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In this paper, we provide an approach to learning optimal Bayesian network (BN) structures from incom-
plete data based on the BIC score function using a mixture model to handle missing values. We have
compared the proposed approach with other methods. Our experiments have been conducted on different
models, some of them Belief Noisy-Or (BNO) ones. We have performed experiments using datasets with
values missing completely at random having different missingness rates and data sizes. We have analyzed
the significance of differences between the algorithm performance levels using the Wilcoxon test. The new
approach typically learns additional edges in the case of Belief Noisy-or models. We have analyzed this
issue using the Chi-square test of independence between the variables in the true models; this approach
reveals that additional edges can be explained by strong dependence in generated data. An important
property of our new method for learning BNs from incomplete data is that it can learn not only optimal
general BNs but also specific Belief Noisy-Or models which is using in many applications such as medical
application.

Povzetek: Razvita je metoda za določitev optimalne Bayesove mreže ob nepopolnih podatkih.

1 Introduction

Bayesian networks (BNs) have been used in a variety of
applications. The challenge of learning a BN can be cat-
egorized into two parts: (1) structural learning, which in-
volves identifying the topology of the BN; and (2) para-
metric learning, which involves estimating the conditional
probabilities for a given network. The challenge of learning
the structure of a BN is by far more difficult than the other
one. Most methods, such as [1] and [2], require complete
data, while in practical applications we are often confronted
with values missing from the dataset; this problem regards
both parts (1 and 2) mentioned above and affects the per-
formance of the model learning. A record with a missing
value should be omitted from the dataset.
An earlier work [3] studied the impact of learning the

parameters and the structure of a BN using hard EM and
soft EM with a comprehensive simulation study covering
incomplete data.
In this paper, we study the problem of learning the op-

timal BN structure from incomplete data, adopting a new
approach of using the product distribution mixture models
to handle missing values; the latter will be used with [2] to
estimate the missing values and learn the optimal structure.
In addition, we show in this paper that our new approach is
able to learn the structure of a Belief Noisy-OR (BNO) [4]
model from incomplete data.

2 Bayesian network

ABayesian network encodes a joint probability distribution
over a set of random variables U = {X1,X2, . . . ,Xm}. We
consider only discrete variables in this work, which is the
most common current usage of BNs. A finite set of states
of a variable Xi will be denoted by Xi. Conditional proba-
bility distributions (CPDs) are attached to each variable in
the network. Their purpose is to quantify the strength of the
relationships depicted in the BN through its structure: these
CPDs mathematically describe the behavior of that variable
under every possible value assignment of its parents. Since
to specify this behavior one needs a number of parameters
exponential in the number of parents, and since this number
is typically smaller than the number of variables in the do-
main, this approach results in exponential savings in space
and time.
Formally, a Bayesian network forU is a pair B = ⟨G,Θ⟩.

Its first component, G, is a directed acyclic graph whose
vertices correspond to the random variables U , and whose
edges represent direct dependencies between these vari-
ables. The graph G encodes independence assumptions:
each variableXi is independent of its non-descendants given
its parents in G. The second component of the pair, namely
Θ, represents the set of parameters that quantify the net-
work. It contains parameter θxi|Πxi

= f (xi|Πxi) for each
possible value xi of Xi and Πxi of ΠXi , where ΠXi denotes
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the set of parents of Xi in G. Accordingly, a Bayesian net-
work B defines a unique joint probability distribution over
U given by:

F(X1 = x1, . . . ,Xm = xm) =
m

∏
i=1

F(Xi = xi|ΠXi = Πxi)

=
m

∏
i=1

θxi|Πxi

for each ΠXi which is a parent of Xi.

2.1 Structure learning of BN
Note that a BN can be viewed from two perspectives: as an
effective coding of an independence relationship on the one
hand, and as an effective encoding of a high-dimensional
distribution of probabilities on the other hand.
One option of learning the structure is to rely on the spe-

cialists in the field through a conscious and meticulous pro-
cess of knowledge gathering. This involves training experts
in probabilistic graphical modeling, validating expert opin-
ions, and extracting and testing information. This process
all too often leads to disagreements among experts and a
lack of reliability pertaining to the model. Nonetheless, in
many fields, where data is scarce, this is one of the key ap-
proaches to model building.
Another mechanism is the automatic derivation of the

model based on a data set. It is this machine learning ap-
proach (ML) that we follow here (so that we avoid the very
rich field of human knowledge acquisition). For a data
set D = {u1,u2, . . . ,un}, where ui is an instantiation of all
variables in U , the BN structure learning translates to the
problem of learning a network structure from D. Suppose
u is complete and discrete. Consequently, finding the op-
timal Bayesian network is reduced to finding the optimal
structure. The optimal structure can be learned by three ap-
proaches coming from the area of ML.
The first is the constraint-based approach to structure

learning, which takes advantage of the first perspective and
attempts to reconstruct a Bayesian network by analyzing
data independence. These algorithms require an infinite
amount of data to learn independence with certainty; high-
order independence tests can be unreliable unless the sam-
ple size is truly huge [5]. The second is the score-based ap-
proach, which invests in the second perspective and looks
for Bayesian networks that adequately describe the avail-
able data with the best score. The core of this approach is
to assign a score value s(G) to each acyclic directed graph
G. The score function defines an overall order (up to equiv-
alences) over the structures in such a way that a structure
with a better description of the data is assigned a higher
value. The last approach is a hyper-approach, which mixes
the two previous approaches together.

2.2 Score-based
Score-based learning is a technique frequently used for de-
termining the optimal structure. In this process, each candi-

date is assigned a BN score to measure the goodness-of-fit
of a structure to the data. The goal of the learning prob-
lem is then to find the optimal scoring structure. The score
usually measures how well this BN describes the data set
D.
Definition (1): Let B = ⟨G,Θ⟩ be a Bayesian network,

and let D = {u1, . . . ,un} be a training set, where each ui as-
signs a value to all variables in U. The MDL scoring func-
tion of a network B given a training data set D, written
MDL(B|D), is given by:

MDL(G|D) = LL(G|D)− logn
2

|G|

where |G| is the number of parameters in the network. The
first term represents the loglikelihood, i.e., it measures the
model fit. The second term penalizes the model complex-
ity. The penalty term for MDL is greater than that for most
other evaluation functions, since optimal networks with the
MDL are usually sparser than optimal networks with func-
tion scoring. As its name suggests, an optimal network with
MDL minimizes the scoring function rather than maximiz-
ing it. The Bayesian information criterion (BIC) [6] is a
scoring function whose calculation is equivalent to MDL
for Bayesian networks, but it is derived on the basis of the
models’ asymptotic behavior. Where the score is decom-
posable, it can be written as a sum of the scores of each
variable and its parent set:

BIC(G|D) =
m

∑
i=1

BIC(Xi|ΠXi)

=
m

∑
i=1

{LL(Xi|ΠXi)−Penalty(Xi|ΠXi)}

The score-based algorithms’ aim is to optimize this score
and return the structure G that maximizes it. As the space
of all possible structures is at least exponential in the
number of variables m, this presents a number of prob-
lems. There are m(m − 1)/2 possible undirected edges
and 2m(m−1)/2 possible structures for every subset of these
edges. Moreover, there may be more than one orientation
of the edges for each such choice. One popular choice is
hill-climbing [7].

2.3 Structural learning with pruning
Statistical testing is a method of reducing the set of poten-
tial DAGs. Another approach to reducing this set is to use
constraints provided by experts. Besides that, we can use
structural constraints similar to in [2]. The structural con-
straints can be applied locally as long as they include only
one node and its parents.
Algorithm 1 represents an approach to learning the opti-

mal structure of a BN using the constraint rules and a de-
composable score [8]. The main function of the algorithm
is to compute a collection of candidate parent sets for each
variable. Then we optimize across this collection by se-
lecting one parent set for each variable, without creating
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directed cycles while maximizing the total score. The fol-
lowing theorem can be used to reduce the numbers of the
collections for candidate parents.

Lemma 2.1. Let Xi be a variable and Π′ be a candidate
parent set for Xi. Suppose that BIC(Xi|Π

′
) < BIC(Xi|{}).

Then Π′ can be safely ignored from the candidate parent
sets.

Proof. The proof uses the decomposability of the BIC
score. Let G

′ and G be DAGs that differ only on the parent
set of Xi where Π′ is the parent set of Xi in G

′ and Π is the
parent set ofXi inG. SupposeΠ⊂Π′ . Therefore, ifG

′ does
not contain directed cycles then G cannot contain them ei-
ther. This fact, together with BIC(Xi|Π) > BIC(Xi|Π

′ ), im-
plies thast G

′ is not BIC optimal. This statement also holds
if the candidate subset is the empty set Π = {}.

Algorithm 1 Parent sets evaluation for the BN structure
learning algorithm
Input: .

D : a data set
m: an integer representing the number of variables in
D

Output: Accepted sets of parents for each node
Phase 1: initialize the parameters

gi = (V,E) // A DAG containing a node and its can-
didate parent set

Si: BIC score of gi
Qi: priority queue of triples (Xi,ΠXi ,Si ) ordered by

Si
Phase 2: mscour(Xi,D) function to find the min(BIC)
score

Si = the BIC score of gi where only Xi is included
return Si

Phase 3: find the accepted Qi for Xi
Qi is empty
S∗ = mscour(Xi,D)
ΠXi is a parent set for Xi
add (Xi,ΠXi ,S

∗) to Qi
For each Xk,k ∈ {1, . . . ,m} do:

add Xk to ΠXi

Ski = the BIC score of the updated ΠXi

if(Ski > S∗)
add (Xi,ΠXi ,Ski) to Qk
For each X j, j ∈ {1, . . . ,m}, i ̸= j ̸= k, do:
add X j to ΠXi

Ski = the BIC score of the updated ΠXi

if(Ski > S∗)
add (Xi,ΠXi ,Ski) to Qk

else delete X j from ΠXi

end for
else delete Xk from ΠXi

end for

The gi = (V,E) in Phase 1 from Algorithm 1 is a DAG
containing the set of nodesV = {Xi,ΠXi} and the set of arcs

E = {(Xo,Xi),∀Xo ∈ ΠXi}. Algorithm 1 considers all pos-
sible parent sets that can lead to an optimal BN. Its imple-
mentation is based on [8]. After Phase 3, we find a DAG
with the highest BIC from among the variables given the
candidate parent sets of each variable. That is done using
GOBNILP [9] tool1 which is a smart algorithm using inte-
ger linear programming. We will refer to this algorithm as
A1.
Let us also note that, if a dataset is generated from a BN

having the empty graph as its structure and this dataset is
large enough then, for any parent set {ΠXi ̸= ϕ}, it holds that
BIC(Xi|{}) > BIC(Xi|ΠXi ). This implies that the variables
are independent and the penalty for larger parent sets makes
the BIC value worse for all nonempty parent sets.
One of the axioms of the pruning rules stated in the liter-

ature states that if a candidate subset has a better score than
another candidate set and the first candidate set is a sub-
set of the second candidate set, it is safe to disregard that
second candidate set due to the decomposability of score
functions. We have applied the pruning rule as formalized
in the theorem 2.1 in Algorithm 1. That algorithm will re-
duce the collection of accepted parent sets for each node by
discarding all parent sets which do not meet the criteria.

3 Incomplete datasets
One of the widespread problems in data mining and ma-
chine learning is incomplete data. Values may be missing
even from training instances. Nowadays more and more
datasets are available, but most of them are incomplete.
Therefore, machine learning must cope with this problem.
Normally, to learn the BN structure using A1 algorithm [2],
we need complete data, such that all instances ui ∈ D, i ∈
{1, . . . ,n} are complete and don’t have any missing values.
In the case of incomplete data and an instance which has
a missing value, A1 does not use this instance in the BN
structure learning.

3.1 Product distribution mixtures to handle
incomplete data

Because of incomplete data, most methods in machine
learning cannot be applied. An easy way to deal with
this problem is completing the data by simply omitting the
incomplete vectors or removing the incomplete variables.
But this approach has a weakness: we may lose a massive
part of the available information. Another alternative is to
use an estimation to replace the missing values [10] (i.e.,
put in estimates of the missing values). However, for cer-
tain reasons, the estimated values have to be typical, and the
natural variability of the data will be partially restricted. For
that, the product mixture model gives us a better way to di-
rectly apply the EM algorithm to complete the dataset [11].
We will refer to this approach as EM-Mixture.
Considering finite mixtures we assume that:
1https://www.cs.york.ac.uk/aig/sw/gobnilp/
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P(X) =
r

∑
j=1

w jF(X | j), (1)

F(X | j) =
m

∏
i=1

Fi(Xi| j),
r

∑
j=1

w j = 1 (2)

where w j > 0 is a probabilistic weight of the j-th mixture
component, Fi is the conditional distribution of the vari-
able Xi, i ∈ 1, . . . ,m, and r is the number of components.
Note that the product components do not imply that the in-
volved variables are independent. In this sense, the mixture
model (1) is not restrictive [12]. It is easy to verify that, by
increasing the number of components r, we can describe
any discrete probability distribution in the form (1). In our
experiments, it was selected based on the number of vari-
ables in a dataset.
To estimate the mixture parameters, we maximize the

log-likelihood function:

LL =
n

∑
k=1

logP(u(k))

where n is the number of records in the dataset D and u(k) is
the k-th datavector from D. We will use the EM algorithm
to maximize the log-likelihood function.
Next, we explain how the learned product mixture model

will be used to fill in the missing values. Let C =
{i1, i2, . . . , ik} be a subset of M = {1,2, . . . ,m} such that the
corresponding sub-vector

uC = (xi1 ,xi2 , . . . ,xik)

is complete. Then, under the product mixture model, we
can compute the marginal probability of uC as

PC(uC) =
r

∑
j=1

w jFC(uC| j) (3)

FC(uC| j) = ∏
i∈C

Fi(xi| j) . (4)

Let z be an index of a variable unobserved in u, i.e., z ∈
M \C. Under the product mixture model, we can compute
the conditional distribution of the missing value uz given
the complete part uC with PC(uC)> 0 as

Pz|C(uz|uC) =
Pz,C(uz,uC)

PC(uC)

=
r

∑
j=1

Wj(uC)Fz(uz| j)

whereWj(uC) are the conditional component weights:

Wj(uC) =
w jFC(uC| j)

∑r
j=1 w jFC(uC| j)

.

We thus compute the probability distribution Pz|C(uz|uC)
for each missing value of each data vector u ∈ D with a

missing value. There are several ways of using this proba-
bility distribution to fill in the missing value of Xz in u – in
this paper, we select value uz maximizing Pz|C(uz|uC) over
all values of Xz.
The last step of our presentation is the description of

adapting the EM algorithm for learning product mixture
models such that it is applicable to incomplete data. Given
a data vector u ∈ D and a variable Xi with index i ∈
{1,2, . . . ,n}, letN (u) be the subset of indices of the avail-
able variables (i.e., observed in that data) of u, andD(i)⊂D
be the subset of vectors with observed values of variable Xi:

N (u) = {v ∈ {1,2, . . . ,n} : uv observed in u}
D(i) = {u ∈ D : i ∈ N (u)}

In Algorithm 2, we present themodification of the EMal-
gorithm for the product mixture model for incomplete data.
For xv ∈ Xv, v ∈ {1,2, . . . ,n}, and j = 1, . . . ,r, we use
Fv(xv| j) to denote the conditional probability of observing
value xv of variable Xv given the component j. The ini-
tialization of the EM-Mixture algorithm (presented in Al-
gorithm 2) is performed using the partitions obtained from
agglomerative hierarchical clustering implemented in the
function hc of the R package mclust [13]. In our algorithm,
the symbol δ (x,y) denotes the standard delta function equal
to one if x = y and equal to zero otherwise.

Algorithm 2 EM-Mixture
Input: D is a data set
Output: a completed data set

Phase 1: initializing:
w j, j = 1, . . . ,r

Fv(xv| j), for xv ∈ Xv, v ∈ {1,2, . . . ,n}, and j = 1, . . . ,r

L =−∞
Phase 2:

repeat
E-Step:

q( j|u) =
w j ∏v∈N(u)

Fv(uv| j)

∑r
l=1 wl ∏v∈N(u)

Fv(uv|l)
, for u ∈ D, j = 1, . . . ,r

w j =
1
|D| ∑

u∈D
q( j|u), for j = 1, . . . ,r

M-Step: for xv ∈ Xv, v ∈ {1,2, . . . ,n}, and j = 1, . . . ,r

Fv(xv| j) =
∑u∈D(v) δ (xv,uv) ·q( j|u)

∑u∈D(v) q( j|u)

L′ = ∑
u∈D

log

[
r

∑
j=1

w j ∏
v∈N (u)

Fv(uv| j)

]
Q = L′−L

L = L′

until Q ≤ ε

The EM algorithm converges monotonically to a local
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or global maximum or a saddle point of the log-likelihood
function L in the sense that the sequence of {Lt}∞

t=0 does
not decrease. The presence of a local maximum makes the
starting point of the procedure influential; hence it is se-
lected at random. We use the value of ε = 0.005 to ter-
minate the main loop of the algorithm. The sequence of
log-likelihood values generated by E-Step and M-Step is
non-decreasing [11] (i.e., L

′
L).

We adapt the BN structure learning algorithm A1 so that
it can learn from incomplete data. We use the EM-Mixture
algorithm, i.e., Algorithm 2, to make the incomplete data
complete in Phase 3. The whole algorithm will be referred
to as A2.

3.2 Experiments
The experiments have been repeated ten times on ten differ-
ent subsets in each MCAR rate on different models, using
the generated datasets from the true models summarized in
Table 8 in A. We have compared our approach denoted as
A2 with three other methods. By A1 we denote the BIC
optimal learning from complete data created by omitting all
rows containing a missing value. In [3], the authors pro-
posed the soft and hard EM algorithms to fill in the missing
values and learn an optimal BN structure from the com-
pleted data by Tabu search [14], which we refer to as A3
and A4, respectively.
The test scenarios, which include more than 700 incom-

plete datasets, are summarized in Figure 1. The resulting
BNs of the simulations within each scenario are shown in
Tables 1, 2, and 3.
The decision tree shown in Figure 1 is intended to guide

practitioners as to which imputation algorithm appears to
perform the best, depending on the characteristics of their
problem with incomplete data. Each leaf of the decision
tree corresponds to a subset of the scenario that we studied,
grouped according to the values of the experimental fac-
tors, to recommend which algorithm has the best average
Structure Hamming Distance [15] (SHD) values between
the essential graph of the learned model and the essential
graph of the true model. The dominance of the algorithms
has been tested using the Wilcoxon test [16]. We say that
an algorithm is better than another if it has a lower average
SHD and their confidence intervals do not overlap, i.e., the
p-value of the Wilcoxon test is lower than 5%.
In the results based on the SHD, A2 has scored the best

results. For the results based on the SHD and the Wilcoxon
test, we have observed some important general trends:

– A2 appears to be a good algorithm in all scenarios.

– A2 is significantly better than other Algorithms for
Model M2 in Leaves B and G.

– A2 is significantly better than other Algorithms for the
model Child in Leaf C.

– A2 and A3 are significantly better than A1 and A4 for
Models M1 in Leaves C, D, P, and K.

Table 1: Recommended algorithm by decision tree leaf
where MCAR rate in [5 - 10 ] -Group 1.

Leaf Size Bayesian Network Recommended Algorithm
Weather A1, A2, A3, A4

A Size >5000 M1 A2, A3, A4
Weather A2, A3, A4

B Size in [3000 - 5000] M1 A2, A3, A4
M2 A2
Child A2, A3, A4
Weather A2, A3, A4

C Size in [1500 - 2500] M1 A2, A3
M2 A2, A3, A4
Child A2
Weather A2, A3, A4

D Size <1000 M1 A2, A3
M2 A2
Child A2, A3

– A1 is significantly worse than other Algorithms in all
scenarios where the data size is smaller than 5,000.

Figure 2 represents the algorithm results of all models with
all dataset sizes and all MCAR rates.

Table 2: Recommended algorithm by decision tree leaf
where MCAR rate in [15 - 25] - Group 2.

Leaf Size Bayesian Network Recommended Algorithm
Weather A1, A2, A3, A4

E Size >5000 M1 A2, A3, A4
Weather A2, A3, A4

F Size in [3000 - 5000] M1 A2, A3, A4
M2 A2, A3
Child A2, A3
Weather A2, A3, A4

G Size in [1500 - 2500] M1 A2, A3, A4
M2 A2
Child A2, A3
Weather A2, A3, A4

P Size <1000 M1 A2, A3
M2 A2
Child A2, A3

Table 3: Recommended algorithm by decision tree leaf
where MCAR rate in [35 - 50] - Group 3.

Leaf Size Bayesian Network Recommended Algorithm
Weather A1, A2, A3, A4

H Size >5000 M1 A2, A3, A4
Weather A2, A3, A4

G Size in [3000 - 5000] M1 A2, A3
Weather A2, A3, A4

K Size in [1500 - 2500] M1 A2, A3
Weather A2, A3, A4

M Size <1000 M1 A2

4 Belief Noisy-Or model
The Belief Noisy-Or (BNO) model is suitable for describ-
ing a specific class of uncertain relationships in Bayesian
networks [4] common in several practical applications of
BNs. As an example, let us mention the QMR-DT net-
work [17]. In Figure 3 we present the structure of a CPT
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Figure 1: The decision tree for different test scenarios.

F(Y |X1, . . . ,Xn)where auxiliary nodes X ′
1, . . . ,X

′
n are added

to explicitly separate the noisy relations from the logical
OR relation. For a CPT with multiple parent variables
X1, . . . ,Xn the noisy-or is defined as follows2:

F(X
′
i = 0|Xi = 0) = 1−α, F(X

′
i = 1|Xi = 0) = α

F(X
′
i = 0|Xi = 1) = pi, F(X

′
i = 1|Xi = 1) = 1− pi

where i∈{1, . . . ,n} and pi ∈ [0,1] is the parameter which
defines the probability that the positive value xi of variable
Xi is inhibited – it is referred to as the inhibition probability
and the parameter α specifies the possibility of a positive
value even if the value of the corresponding parent variable
is negative. In most experiments, we will set α = 0. The
CPT of F(Y |X ′

1, . . . ,X
′
n) represents the deterministic logical

OR function, i.e.,

F(Y = 0|X ′
1 = x′1, . . . ,X

′
n = x′n) =

 1 if x′1 = 0, . . .
x′n = 0

0 otherwise.

Consequently, the CPT of F(Y |X1, . . . ,Xn), which repre-
sents the noisy-or function, is computed as follows:

2In the case of one parent variable, we use probability values as speci-
fied in Table 4.

F(Y = 0|X1 = x1, . . . ,Xn = xn) =
n

∏
i=1

F(X
′
i = 0|Xi = xi)

=
n

∏
1
(pi)

xi(1−α)1−xi

F(Y = 1|X1 = x1, . . . ,Xn = xn) = 1−
n

∏
1
(pi)

xi(1−α)1−xi

4.1 Analysis of BNO models
In this Section, we analyze the BNO models represented in
Table 9 in A where α = 0. Tables 5, 6, and 7 show the
marginal probability distributions (MPD) of the variables
in BNO models N1, N2, and BN2O, respectively; look at
Figures 11 and 12. The Tables illustrate the decrease of
the marginal probability values for F(Ci = 0) in the case of
a node having more than one parent. See Table 7. This
decrease is due to the properties of the product of proba-
bilities in (5). On the other hand, they also illustrate the
increase of that marginal probability with a higher number
of its predecessors in previous layers; that increase depends
on the number of layers above and also on the numbers of
the edges in those layers. See Table 5 and Table 6.
Using the conditional probability distributions of the

variables given their parents, we can easily calculate joint
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Table 4: F(X
′
i |Xi) table

Xi
0 1

X
′
i 0 1−α 0.2

1 α 0.8

Table 5: N1 (Figure 11): Marginal probability distributions
C1 C2 C3 C4 C5 C6

F(Ci = 0) .5 .6 .68 .744 .795 .837
F(Ci = 1) .5 .4 .32 .256 .205 .163

Table 6: N2 (Figure 11): Marginal probability distribu-
tions

C1 C2 C3 C4 C5 C6
F(Ci = 0) .5 .6 .536 .539 .716 .707
F(Ci = 1) .5 .4 .464 .461 .284 .293

Table 7: BN2O (Figure 12): Marginal probability distribu-
tions

C1 C2 C3 C4 C5 C6 C7 C8
F(Ci = 0) .5 .5 .5 .5 .5 .129 .36 .36
F(Ci = 1) .5 .5 .5 .5 .5 .871 .64 .64

0

10

20

30

A1 A2 A3 A4
Algorithms

V
al

ue
s

Figure 2: The Structural Hamming Distance to the true
models from the resulting models of the structure learning
algorithms using data generated from all models, summa-
rized in Table 8 averaged over all data sizes and all MCAR
rates.

probability distributions F(U) using formula (1) and con-
ditional probability distributions (CPD) F(XA|XB), where
XA ⊆U andXB ⊆U\XA. Recall that a CPD for a particular
configuration xB of parent nodes XB can be computed as3:

F(XA|XB = xB) =
F(XA,XB = xB)

F(XB = xB)
(5)

The Kullback-Leibler Distance (KLD) of two conditional
probability distributions F(XA|XB) and G(XA|XB) defined
on the same state space is computed as the weighted aver-
age KLD of F(XA|XB = xB) and G(XA|XB = xB) over all

3Please, note that all BNs considered in this paper satisfy the condition
F(XB = xB)> 0 for all xB.

Figure 3: Noisy-or

configurations xB:

D(F(XA|XB)||G(XA|XB)) = ∑
xB

F(XB = xB)

∗∑
xA

F(XA = xA|XB = xB)

∗ log
F(XA = xA|XB = xB)

G(XA = xA|XB = xB)

= ∑
xA,xB

F(XA = xA,XB = xB)

∗ log
F(XA = xA|XB = xB)

G(XA = xA|XB = xB)

We will use KLD of conditional probability distributions
estimated from the true data to support our arguments when
we explain the results.

4.2 Experiments
We have performed experiments on different Belief noisy-
or (BNO) models with their CPTs defined in Table 4 where
α ∈ {0,0.2} and the CPT of a node which has no parent is
uniform, i.e., F(Xi = 1|{}) = 0.5,F(Xi = 0|{}) = 0.5. The
experiments have been repeated ten times on ten different
datasets generated fromBNOmodels with different MCAR
rates as specified in Table 9 in Appendix A. In all Figures,
we will denote additional edges by blue dashed lines, miss-
ing edges by red lines, and edges with different arrows by
orange lines.
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4.2.1 Model N1

The true N1 model is shown in Figure 11 in Appendix A.
We use this model as an example of a simple model with
a chain structure. This model is motivated by some appli-
cations, e.g., from telecommunications. Let us summarize
the results of this model:

– All algorithms learn the true structure when α ̸= 0 in
all data sizes and all MCAR rates.

– The algorithms A2, A3, and A4 learn structures dif-
ferent from the true model in some cases with α = 0,
MCAR rate 15% and data size of 1,000. For example,
A3 and A4 learn additional edge C2 → C4, also, A2
learnC4 →C6 instead ofC5 →C6.

– Using equation (5), we calculate F(C6|C5) and
F(C6|C4) from the true model N1. We have found
that their KLD value (computed using equation (4.1))
is very small, it is only 0.001. Also, the chi-square
test of independence, whose p-value is smaller than
0.0001, reveals that there is a strong dependence be-
tween C6 and C4 in addition to the relationship be-
tweenC6 andC5, already explicitly present in the true
model. Also, the BIC of the learned structure4 is -
2,252.93 and the BIC of the true model from the same
dataset is -2,255.64. This can be explained by the de-
terministic conditional distribution F(C6|C5 = 0) for
C5 = 0. For these reasons, we can conclude that we
can accept that A2 has learned C4 → C6 instead of
C5 →C6.

4.2.2 Model N2

The true N2 model is shown on the right hand side of Fig-
ure 11 in Appendix A. We use this model as an example of a
model more complicated than the previous model N1. This
model is motivated by some applications, e.g., by computer
networks. We summarize the results of the experiments per-
formed with this model:

– Figure 4 represents the Structure Hamming Distance
(SHD) for all testedMCAR rates andmodels withα =
0. We can observe that, as expected, the algorithm’s
performance is getting better with increasing the data
size.

– We can see that A2 on average has a smaller SHD dis-
tance to the true model than other algorithms.

– In Figure 5, we compare the models learned from the
datasets of size 5,000 with MCAR rate 10% using all
four algorithms. We can see that A2 and A3 have the
same SHDbut they differ in that A3 has amissing edge
C4 → C5 while A2 has an additional edge C3 → C6.
This additional edge can be explained by observing
that there is a chain of nodes C3 → C4 → C6 which

4We report the BIC value for one of ten datasets since the results for
the remaining nine are similar.

the state 0 is propagated through because of α = 0.
In other words, we calculate F(C3,C6|C1,C2,C4,C5)
and the product F(C3|C1,C2,C4,C5) ·F(C6|C4,C5)
from the true model 11 using equation (5). The KLD
value (computed as explained in (4.1)) of these two
distributions is very small, it is only 0.02. Also,
the chi-square test of independence of C3 and C6 re-
veals these variables are dependent (the test’s p-value
is smaller than 0.0001). The additional edge can be
also supported by a comparison of BIC values of the
learned structure with and without the additional edge
C3 → C6; they are -9,813.67 for the model with the
additional edge and -9,880.5 for the true model.

– If α > 0 then no additional edge is learned anymore,
no matter what the MCAR rate is. Algorithms A2 and
A4 we are always able to learn the true structure when
the data size exceeds 1,000. Also, A1 and A3 learn the
true structure when the data size is larger than 1,500.

4.2.3 BN2O models

Thesemodels are motivated by health-care applications, for
example by the QMR-DT network [17]. We created 60 dif-
ferent BN2O models consisting of two layers with N = 20
nodes in total. They differ in the numbers of nodes in the
first layer, namely L1 ∈ {5,8,12,15}; the numbers of nodes
in the second layer are L2 = 20−L1. The numbers of edges
between layers are generated randomly with three different
options N

2 ,
2·N

2 , and 4·N
2 ; each option repeated five times.

Using these models, we have generated multiple incom-
plete datasets where the sizes of the datasets are 3,000 and
5,000 and theMCAR are 10% and 15%. Figure 8 shows the
boxplot of additional and missing numbers of edges learned
in all instances for each algorithm where the dataset size is
3,000, and for all MCAR rates. The results show that A2
has better results on average (i.e., the distance to the true
model is smaller) than other algorithms.
Next we discuss in more detail one simpler example of

a BN2O. The structure of this model is shown in Figure 12
in Appendix A.

– Figure 6 represents the SHD of all learned models
grouped by MCAR rates with models where α = 0.

– The learned models from the dataset of size 5,000,
MCAR rate 10% and α = 0 using all algorithms are
shown in Figure 7. We can see that A2 performs bet-
ter (i.e., the SHD distance to the true model is smaller)
than other algorithms.

– Note the additional edge C7 → C8 learned by A2
for most datasets. The argument supporting this
additional edge is similar to that valid for the ad-
ditional edge in the N2 model. Again, we can
see that KLD of F(C7,C8|C2,C5) and the product
F(C7|C2,C5).F(C8|C2,C5) is very small; it is only
0.002. Also, the chi-square test of independence ofC7
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Figure 4: The Structural Hamming Distance of the result-
ing models of the structure learning algorithms to the true
model (with α = 0) using the data generated from the N2
model (the true model is presented in Figure 11) using the
average over ten experiments for different data sizes and for
the MCAR rates of 5%, 10%, and 15%, respectively.

and C8 has the p-value smaller than 0.0001 and there
is always only a very small difference between BIC
of the model with the extra edge and the true model;
for example„ BIC of the model with the extra edge is
-7,331.8 while the BIC of the true model is -7,338.5
for one of the en generated datasets.

– In the experiments with models having α > 0 no ad-
ditional edge has been learned and the true model is
learned successfully when the data size is 2,500 or
larger for all MCAR rates.

4.2.4 A large BN2O model

We have performed experiments with a model shown in
Figure 13 in Appendix A. This model consists of 25 vari-
ables; 14 in the first layer and 11 in the second layer. All
algorithms required a data size of more than 3,000 to give
a good performance. With the data size of 3,000 (and the
MCAR rate of 10%) the recorded SHD of algorithms A1,
A2, A3, and A4 still have not been very good – namely,
14.6, 10.2, 10, and 9.8, respectively. With the data size of
5000 and 7500 (and the MCAR rate of 10%) the recorded
average SHD of A1, A2, A3, and A4 are already much bet-
ter – namely, 7.2, 4.2, 4.3, and 5.1, respectively. See Fig-
ure 9 for the learned models. With the data size of 10,000
we already get the true models except for the additional
edges in the case of A2, as discussed in Section 4.2.3.
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Figure 5: Models learned by A1, A2, A3, and A4, respectively, for most of ten datasets generated from the true N2 model
(presented in Figure 11) (for α = 0) with the MCAR rate 10 and the data size of 5,000.
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Figure 6: The Structural Hamming Distance to the true models of the resulting models of the structure learning algorithms
using data generated from the BN2O model (the true model is presented in Figure 12) (with α = 0) averaged over all data
sizes for MCAR rates of 5%, 10%, and 15%, respectively.
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Figure 7: Models learned by A1, A2, A3, and A4, respectively, using data generated for most of ten datasets generated
from the true BN2O model (presented in Figure 12) (for α = 0) with the MCAR rate 10 and the data size of 5,000.
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Figure 8: Results of the structure learning algorithms using data generated from the BN2O model (with α = 0) with the
data size of 3,000 and averaged over all tested MCAR rates. The plot on LHS displays the average number of additional
edges and the plot on RHS displays the average number of missing edges.
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Figure 9: Models learned by A1, A2, A3, and A4, respectively, using the data generated from the large BN2O model
consisting of 25 variables (for α = 0) with the MCAR rate of 10% and the data size of 7,500 (true model is presented in
Figure 13).

5 Conclusion
In this paper, we provide an approach to learning the opti-
mal BN structure from incomplete data by adapting the con-
siderations of [8]. This adaptation imputes missing values
using product mixtures learned by the EM algorithm [11].
We have shown that the sequence of log-likelihood values
generated by E-Step and M-Step of the EM algorithm is
non-decreasing and the algorithm converges. Theorem 2.1
helps us reduce the collection of candidate parent sets for a
variable, which can speed-up the learning algorithm.
We have performed experiments on incomplete data gen-

erated from different types of BN models to compare the
proposed AlgorithmA2with other algorithms, namely with
A1 [8], soft and hard EM [3], referred to as A3 and A4, re-
spectively. In our comparisons, we use Structure Hamming
Distance of CPDAGs of learned DAGs to CPDAGs of the
original models.
Such comparisons have been undertaken on (a) general

Bayesian networks and (b) Belief Noisy-or [4] (BNO)mod-
els with partially deterministic and nondeterministic condi-
tional probability distributions. The experiments with mod-
els of type (b) are motivated by uncertain relationships in
Bayesian networks, which are common in practical appli-
cations of BNs. We have obtained the following results in
detailed simulation studies.

(a) General BN models:

– The A2 algorithm appears to be the best choice
from among the tested algorithms for learning
the structure of BNs from any incomplete data
whatever the data size and the missing MCAR
rate are.

– In most scenarios corresponding to different
datasizes and MCAR rates, Algorithm A2 is sig-
nificantly better than other algorithms and in no
scenario is it significantly worse than any other
algorithm according to the Wilcoxon test.

(b) BNO models:

– A2 is able to recover all true edges in the tested
models except for the N1 model (shown in Fig-

ure 11) at size 1,000 and a missing rate of 15%.
The different learned structure of themodel N1 is
acceptable because the Chi-square(X 2) test and
the Kullback-Leibler distance (KLD) between
the related conditional probabilities suggest there
is a high degree of relationship between the con-
nected variables.

– A2 has learned an additional edge in the case
of Models N2 (shown in Figure 11) and BN2O
(shown in Figure 12). The additional edge is
acceptable since the X 2 test and KLD suggest
there is a high degree of relationship between
these variables. We have seen that BIC of the
learned structure is almost equal to BIC of the
true model. For example, BIC of the model
learned using A2 (shown in Figure 7) is -7,331.8
and BIC of the true model is -7,338.5. Similar
behavior has been observed in other BNO mod-
els.

– A2 is always able to recover all edges while other
algorithms are not.

– For large BN2O models, all algorithms require
data sizes large than 3000 to have a good per-
formance; e.g., for the BN2O with 25 variables
A2 needs at least 10,000 data records to learn the
correct model (with the exception of additional
edges as discussed in Section 4.2.3).

We have empirically shown that our Algorithm A2 be-
haves better than other tested algorithms on several stud-
ied BNs and in different scenarios. Based on these exper-
iments, we can recommend this algorithm for practitioners
that use BNs or BNOs with incomplete data especially in
the medical domain where BNO could be used to study the
hidden relationship between symptoms and diseases. An
interesting topic for future research might be learning the
structure of large BN2O networks from incomplete data and
optimize the number of components in the EM-Mixture .
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A Appendix A. Simulation
Scenarios

This Appendix provides an inclusive list of all experiments
in the simulation study described in Sections 3.2 and 4.2,
organized by their main characteristics in Tables 8 and 9, re-
spectively. The number of components in each experiment
selected based on the number of variables in the datasets.
The true models mentioned in the Table 8 are shown in Fig-
ure 10. The true models mentioned in the Table 9 are shown
in Figures 11 and 12.

Table 8: Description of the key factors of all BN experi-
ments in the simulation study.

Network Missing Rate (MCAR) Replicates Sample Size
10 10 100, 500,1000,5000,10000

Weather [18] 25 10 100, 500,1000,5000,10000
50 10 100, 500,1000,5000,10000,13000
10 10 1000, 2000,3000,5000

Child [19] 15 10 1000, 2000,3000,5000
50 10 1000, 2000,3000,5000
5 10 500,1000,1500,2500,5000

M2 (Figure 10) 10 10 500,1000,1500,2500,5000
15 10 500,1000,1500,2500,5000
25 10 500,1000,1500,2500,5000
10 10 500,1500,2500,5000,10000,13000

M1 (Figure 10) 20 10 500,1500,2500,5000,10000,13000
35 10 500,1500,2500,5000,10000,13000
50 10 500,1500,2500,5000,10000,13000

Table 9: Description of the key factors of all Belief Noisy-
OR experiments in the simulation study (true models are
presented in Figures 11 and 12).

Network Missing Rate (MCAR) Replicates Sample Size
5 10 1000,1500,2500,5000

BN2O 10 10 1000,1500,2500,5000
15 10 1000,1500,2500,5000
5 10 1000,1500,2500,5000

N1 10 10 1000,1500,2500,5000
15 10 1000,1500,2500,5000
5 10 1000,1500,2500,5000

N2 10 10 1000,1500,2500,5000
15 10 1000,1500,2500,5000

large BN2O 10 10 5000, 7500
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Figure 10: M1 and M2 true models, respectively
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Figure 11: N1 and N2 true models, respectively. Their
marginal probability distributions are summarized in Ta-
bles 5 and 6
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Figure 12: BN2O true model. Its marginal probability dis-
tributions are summarized in Table 7
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Figure 13: Example of a large BN2O model with 25 vari-
ables (whose learned models are presented in Figure 9).


