663,

Ballarat, Vic 3350, Australia
4 Department of Applied Mathematics, Faculty of Information Technology, Czech Technical

University in Prague, Thákurova 9, 16000 Prague 6, Czech Republic

http://crossmark.crossref.org/dialog/?doi=10.1007/s11228-022-00651-2&domain=pdf
http://orcid.org/0000-0001-6860-102X
mailto: helmut.gfrerer@jku.at
mailto: outrata@utia.cas.cz
mailto: jan.valdman@utia.cas.cz

H. Gfrerer et al.

1 Introduction

In [5] the authors proposed the so-called semismooth* Newton method for the numerical
solution of a general inclusion

0 ∈ F(x),

where F : R
n ⇒ R

n is a closed-graph multifunction. This method has been further
developed in [6], where it has coined the name SCD (subspace containing derivative) semis-
mooth* Newton method. Compared to the original method of [5], the new variant requires a
slightly stronger approximation of the limiting coderivative of H , but exhibits locally super-
linear convergence under substantially less restrictive assumptions. The aim of this paper is
to work out this Newton-type method for the numerical solution of the generalized equation
(GE)

0 ∈ H(x) := f (x) + ∂q(x), (1.1)
where f : R

n → R
n is continuously differentiable, q : R

n → R is proper con-
vex and lower-semicontinuous (lsc) and ∂ stands for the classical Moreau-Rockafellar
subdifferential. It is easy to see that GE (1.1) is equivalent to the variational inequality (VI):

Find x̄ ∈ R
n such that

〈f (x̄), x − x̄〉 + q(x) − q(x̄) ≥ 0 for all x ∈ R
n. (1.2)

Model (1.2) has been introduced in [8] and one speaks about the variational inequality
(VI) of the second kind. It is widely used in the literature dealing with equilibrium models
in continuum mechanics cf., e.g., [10] and the references therein. For the numerical solution
of GE (1.1), several methods can be used ranging from nonsmooth optimization meth-
ods (applicable when ∇f is symmetric) over various types of the Josephy-Newton method
[12, 13] to a broad family of splitting methods (usable when F is monotone), cf. [3, Chap-
ter 12]. If GE (1.1) amounts to stationarity condition for a Nash game, then also a simple
coordinate-wise optimization technique can be used, cf. [15] and [22]. Concerning the
Newton-type methods, let us mention also the possibility to write GE (1.1) as an equation
on a monotone graph, which enables us to apply the Newton procedure from [25]. However,
note that the subproblems to be solved in the Josephy-Newton method or in this approach are
typically rather difficult. In other papers the authors reformulate the problem as a (standard)
nonsmooth equation which is then solved by the classical semismooth Newton method, see,
e.g., [11, 29].

As mentioned above, in this paper, we will investigate the numerical solution of GE
(1.1) using the SCD semismooth* Newton method developed in [6]. In contrast to the New-
ton methods of Josephy, in this method (as well as in its original variant from [5]) the
multi-valued part of (1.1) is also approximated and, differently from some other Newton-
type methods, this approximation is provided by means of a linear subspace belonging to
the graph of the limiting coderivative of ∂q. In this way, the computation of the Newton
direction reduces to the solution of a linear system of equations. To ensure locally super-
linear convergence, two properties must be fulfilled. The first one is a weakening of the
semismooth∗ property from [5] and pertains to the subdifferential mapping ∂q. The second
one, called SCD regularity, concerns the mapping H and amounts, roughly speaking, to the
strong metric subregularity of the considered GE around the solution.

The plan of the paper is as follows. After the preliminary Section 2, where we pro-
vide the background needed from modern variational analysis, Section 3 is devoted to the
broad class of SCD mappings, which is the basic framework for the application of the used

On the Application of the SCD Semismooth* Newton Method...

method. In particular, the subdifferential of a proper convex lsc function is an SCD map-
ping. In Section 4 the SCD semismooth* Newton method is described and its convergence
is analyzed. Thereafter, in Section 5 we develop an implementable version of the method for
the solution of GE (1.1) and show its locally superlinear convergence under mild assump-
tions. Section 6 deals with the issue of global convergence. First, we suggest a heuristic
modification of the method from the preceding section which exhibits very good conver-
gence properties in the numerical experiments. Thereafter, we show global convergence
for a family of hybrid algorithms, where one combines the semismooth* Newton method
with various frequently used splitting methods. Finally, in Section 7 we demonstrate the
efficiency of the developed methods using a modification of a Cournot-Nash equilibrium
problem from [21] which can be modeled in the form of GE (1.1). In contrast to the numer-
ical approach in [22], we may work here with “arbitrarily” large numbers of players (firms)
and commodities,

The following notation is employed. Given a matrix A, rge A and ker A denote the range
space and the kernel of A, respectively, and ‖A‖ represents its spectral norm. For a set �,
dist(x,�) := infa∈� ‖x − a‖ signifies the distance from x to � and ri� is the relative
interior of �. Furthermore, L⊥ denotes the orthogonal complement of a linear subspace
L and diag (A,B) means a block diagonal matrix with matrices A,B as diagonal blocks.
Bδ(x) denotes the closed ball around x with radius δ.

2 Preliminaries

Throughout the paper, we will frequently use the following basic notions of modern
variational analysis.

Definition 2.1 Let A be a set in R
s , x̄ ∈ A and A be locally closed around x̄. Then

(i) The tangent (contingent, Bouligand) cone to A at x̄ is given by

TA(x̄) := Lim sup
t↓0

A − x̄

t
.

(ii) The set
̂NA(x̄) := (TA(x̄)

)◦

is the regular (Fréchet) normal cone to A at x̄, and

NA(x̄) := Lim sup
A

x→x̄

̂NA(x)

is the limiting (Mordukhovich) normal cone to A at x̄.

In this definition “Lim sup” stands for the Painlevé-Kuratowski outer (upper) set limit,
see, e.g., [27]. The above listed cones enable us to describe the local behavior of set-valued
maps via various generalized derivatives. Let F : Rn ⇒ R

m be a (set-valued) mapping with
the domain and the graph

domF := {x ∈ R
n | F(x) = ∅}, gphF := {(x, y) ∈ R

n × R
m | y ∈ F(x)}.

Definition 2.2 Consider a (set-valued) mapping F : Rn ⇒ R
m and let gphF be locally

closed around some (x̄, ȳ) ∈ gphF .

H. Gfrerer et al.

(i) The multifunction DF(x̄, ȳ) : Rn ⇒ R
m, given by gphDF(x̄, ȳ) = TgphF (x̄, ȳ), is

called the graphical derivative of F at (x̄, ȳ).
(ii) The multifunction D∗F(x̄, ȳ) : Rm ⇒ R

n, defined by

gphD∗F(x̄, ȳ) = {(y∗, x∗) | (x∗, −y∗) ∈ NgphF (x̄, ȳ)},

is called the limiting (Mordukhovich) coderivative of F at (x̄, ȳ).

Let us now recall the following regularity notions.

Definition 2.3 Let F : Rn ⇒ R
m be a a (set-valued) mapping and let (x̄, ȳ) ∈ gphF .

1. F is said to be metrically subregular at (x̄, ȳ) if there exists κ ≥ 0 along with some
neighborhood X of x̄ such that

dist(x, F−1(ȳ)) ≤ κ dist(ȳ, F (x)) ∀x ∈ X.

2. F is said to be strongly metrically subregular at (x̄, ȳ) if it is metrically subregular at
(x̄, ȳ) and there exists a neighborhood X′ of x̄ such that F−1(ȳ) ∩ X′ = {x̄}.

3. F is said to be metrically regular around (x̄, ȳ) if there is κ ≥ 0 together with
neighborhoods X of x̄ and Y of ȳ such that

dist(x, F−1(y)) ≤ κ dist(y, F (x)) ∀(x, y) ∈ X × Y .

4. F is said to be strongly metrically regular around (x̄, ȳ) if it is metrically regular around
(x̄, ȳ) and F−1 has a single-valued localization around (ȳ, ȳ), i.e., there are open neigh-
borhoods Y ′ of ȳ, X′ of x̄ and a mapping h : Y ′ → R

n with h(ȳ) = x̄ such that
gphF ∩ (X′ × Y ′) = {(h(y), y) | y ∈ Y ′}.

It is easy to see that the strong metric regularity around (x̄, ȳ) implies the strong metric
subregularity at (x̄, ȳ) and the metric regularity around (x̄, ȳ) implies the metric subregular-
ity at (x̄, ȳ). To check the metric regularity one often employs the so-called Mordukhovich
criterion, according to which this property around (x̄, ȳ) is equivalent with the condition

0 ∈ D∗F(x̄, ȳ)(y∗) ⇒ y∗ = 0. (2.3)

For pointwise characterizations of the other stability properties from Definition 2.3 the
reader is referred to [6, Theorem 2.7].

We end up in this preparatory section with a definition of the semismooth∗ property
which paved the way both to semismooth∗ Newton method in [5] as well as to the SCD
semismooth∗ Newton method in [6].

Definition 2.4 We say that F : Rn ⇒ R
n is semismooth∗ at (x̄, ȳ) ∈ gphF if for every

ε > 0 there is some δ > 0 such that the inequality

|〈x∗, x − x̄〉 − 〈y∗, y − ȳ〉| ≤ ε‖(x, y) − (x̄, ȳ)‖‖(x∗, y∗)‖

holds for all (x, y) ∈ gphF ∩ Bδ(x̄, ȳ) and all (y∗, x∗) belonging to gphD∗F(x, y).

On the Application of the SCD Semismooth* Newton Method...

3 On SCDMappings

3.1 Basic Properties

In this section we want to recall the basic definitions and features of the SCD property
introduced in the recent paper [6].

In what follows, we denote by Zn the metric space of all n-dimensional subspaces of
R
2n equipped with the metric

dZ (L1, L2) := ‖PL1 − PL2‖,
where PLi

is the symmetric 2n × 2n matrix representing the orthogonal projection on Li ,
i = 1, 2.

Sometimes we will also work with bases for the subspaces L ∈ Zn. Let Mn denote the
collection of all 2n × n matrices with full column rank n and for L ∈ Zn we define

M (L) := {Z ∈ Mn | rge Z = L},
i.e., the columns of Z ∈ M (L) are a basis for L.

We treat every element of R2n as a column vector. In order to keep the notation simple,

we write (u, v) instead of

(

u

v

)

∈ R
2n when this does not lead to confusion. To refer to the

components of the vector z =
(

u

v

)

we set π1(z) := u, π2(z) = v.

Let L ∈ Zn and consider Z ∈ M (L). Then we can partition Z into two n × n matrices

A and B and we will write Z = (A,B) instead of Z =
(

A

B

)

. It follows that

rge (A,B) := {(Au,Bu) | u ∈ R
n} .=

{(

Au

Bu

)

| u ∈ R
n

}

= L.

Similarly as before, we will also use π1(Z) := A, π2(Z) := B to refer to the two n × n

parts of Z.
Furthermore, for every L ∈ Zn we can define the adjoint space

L∗ := {(−v∗, u∗) | (u∗, v∗) ∈ L⊥},
where L⊥ denotes as usual the orthogonal complement of L. Then it can be shown that
(L∗)∗ = L and dZ (L1, L2) = dZ (L∗

1, L
∗
2). Thus, the mapping L → L∗ defines an

isometry on Zn.
We denote by Sn the 2n × 2n orthogonal matrix

Sn :=
(

0 −I

I 0

)

so that L∗ = SnL
⊥.

Definition 3.1 Consider the mapping F : Rn ⇒ R
n.

1. We call F graphically smooth of dimension n at (x, y) ∈ gphF , if TgphF (x, y) =
gphDF(x, y) ∈ Zn. Further, we denote by OF the set of all points where F is
graphically smooth of dimension n.

H. Gfrerer et al.

2. We associate with F the four mappings ̂S F : gphF ⇒ Zn, ̂S ∗F : gphF ⇒ Zn,
S F : gphF ⇒ Zn, S ∗F : gphF ⇒ Zn, given by

̂S F(x, y) :=
{

{gphDF(x, y)} if (x, y) ∈ OF ,

∅ else,

̂S ∗F(x, y) :=
{

{gphDF(x, y)∗} if (x, y) ∈ OF ,

∅ else,

S F(x, y) := Lim sup

(u,v)
gphF−→(x,y)

̂S F(u, v)

=
{

L ∈ Zn | ∃(xk, yk)
OF−→(x, y): lim

k→∞ dZ

(

L, gphDF(xk, yk)
) = 0

}

,

S ∗F(x, y) := Lim sup

(u,v)
gphF−→(x,y)

̂S ∗F(u, v)

=
{

L ∈ Zn | ∃(xk, yk)
OF−→(x, y): lim

k→∞ dZ

(

L, gphDF(xk, yk)
∗)=0

}

.

3. We say that F has the SCD (subspace containing derivative) property at (x, y) ∈ gphF ,
if S ∗F(x, y) = ∅. We say that F has the SCD property around (x, y) ∈ gphF ,
if there is a neighborhood W of (x, y) such that F has the SCD property at every
(x′, y′) ∈ gphF ∩ W . Finally, we call F an SCD mapping if F has the SCD property at
every point of its graph.

Since L → L∗ is an isometry on Zn and (L∗)∗ = L, the mappings S ∗F and S F are
related via

S ∗F(x, y) = {L∗ | L ∈ S F(x, y)}, S F(x, y) = {L∗ | L ∈ S ∗F(x, y)}.
The name SCD property is motivated by the following statement.

Lemma 3.2 (cf.[6, Lemma 3.7]) Let F : R
n ⇒ R

n and let (x, y) ∈ gphF . Then L ⊆
gphD∗F(x, y) ∀L ∈ S ∗F(x, y).

The mappingsS F(x, y) andS ∗F(x, y) can be considered as a generalization of the B-
Jacobian for single-valued mappings to multifunctions. In fact, if the single-valued mapping
F : Rn → R

n is Lipschitz continuous around x, then the subspaces L ∈ S F(x, F (x))

(L ∈ S ∗F(x, F (x))) are exactly the graphs of the linear mappings (adjoint mappings)
induced by the matrices from the B-Jacobian of F at x, cf. [6, Lemma 3.11].

Next, we turn to the notion of SCD regularity.

Definition 3.3 1. We denote by Z reg
n the collection of all subspaces L ∈ Zn such that

(y∗, 0) ∈ L ⇒ y∗ = 0.

2. A mapping F : Rn ⇒ R
n is called SCD regular around (x, y) ∈ gphF , if F has the

SCD property around (x, y) and

(y∗, 0) ∈ L ⇒ y∗ = 0 ∀L ∈ S ∗F(x, y), (3.4)

i.e., L ∈ Z reg
n for all L ∈ S ∗F(x, y). Further, we will denote by

scd reg F(x, y) := sup{‖y∗‖ | (y∗, x∗) ∈ L,L ∈ S ∗F(x, y), ‖x∗‖ ≤ 1}

On the Application of the SCD Semismooth* Newton Method...

the modulus of SCD regularity of F around (x, y).

Since the elements of S ∗F(x, y) are contained in gphD∗F(x, y), it follows from the
Mordukhovich criterion (2.3) that SCD regularity is weaker than the metric regularity.

In the following proposition we state some basic properties of subspaces L ∈ Z reg
n .

Proposition 3.4 (cf. [6, Proposition 4.2]) Given a 2n×nmatrixZ, there holds rgeZ ∈ Z rge
n

if and only if the n × n matrix π2(Z) is nonsingular. Thus, for every L ∈ Z rge
n there is a

unique n×n matrix CL such that L = rge(CL, I). Furthermore, L∗ = rge(CT
L , I) ∈ Z reg

n ,

〈x∗, CT
Lv〉 = 〈y∗, v〉 ∀(y∗, x∗) ∈ L∀v ∈ R

n.

and

‖y∗‖ ≤ ‖CL‖‖x∗‖ ∀(y∗, x∗) ∈ L.

Note that for every L ∈ Z reg
n and every (A,B) ∈ M (L) the matrix B is nonsingular

and CL = AB−1.
Combining [6, Equation (34), Lemma 4.7 and Proposition 4.8] we obtain the following

lemma.

Lemma 3.5 Assume that F : Rn ⇒ R
n is SCD regular around (x̄, ȳ) ∈ gphF . Then

scd reg F(x̄, ȳ) = sup{‖CL‖ | L ∈ S ∗F(x̄, ȳ)} < ∞.

Moreover, F is SCD regular around every (x, y) ∈ gphF sufficiently close to (x̄, ȳ) and

lim sup

(x,y)
gphF−→(x̄,ȳ)

scd reg F(x, y) ≤ scd reg F(x̄, ȳ).

3.2 On the SCD Property of the Subdifferential of Convex Functions

Theorem 3.6 (cf. [6, Corollary 3.28]) For every proper convex lsc function q : Rn → R

the subdifferential mapping ∂q is an SCD mapping and for every (x, x∗) ∈ gph ∂q and for
every L ∈ S ∗∂q(x, x∗) = S ∂q(x, x∗) there is a symmetric positive semidefinite n × n

matrix B with ‖B‖ ≤ 1 such that L = rge(B, I − B) = L∗.

The representation of L via the matrix B is only one possibility. E.g., if q is twice
continuously differentiable then rge

(

I,∇2q(x)
) = gphD∗∂q

(

x,∇q(x)
)

and the relation

between B and ∇2q(x) is given by B = (I +∇2q(x)
)−1, I −B = (I +∇2q(x)

)−1∇2q(x)

and ∇2q(x) = B−1(I − B).

Example 3.7 Assume that q(x) = ‖x‖ so that

∂q(x) =
{

B for x = 0
x

‖x‖ otherwise.

By virtue of Theorem 3.6, ∂q is an SCDmapping.When considering a pair (x̄, x̄∗) ∈ gph ∂q

with x̄ = 0 and ‖x̄∗‖ < 1, then it is easy to see that ∂q is graphically smooth of dimension
n at (x̄, x̄∗) and, by Definition 3.1,

S ∂q(x̄, x̄∗) = S ∗∂q(x̄, x̄∗) = {{0} × R
n
}

.

H. Gfrerer et al.

In this case we have representation {0} × R
n = rge (B, I − B) with B = 0. If x = 0 then

q is even twice continuously differentiable near x and, as pointed out below Theorem 3.6,
with x̄∗ = x

‖x‖ one has

S ∂q(x̄, x̄∗) = S ∗∂q(x̄, x̄∗) = rge (Bx, I − Bx) = rge
(

I, ∇2q(x)
)

with

Bx=
(

I + ∇2q(x)
)−1=

(

I+ 1

‖x‖
(

I− xxT

‖x‖2
)

)−1

=
(‖x‖ + 1

‖x‖
(

I − xxT

‖x‖2(1 + ‖x‖)
)

)−1

.

We claim that

Bx = ‖x‖
‖x‖ + 1

(

I + xxT

‖x‖3
)

. (3.5)

Indeed,
(

I− xxT

‖x‖2(1 + ‖x‖)
)(

I+ xxT

‖x‖3
)

= I+xxT
(1

‖x‖3− 1

‖x‖2(1 + ‖x‖) − ‖x‖2
‖x5‖(1 + ‖x‖)

)

= I + xxT
(1 + ‖x‖ − ‖x‖ − 1

‖x‖3(1 + ‖x‖)
)

= I,

and so formula (3.5) holds true.
Finally, consider the point (x̄, x̄∗) with x̄ = 0 and ‖x̄∗‖ = 1. By Definition 3.1 and

Theorem 3.6 one has that

S ∂q(x̄, x̄∗) = S ∗∂q(x̄, x̄∗) = {{0} × R
n
} ∪ Lim sup

x→0,x =0
x

‖x‖ →x̄∗

rge (Bx, I − Bx).

Since the matrices Bx are bounded, the above Lim sup amounts to rge (B, I − B) where,
taking into account (3.5),

B = lim
x→0,x =0

x
‖x‖ →x̄∗

Bx = x̄∗x̄∗T .

However, note that
lim

x→0,x =0
x

‖x‖ →x̄∗
∇2q(x)

does not exist. Finally note that, at points (x̄, x̄∗) with x̄ = 0 and ‖x̄∗‖ = 1, one has

gphD∗∂q(x̄, x̄∗) = S ∗∂q(x̄, x̄∗) ∪ {(s, s∗) | s ∈ R−{x̄∗}, 〈s∗, x̄∗〉 ≤ 0},
where the last term is generated by sequences (0, x∗) → (0, x̄∗) with ‖x∗‖ = 1. There-
fore, in this situation, the mapping S ∗∂q(x̄, x̄∗) has a simpler structure than the limiting
coderivative D∗∂q(x̄, x̄∗) (similarly as in [6, Example 3.29]).

In our numerical experiments we will use convex functions with some separable
structure, which carries over to S ∗∂q.

Lemma 3.8 If q(x1, x2) = q(x1) + q2(x2) for lsc convex functions qi : Rni → R, i = 1, 2,
then for every

(

(x̄1, x̄2), (x̄
∗
1 , x̄

∗
2)
) ∈ gph ∂q there holds

S ∂q
(

(x̄1, x̄2), (x̄
∗
1 , x̄

∗
2)
) =

{

{(

(u1, u2), (u
∗
1, u

∗
2)
) ∣

∣ (ui, u
∗
i) ∈ Li,

i = 1, 2
}

∣

∣

∣Li ∈ S ∂qi(x̄i , x̄
∗
i), i = 1, 2

}

.

On the Application of the SCD Semismooth* Newton Method...

Proof We claim that O∂q = {((x1, x2), (x∗
1 , x

∗
2)
) ∣

∣ (xi, x
∗
i) ∈ O∂qi

, i = 1, 2
}

and that

Tgph ∂q

(

(x1, x2), (x
∗
1 , x

∗
2)
) = {((u1, u2), (u∗

1, u
∗
2)
) ∣

∣ (ui, u
∗
i) ∈ Tgph ∂qi

(xi, x
∗
i), i = 1, 2

}

(3.6)
holds for all

(

(x1, x2), (x
∗
1 , x

∗
2)
) ∈ O∂q . In fact, if

(

(x1, x2), (x
∗
1 , x

∗
2)
) ∈ O∂q then (x1, x

∗
1) ∈

O∂q1 due to
{(

(u1, 0), (u∗
1, 0)

) ∣

∣ (u1, u
∗
1) ∈ ∂q1(x1, x

∗
1)
} ⊆ Tgph ∂q

(

(x1, x2), (x
∗
1 , x

∗
2)
)

and, analogously, (x2, x
∗
2) ∈ O∂q2 . This proves O∂q ⊆ {(

(x1, x2), (x
∗
1 , x

∗
2)
) ∣

∣ (xi, x
∗
i) ∈

O∂qi
, i = 1, 2

}

. To show the reverse inclusion, consider (xi, x
∗
i) ∈ Oqi

, i = 1, 2. Taking
into account [6, Corollary 3.28, Remark 3.18], the sets gph ∂qi are geometrically derivable
at points (xi, x

∗
i) ∈ O∂qi

, i = 1, 2, and therefore

Tgph ∂q1×gph ∂q2

(

(x1, x
∗
1), (x2, x

∗
2)
) = Tgph ∂q1(x1, x

∗
1) × Tgph ∂q2(x2, x

∗
2) (3.7)

by [7, Proposition 1]. Thus, Tgph ∂q1×gph ∂q2

(

(x1, x
∗
1), (x2, x

∗
2)
)

is an n1 + n2 dimensional
subspace and, since the tangent cones in (3.6) and (3.7) coincide up to a reordering of the
elements,

(

(x1, x2), (x
∗
1 , x

∗
2)
) ∈ O∂q and (3.6) hold true. Hence, our claim is true, and the

assertion of the lemma follows from the definition.

Clearly, the assertion of Lemma 2.10 can be extended to the general case where the sum
defining q has an arbitrary finite number of terms.

4 On semismooth∗ NewtonMethods for SCDMappings

In this section we recall the general framework for the semismooth∗ Newton method
introduced in [5] and adapted to the SCD mappings in [6]. Consider the inclusion

0 ∈ F(x), (4.8)

where F : Rn ⇒ R
n is a mapping having the SCD property around some point (x̄, 0) ∈

gphF .

Definition 4.1 We say that F : R
n ⇒ R

n is SCD semismooth∗ at (x̄, ȳ) ∈ gphF if F

has the SCD property around (x̄, ȳ) and for every ε > 0 there is some δ > 0 such that the
inequality

|〈x∗, x − x̄〉 − 〈y∗, y − ȳ〉| ≤ ε‖(x, y) − (x̄, ȳ)‖‖(x∗, y∗)‖
holds for all (x, y) ∈ gphF ∩ Bδ(x̄, ȳ) and all (y∗, x∗) belonging to any L ∈ S ∗F(x, y).

Clearly, every mapping with the SCD property around (x̄, ȳ) ∈ gphF which is
semismooth∗ at (x̄, ȳ) is automatically SCD semismooth∗ at (x̄, ȳ). Therefore, the class of
SCD semismooth∗ mappings is even richer than the class of semismooth∗ maps. In particu-
lar, it follows from [14, Theorem 2] that every mapping whose graph is a closed subanalytic
set is SCD semismooth∗ , cf. [6].

The following proposition provides the key estimate for the semismooth∗ Newton
method for SCD mappings.

Proposition 4.2 (cf. [6, Proposition 5.3]) Assume that F : Rn ⇒ R
n is SCD semismooth∗

at (x̄, ȳ) ∈ gphF . Then for every ε > 0 there is some δ > 0 such that the estimate

‖x − CT
L (y − ȳ) − x̄‖ ≤ ε

√

n(1 + ‖CL‖2)‖(x, y) − (x̄, ȳ)‖
holds for every (x, y) ∈ gphF ∩ Bδ(x̄, ȳ) and every L ∈ S ∗F(x, y) ∩ Z reg

n .

H. Gfrerer et al.

Now we describe the SCD variant of the semismooth∗ Newton method. Given a solution
x̄ ∈ F−1(0) of (4.8) and some positive scalar, we define the mappingsAη,x̄ : Rn ⇒ R

n×R
n

and Nη,x̄ : Rn ⇒ R
n by

Aη,x̄ (x) := {(x̂, ŷ) ∈ gphF | ‖(x̂, ŷ) − (x̄, 0)‖ ≤ η‖x − x̄‖},
Nη,x̄ (x) := {x̂ − CT

L ŷ | (x̂, ŷ) ∈ Aη,x̄ (x), L ∈ S ∗F(x̂, ŷ) ∩ Z reg
n }.

Proposition 4.3 Assume that F is SCD semismooth∗ at (x̄, 0) ∈ gphF and SCD regular
around (x̄, 0) and let η > 0. Then there is some δ̄ > 0 such that for every x ∈ Bδ̄ (x̄) the
mapping F is SCD regular around every point (x̂, ŷ) ∈ Aη,x̄ (x). Furthermore, for every
ε > 0 there is some δ ∈ (0, δ̄] such that

‖z − x̄‖ ≤ ε‖x − x̄‖ ∀x ∈ Bδ(x̄),∀z ∈ Nη,x̄ (x).

Proof Let κ := scd reg F(x̄, 0). Then, by Lemma 3.5 there is some δ′ > 0 such that
F is SCD regular with scd reg F(x, y) ≤ κ + 1 around any (x̂, ŷ) ∈ gphF ∩ Bδ′(x̄, 0)
and the first assertion follows with δ̄ := δ′/η. Now consider ε > 0 and set ε̃ :=
ε/(η

√

n(1 + (1 + κ)2)). By Proposition 4.2 there is some δ̃ ∈ (0, δ′] such that the inequality
‖x̂ − CT

L ŷ‖ ≤ ε̃

√

n(1 + ‖CL‖2)‖(x̂, ŷ) − (x̄, 0)‖
holds for every (x̂, ŷ) ∈ gphF ∩ Bδ̃ and every L ∈ S ∗F(x̂, ŷ) ∩ Z reg

n . Set δ := δ̃/η and
consider x ∈ Bδ(x̄). For every (x̂, ŷ) ∈ Aη,x̄ (x) we have ‖(x̂, ŷ) − (x̄, 0)‖ ≤ η‖x − x̄‖ ≤
δ̃ ≤ δ′ and consequently

‖CL‖ ≤ scd reg F(x̂, ŷ) ≤ κ + 1 ∀L ∈ S ∗F(x̂, ŷ).

Thus
‖x̂ − CT

L ŷ‖ ≤ ε̃
√

n(1 + (1 + κ)2)‖(x̂, ŷ) − (x̄, 0)‖ ≤ ε‖x − x̄‖
and the second assertion follows.

Assuming that we are given some iterate x(k), the next iterate is formally given by
x(k+1) ∈ Nη,x̄ (x

(k)). Let us take a closer look at this rule. Since we cannot expect in gen-
eral that F(x(k)) = ∅ or that 0 is close to F(x(k)), even if x(k) is close to a solution x̄, we
first perform some step which yields (x̂(k), ŷ(k)) ∈ gphF as an approximate projection of
(x(k), 0) onto gphF . We require that

‖(x̂(k), ŷ(k)) − (x̄, 0)‖ ≤ η‖x(k) − x̄‖ (4.9)

for some constant η > 0, i.e., (x̂(k), ŷ(k)) ∈ Aη,x̄ (x
(k)). For instance, if

‖(x̂(k), ŷ(k)) − (x(k), 0)‖ ≤ βdist((x(k), 0), gphF)

holds with some β ≥ 1, then

‖(x̂(k), ŷ(k)) − (x̄, 0)‖ ≤ ‖(x̂(k), ŷ(k)) − (x(k), 0)‖ + ‖(x(k), 0) − (x̄, 0)‖
≤ βdist((x(k), 0), gphF) + ‖(x(k), 0) − (x̄, 0)‖
≤ (β + 1)‖(x(k), 0) − (x̄, 0)‖

and thus (4.9) holds with η = β + 1 and we can fulfill (4.9) without knowing the solution
x̄. Further we require that S ∗F(x̂(k), ŷ(k)) ∩ Z reg

n = ∅ and compute the new iterate as
x(k+1) = x̂(k) − CT

L ŷ(k) for some L ∈ S ∗F(x̂(k), ŷ(k)) ∩ Z reg
n . In fact, in our numerical

implementation we will not compute the matrix CL, but two n × n matrices A, B such that

On the Application of the SCD Semismooth* Newton Method...

L = rge (BT ,AT). The next iterate x(k+1) is then obtained by x(k+1) = x̂(k) +
x(k) where

x(k) is a solution of the system A
x = −Bŷ(k).

This leads to the following conceptual algorithm.

Algorithm 1 (SCD semismooth∗ Newton-type method for inclusions)
1. Choose a starting point x(0), set the iteration counter k := 0.
2. If 0 ∈ F(x(k)), stop the algorithm.
3. Approximation step: Compute

(x̂(k), ŷ(k)) ∈ gphF

satisfying (4.9) and such that S ∗F(x̂(k), ŷ(k)) ∩ Z reg
n = ∅.

4. Newton step: Select n × n matrices A(k), B(k) with

L(k) := rge
(

B(k)T , A(k)T) ∈ S ∗F(x̂(k), ŷ(k)) ∩ Z reg
n ,

calculate the Newton direction
x(k) as a solution of the linear system

A(k)
x = −B(k)ŷ(k)

and obtain the new iterate via x(k+1) = x̂(k) +
x(k).
5. Set k := k + 1 and go to 2.

For this algorithm, local superlinear convergence follows from Proposition 4.3, see also
[6, Corollary 5.6].

Theorem 4.4 Assume that F is SCD semismooth∗ at (x̄, 0) ∈ gphF and SCD regular
around (x̄, 0). Then for every η > 0 there is a neighborhood U of x̄ such that for every
starting point x(0) ∈ U Algorithm 1 is well defined and stops after finitely many iterations
at a solution of (4.8) or produces a sequence x(k) superlinearly converging to x̄ for any
choice of (x̂(k), ŷ(k)) satisfying (4.9) and any L(k) ∈ S ∗F(x̂(k), ŷ(k)).

As shown in [6, Corollary 6.4], if F happens to be SCD semismooth∗ around (x̄, 0), then
the assumptions of the above statement are fulfilled whenever F is strongly metrically sub-
regular at all points in a neighborhood of (x̄, 0). Therefore, in particular, these assumptions
are satisfied provided F is strongly metrically regular around (x̄, 0), which is used in the
test problem discussed in Section 7.

There is an alternative for the computation of the Newton direction
x(k) based on the
subspaces from S F(x̂(k), ŷ(k)), cf. [6]:
4. Newton step: Select n × n matrices A(k), B(k) with

L(k) := rge
(

A(k), B(k)) ∈ S F(x̂(k), ŷ(k)) ∩ Z reg
n ,

compute a solution p of the linear system

B(k)p = −ŷ(k)

and obtain the new iterate x(k+1) = x̂(k) +
x(k) with Newton direction
x(k) = A(k)p.

For the choice between the two approaches for calculating the Newton direction, it is
important to consider whether elements from S ∗F(x̂(k), ŷ(k)) or from S F(x̂(k), ŷ(k)) are
easier to compute.

Note that for an implementation of the Newton step, we need not to know the
whole derivative S ∗F(x̂(k), ŷ(k)) (or S F(x̂(k), ŷ(k))) but only one element L(k) ∈
S ∗F(x̂(k), ŷ(k)).

H. Gfrerer et al.

At the end of this section we want to clarify the relation between the SCD semismooth*
Newton method and other Newton-type methods. Consider first the case where F : Rn →
R

n is a single-valued Lipschitzian function. In this case, the approximation step can be
simply implemented by (x̂(k), ŷ(k)) := (

x(k), F (x(k))
)

, because (4.9) is fulfilled due to the
Lipschitz continuity of F . As already mentioned in the preceding section, the subspaces
L ∈ S ∗F

(

x(k), F (x(k))
)

coincide with the graphs of adjoint mappings associated with the
matrices in the B-Jacobian of F at x(k). It follows that the Newton direction
x(k) computed
in step 4. of Algorithm 1 is also a Newton direction for the classical semismooth Newton
method by Qi and Sun [23].

There exist also coderivative-based Newton methods in nonsmooth optimization
[16–18, 20]. Mordukhovich and Sarabi [20] introduced a Newton-type algorithm for solv-
ing the equation ∇ϕ(x) = 0 for C1,1 functions ϕ : Rn → R, where in an iterate x(k) the
Newton direction
x(k) is obtained by solving the inclusion

− ∇ϕ(x(k)) ∈ D∗∇ϕ
(

x(k),∇ϕ(x(k))
)

(
x). (4.10)

Locally superlinear convergence is shown in [20] under the assumptions that ∇ϕ is
semismooth∗ and the solution x̄ is a tilt-stable local minimizer of ϕ. By taking into account
that the limiting coderivative of the gradient mapping ∇ϕ enjoys some symmetry proper-
ties, in particular that S ∇ϕ = S ∗∇ϕ by [6, Proposition 3.26], it can be shown that the
SCD semismooth∗ Newton direction
x(k) also fulfills (4.10). Thus, for finding a solu-
tion of (4.10) one could use, for instance, an appropriate linear system from the SCD
semismooth∗ Newton method. Moreover, the requirement of tilt-stability of x̄ is stronger
than the corresponding assumption of SCD regularity used in Theorem 4.4.

In order to minimize continuously prox-regular functions ϕ : Rn → R, it is suggested in
[20] to apply the above approach to the Moreau envelope

eλϕ(x) := min
y

{

1

2λ
‖y − x‖2 + ϕ(y)

}

, x ∈ R
n,

where λ > 0 has to be chosen sufficiently small. This is worked out in more detail in [16]
without explicitly computing the Moreau envelope. It turns out that the resulting method is
closely related with Algorithm 1 by taking an approximation step

x̂(k) := Pλϕ(x(k)), ŷ(k) := λ(x(k) − x̂(k)),

where

Pλϕ(x) := argmin
y

{

1

2λ
‖y − x‖2 + ϕ(y)

}

, x ∈ R
n,

denotes the proximal mapping. Then the Newton direction
x(k) is computed in [16] as
solution of the inclusion

− ŷ(k) ∈ D∗∂ϕ(x̂(k), ŷ(k))(
x). (4.11)

Again, it can be shown that the SCD semismooth∗ Newton direction solves this inclusion
and the SCD semismooth∗ Newton has the same advantages as in the C1,1 case, i.e., the
Newton direction is easier to compute and Assumption (H2) in [16] (metric regularity of
∂ϕ) is more restrictive than SCD regularity.
The inclusions (4.10), (4.11) suggest the possibility of computing the Newton direction as
solution of the coderivative-based inclusion

−ŷ(k) ∈ D∗Fϕ(x̂(k), ŷ(k))(
x)

On the Application of the SCD Semismooth* Newton Method...

for general mappings F . However, unless the limiting coderivative D∗F possesses
certain symmetry properties, this approach will not result in superlinear conver-
gence as can be easily seen from the differentiable case: If F is single-valued and
continuously differentiable, then D∗F

(

x̂(k), F (x̂(k))
)

(
x) = ∇F(x̂(k))T
x yielding

x(k) = −(∇F(x̂(k))T
)−1

F(x̂(k)), which differs from the classical Newton direction
−∇F(x̂(k))−1F(x̂(k)).

5 Implementation of the semismooth∗ NewtonMethod

There is a lot of possibilities how to implement the SCD semismooth∗ Newton method.
Apart from the Newton step, which is not uniquely determined by different choices of sub-
spaces contained in S ∗F(x̂(k), ŷ(k)), there is a multitude of possibilities how to perform
the approximation step. In this section we will construct an implementable version of the
semismooth∗ Newton method for the numerical solution of GE (1.1) under the assumption
that the proximal mapping Pλq, defined by

Pλq(y) := argmin
x

{

1

2λ
‖x − y‖2 + q(x)

}

, y ∈ R
n,

can be efficiently evaluated for every y ∈ R
n and parameter λ > 0. Since q is convex,

it is well known that for every λ > 0 the proximal mapping Pλq is single-valued and
nonexpansive and Pλq = (I + λ∂q)−1, see, e.g. [27, Proposition 12.19].

Given some scaling parameter γ > 0, we will denote

uγ (x) := P 1
γ
q
(

x − 1

γ
f (x)

)− x.

It is well known, that x̄ solves (1.1) if and only if uγ (x̄) = 0 for some γ > 0 and in this
case we even have uγ (x̄) = 0 for all γ > 0. From the definition of the proximal mapping
we obtain that uγ (x) is the unique solution of the uniformly convex optimization problem

min
u

γ

2
‖u‖2 + 〈f (x), u〉 + q(x + u).

The first-order (necessary and sufficient) optimality condition reads as

0 ∈ γ uγ (x) + f (x) + ∂q
(

x + uγ (x)
)

. (5.12)

Since Pλq is nonexpansive, we obtain the bounds

∥

∥

(

x+uγ (x)
)−(x′+uγ (x′)

)∥

∥≤∥∥(x−x′)− 1

γ

(

f (x)−f (x′)
)∥

∥≤‖x−x′‖+ 1

γ
‖f (x)−f (x′)‖,

‖uγ (x)−uγ (x′)‖≤2‖x−x′‖+ 1

γ
‖f (x)−f (x′)‖. (5.13)

Our approach is based on an equivalent reformulation of (1.1) in form of the GE

0 ∈ F (x, d) :=
(

f (x) + ∂q(d)

x − d

)

(5.14)

in variables (x, d) ∈ R
n × R

n. Clearly, x̄ is a solution of (1.1) if and only if (x̄, x̄) is a
solution of (5.14).

H. Gfrerer et al.

Proposition 5.1 (i) Let x ∈ R
n, (d, d∗) ∈ gph ∂q. Then

S ∗F
(

(x, d), (f (x) + d∗, x − d)
)

=
{

rge

((

Y ∗ 0
0 −I

)

,

(∇f (x)T Y ∗ −I

X∗ I

))

∣

∣

∣ rge(Y ∗, X∗) ∈ S ∗∂q(d, d∗)
}

.

(5.15)

(ii) Let x̄ be a solution to (1.1). Then the following statements are equivalent:

(a) H is SCD regular around (x̄, 0).
(b) For every L ∈ S ∗∂q

(

x̄,−f (x̄)
)

and every (Y ∗, X∗) ∈ M (L) the matrix
∇f (x)T Y ∗ + X∗ is nonsingular.

(c) The mapping F is SCD regular around
(

(x̄, x̄), (0, 0)
)

.

(iii) Let x̄ be a solution to (1.1). If ∂q is SCD semismooth∗ at
(

x̄,−f (x̄)
)

then F is SCD
semismooth∗ at

(

(x̄, x̄), (0, 0)
)

.

Proof Ad (i): GE (5.14) can be written down in the form

0 ∈ F (x, d) = h(x, d) + G(x, d),

where h(x, d) := (f (x), x − d) and G(x, d) := ∂q(d) × ∂g(x) with g : R
n → R

given by g(x) = 0 for all x. By virtue of [6, Proposition 3.15] we obtain that, at the point
(

(x, d), (f (x) + d∗, x − d)
) ∈ gphF ⊆ R

2n × R
2n, one has

S ∗F
(

(x, d), (f (x) + d∗, x − d)
) =

(

I 0
∇h(x, d)T I

)

S ∗G
(

(x, d), (d∗, 0)
)

.

Next consider the mapping G̃ : R2n ⇒ R
2n given by G̃(x, d) = ∂

(

g(x) + q(d)
)

. Since

gphG = {(

(x, d), (d∗, x∗)
) ∣

∣ (d, d∗) ∈ gph ∂q, (x, x∗) ∈ gph ∂g
}

and

gph G̃ = {(

(x, d), (x∗, d∗)
) ∣

∣ (d, d∗) ∈ gph ∂q, (x, x∗) ∈ gph ∂g
}

,

we can employ [6, Proposition 3.14] with �(x, d, d∗, x∗) := (x, d, x∗, d∗) to obtain that

S ∗G
(

(x, d), (d∗, 0)
) = S2n∇�(x, d, d∗, 0)T ST

2nS
∗G̃
(

(x, d), (0, d∗)
)

.

It remains to compute S ∗G̃
(

(x, d), (0, d∗)
)

, which can be done by Theorem 3.6 and
Lemma 3.8. We obtain that

S ∗G̃
(

(x, d), (0, d∗)
) =

{

rge

((

I 0
0 Y ∗

)

,

(

0 0
0 X∗

))

∣

∣

∣ rge (Y ∗, X∗) ∈ S ∗∂q(d, d∗)
}

.

On the Application of the SCD Semismooth* Newton Method...

Putting these ingredients together we may conclude that

S ∗F
(

(x, d), (f (x)+d∗, x−d)
) =

(

I 0

∇h(x, d)T I

)

S2n∇�(x, d, d∗, 0)T ST
2nS ∗G̃

(

(x, d), (0, d∗)
)

=

⎛

⎜

⎜

⎜

⎜

⎝

0 I 0 0

I 0 0 0

I ∇f (x)T I 0

−I 0 0 I

⎞

⎟

⎟

⎟

⎟

⎠

S ∗G̃
(

(x, d), (0, d∗)
)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

rge

⎡

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎝

0 I 0 0

I 0 0 0

I ∇f (x)T I 0

−I 0 0 I

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

I 0

0 Y ∗

0 0

0 X∗

⎞

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎦

∣

∣

∣

∣

rge (Y ∗, X∗) ∈ S ∗∂q(d, d∗)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

=
{

rge

((

0 Y ∗

I 0

)

,

(

I ∇f (x)T Y ∗

−I X∗

))

∣

∣

∣ rge (Y ∗, X∗) ∈ S ∗∂q(d, d∗)
}

=
{

rge

((

0 Y ∗

I 0

)

Sn,

(

I ∇f (x)T Y ∗

−I X∗

)

Sn

)

∣

∣

∣ rge (Y ∗, X∗) ∈ S ∗∂q(d, d∗)
}

leading to formula (5.15).
Ad (ii): By [6, Proposition 3.15] we have

S ∗H(x̄, 0) =
(

I 0
∇f (x̄)T I

)

S ∗∂q
(

x̄, −f (x̄)
)

= {

rge (Y ∗,∇f (x̄)T Y ∗ + X∗)
∣

∣ rge (Y ∗, X∗) ∈ S ∗∂q
(

x̄,−f (x̄)
)}

and the equivalence between (a) and (b) is implied by Proposition 3.4. By (5.15), the map-
ping F is SCD regular around

(

(x̄, x̄), (0, 0)
)

if and only if for every pair Y ∗, X∗ with
rge (Y ∗, X∗) ∈ S ∗∂q

(

x̄,−f (x̄)
)

the matrix
(∇f (x)T Y ∗ −I

X∗ I

)

=
(∇f (x)T Y ∗ + X∗ −I

0 I

)(

I 0
X∗ I

)

is nonsingular and, by the representation above, this holds if and only if ∇f (x)T Y ∗ + X∗
is nonsingular. Hence, (b) is equivalent to (c).

Ad (iii): Let f be Lipschitz continuous with constant l in some ball Br (x̄) around x̄.
Consider ε > 0, choose δq > 0 such that

|〈e∗, d − x̄〉 − 〈e, d∗ + f (x̄)〉| ≤ ε

2
√
2(l+1)

‖(e, e∗)‖∥∥(d − x̄, d∗ + f (x̄)
)∥

∥

for all (d, d∗) ∈ gph ∂q ∩ Bδq

(

x̄,−f (x̄)
)

and all (e, e∗) ∈ L ∈ S ∗∂q(d, d∗)

and then choose δ ≤ min{ δq

1+l
, r} such that

‖f (x) − f (x̄) − ∇f (x)(x − x̄)‖ ≤ ε

2
√
2(l + 1)

‖x − x̄‖, x ∈ Bδ(x̄).

Next consider
(

(x, d), (y1, y2)
) ∈ gphF ∩ Bδ

(

(x̄, x̄), (0, 0)
)

,
(

(z1, z2), (z
∗
1, z

∗
2)
) ∈ L̄ ∈

S ∗F
(

(x, d), (y1, y2)
)

. Then y1 = f (x) + d∗ with d∗ ∈ ∂q(d), y2 = x − d and
by (5.15) there are (e, e∗) ∈ L ∈ S ∗∂q(d, d∗), c ∈ R

n with
(

(z1, z2), (z
∗
1, z

∗
2)
) =

(

(e,−c), (∇f (x)T e − c, e∗ + c)
)

. Then ‖x − x̄‖ ≤ δ and
∥

∥

(

d − x̄, d∗ + f (x̄)
)∥

∥ ≤ ‖(d − x̄, y1)‖ + ‖f (x) − f (x̄)‖
≤ ∥

∥

(

(x, d), (y1, y2)
)− ((x̄, x̄), (0, 0)

)∥

∥+ ‖f (x) − f (x̄)‖ ≤ δ + lδ ≤ δq .

H. Gfrerer et al.

It follows that

|〈(z1, z2), (y1, y2)〉 − 〈(z∗
1, z

∗
2), (x, d) − (x̄, x̄)〉|

= |〈e, f (x) + d∗〉 − 〈c, x − d〉 − 〈∇f (x)T e − c, x − x̄〉 − 〈e∗ + c, d − x̄〉|
≤ |〈e, f (x) − f (x̄) − ∇f (x)(x − x̄)〉| + |〈e, d∗ + f (x̄)〉 + 〈e∗, d − x̄〉|
≤ ε

2
√
2(l + 1)

‖e‖‖x − x̄‖ + ε

2
√
2(l + 1)

‖(e, e∗)‖∥∥(d − x̄, d∗ + f (x̄)
)∥

∥

≤ ε√
2(l + 1)

‖(e, e∗)‖∥∥(x − x̄, d − x̄, d∗ + f (x̄)
)∥

∥

≤ ε√
2(l + 1)

‖(e, e∗)‖(∥∥(x − x̄, d − x̄, d∗ + f (x)
)∥

∥+ ‖f (x) − f (x̄)‖)

≤ ε√
2
‖(e, e∗)‖‖(x − x̄, d − x̄, d∗ + f (x), x − d)‖ = ε√

2
‖(e, e∗)‖∥∥((x, d), (y1, y2)

)− ((x̄, x̄), (0, 0)
)∥

∥.

Since minc ‖c‖2 + ‖e∗ − c‖2 = 1
2‖e∗‖2, we obtain

∥

∥

(

(z1, z2), (z
∗
1, z

∗
2)
)∥

∥

2 ≥ ‖e‖2 +
1
2‖e∗‖2 ≥ 1

2‖(e, e∗)‖2 and
|〈(z1, z2), (y1, y2)〉 − 〈(z∗

1, z
∗
2), (x, d) − (x̄, x̄)〉|

≤ ε
∥

∥

(

(z1, z2), (z
∗
1, z

∗
2)
)∥

∥

∥

∥

(

(x, d), (y1, y2)
)− ((x̄, x̄), (0, 0)

)∥

∥.

Thus F is SCD semismooth∗ at
(

(x̄, x̄), (0, 0)
)

.

We proceed now with the description of the approximation step. Given (x(k), d(k)) and a
scaling parameter γ (k), we compute u(k) := uγ (k) (x(k)) and set

x̂(k) = x(k), d̂(k) = x(k) + u(k) and ŷ(k) = (ŷ
(k)
1 , ŷ

(k)
2) = −(γ (k)u(k), u(k)). (5.16)

We observe that
(

(x̂(k), d̂(k)), (ŷ
(k)
1 , ŷ

(k)
2)
) ∈ gphF ,

which follows immediately from the first-order optimality condition (5.12). Note that the
result of the approximation step does not depend on the auxiliary variable d(k). In order to
apply Theorem 4.4, we have to show the existence of a real η > 0 such that the estimate

∥

∥

(

(x̂(k) − x̄, d̂(k) − x̄), ŷ(k)
)∥

∥ ≤ η‖(x(k) − x̄, d(k) − x̄)‖, (5.17)

corresponding to (4.9), holds for all (x(k), d(k)) with x(k) close to x̄. By virtue of (5.16) the
left-hand side of (5.17) amounts to
∥

∥

(

(x̂(k) − x̄, x̂(k) + u(k) − x̄), (−γ (k)u(k),−u(k))
)∥

∥ ≤ ‖(x̂(k) − x̄, x̂(k) − x̄, 0, 0)‖ + ‖(0, u(k),−γ (k)u(k),−u(k))‖
≤ 2‖x̂(k) − x̄‖ + (2 + γ (k))‖u(k)‖. (5.18)

Since uγ (k) (x̄) = 0, we obtain from (5.13) the bounds

‖d̂(k) − x̄‖ ≤ ‖x(k) − x̄‖ + 1

γ (k)
‖f (x(k)) − f (x̄)‖

‖u(k)‖ ≤ 2‖x(k) − x̄‖ + 1

γ (k)
‖f (x(k)) − f (x̄)‖.

The latter estimate, together with (5.18), implies
∥

∥

(

(x̂(k) − x̄, d̂(k) − x̄), ŷ(k)
)∥

∥ ≤
(

2 + (2 + γ (k))
(

2 + l

γ (k)

)

)

‖x(k) − x̄‖

≤
(

2 + (2+γ (k))
(

2+ l

γ (k)

)

)

‖(x(k)−x̄, d(k)−x̄)‖,
(5.19)

On the Application of the SCD Semismooth* Newton Method...

where l is the Lipschitz constant of f in a neighborhood of x̄. Thus, the desired inequality
(5.17) holds, as long as γ (k) remains bounded and bounded away from zero.

Next we describe the Newton step. According to Algorithm 1 and (5.15), we have to
compute a pair Y ∗(k), X∗(k) with rge (Y ∗(k), X∗(k)) ∈ S ∗∂q(d̂(k), d̂∗(k)) and then solve the
linear system

(

Y ∗(k)T ∇f (x(k)) X∗(k)T

−I I

)

(

x(k)

d(k)

)

= −
(

Y ∗(k)T 0
0 −I

)(

ŷ
(k)
1

ŷ
(k)
2

)

Simple algebraic transformations yield

(Y ∗(k)T ∇f (x(k)) + X∗(k)T
)
x(k) = −(Y ∗(k)T

ŷ
(k)
1 + X∗(k)T

ŷ
(k)
2) (5.20)

and
d(k) = ŷ
(k)
2 +
x(k). Using (5.16) the system (5.20) amounts to

(Y ∗(k)T ∇f (x) + X∗(k)T
)
x(k) = (γ (k)Y ∗(k)T + X∗(k)T

)u(k). (5.21)

Having computed the Newton direction, the new iterate is given by x(k+1) = x(k)+
x(k) =
d(k+1). We summarize our considerations in the following algorithm, where the auxiliary
variable d(k) is omitted.

Algorithm 2 (semismooth∗ Newton Method for VI of the second kind (1.1))
1. Choose starting point x(0) and set the iteration counter k := 0.
2. If 0 ∈ H(x(k)) stop the algorithm.
3. Select a parameter γ (k) > 0, compute u(k) := uγ (k) (x(k)) and set d̂(k) := x(k) + u(k),

d̂∗(k) := −γ (k)u(k) − f (x(k)).
4. Select (X∗(k), Y ∗(k)) with rge (Y ∗(k), X∗(k)) ∈ S ∗∂q

(

(d̂(k), d̂∗(k))
)

, compute the
Newton direction
x(k) from (5.21) and set x(k+1) = x(k) +
x(k).

5. Increase the iteration counter k := k + 1 and go to Step 2.

Combining Theorem 4.4 with Proposition 5.1 we obtain the following convergence
result.

Theorem 5.2 Let x̄ ∈ H−1(0) be a solution of (1.1) and assume that ∂q is SCD
semismooth∗ at (x̄, −f (x̄)). Further suppose that H is SCD regular around (x̄, 0). Then
for every pair γ , γ̄ with 0 < γ ≤ γ̄ there exists a neighborhood U of x̄ such that for every

starting point x(0) ∈ U Algorithm 2 produces a sequence x(k) converging superlinearly to
x̄, provided we choose in every iteration step γ (k) ∈ [γ , γ̄].

Let us now compare the assumptions of Theorem 5.2 with those required for the Josephy-
Newton method [12, 13], in which one computes the next iterate x(k+1) as a solution of the
linearized GE

0 ∈ f (x(k)) + ∇f (x(k))(x − x(k)) + ∂q(x).
Apart from semismoothness*, the assumed SCD regularity is weaker than the metric reg-
ularity often imposed on (1.1) to ensure that the Josephy-Newton method is well defined.
We refer to [5, Example 5.13] for an example, where the assumptions of Theorem 5.2 are
fulfilled, the semismooth∗ Newton method works well, but the Jospehy-Newton method col-
lapses. On the other hand, if (1.1) models the KKT conditions of a mathematical program,
see [24], Bonnans [2] showed that the strong metric subregularity of H at

(

(x̄, λ̄), (0, 0)
)

is sufficient for local superlinear convergence of the Josephy-Newton method, where x̄

denotes a local minimizer for the mathematical program and λ̄ is the corresponding unique

H. Gfrerer et al.

Lagrange multiplier. The strong metric subregularity of H at the solution is weaker than the
SCD regularity but, as shown in the next example, this weakening does not work in the SCD
semismooth∗ Newton method. Consider the mathematical program

min
x∈R2

1

2
x2
1 s.t. x ∈ C := {x ∈ R

2 | −x1 + x2 ≤ 0,−x1 − x2 ≤ 0}.
The first order optimality conditions in multiplier-free form read as

(0, 0) ∈ H(x) := (x1, 0) + ∂δC(x) = (x1, 0) + NC(x). (5.22)

The mapping H is a polyhedral mapping and therefore metrically subregular at any point
of its graph. Further, H−1(0) = {0} and consequently H is strongly metrically subregular
at (0, 0). Obviously, the Newton-Josephy method reaches the solution in one step from
any starting point x(0) ∈ R

2. On the other hand, for any x = (x1, x2) ∈ intC we have
H(x) = {(x1, 0)} and
S ∗H

(

(x1, x2), (x1, 0)
)={L̄} with L̄={(p1, p2, p1, 0) ∈ R

4 | (p1, p2)∈R2} ∈ Z reg
2 .

Consequently L̄ ∈ S ∗H
(

(0, 0), (0, 0)
)

, implying that H is not SCD regular at the solution.
Furthermore, the Newton step is not defined at iterates (x̂(k), ŷ(k)) with x̂(k) ∈ intC. This
shows that in this example the assumption of SCD regularity is indispensable. A similar
situation arises when, instead of (5.22), we consider the KKT conditions of the problem.

6 Globalization

In the preceding section we showed locally superlinear convergence of our implementa-
tion of the SCD semismooth* Newton method. However, we do not only want fast local
convergence but also convergence from arbitrary starting points. To this end we consider
a non-monotone line-search heuristic as well as hybrid approaches, which combine this
heuristic with some globally convergent method.

To perform the line search, we need some merit function. Similar to the damped Newton
method for solving smooth equations, we use some kind of residual. Here we define the
residual by means of the approximation step, i.e., given x and γ > 0, we use

rγ (x) := ‖(ŷ(k)
1 , ŷ

(k)
2)‖ = ∥∥(γ uγ (x), uγ (x)

)∥

∥ =
√

1 + γ 2‖uγ (x)‖ (6.23)

as motivated by (5.16). Note that every evaluation of the residual function rγ (x) requires
the computation of uγ (x).

Our globalization approaches are intended mainly for the case when the variational
inequality (1.1) does not correspond to the solution of some nonsmooth optimization
problem. For the solution of optimization problems, namely, there exist more efficient glob-
alization strategies based on merit functions derived from the objective, and this case will
be treated in a forthcoming paper.

6.1 A Non-monotone Line-search Heuristic

In general, we replace the full Newton step 4. in Algorithm 2 by a damped step of the form

x(k+1) = x̂(k) + α(k)�x(k),

where α(k) ∈ (0, 1] is chosen so that the line search condition

rγ (k) (x̂
(k) + α(k)�x(k)) ≤ (1 + δ(k) − να(k))rγ (k) (x̂

(k)) (6.24)

On the Application of the SCD Semismooth* Newton Method...

is fulfilled, where ν ∈ (0, 1) and δ(k) is a given sequence of positive numbers converging to
0.

Obviously, the step size α(k) exists since the residual function rγ (x) is continuous.
However, it is not guaranteed that the residual is decreasing, i.e., that rγ (k) (x(k+1)) <

rγ (k) (x̂(k)).

The computation of α(k) can be done in the usual way. For instance, as α(k) we can choose
the first element of a sequence (βj), which fulfills β0 = 1 and converges monotonically to
zero, such that the line search condition (6.24) is fulfilled.

For γ (k) we suggest a choice with γ (k) ≈ ‖∇f (x(k))‖. Since the spectral norm
‖∇f (x(k))‖ is difficult to compute, we use an easy computable norm instead, e.g., the
maximum absolute column sum norm ‖∇f (x(k))‖1.

Although we are not able to show convergence properties for this heuristic, it showed
good convergence properties in practice.

6.2 Globally Convergent Hybrid Approaches

In this subsection, we suggest a combination of the semismooth∗ Newton method with
some existing globally convergent method which exhibits both global convergence and local
superlinear convergence. For this purpose we assume that we dispose with a method, which
is globally convergent in the sense that it generates from an arbitrary starting point x(0) a
sequence x(k) such that at least one accumulation point of x(k) is a solution to the GE (1.1).
We suppose that this method is formally given by some mapping T : Rn → R

n, which
computes from the iterate x(k) the next iterate by

x(k+1) = T (x(k)).

Of course, T must depend on the problem (1.1) which we want to solve and will presum-
ably depend also on some additional parameters which control the behavior of the method.
In our notation, these dependencies are neglected to a large extent.

Consider the following well-known examples for such a mapping T , which have the
required convergence properties at least under some suitable monotonicity assumptions on
(1.1).

1. For the forward-backward splitting method, the mapping T is given by

T FB
λ (x) = (I + λ∂q)−1(I − λf)(x),

where λ > 0 is a suitable parameter. Note that T FB
λ (x) = x + u1/λ(x).

2. For the Douglas-Rachford splitting method we have

T DR
λ (x) = (I +λf)−1

(

(I +λ∂q)−1(I −λf)+λf
)

(x) = (I +λf)−1(T FB
λ +λf)(x),

where λ > 0 is again some parameter.
3. A third method is given by the hybrid projection-proximal point algorithm due to

Solodov and Svaiter [28]. Let x and a suitable parameter μ > 0 be given and consider
x̂ = T FB

1/μ(x), i.e. x̂ −x = uμ(x). Then 0 ∈ μ(x̂ −x)+f (x)+∂q(x̂) and consequently

v := −μ(x̂ − x) + f (x̂) − f (x) ∈ H(x̂) and 0 = v + μ(x̂ − x) + (f (x) − f (x̂)
)

.
(6.25)

H. Gfrerer et al.

Then, in the hybrid projection-proximal point algorithm the mapping T is given by the
projection of x on the hyperplane {z | 〈v, z − x̂〉 = 0}, i.e.,

T PM
μ (x) = x − 〈v, x̂ − x〉

‖v‖2 v.

Note that in principle we could also use other methods which depend not only on the last
iterate like the golden ratio algorithm [19], but for ease of presentation these methods are
not considered.

Algorithm 3 (Globally convergent hybrid semismooth∗ Newton method for VI of the sec-
ond kind)
Input: A method for solving (1.1) given by the iteration operator T : Rn → R

n, a starting
point x(0), line search parameter 0 < ν < 1, a sequence δ(k) ∈ (0, 1), a sequence βj ↓ 0
with β0 = 1 and a stopping tolerance εtol > 0.
1. Choose γ (0), set r(0)

N := rγ (0) (x(0)) and set the counters k := 0, l := 0.

2. If rγ (k) (x(k)) ≤ εtol stop the algorithm.
3. Perform the approximation step as in Algorithm 2 and compute the Newton direction

x(k) by solving (5.21). Try to determine the step size α(k) as the first element from the
sequence βj satisfying βj > δ(l) and

rγ (k) (x
(k) + βj
x(k)) ≤ (1 − νβj)r

(l)
N .

4. If both
x(k) and α(k) exist, set x(k+1) = x(k) + α(k)
x(k), r
(l+1)
N = rγ (k) (x(k+1)) and

increase l := l + 1.
5. Otherwise, if the Newton direction
x(k) or the step length α(k) does not exist, compute
x(k+1) = T (x(k)).
6. Update γ (k+1) and increase the iteration counter k := k + 1 and go to Step 2.

In what follows, we denote by kl the subsequence of iterations where the new iterate
xk+1 is computed by damped Newton Step 4, i.e.,

x(kl) = x(kl−1) + α(kl−1)
x(kl−1), r
(l)
N = rγ (kl−1) (x

(kl)).

Theorem 6.1 Assume that the GE (1.1) has at least one solution and assume that the solu-
tion method given by the iteration mapping T : Rn → R

n has the property that for every
starting point y(0) ∈ R

n the sequence y(k), given by the recursion y(k+1) = T (y(k)), has
at least one accumulation point which is a solution to the GE (1.1). Then for every starting
point x(0) the sequence x(k), produced by Algorithm 3 with εtol = 0 and

∑∞
k=0 δ(k) = ∞,

has the following properties.

(i) If the Newton step is accepted only finitely many times in step 4, then the sequence
x(k) has at least one accumulation point that solves (1.1).

(ii) If the Newton step is accepted infinitely many times in step 4, then every accumulation
point of the subsequence x(kl) is a solution to (1.1).

(iii) If there exists an accumulation point x̄ of the sequence x(k) which solves (1.1), the
mapping H is SCD regular around (x̄, 0) and ∂q is SCD semismooth∗ at

(

x̄,−f (x̄)
)

,
then the sequence x(k) converges superlinearly to x̄ and the Newton step in step 3 is

On the Application of the SCD Semismooth* Newton Method...

accepted with step length α(k) = 1 for all k sufficiently large, provided the sequence
γ (k) satisfies

0 < γ ≤ γ (k) ≤ γ̄ ∀k

for some positive reals γ , γ̄ .

Proof The first statement is an immediate consequence of our assumption on T . In order
to show the second statement, observe that the sequence r

(l)
N satisfies r

(l+1)
N ≤ (1−νδ(l))r

(l)
N

implying

lim
l→∞ ln(r(l+1)

N) − ln(r(0)
N) ≤ lim

l→∞

l
∑

i=0

ln(1 − νδ(i)) ≤ − lim
l→∞

l
∑

i=0

νδ(i) = −∞.

Thus liml→∞ r
(l)
N = liml→∞

√

1 + γ (kl−1)2‖uγ (kl−1) (x(kl))‖ = 0 and we can conclude that

lim
l→∞ ‖uγ (kl−1) (x

(kl))‖ = lim
l→∞ γ (kl−1)‖uγ (kl−1) (x

(kl))‖ = 0.

Together with the inclusion

0 ∈ γ (kl−1)uγ (kl−1) (x
(kl)) + f (x(kl)) + ∂q

(

x(kl) + uγ (kl−1) (x
(kl))

)

,

the continuity of f and the closedness of gph ∂q, it follows that 0 ∈ f (x̄)+ ∂q(x̄) holds for
every accumulation point x̄ of the subsequence x(kl). This proves our second assertion.

Finally, we want to show (iii). Assume that x̄ is an accumulation point of the sequence
x(k) such that the mapping H is SCD regular around (x̄, 0) and ∂q is SCD semismooth∗
at
(

x̄,−f (x̄)
)

. By Proposition 5.1 the mapping F is SCD regular and SCD semismooth∗
at
(

(x̄, x̄), (0, 0)
)

. By invoking [6, Theorem 6.2], the mapping F is strongly metrically
subregular at

(

(x̄, x̄), (0, 0)
)

and, moreover, there are some κ > 0 and some neighborhoods
U of (x̄, x̄) and V of (0, 0) such that

‖(x, d) − (x̄, x̄)‖ ≤ κdist((0, 0),F (x, d)) ∀(x, d) ∈ U, (6.26)

L ∈ Z reg
2n and‖CL‖ ≤ κ ∀L ∈ S ∗F

(

(x, d), (y1, y2)
) ∀((x, d), (y1, y2)

) ∈ U× V .

(6.27)

Thus, whenever
(

(x̂(k), d̂(k)), ŷ(k)
) ∈ U × V , the Newton direction (
x(k),
d(k)) exists

and satisfies ‖(
x(k),
d(k))‖ ≤ κ‖ŷ(k)‖.
By Proposition 4.2 and (6.27), for every ε > 0 there is some δ > 0 such that

‖x̂(k)+
x(k)−x̄‖ ≤‖
(

x̂(k) +
x(k) − x̄

d̂(k) +
d(k) − x̄

)

‖≤ε
√

2n(1 + κ2)
∥

∥

(

(x̂(k) − x̄, d̂(k) − x̄), ŷ(k)
)∥

∥

whenever
(

(x̂(k), d̂(k)), ŷ(k)
) ∈ Bδ

(

(x̄, x̄), (0, 0)
)

. Therefore, we can find some δ′ ∈ (0, 1]
such that Bδ′

(

(x̄, x̄), (0, 0)
) ⊂ U × V and

‖x̂(k) +
x(k) − x̄‖ ≤ min
{ 1 − ν

c1c2κ
√

1 + γ̄ 2
,

1

2c2

}

∥

∥

(

(x̂(k) − x̄, d̂(k) − x̄), ŷ(k)
)∥

∥

for
(

(x̂(k), d̂(k)), ŷ(k)
) ∈ Bδ′

(

(x̄, x̄), (0, 0)
)

, where c1 := 2 + l
γ
, c2 := 2 + (2 + γ̄)c1 and

l is some Lipschitz constant of f in B1(x̄). From (5.19) we deduce
∥

∥

(

(x̂(k) − x̄, d̂(k) −
x̄), ŷ(k)

)∥

∥ ≤ c2‖x(k) − x̄‖ that yields

‖x̂(k) +
x(k) − x̄‖ ≤ min
{ 1 − ν

c1κ
√

1 + γ̄ 2
,
1

2

}

‖x̂(k) − x̄‖ (6.28)

H. Gfrerer et al.

for x(k) ∈ Bδ̄ (x̄) with δ̄ := δ′/c2. We now claim that for every iterate x(k) ∈ Bδ̄ (x̄) the
Newton step with step size α(k) = 1 is accepted. If x(k) ∈ Bδ̄ (x̄) then

(

(x̂(k), d̂(k)), ŷ(k)
) ∈

Bδ′
(

(x̄, x̄), (0, 0)
) ⊂ U × V and from (6.26) we obtain

‖x(k)−x̄‖≤‖(x̂(k), d̂(k))−(x̄,x̄)‖≤κdist((0, 0),F (x̂(k), d̂(k)))≤κ‖ŷ(k)‖≤κ

√

1+γ̄ 2‖u(k)‖.
Since uγ (k) (x̄) = 0, we obtain from (5.13) and (6.28) that

‖uγ (k) (x
(k) +
x(k))‖ ≤ c1‖x(k) +
x(k) − x̄‖ ≤ 1 − ν

κ
√

1 + γ̄ 2
‖x(k) − x̄‖ ≤ (1 − ν)‖u(k)‖

= (1 − ν)‖uγ (k) (x
(k))‖,

showing

rγ (k) (x
(k) +
x(k)) =

√

1 + γ (k)2‖uγ (k) (x
(k)+
x(k))‖ ≤ (1 − ν)

√

1 + γ (k)2‖uγ (k) (x
(k))‖

= (1 − ν)rγ (k) (x
(k)).

From this we conclude that the step size α(k) = 1 is accepted. Now let k̄ denote the first
index such that x(k̄) enters the ball Bδ̄ . Then for all k ≥ k̄ we have

x(k+1) = x(k) +
x(k), ‖x(k+1) − x̄‖ ≤ 1

2
‖x(k) − x̄‖

and superlinear convergence follows from Theorem 5.2.

One of the reviewers asked us to work out the iteration x(k+1) = T (x(k)) in step 5.
of Algorithm 3 in more detail and we will do this now for the hybrid projection-proximal
method T PM

μ . For the rest of this section, assume that H is maximally monotone. To ensure
convergence of the method, the parameter μ must be properly chosen. In the following
implementation of the hybrid projection-proximal method we do not use a constant value of
μ, but adapt it properly in each iteration so that one step of the hybrid projection-proximal
method is formally given by

(x(k+1), μ(k+1)) = T PM(x(k), μ(k)).

Algorithm 4 (One step of the hybrid projection-proximal method)
Input: Previous iterate (x(k), μ(k)), constants μ̂ > 0, 0 < α1 < α2 < 1, 0 < ξ2 < 1 < ξ1.
Output: Next iterate (x(k+1), μ(k+1)) = T PM(x(k), μ(k))

1. Set μ := μ(k).
2. Compute x̂(k) := T FB

1/μ(x(k)), v(k) := −μ(x̂(k) − x(k)) + f (x̂(k)) − f (x(k)).

3. If x̂(k) == x(k) then stop: x(k) solves (1.1).
4. If 〈v(k), x(k) − x̂(k)〉 ≤ α1‖v(k)‖‖x(k) − x̂(k)‖ then set μ := ξ1μ and go to step 2.

5. Set x(k+1) := x(k) − 〈v(k),x̂(k)−x(k)〉
‖v(k)‖2 v(k).

6. If μ == μ(k) and 〈v(k), x(k) − x̂(k)〉 > α2‖v(k)‖‖x(k) − x̂(k)‖ then set μ(k+1) :=
max{ξ2μ, μ̂} else set μ(k+1) := μ.

For our convergence analysis we assume that the algorithm does not stop prematurely in
step 3. with a solution of the GE (1.1).

On the Application of the SCD Semismooth* Newton Method...

Theorem 6.2 Assume that the GE (1.1) has at least one solution and that H is monotone.
Let x(0) ∈ R

n, μ(0) > 0 be given and consider a sequence (x(k), μ(k)) produced by Algo-
rithm 4, where we assume μ(0) ≥ μ̂. Then the sequence (x(k), μ(k)) is well defined and
bounded and every accumulation point of x(k) is a solution of (1.1).

Proof Consider x̄ ∈ H−1(0) and let ρ1 := ‖x(0) − x̄‖. The mapping x �→ uμ̂(x) is
continuous and thus ρ2 := max{‖uμ̂(x)‖ | x ∈ Bρ1(x̄)} < ∞. Set ρ := ρ1 + ρ2 and
l := max{‖∇f (x)‖ | x ∈ Bρ(x̄)}. Note that f is Lipschitz continuous on Bρ(x̄) with
constant l. Next consider arbitrary x ∈ Bρ1(x̄), μ ≥ μ̂ with μ > μ̄ := l(1 + α1)/(1 − α1)

and the related quantities x̂−x = uμ(x), v := −μ(x̂−x)+f (x̂)−f (x). Assuming x = x̂,
we claim that

〈v, x − x̂〉 > α1‖v‖‖x − x̂‖.
Indeed, the mapping μ �→ ‖uμ(x)‖ is non-increasing, cf. [1, Theorem 10.9], and therefore
‖x − x̂‖ = ‖uμ(x)‖ ≤ ‖uμ̂(x)‖ ≤ ρ2. Hence x, x̂ ∈ Bρ(x̄) and, since condition μ >

l(1 + α1)/(1 − α1) is equivalent to μ − l > α1(μ + l), we obtain that

〈v, x − x̂〉 = μ‖x−x̂‖2+〈f (x̂)−f (x), x − x̂〉 ≥ μ‖x − x̂‖2−l‖x̂−x‖‖x−x̂‖=(μ − l)‖x − x̂‖2
> α1(μ + l)‖x − x̂‖2 = α1(μ‖x − x̂‖ + l‖x − x̂‖)‖x − x̂‖ ≥ α1‖v‖‖x − x̂‖

verifying our claim. By our assumptions, we have x(0) ∈ Bρ1(x̄), μ(0) ≥ μ̂ and consider
any iterate (x(k), μ(k)) ∈ Bρ1(x̄) × [μ̂, ∞). As soon as the value of μ in the loop between
steps 2. and 4. of Algorithm 4 exceeds μ̄, we have

〈v(k), x(k) − x̂(k)〉 > α1‖v(k)‖‖x(k) − x̂(k)‖
by our claim, implying that the loop is terminated with a final value of μ ≤ max{μ(k), ξ1μ̄}
and consequently x(k+1) and μ(k+1) ∈ [μ̂,max{μ(k), ξ1μ̄}] are well defined. Since
〈v(k), x(k) − x̂(k)〉 > 0, we can apply [28, Lemma 2.1] to obtain

‖x(k+1) − x̄‖2 ≤ ‖x(k) − x̄‖2 −
(

〈v(k), x(k) − x̂(k)〉
‖v(k)‖

)2

≤ ‖x(k) − x̄‖2 − α2
1‖x̂(k) − x(k)‖2,

(6.29)
showing x(k+1) ∈ Bρ1(x̄). Thus, an inductive argument yields that all iterates (x(k), μ(k))

belong to the bounded set Bρ1(x̄) × [μ̂,max{μ(0), ξ1μ̄}]. Summing up inequality (6.29)
repeatedly, we obtain

0 ≤ ‖x(i+1) − x̄‖2 ≤ ‖x(0) − x̄‖2 − α2
1

i
∑

k=0

‖x̂(k) − x(k)‖2 ∀i

and we can conclude that

lim
k→∞ ‖x̂(k) − x(k)‖ = lim

k→∞ ‖uμ(k) (x
(k))‖ = 0.

Now let x̃ be an accumulation point of the sequence x(k). Then we can find a subsequence
ki with x(ki) → x̃ and such that μ(ki) converges to some μ ∈ [μ̂,max{μ(0), ξ1μ̄}]. By
[27, Theorem 1.25] we obtain that uμ(x̃) = 0 and therefore x̃ solves (1.1).

Remark 6.3 Note that Theorem 6.2 does not require that f is globally Lipschitz continuous
on R

n. We only need that f is strictly continuous, cf. [27, Definition 9.1], so that f is
Lipschitz continuous on convex compact sets.

H. Gfrerer et al.

7 Numerical Experiments

Based on the general results from [4], the authors in [22] considered an evolutionary
Cournot-Nash equilibrium, where in the course of time the players (producers) adjust their
productions to respond adequately to changing external parameters. Following [4], how-
ever, each change of production is generally associated with some expenses, called costs
of change. In this way one obtains a generalized equation (1.1) which has to be solved
repeatedly in each selected time step.

In this paper we make the model from [22] more involved by admitting multiple
commodities and more realistic production constraints. As the solver of the respective
generalized equation (1.1), the SCD semismooth∗ Newton method (Algorithm 2) will be
employed. The new model is described as follows: Let n, m be the number of players and
the number of produced commodities, respectively. Further, let x = (x1, . . . , xn) ∈ (Rm)n

be the cumulative vector of productions, where

xi = (xi
1, x

i
2, . . . , x

i
m) ∈ R

m+, i = 1, 2, . . . , n

stands for the production portfolio of the i-th player. With each player we associate

• the mapping ci : Rm+ → R which assigns xi the respective production cost;
• the linear system of inequalities �ixi ≤ ζ i with a pi × m matrix �i and a vector

ζ i ∈ R
pi

which specifies the set of feasible productions �i = {xi ∈ R
m | �ixi ≤

ζ i} ⊆ R
m+, and

• the cost of change zi : Rm → R which assigns each change of the production portfolio
�xi ∈ R

m the corresponding cost.

Clearly, the vector t = (t1, t2, . . . , tm) with tj = ∑n
i=1 xi

j , j = 1, . . . , m, provides the
overall amounts of single commodities which are available on the market in the considered
time period. The price of the j -th commodity is given via the respective inverse demand
function πj : R+ → R+ assigning each value tj the corresponding price, at which the
consumers are willing to buy.

Putting everything together, one arrives at the GE (1.1), where

f (x) =
⎛

⎜

⎝

f 1(x)
...

f n(x)

⎞

⎟

⎠ with f i(x) = ∇ci(xi) −
⎛

⎜

⎝

π1(t1)
...

πm(tm)

⎞

⎟

⎠−
⎛

⎜

⎝

xi
1∇π1(t1)

...
xi
m∇πm(tm)

⎞

⎟

⎠

and q(x) = ∑n
i=1

(

zi(xi) + δ�i (xi)
)

, i = 1, 2, . . . , n. Concerning functions ci , i =
1, . . . , n, and πj , j = 1, . . . , m, we use functions of the same type as in [21], i.e.,

ci(xi) =
m
∑

j=1

(

bi
j x

i
j + δi

j

δi
j + 1

Ki
j

− 1
δi
j |xi

j |
δi
j
+1

δi
j

)

, i = 1, . . . , n, (7.30)

with positive parameters bi
j , δ

i
j and Ki

j , and

πj (tj) = (1000n)
1
γj t

− 1
γj

j , j = 1, . . . , m, (7.31)

with positive parameters γj .

On the Application of the SCD Semismooth* Newton Method...

The functions zi are modeled in the form

zi(�xi) = zi(xi − ai) =
m
∑

j=1

βi
j |xi

j − ai
j |, i = 1, . . . , n, (7.32)

where ai ∈ �i signifies the “previous” production portfolio of the i-th player and the
weights βi

j are positive reals indicating the costs of a “unit” change of production of the
j -th commodity by the i-th player.

On the basis of [22] and [21] it can be shown that for each fixed choice of the parameters
in (7.30), (7.31) and (7.32) the mapping H(x) = f (x) + ∂q(x) is strictly monotone and
the respective GE (1.1) has a unique solution x̄ such that H is strongly metrically regular
around (x̄, 0). From Theorem 3.6 and [6, Proposition 3.15] it follows that H is an SCD
mapping whenever f is continuously differentiable near x̄. Consequently, since gph ∂q is
a polyhedral mapping, we infer from [5, Propositions 3.5, 3.6, 3.7] that in such a situation
H is SCD semismooth∗ and so the conceptual Algorithm 1 may be used. However, when
implementing Algorithm 2, one has to be careful because the mapping f does not meet the
requirement of continuous differentiability on R

n. Therefore we replace πj by the twice
continuously differentiable functions

π̂j (tj) :=
{

πj (tj) if tj > ε1

πj (ε1) + π ′
j (ε1)(tj − ε1) + 1

2π
′′
j (ε1)(tj − ε1)

2 if tj ≤ ε1

and, in the definition of ci(xi), we replace the term |xi
j | by

√

(xi
j)

2 + ε22 whenever δi
j < 1

(in our implementation we used ε1 := 10−1, ε2 := 10−10). Since the functions ci are
convex, one could alternatively incorporate them in q without smoothing instead of treating
them as part of f .

Next we describe the approximation step of Algorithm 2, where x(k) =
(

(x1)(k), . . . , (xn)(k)
)

stands for the k-th iterate. For a given scaling parameter γ (k) > 0 and
i = 1, 2, . . . , n, we compute consecutively the (unique) solutions (ui)(k) , i = 1, . . . , n, of
the strictly convex optimization problems

min
ui∈Rm

γ (k)

2
‖ui‖2 + 〈f i(x(k)), ui〉 + qi

(

(xi)(k) + ui
)

, (7.33)

obtaining thus the vector u(k) = (

(u1)(k), . . . , (un)(k)
) ∈ (Rm)n. Due to the specific

structure of the functions qi , problem (7.33) can be replaced by the standard quadratic
program

min
(ui ,vi)∈Rm×Rm

γ (k)

2 ‖ui‖2 + 〈f i(x(k)), ui〉 +∑m
j=1 βi

j v
i
j

subject to �i
(

(xi)(k) + ui
) ≤ ζ i

vi
j ≥ (xi

j)
(k) + ui

j − ai
j

vi
j ≥ −((xi

j)
(k) + ui

j − ai
j

)

}

j = 1, . . . , m.

Clearly, the u-component of the solution amounts exactly to the (unique) solution of (7.33).
The outcome of the projection step is then given by the update (5.16), i.e.,

x̂(k) = x(k), d̂(k) = x(k) + u(k) = ((d̂1)(k), . . . , (d̂n)(k)
)

and ŷ(k) = −(γ (k)u(k), u(k)).

In the Newton step, we make use of the following theorem.

H. Gfrerer et al.

Theorem 7.1 Let g : Rm → R be given by g(x) = ∑m
j=1 βj |xj − aj | + δ�(x), where

βj ≥ 0, aj ∈ R, j = 1, . . . , m and � = {x ∈ R
n | 〈ξl, x〉 ≤ ζl, l = 1, . . . , p} is a convex

polyhedral set given by the vectors ξl ∈ R
m and scalars ζl ∈ R, l = 1, . . . , p. Then for

every (x, x∗) ∈ gph ∂g there holds

W(x) × W(x)⊥ ∈ S ∂g(x, x∗) = S ∗∂g(x, x∗),
where W(x) := {w ∈ R

m | wi = 0, i ∈ J0(x), 〈ξl, w〉 = 0, l ∈ L(x)} with J0(x) := {j |
βj > 0, xj = aj } and L(x) = {l | 〈ξl, x〉 = ζl}.

Proof By standard calculus rules of convex analysis, for every x ∈ � we have

∂g(x) = N�(x) +
∑

j :βj >0

βj ∂|xj − aj | =
⎧

⎨

⎩

∑

l∈L(x)

ξlμl +
∑

j∈J+(x)

βj ej −
∑

j∈J−(x)

βj ej

+
m
∑

j∈J0(x)1

βj τj ej | μl ≥ 0, l ∈ L(x), τj ∈ [−1, 1], j ∈ J0(x)} ,

where J+(x) := {j | βj > 0, xj > aj }, J−(x) := {j | βj > 0, xj < aj } and ej denotes
the j -th unit vector. For every partition J0, J+, J− of {j ∈ {1, . . . , m} | βj > 0} and every
index set L ⊆ {1, . . . , p} let

DJ0,J+,J−,L :=
{

x

∣

∣

∣

xj = aj , j ∈ J0, xj ≥ aj , j ∈ J+, xj ≤ aj , j ∈ J−
〈ξl , x〉 = ζl , l ∈ L, 〈ξl , x〉 ≤ ζl , l ∈ L

}

,

D̃J0,J+,J−,L =
⎧

⎨

⎩

∑

j∈J0

βj τj ej +
∑

j∈J+
βj ej −

∑

j∈J−
βj ej +

∑

l∈L

ξlμl

∣

∣

∣ τj ∈ [−1, +1], j ∈ J0, μl ≥ 0, l ∈ L

⎫

⎬

⎭

,

EJ0,J+,J−,L := DJ0,J+,J−,L × D̃J0,J+,J−,L.

Further, we denote by I the collection of all those index sets (J0, J+, J−, L) such that

riDJ0,J+,J−,L =
{

x

∣

∣

∣

xj = aj , j ∈ J0, xj > aj , j ∈ J+, xj < aj , j ∈ J−
〈ξl, x〉 = ζl, l ∈ L, 〈ξl, x〉 < ζl, l ∈ L

}

= ∅.
It follows that for every (J0, J+, J−, L) ∈ I and every x ∈ DJ0,J+,J−,L we have x ∈ � and
D̃J0,J+,J−,L ⊆ ∂g(x). Further, for every x ∈ � there holds

(

J0(x), J+(x), J−(x), L(x)
) ∈

I and D̃J0(x),J+(x),J−(x),L(x) = ∂g(x) implying

gph ∂g =
⋃

(J0,J+,J−,L)∈I

EJ0,J+,J−,L.

We now claim that for any two elements (J0, J+, J−, L) = (J ′
0, J

′+, J ′−, L′) ∈ I we have
EJ ′

0,J
′+,J ′−,L′ ∩ riEJ0,J+,J−,L = ∅. Note that riEJ0,J+,J−,L = riDJ0,J+,J−,L × ri D̃J0,J+,J−,L

and that

ri D̃J0,J+,J−,L={
∑

j∈J0

βj τj ej +
∑

j∈J+
βj ej −

∑

j∈J−
βj ej +

∑

l∈L

ξlμl | τj ∈ (−1, +1), j ∈ J0, μl > 0, l ∈ L
}

by [26, Theorem 6.6.]. Assuming that this claim does not hold for some (J0, J+, J−, L) =
(J ′

0, J
′+, J ′−, L′) ∈ I , there are reals μl > 0, l ∈ L, μ′

l ≥ 0, l ∈ L′, τj ∈ (−1, 1), j ∈ J0,
τ ′
j ∈ [−1, 1], j ∈ J ′

0 such that
∑

j∈J0

βj τj ej+
∑

j∈J+
βj ej−

∑

j∈J−
βj ej+

∑

l∈L

ξlμl=
∑

j∈J ′
0

βj τ
′
j ej+

∑

j∈J ′+

βj ej−
∑

j∈J ′−

βj ej+
∑

l∈L′
ξlμ

′
l

(7.34)

On the Application of the SCD Semismooth* Newton Method...

and some x ∈ DJ ′
0,J

′+,J ′−,L′ ∩ riDJ0,J+,J−,L implying J ′
0 ⊆ J0 and L′ ⊆ L, where equality

can not simultaneously hold in both inclusions. Choosing x′ ∈ riDJ ′
0,J

′+,J ′−,L′ and setting
u = x′ − x, we obtain

uj = 0, j ∈ J ′
0, uj > 0, j ∈ (J0 \ J ′

0) ∩ J ′+, uj < 0, j ∈ (J0 \ J ′
0) ∩ J ′−, 〈ξl, u〉

= 0, l ∈ L′, 〈ξl, u〉 < 0, l ∈ L \ L′.

Rearranging (7.34) yields
∑

j∈(J0\J ′
0)∩J ′+

βj (τj−1)ej+
∑

j∈(J0\J ′
0)∩J ′−

βj (ξj+1)ej+
∑

l∈L\L′
μlξl =

∑

j∈J ′
0

βj (τ
′
j−τj)ej+

∑

l∈L′
(μ′

l−μl)ξl

and by multiplying this equation with u we obtain the contradiction

0 >
∑

j∈(J0\J ′
0)∩J ′+

βj (τj − 1)uj + ∑

j∈(J0\J ′
0)∩J ′−

βj (τj + 1)uj + ∑

l∈L\L′
μl〈ξl, u〉

= ∑

j∈J ′
0

βj (τ
′
j − τj)uj + ∑

l∈L′
(μ′

l − μl)〈ξl, u〉 = 0.

Hence, our claim holds true and we may conclude that for every (J0, J+, J−, L) ∈ I and
every (z, z∗) ∈ riEJ0,J+,J−,L we have

Tgph ∂g(z, z
∗) = TEJ0,J+,J−,L

(z, z∗) = TDJ0,J+,J−,L
(z) × T

D̃J0,J+,J−,L
(z∗)

= {w | wj = 0, j ∈ J0, 〈ξl, w〉 = 0, l ∈ L} × {
∑

j∈J0

βjσj ej

+
∑

l∈L

ξlνl | σj ∈ R, j ∈ J0, νl ∈ R, l ∈ L} = W(z) × W(z)⊥,

where the last equality follows from J0 = J0(z) and L = L(z). Now consider (x, x∗) ∈
gph ∂g. Then

(

J0(x), J+(x), J−(x), L(x)
) ∈ I and x ∈ riDI0(x),I+(x),I−(x),J (x). Select-

ing z∗ ∈ ri D̃J0(x),J+(x),J−(x),L(x), for all α ∈ (0, 1] we have x∗
α := (1 − α)x∗ + αz∗ ∈

ri D̃J0(x),J+(x),J−(x),L(x) implying Tgph ∂g(x, x∗
α) = W(x) × W(x)⊥. Now the assertion

follows from the definition of S ∂g(x, x∗) together with Theorem 3.6.

Let d̂∗(k) := −γ (k)u(k)−f (x(k)). By Lemma 3.8 and consecutive application of Theorem
7.1 with g = qi we obtain

n
∏

i=1

(Wi)(k) ×
n
∏

i=1

(Wi)(k)⊥ ∈ S ∗∂q(d̂(k), d̂∗(k)),

where for each i = 1, . . . , n the subspace (Wi)(k) ⊂ R
m is given by

(Wi)(k) := {w | 〈ξ i
l , w〉 = 0, l ∈ (Li)(k), wj = 0, j ∈ (J i

0)
(k)}

with (J i
0)

(k) := {j ∈ {1, . . . , m} | (d̂i
j)

(k) = ai
j }, (Li)(k) := {l ∈ {1, . . . , pi} | 〈ξ i

l , (d̂
i)(k)〉 = ζ i

l },
and the vectors ξ i

l , l = 1, . . . , pi , given by the l-th row of the matrix �i .
The required matrices Y (k) = diag

(

(Y 1)(k), . . . , (Y n)(k)
)

andX(k) = diag
(

(X1)(k), . . . , (Xn)(k)
)

are block diagonal matrices, where the diagonal m × m blocks can be computed as

(Y i)(k) = Qi
2 × Qi

2
T
, (Xi)(k) = Qi

1 × Qi
1
T

H. Gfrerer et al.

Table 1 Input parameters bi
j , δ

i
j ,K

i
j of production costs and market elasticities γj

i = 1 i = 2 i = 3 i = 4 i = 5

bi
j δi

j Ki
j bi

j δi
j Ki

j bi
j δi

j Ki
j bi

j δi
j Ki

j bi
j δi

j Ki
j γj

j=1 9.0 1.2 5.0 7.0 1.1 5.0 3.0 1.0 5.0 4.0 0.9 5.0 2.0 0.8 5.0 1.0

j=2 9.0 1.2 5.0 7.0 1.1 5.0 3.0 1.0 5.0 4.0 0.9 5.0 2.0 0.8 5.0 0.9

j=3 9.0 1.2 5.0 7.0 1.1 5.0 3.0 1.0 5.0 4.0 0.9 5.0 2.0 0.8 5.0 0.8

and the columns of Qi
2 and Qi

1 are orthonormal bases for the subspaces (Wi)(k) and

(Wi)(k)⊥, respectively. The matrices Qi
1 and Qi

2 can be computed, e.g., via a QR-
factorization with column pivoting for the matrix with columns ξ i

l /‖ξ i
l ‖, l ∈ (Li)(k), and

ej , j ∈ (J i
0)

(k), see, e.g., [9, Section 2.2.5.3].
Concerning the numerical tests1, we consider first an academic example with n = 5

(the number of firms) and m = 3 (the number of comodities). The parameters bi
j , δ

i
j ,K

i
j

of production cost functions together with the market elasticities γj arising in the inverse
demand functions are displayed in Table 1. In the constraints �ixi ≤ ζ i , defining the sets
of feasible productions, we assume that matrices �i have only one row (i.e., pi = 1). The
respective data are listed in Table 2 together with the weights βi

j specifying the costs of

change and the “previous” productions ai
j . Finally, Table 3 presents the initial iterations of

productions (xi
j)

(0) and the calculated results, including both the equilibrium productions

(xi
j) as well as the corresponding costs of change (zi

j).
The results shown in Table 3 have been achieved in 6 iterations of the Algorithm 2 and

the final residual amounts to 2.7 × 10−12. Note that the third firm exhausts its maximum
production capacity (so it holds �3

1x
3
1 + �3

2x
3
2 + �3

3x
3
3 = ζ 3), whereas the other firms do

not. We also observe the prohibitive influence of the high value of β1
3 , due, as expected, to

x1
3 = a13 = 47.8.
Next, to demonstrate the computational efficiency of the SCD semismooth∗ Newton

method, we increase substantially the values of n and m. In dependence of n and m, we
generated test problems by drawing the data independently from the uniform distributions
with the following parameters:

bi
j ∼ U (2, 20), δi

j ∼ U (0.5, 2), Ki
j ∼ U (0.1, 10)

�i
lj ∼ U (0, 1), βi

j ∼ U (1, 10), ai
j ∼ U (20, 50),

γj ∼ U (1, 2)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, i = 1, . . . , n, j = 1, . . . , m, l = 1, . . . , pi .

Here, the numbers pi , i = 1, . . . , n, are obtained by rounding numbers drawn independently
from U (1, 1.5m+1). Furthermore, we set ζ i := �izi , where for each i = 1, . . . , n the ele-
ments zi

j , j = 1, . . . , m are drawn from U (1, 15). For each pair (n,m) belonging to the set

1All codes can be found on https://www.numa.uni-linz.ac.at/∼gfrerer/Software/Cournot Nash/

https://www.numa.uni-linz.ac.at/~gfrerer/Software/Cournot_Nash/

On the Application of the SCD Semismooth* Newton Method...

Table 2 Input parameters �i
j , ζ

i defining feasible productions, parameters βi
j of costs of change and

previous productions ai
j

i = 1 i = 2 i = 3 i = 4 i = 5

�i
j βi

j ai
j �i

j βi
j ai

j �i
j βi

j ai
j �i

j βi
j ai

j �i
j βi

j ai
j

j=1 1.0 0.5 47.8 1.0 1.0 51.1 1.0 2.0 51.3 1.0 0.0 48.5 1.0 0.0 43.5

j=2 1.0 0.5 47.8 1.0 1.0 51.1 1.0 2.0 51.3 1.0 0.0 48.5 1.0 0.0 43.5

j=3 1.0 20.0 47.8 1.0 1.0 51.1 1.0 2.0 51.3 1.0 0.0 48.5 1.0 0.0 43.5

ζ i 200 250 100 200 200

{(5, 200), (25, 40), (200, 5)} we generated 50 test problems and solved them as well with
the heuristic from Section 6.1 as with the globalized semismooth∗ Newton method of Algo-
rithm 3 with T = T PM

γ . As a stopping criterion we used rγ (k) (x(k)) ≤ 10−12rγ (0) (x(0)) and
as a starting point we chose the vector (5, 5, . . . , 5). Both methods have been successful in
all 150 test problems. In Table 4 we report for each scenario the mean value of the iterations
needed, the standard deviation and the maximum iteration number.

For each of the 3 scenarios, we have a problem with nm = 1000 unknowns. The time-
consuming parts of the semismooth∗ Newton method are the approximation step and the
Newton step: In the approximation step, we have to solve n quadratic problems with 2m
variables, while in the Newton step, we must solve a linear system with nm variables.
Thus, in case where (n, m) = (5, 200) the approximation step is more time-consuming
than the Newton step, whereas in case where (n,m) = (200, 5) the approximation step is
much cheaper than the Newton step. We can see that the numbers of iterations needed are
fairly small. Note that the given iteration numbers essentially reflect the global convergence
behavior: The majority of iterations are needed to get sufficiently close to the solution and
then, by superlinear convergence of the semismooth∗ Newton method, only 3–6 iterations
more are required to approximate the solution with the desired accuracy. In Fig. 1 we show
the residuals rγ (k) (x(k)) given by (6.23) for a test problem with (n,m) = (5, 200) for both
the Algorithm 3 and the heuristic of Section 6.1. The Algorithm 3 needed 16 iterations to
reduce the initial residual of 840.7 to 6.0 and the method stopped after 6 additional iter-
ations with a residual of 4 × 10−12. Similarly, for the heuristic we obtained at the 15-th
iterate a residual of 8.5 and the method stopped after 21 iterations with a final residual of
5.7 × 10−12.

We now compare the semismooth∗ Newton method with several first-order splitting
methods, namely the Forward-Backward splitting method FB, the golden ratio algorithm

Table 3 The initial productions (xi
j)

(0), the calculated equilibrium productions xi
j , and the corresponding

costs of change zi
j

i = 1 i = 2 i = 3 i = 4 i = 5

(xi
j)

(0) xi
j zi

j (xi
j)

(0) xi
j zi

j (xi
j)

(0) xi
j zi

j (xi
j)

(0) xi
j zi

j (xi
j)

(0) xi
j zi

j

j=1 45.0 54.4 3.3 45.0 54.6 3.5 45.0 20.6 61.4 45.0 50.8 0.0 45.0 45.3 0.0

j=2 45.0 67.9 10.0 45.0 66.2 15.0 45.0 30.6 41.5 45.0 58.2 0.0 45.0 50.6 0.0

j=3 45.0 47.8 0.0 45.0 85.0 33.8 45.0 48.8 5.0 45.0 70.7 0.0 45.0 60.0 0.0

H. Gfrerer et al.

Table 4 Statistics of iteration numbers for 50 test problems per scenario

Hybrid method Heuristic

(n,m) mean value std. dev. max. iteration # mean value std. dev. max. iteration #

(5,200) 20.2 9.6 46 20.4 4.7 39

(25,40) 28.9 10.3 52 28.2 7.6 50

(200,5) 32.4 13.8 76 27.9 9.3 75

aGRAAL [19], the Douglas-Rachford splitting algorithm DR and the hybrid projection-
proximal point algorithm PM [28]. We performed this comparison only for the scenario
with (n,m) = (200, 5), where one evaluation of the proximal mapping is relatively cheap,
that is, we have to solve 200 quadratic programs with 10 variables. We generated 3 test
problems and computed with the semismooth∗ Newton method a fairly accurate approxi-
mation x̃ of the exact solution: For each of the 3 test problems, the final residual was less
than 2.4 × 10−12. Using this approximate solution x̃, we computed for the aforementioned

methods the relative error of the iterates x(k) defined as max{ |x(k)
i −x̃i |

max{1,|x̃i |} | i = 1, . . . , nm}.
In Fig. 2 we plot this relative error against the CPU time needed to calculate x(k). We set
for the first-order methods as a time limit five times the time needed for the semismooth∗
Newton method to converge.

We can see that only for the first test problem the FB method was able to produce an
approximate solution with high accuracy within the time limit. For the FB method, the final
relative error was less than 10−5, the other methods terminated with a relative error in the
range between 4% and 7%. For the second test problem, the relative accuracy of the final
iterate for the FB-method was about 8%, while we were unable to get even one significant
digit with the other methods. For the third test problem, the relative error for all first-order
methods was about 100%.

0 5 10 15 20
iterations

10-12

10-10

10-8

10-6

10-4

10-2

100

102

re
si

du
al

Alg.3
Heuristic

Fig. 1 Comparison of Algorithm 3 with heuristic

On the Application of the SCD Semismooth* Newton Method...

0 5 10 15 20 25
CPU-Time

10-12

10-10

10-8

10-6

10-4

10-2

100
re

l.e
rr

or

SS Newton
PM
aGRAAL
DR
FB

0 5 10 15 20 25
CPU-Time

10-12

10-10

10-8

10-6

10-4

10-2

100

re
l.e

rr
or

SS Newton
PM
aGRAAL
DR
FB

0 5 10 15 20
CPU-Time

10-12

10-10

10-8

10-6

10-4

10-2

100

re
l.e

rr
or

SS Newton
PM
aGRAAL
DR
FB

Fig. 2 Comparison of the semismooth∗ Newton method with several first-order methods

8 Conclusion

The semismooth∗ Newton method from [5] and its SCD variant from [6] provide us with a
powerful tool for numerical solution of a broad class of problems governed by GEs. When
faced with a concrete problem of this sort, one has to employ appropriate results of vari-
ational analysis in order to implement the approximation step and the Newton step in an
efficient way. In this paper, we suggest an implementation of the SCD semismooth∗ New-
ton method for the case of variational inequalities of the second kind, which is a useful
modeling framework for a number of practical problems. In particular, in this way one can
model Nash games with convex, possibly nonsmooth costs, frequently arising, e.g., in eco-
nomics and biology. Without substantial changes, this implementation can also be adopted
for the case of the so-called hemivariational inequalities, cf. [10], which are frequently used
in various models in nonsmooth mechanics. This could be a topic for future research.

Acknowledgements The authors are deeply indebted to the reviewers for careful reading and important
suggestions and remarks.

Funding The research of the first author was supported by the Austrian Science Fund (FWF) under grant
P29190-N32. The research of the second author was supported by the Grant Agency of the Czech Republic,
Project 21-06569K, and the Australian Research Council, Project DP160100854. The research of the third
author was supported by the Grant Agency of the Czech Republic, Project 21-06569K.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of Interests The authors have no competing interests to declare that are relevant to the content of
this article.

References

1. Beck, A.: First-order Methods in Optimization MOS-SIAM Series on Optimization, vol. 25. SIAM,
MOS, Philadelphia (2017)

2. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear
programming. Appl. Math. Optim. 29, 161–186 (1994)

3. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems,
Vol. I+II. Springer, New York (2003)

4. Flåm, S.D.: Games and cost of change. Ann. Oper. Res. 301, 107—119 (2021)
5. Gfrerer, H., Outrata, J.V.: On a semismooth* Newton method for solving generalized equations. SIAM

J. Optim. 31, 489–517 (2021)
6. Gfrerer, H., Outrata, J.V.: On (local) analysis of multifunctions via subspaces contained in graphs of

generalized derivatives, J. Math. Annal. Appl. https://doi.org/10.1016/j.jmaa.2021.125895 (2022)

https://doi.org/10.1016/j.jmaa.2021.125895

H. Gfrerer et al.

7. Gfrerer, H., Ye, J.J.: New constraint qualifications for mathematical programs with equilibrium
constraints via variational analysis. SIAM J. Optim. 27, 842–865 (2017)

8. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
9. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

10. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequal-
ities: Theory, Methods and Applications. Kluwer Academic Publishers, Boston (1999)

11. Ito, K., Kunisch, K.: On a semi-smooth Newton method and its globalization. Math. Program. 118,
347–370 (2009)

12. Josephy, N.H.: Newton’s method for generalized equations and the PIES energy model, Ph.D. Disserta-
tion, Department of Industrial Engineering University of Wisconsin-Madison (1979)

13. Josephy, N.H.: Quasi-NewtonMethod for Generalized Equations. Technical Summary Report, vol. 1966.
Mathematics Research Center, University of Wisconsin-Madison (1979)

14. Jourani, A.: Radiality and semismoothness. Control. Cybern. 36, 669–680 (2007)
15. Kanzow, C., Schwartz, A.: Spieltheorie. Springer, Cham (2018)
16. Khanh, P.D., Mordukhovich, B.S., Phat, V.T.: A generalized Newton method for subgradient systems, to

appear in Math. Oper. Res., arXiv:2009.10551
17. Khanh, P.D., Mordukhovich, B.S., Phat, V.T., Tran, D.B.: Generalized damped Newton algo-

rithms in nonsmooth optimization via second-order subdifferentials, to appear in J. Global Optim.,
arXiv:2101.10555

18. Khanh, P.D., Mordukhovich, B.S., Phat, V.T., Tran, D.B.: Globally convergent coderivative-based gen-
eralized Newton methods in nonsmooth optimization, to appear in Math Program, arXiv:2109.02093
(2022)

19. Malitsky, Y.: Golden ratio algorithms for variational inequalities. Math. Program. 184, 383–410 (2020)
20. Mordukhovich, B.S., Sarabi, M.E.: Generalized Newton algorithms for tilt-stable minimizers in nons-

mooth optimization. SIAM J. Optim. 31, 1184–1214 (2021)
21. Murphy, F.H., Sherali, H.D., Soyster, A.L.: A mathematical programming approach for determining

oligopolistic market equilibrium. Math. Program. 24, 2–106 (1982)
22. Outrata, J.V., Valdman, J.: On computation of optimal strategies in oligopolistic markets respecting the

cost of change. Math. Meth. Oper. Res. 92, 489–509 (2020)
23. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
24. Robinson, S.M.: Newton’s method for a class of nonsmooth functions. Set-Valued Anal 2, 291–305

(1994)
25. Robinson, S.M.: A point-of-attraction result for Newton’s method with point-based approximations.

Optimization 60, 89–99 (2011)
26. Rockafellar, R.T.: Convex Analysis. Princeton, New Jersey (1970)
27. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)
28. Solodov, M.V., Svaiter, B.F.: A hybrid projection–proximal point algorithm. J. Conv. Anal. 6, 59–70

(1999)
29. Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth newton method with projection steps

for composite convex programs. J. Sci. Comput. 76, 364–389 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://arxiv.org/abs/2009.10551
https://arxiv.org/abs/2101.10555
https://arxiv.org/abs/2109.02093

	On the Application of the SCD Semismooth* Newton Method...
	Abstract
	Introduction
	Preliminaries
	On SCD Mappings
	Basic Properties
	On the SCD Property of the Subdifferential of Convex Functions

	On semismooth* Newton Methods for SCD Mappings
	Implementation of the semismooth* Newton Method
	Globalization
	A Non-monotone Line-search Heuristic
	Globally Convergent Hybrid Approaches

	Numerical Experiments
	Conclusion
	Declarations
	References

